EFEKTIVITAS MEDIA PEMBELAJARAN *BIOPUZZLE* DALAM PEMBELAJARAN *COOPERATIVE LEARNING* TIPE STAD TERHADAP HASIL BELAJAR SISWA MATERI POKOK SISTEM PERTAHANAN TUBUH KELAS XI MA NU 03 SUNAN KATONG

SKRIPSI

Diajukan untuk Memenuhi Sebagian Tugas dan Syarat Memperoleh Gelar Sarjana Pendidikan dalam Ilmu Pendidikan Biologi

Oleh : **DEVI ATIEK AFIYANI** NIM: 133811007

FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI WALISONGO SEMARANG 2018

PERNYATAAN KEASLIAN

Yang bertanda tangan dibawah ini:

Nama : Devi Atiek Afiyani

NIM : 133811007

Jurusan : Pendidikan Biologi

Program Studi : S1

Menyatakan bahwa skripsi yang berjudul:

EFEKTIVITAS MEDIA PEMBELAJARAN BIOPUZZLE DALAM PEMBELAJARAN COOPERATIVE LEARNING TIPE STAD TERHADAP HASIL BELAJAR SISWA MATERI POKOK SISTEM PERTAHANAN TUBUH KELAS XI MA NU 03 SUNAN KATONG

Secara keseluruhan adalah hasil penelitian/karya sendiri, kecuali bagian tertentu yang dirujuk sumbernya.

3AEF855123652

Semarang, 08 Januari 2018 Pembuat pernyataan,

<u>Devi Atiek Afiyani</u> NIM: 133811007

KEMENTERIAN AGAMA REPUBLIK INDONESIA UNIVERSITAS ISLAM NEGERI WALISONGO SEMARANG FAKULTAS SAINS DAN TEKNOLOGI

Il. Prof. Dr. Hamka (Kampus II) Ngaliyan (024) 7601295 Fax. 7615387 Semarang 50185

PENGESAHAN

Naskah skripsi dengan:

Iudul : Efektivitas Media Pembelajaran *Biopuzzle*

> dalam Pembelajaran Cooperative Learning Tipe STAD Terhadap Hasil Belajar Siswa Materi Pokok Sistem Pertahanan Tubuh Kelas

XI MA NU 03 Sunan Katong

Nama : Devi Atiek Afiyani

NIM : 133811007

Iurusan : Pendidikan Biologi Program studi : Pendidikan Biologi

telah diujikan dalam sidang *munagosyah* oleh Dewan Penguji Fakultas Sains dan Teknologi UIN Walisongo Semarang dan dapat diterima sebagai salah satu syarat memperoleh gelar sarjana dalam Ilmu Pendidikan Biologi,

Semarang, 08 Januari 2018

DEWAN PENGUII

M. Chodzirin, M.Kom.

NIP. 19691024 200501 1 00

Sekretar

NIP. 19590313 198103 2 007

Pengun I.

Ketua,

Dr. Nur Khoiri, M.Ag.

NIP. 19740418 200501

Pembimbing I.

19690418 199503 2 002

Rembimbing II

Khlisoh Setyawati, M.Si.

NIP. 19761117 200912 2 001

Bunga Ihda Nora, M.Pd.

NOTA DINAS

Semarang, 08 Januari 2018

Kepada Yth. Dekan Fakultas Sains dan Teknologi Universitas Islam Negeri Walisongo di Semarang

Assalamu'alaikum Wr. Wb

Dengan ini diberitahukan bahwa saya telah melakukan bimbingan, arahan dan koreksi naskah skripsi dengan :

Judul : Efektivitas Media Pembelajaran Biopuzzle dalam

Pembelajaran *Cooperative Learning* Tipe STAD Terhadap Hasil Belajar Siswa Materi Pokok Sistem Pertahanan Tubuh Kelas XI MA NU 03 Sunan

Katong

Nama : Devi Atiek Afiyani NIM : 133811007

Jurusan : Pendidikan Biologi

Program Studi : S1

Saya memandang bahwa naskah skripsi tersebut sudah dapat diajukan kepada Fakultas Sains dan Teknologi Universitas Islam Negeri Walisongo Semarang untuk diujikan dalam sidang munaqosyah.

Wassalamu'alaikum wr. wh.

Pembimbing I,

 $Siti\ Mukhlisoh\ Setyawati,\ M.Si.$

NIP. 19761117 200912 2 001

NOTA DINAS

Semarang, 08 Januari 2018

Kepada Yth. Dekan Fakultas Sains dan Teknologi Universitas Islam Negeri Walisongo di Semarang

Assalamu'alaikum Wr. Wb

Dengan ini diberitahukan bahwa saya telah melakukan bimbingan, arahan dan koreksi naskah skripsi dengan :

Judul : Efektivitas Media Pembelajaran Biopuzzle dalam

Pembelajaran *Cooperative Learning* Tipe STAD Terhadap Hasil Belajar Siswa Materi Pokok Sistem Pertahanan Tubuh Kelas XI MA NU 03 Sunan

Katong

Nama : Devi Atiek Afiyani

NIM : 133811007

Jurusan : Pendidikan Biologi

Program Studi : S1

Saya memandang bahwa naskah skripsi tersebut sudah dapat diajukan kepada Fakultas Sains dan Teknologi Universitas Islam Negeri Walisongo Semarang untuk diujikan dalam sidang munaqosyah.

Wassalamu'alaikum wr. wb.

Pembimbing II,

Bunga Ihda Nora, M.Pd.

ABSTRAK

Iudul : Efektivitas Media Pembelajaran *Biopuzzle* dalam

Pembelajaran Cooperative Learning Tipe STAD Terhadap Hasil Belajar Siswa Materi Pokok Sistem

Pertahanan Tubuh Kelas XI MA NU 03 Sunan Katong

Nama : Devi Atiek Afiyani

NIM : 133811007

Kurangnya interaksi antara guru dengan siswa dalam proses pembelajaran dapat menyebabkan rendahnya aktivitas belajar siswa. Selain itu, penyampaian materi pelajaran yang tidak disertai dengan media pembelajaran menjadi lebih sulit dipahami oleh siswa, sehingga dapat memberikan pengaruh terhadap hasil belajar siswa. Penelitian untuk mengetahui efektivitas media pembelajaran biopuzzle dalam pembelajaran cooperative learning tipe STAD pada materi pokok sistem pertahanan tubuh terhadap hasil belajar siswa kelas XI MA NU 03 Sunan Katong telah dilaksanakan. Penelitian ini merupakan penelitian kuantitatif eksperimen dengan menggunakan pretest-posttest control group design. Sampel dalam penelitian ini adalah kelas XI IPA 1 (kelas eksperimen) dan kelas XI IPA 2 (kelas kontrol). Teknik pengumpulan data dilakukan dengan menggunakan metode tes, kuesioner dan dokumentasi. Hasil penelitian menunjukkan bahwa kelas eksperimen mendapatkan rata-rata nilai hasil belajar lebih tinggi daripada nilai rata-rata hasil belajar kelas kontrol. Kelas eksperimen mendapatkan nilai rata-rata hasil belajar 80,74 dan kelas kontrol 73,23. Uji hipotesis dilakukan dengan menggunakan uji *t-test* yang diperoleh hasil t_{hitung}=3,5450 dan t_{tabel}=1,66940. Nilai t_{hitung} > t_{tabel} maka Ho ditolak dan Ha diterima. Hal tersebut dapat disimpulkan bahwa media pembelajaran biopuzzle dalam pembelajaraan cooperative learning tipe STAD efektif terhadap hasil belajar siswa materi pokok sistem pertahanan tubuh kelas XI MA NU 03 Sunan Katong.

Kata kunci: Efektivitas, biopuzzle, cooperative learning tipe STAD, sistem pertahanan tubuh, hasil belajar.

KATA PENGANTAR

Bismillahirrahmanirrahiim

Segala puji dan syukur senantiasa Penulis ucapkan atas kehadirat Allah SWT yang telah melimpahkan rahmat, taufiq dan hidayah-Nya, sehingga Penulis dapat menyelesaikan penyusunan skripsi ini. Sholawat serta salam senantiasa kita curahkan kehadirat panutan kita Nabi Muhammad SAW, keluarga para sahabat dan pengikutnya, dengan penuh harapan kita mendapatkan syafaatnya di akhirat nanti. Aamiin.

Dengan kerendahan hati dan kesadaran penuh, Penulis menyadari bahwa skripsi ini tidak akan mungkin terselesaikan tanpa adanya motivasi dan bantuan dari semua pihak, baik secara langsung maupun tidak langsung. Oleh karena itu, Penulis mengucapkan terima kasih kepada kepada:

- 1. Bapak Dr. Ruswan, MA. Selaku Dekan Fakultas Sains dan Teknologi UIN Walisongo Semarang, yang telah memberikan izin penelitian dalam rangka penyusunan skripsi ini.
- 2. Ibu Siti Mukhlisoh Setyawati, M.Si. selaku Dosen Pembimbing I dan Ibu Bunga Ihda Nora, M. Pd. selaku Dosen Pembimbing II yang telah bersedia meluangkan waktu, tenaga, dan pikiran untuk memberikan bimbingan dan pengarahan sehingga penelitian ini dapat terselesaikan.
- 3. Bapak Saifullah Hidayat, M.Sc. selaku validator media pembelajaran yang telah bersedia meluangkan waktu, tenaga, dan pikiran untuk memberikan bimbingan dan pengarahan.
- 4. Bapak/Ibu Dosen Fakultas Sains dan Teknologi UIN Walisongo Semarang yang telah memberikan serta membekali ilmu pengetahuan.

- 5. Pegawai dan seluruh civitas akademika di lingkungan Fakultas Sains dan Teknologi UIN Walisongo Semarang.
- 6. Kepala MA NU 03 Sunan Katong Kaliwungu, Kendal, Bapak Nurhadi, S.Pd.I beserta staf dan dewan guru yang telah membantu dan memberikan fasilitas selama penyelesaian penulisan skripsi ini.
- 7. Ibu Tumiyati, S.Pd. selaku guru Biologi MA NU 03 Sunan Katong serta bapak Edy Purwanto yang telah membantu pencapaian keberhasilan dalam penelitian ini.
- 8. Abah Shofan dan mama Sofiatun Munawaroh yang tak henti memberikan doa, semangat, nasihat, motivasi dan kasih sayang kepada Penulis dengan penuh kesabaran dan keikhlasan.
- 9. Adikku Yunita Anisatuzzuhriya, Khoirina Sabrina dan Muhammad Shofwan Aufurridho yang selalu mengalirkan doa, memberi semangat serta kebahagian bantuan kepada Penulis.
- 10. Mas Fathudin dan Mbak Khoirotunnisaroh yang memberikan semangat, perhatian, bantuan serta pelajaran berharga.
- 11. Sahabatku, Maftuhatun Ni'mah, Nafisatud diniyyah, Nailis Sa'adah, Nailil Maghfiroh, Mochamad Sabidin, Nur Iman Shofaat, Betab Astriadi Prawiro yang selalu memberikan semangat dan dukungan.
- 12. Teman-teman seperjuangan Pendidikan Biologi 2013 A yang selalu menjadi penyemangat dan tempat bertukar pikiran selama menjadi mahasiswa di UIN Walisongo Semarang.
- 13. Teman-teman Kos Savira 24 yang senantiasa memberikan motivasi dan semangat.
- 14. Teman-teman PPL MA NU 03 Sunan Katong dan KKN MIT 3 Posko 54 yang telah memberikan dukungan dan pengalaman bagi Penulis.

- 15. Siswa-siswi MA NU 03 Sunan Katong, khususnya kelas XI IPA 1 dan XI IPA 2 yang senantiasa mendukung proses penelitian Penulis.
- 16. Seluruh pihak yang membantu Penulis selama menjadi mahasiswa di UIN Walisongo Semarang sampai penelitian ini terselesaikan.

Penulis mengucapkan terima kasih yang tak terkira kepada semua pihak yang tidak dapat Penulis sebutkan satu per satu. Semoga amal baik dan jasa-jasa yang telah diberikan, dibalas oleh Allah SWT dengan balasan yag sebaik-baiknya.

Penulis menyadari bahwa skripsi ini masih jauh dari kata sempurna. Oleh karena itu, Penulis berharap kritik dan saran yang membangun dari semua pihak untuk karya yang lebih baik. Semoga skripsi ini dapat bermanfaat untuk berbagai pihak. Aamiin.

Semarang, 08 Januari 2018

Devi Atiek Afiyani NIM. 133811007

DAFTAR ISI

		JDUL	j
		N KEASLIAN	ii
		N	iii
		·	iv
			vi
		ANTAR	vii
			X
		MPIRAN	xii
		BEL	xiv
DAFTAR	GAI	MBAR	xvi
BAB I	PE	NDAHULUAN	
	A.	Latar Belakang	1
	B.	Rumusan Masalah	7
	C.	Tujuan dan Manfaat Penelitian	7
BAB II	LANDASAN TEORI		
	A.	Deskripsi Teori	
		1. Evektivitas	11
		2. Media Pembelajaran	11
		3. Media <i>Biopuzzle</i>	21
		4. Pembelajaran Cooperative Learning	25
		5. Pembelajaran <i>Cooperative Learning</i> Tipe	
		STAD	27
		6. Hasil Belajar	31
		7. Materi Pokok Sistem Pertahanan Tubuh	
		Manusia	34
	В.	Kajian Pustaka	56
	C.	Rumusan Hipotesis	59
BAB III	MI	ETODE PENELITIAN	
	A.	Jenis dan Pendekatan Penelitian	60
	B.	Tempat dan Waktu Penelitian	62
	C.	Populasi dan Sampel Penelitian	63

	D. Variabel dan Indikator Penelitian	64
	E. Teknik Pengumpulan Data	65
	F. Teknik Analisis Data	67
BAB IV	DESKRIPSI DAN ANALISIS DATA	
	A. Deskripsi Data	83
	B. Analisis Data	85
	C. Pembahasan Hasil Penelitian	104
	D. Keterbatasan Penelitian	118
BAB V	PENUTUP	
	A. Kesimpulan	120
	B. Saran	121

DAFTAR PUSTAKA LAMPIRAN-LAMPIRAN RIWAYAT HIDUP

DAFTAR LAMPIRAN

Lampiran 1A	Daftar Siswa Kelas Uji Coba Instrumen
Lampiran 1B	Daftar Siswa Kelas Eksperimen XI IPA 1
Lampiran 1C	Daftar Siswa Kelas Kontrol XI IPA 2
Lampiran 2A	Kisi-kisi Instrumen Soal
Lampiran 2B	Soal Uji Coba Instrumen
Lampiran 2C	Kunci Jawaban Soal Uji Coba Instrumen
Lampiran 3	Analisis Validitas, Taraf Kesukaran, Daya Beda
	dan Reliabilitas Item Soal Pilihan Ganda
Lampiran 4	Hasil Akhir Analisis Soal Uji Coba
Lampiran 5	Contoh Perhitungan Validitas Butir Soal
Lampiran 6	Contoh Perhitungan Reliabilitas Butir Soal
Lampiran 7	Contoh Perhitungan Daya Beda Soal
Lampiran 8	Contoh Perhitungan Tingkat Kesukaran Soal
Lampiran 9	Kisi-kisi Lembar Penilaian Media <i>Biopuzzle</i>
Lampiran 10	Angket Validasi Media Biopuzzle
Lampiran 11	Nilai UTS Populasi (Kelas XI IPA 1 dan XI IPA 2)
Lampiran 12	Uji Normalitas Nilai UTS Kelas XI IPA 1
Lampiran 13	Uji Normalitas Nilai UTS Kelas XI IPA 1
Lampiran 14	Uji Kesamaan Dua Varian (Homogenitas) Nilai
	UTS Antara Kelas XI IPA 1 dan XI IPA 2
Lampiran 15A	Kisi-kisi Soal <i>Pre test</i>
Lampiran 15B	Soal <i>Pre test</i>
Lampiran 15C	Kunci Jawaban Soal Pre test
Lampiran 16A	Kisi-kisi Soal <i>Post test</i>
Lampiran 16B	Soal Post test
Lampiran 16C	Kunci Jawaban Soal Post test
Lampiran 17	Nilai <i>Pre test</i> Kelas Eksperimen dan Kontrol
Lampiran 18	Uji Normalitas Data Tahap Awal Nilai <i>Pre test</i>
	Kelas Eksperimen XI IPA 1
Lampiran 19	Uji Normalitas Data Tahap Awal Nilai <i>Pre test</i>
	Kelas Kontrol XI IPA 2

Lampiran 20	Uji Homogenitas Data Tahap Awal Nilai <i>Pre test</i> antara Kelas Eksperimen dan Kelas Kontrol			
Lampiran 21	Uji Persamaan Dua Rata-rata Nilai <i>Pre test</i> antara Kelas Eksperimen dan Kelas Kontrol			
Lampiran 22	Silabus Pembelajaran			
Lampiran 23A	Rencana Pelaksanaan Pembelajaran (RPP) Kelas Eksperimen			
Lampiran 23B	Rencana Pelaksanaan Pembelajaran (RPP) Kelas Kontrol			
Lampiran 24	Nilai <i>Post Test</i> Kelas Eksperimen dan Kontrol			
Lampiran 25	Uji Normalitas Tahap Akhir Nilai <i>Post Test</i> Kelas Eksperimen			
Lampiran 26	Uji Normalitas Tahap Akhir Nilai <i>Post Test</i> Kelas Kontrol			
Lampiran 27	Uji Kesamaan Dua Varian (Homogenitas) Nilai <i>Post Test</i> Antara Kelas Eksperimen dan Kontrol			
Lampiran 28	Uji Perbedaan Dua Rata-rata Nilai <i>Post Test</i> Antara Kelas Eksperimen dan Kontrol			
Lampiran 29	Foto Media <i>Biopuzzle</i>			
Lampiran 30	Dokumentasi Foto Penelitian			
Lampiran 31	Angket Hasil Uji Ahli Media Pembelajaran <i>Biopuzzle</i>			
Lampiran 32A	Contoh Hasil Jwaban Soal Uji Coba Instrumen			
Lampiran 32B	Contoh Hasil <i>Pre Test</i>			
Lampiran 32C	Contoh Hasil <i>Post Test</i>			
Lampiran 32D	Contoh Hasil Kuis Kelas Eksperimen			
Lampiran 32E	Contoh Hasil Lembar Kerja Siswa			
Lampiran 33	Surat Izin Riset			
Lampiran 34	Surat Keterangan Penelitian			
Lampiran 35	Surat Keterangan Hasil Uji Laboratorium			
DAFTAR TABEL				

xiii

Tabel 3.1	Kriteria Kelayakan Media Pembelajaran	73
Tabel 4.1	Hasil Uji Validasi Ahli Materi dan Media	86
Tabel 4.2	Daftar Distribusi Frekuensi Nilai UTS Kelas	89
	XIPA 1	
Tabel 4.3	Daftar Distribusi Frekuensi Nilai UTS Kelas	90
	XI IPA 2	
Tabel 4.4	Hasil Uji Normalitas untuk Menentukan	91
	Sampel	
Tabel 4.5	Hasil Uji Homogenitas untuk Menentukan	92
	Sampel	
Tabel 4.6	Daftar Distribusi Frekuensi Nilai <i>Pretest</i>	94
	Kelas Eksperimen	
Tabel 4.7	Daftar Distribusi Frekuensi Nilai <i>Pretest</i>	94
	Kelas Kontrol	
Tabel 4.8	Hasil Perhitungan Uji Normalitas Data	95
	Tahap Awal	
Tabel 4.9	Hasil Uji Homogenitas Data Tahap Awal	96
Tabel 4.10	Hasil Perhitungan Uji <i>t-test</i> Kelas	98
	Eksperimen dan Kelas Kontrol	
Tabel 4.11	Daftar Distribusi Frekuensi Nilai <i>Posttest</i>	100
	Kelas Eksperimen	
Tabel 4.12	Daftar Distribusi Frekuensi Nilai <i>Posttest</i>	100
	Kelas Kontrol	
Tabel 4.13	Hasil Perhitungan Uji Normalitas Data	101
	Tahap Akhir	
Tabel 4.14	Hasil Uji Homogenitas Data Tahap Akhir	102
Tabel 4.15	Hasil Perhitungan Perbedaan Dua Rata-Rata	103
	Kelas Eksperimen dan Kelas Kontrol	

DAFTAR GAMBAR

Gambar 2.1	Skema Sistem Pertahanan Tubuh Manusia	34
Gambar 2.2	Mekanisme Fagositosis	42
Gambar 2.3	Proses Peradangan (Inflmasi)	43
Gambar 2.4	Skema Respons Peradangan (Inflmasi)	44
Gambar 2.5	Struktur interferon	45
Gambar 2.6	Struktur protein komplemen	46
Gambar 2.7	Cara antibodi menghancurkan patogen	49
Gambar 2.8	Cara sel T sitotoksik menghancurkan sel terinfeksi	51
Gambar 3.1	Pola Pretest-Posttest Control Group Design	61
Gambar 4.1	Grafik Nilai UTS Kelas XI IPA 1	89
Gambar 4.2	Grafik Nilai UTS Kelas XI IPA 2	90
Gambar 4.3	Kurva Hasil Uji Persamaan Dua Rata-Rata	98
	Nilai <i>Pre Test</i> Antara Kelompok Eksperimen	
	Dan Kontrol	
Gambar 4.4	Kurva Hasil Uji Perbedaan Dua Rata-Rata	103
	Nilai <i>Post Test</i> Antara Kelompok	
	Eksperimen Dan Kontrol	
Gambar 4.5	Grafik Nilai <i>Posttest</i> Kelas Eksperimen dan	110
	Kelas Kontrol	

BABI

PENDAHULUAN

A. Latar Belakang

Pendidikan adalah usaha sadar dan terencana untuk mewujudkan suasana belajar dan proses pembelajaran agar peserta didik secara aktif mengembangkan potensi dirinya untuk memiliki kekuatan spiritual keagamaan, pengendalian diri, kepribadian, kecerdasan, akhlak mulia serta keterampilan yang diperlukan dirinya, masyarakat, bangsa dan negara (UU RI No. 20 Tahun 2003 tentang Sistem Pendidikan Nasional). Berdasarkan pengertian tersebut, dapat disimpulkan bahwa dalam pendidikan terdapat dua kegiatan yang sangat penting, yaitu belajar dan proses pembelajaran.

Belajar merupakan suatu proses yang kompleks yang ditandai dengan perubahan tingkah laku seseorang yang disebabkan karena adanya interaksi yang terjadi pada orang tersebut dengan lingkungannya (Arsyad, 2011: 1). Perubahan tingkah laku yang dimaksud dalam pengertian tersebut salah satunya adalah tingkat pengetahuan. Proses belajar ini tidak lepas dari proses pembelajaran, karena di dalam proses pembelajaran terdapat kegiatan belajar pada diri peserta didik.

Pembelajaran merupakan proses dasar dari sebuah pendidikan, yaitu suatu proses untuk menciptakan kondisi

yang kondusif agar terjadi interaksi komunikasi belajar antara guru, peserta didik dan komponen pembelajaran lain untuk mencapai tujuan pembelajaran (Hosnan, 2014: 18). Sedangkan Fathurrohman (2012: 1) menyatakan bahwa pembelajaran pada hakikatnya merupakan suatu proses interaksi yang terjadi antara anak dengan anak, anak dengan sumber belajar dan anak dengan pendidik.

Guru dalam proses pembelajaran merupakan fasilitator dan memiliki peran penting dalam transformasi ilmu pengetahuan kepada siswa, oleh karena itu guru dituntut untuk menguasai materi pembelajaran. Menurut Agung (2010: 1) penguasaan guru terhadap materi pelajaran harus diimbangi dengan kemampuan guru untuk mengemas materi pelajaran tersebut dengan kreatif, inovatif dan variatif sehingga dapat meningkatkan motivasi siswa yang berujung pada pencapaian hasil belajar.

Seorang guru dalam menciptakan proses pembelajaran tentunya membutuhkan alat bantu berupa media pembelajaran untuk mempermudah dalam menyampaikan materi. Media pembelajaran dapat didefinisikan sebagai alat bantu pembelajaran yang dapat dijadikan sebagai penyalur pesan atau informasi yang berguna untuk mencapai tujuan pembelajaran (Komsiyah, 2012: 73). Pemilihan media

pembelajaran harus disesuaikan dengan materi yang diajarkan dan kondisi siswa, sehingga siswa diharapkan dapat terlibat secara aktif dalam kegiatan pembelajaran.

Keberagaman peserta didik dalam proses pembelajaran di sekolah merupakan salah satu alasan mengapa media pembelajaran diperlukan. Setiap siswa memiliki gaya dan kemampuan belajar yang berbeda karena berasal dari latar belakang yang berbeda. Penggunaan media pembelajaran dapat melayani kebutuhan setiap individu yang memiliki minat dan gaya belajar yang berbeda (Sanjaya, 2012: 75).

Berdasarkan hasil observasi dan studi pendahuluan dengan guru biologi kelas XI MA NU 03 Sunan Katong Kaliwungu, diperoleh informasi bahwa dalam pembelajaran biologi guru menjelaskan materi sambil mencatat di papan tulis kemudian siswa mencatat di buku tulis. Guru menjelaskan berdasarkan materi yang ada di buku paket dan metode yang digunakan hanya ceramah. Interaksi antara guru dengan siswa masih sangat kurang, karena interaksi terjadi hanya ketika guru menanyakan contoh materi yang dipelajari.

Metode ceramah sebenarnya sesuai untuk diterapkan pada hampir semua materi pelajaran biologi, namun jika metode yang digunakan hanya ceramah maka kegiatan pembelajaran hanya akan terpusat pada guru dan aktivitas belajar rendah, karena siswa hanya mendengarkan apa yang disampaikan oleh guru. Berkaitan dengan hal tersebut, guru perlu menggunakan variasi media dan metode pembelajaran yang melibatkan siswa untuk aktif dan bekerjasama, salah satunya yaitu dengan menggunakan media pembelajaran yang diintegrasikan dari permainan dengan dimodifikasi model pembelajaran.

Media pembelajaran yang diintegrasikan dari permainan dengan dimodifikasi model pembelajaran bisa dijadikan sebagai alat bantu alternatif untuk membantu siswa dalam memahami materi yang disampaikan oleh guru. Selain itu, media pembelajaran tersebut diharapkan dapat memacu siswa untuk aktif, kreatif, menumbuhkan sikap kerjasama dan mengeksplorasikan pemikirannya dalam belajar. Media yang cocok dalam hal ini adalah media pembelajaran biopuzzle dengan menggunakan model pembelajaran cooperative learning tipe STAD.

Biopuzzle terdiri dari dua kata yaitu "Bio" yang artinya biologi dan "Puzzle" yang artinya teka-teki. Biopuzzle merupakan adopsi dari permainan puzzle pada umumnya. Menurut Widyanarti (2007: 2) puzzle adalah kepingan tipis yang terdiri dari 2 sampai 3 atau lebih potongan yang terbuat dari kayu atau lempeng karton yang nantinya akan membentuk

suatu gambar. Penggabungan dua kata "Bio" dan "Puzzle" menjadi biopuzzle merupakan suatu media pembelajaran biologi yang terbuat dari potongan-potongan kayu yang harus disusun agar membentuk suatu gambar yang utuh. Tujuan penggunaan media biopuzzle adalah untuk meningkatkan aktivitas dan kreatifitas siswa serta memudahkan siswa dalam memahami materi yang disampaikan oleh guru dan meningkatkan hasil belajar siswa.

Cooperative learning menurut teori V. Savage dalam Majid (2013: 175) adalah suatu strategi yang melibatkan partisipasi siswa dalam suatu kelompok kecil untuk saling berinteraksi. Pembelajaran cooperative learning memiliki banyak variasi, diantaranya yaitu student teams achievement division (STAD). Pembelajaran kooperatif tipe STAD ini menggunakan kelompok-kelompok kecil dengan jumlah anggota tiap kelompok 4-5 orang siswa secara heterogen yang diawali dengan penyampaian tujuan pembelajaran, penyampaian materi, kegiatan kelompok. kuis dan penghargaan kelompok (Trianto, 2009: 68).

Pembelajaran *cooperative learning* tipe STAD dipilih dengan alasan agar terciptanya interaksi edukatif baik antara peserta didik dengan peserta didik lainnya maupun peserta didik dengan pendidik sehingga peserta didik aktif dalam proses pembelajaran. Selain itu, model pembelajaran ini juga dipilih dengan alasan untuk memberi motivasi siswa dalam kelompok agar mereka dapat bekerja dan saling membantu untuk memahami materi pelajaran.

Materi yang digunakan dalam media pembelajaran biopuzzle dalam pembelajaran cooperative learning tipe STAD adalah materi sistem pertahanan tubuh manusia. Berdasarkan hasil wawancara pada semester gasal tahun pelajaran 2016/2017 dengan ibu Tumiyati, S.Pd selaku guru biologi kelas XI MA NU 03 Sunan Katong, materi pokok sistem pertahanan tubuh merupakan materi yang abstrak dan sulit dipahami oleh siswa, sehingga hasil belajar siswa masih banyak yang di bawah rata-rata nilai kriteria ketuntasan minimal (KKM ≥ 75).

Penelitian tentang penerapan model pembelajaran cooperative learning tipe STAD telah dilakukan oleh Mualimaturrochmah (2016). Hasil penelitian menunjukkan bahwa penerapan model tersebut efektif dalam meningkatkan hasil belajar biologi siswa di SMA Negeri 1 Kragan. Penelitian dengan menggunakan media woody puzzle pernah dilakukan oleh Intan Kurniawati (2014). Hasil penelitian menunjukkan bahwa media woody puzzle sangat valid dan efektif sebagai media pembelajaran biologi di SMA Negeri 2 Kendal. Sejauh ini belum ada penelitian mengenai media pembelajaran biopuzzle

dan model pembelajaran *cooperative learning* tipe STAD pada materi pokok sistem pertahanan tubuh.

Berkaitan dengan latar belakang yang telah dijelaskan di atas, maka dilakukan penelitian dengan judul "Efektivitas Media Pembelajaran Biopuzzle dalam Pembelajaran Cooperative Learning Tipe STAD terhadap Hasil Belajar Siswa Materi Pokok Sistem Pertahanan Tubuh Kelas XI MA NU 03 Sunan Katong".

B. Rumusan Masalah

Berdasarkan uraian di atas dapat dirumuskan pokok permasalahan yang menjadi fokus penelitian, yaitu "Apakah media pembelajaran biopuzzle dalam pembelajaran cooperative learning tipe STAD efektif terhadap hasil belajar siswa materi pokok sistem pertahanan tubuh kelas XI MA NU 03 Sunan Katong?"

C. Tujuan dan Manfaat Penelitian

1. Tujuan Penelitian

Berdasarkan rumusan masalah di atas maka tujuan dari penelitian ini adalah untuk mengetahui efektivitas media pembelajaran *biopuzzle* dalam pembelajaran *cooperative leaning* tipe STAD terhadap hasil belajar

siswa materi pokok sistem pertahanan tubuh Kelas XI MA NU 03 Sunan Katong.

2. Manfaat Penelitian

Manfaat yang diharapkan dalam penelitian ini adalah sebagai berikut:

a. Secara Teoritis

Penelitian ini diharapkan dapat memberikan informasi secara teori terkait dengan efektivitas media pembelajaran *biopuzzle* dalam pembelajaran *cooperative learning* tipe STAD terhadap hasil belajar siswa pada materi pokok sistem pertahanan tubuh kelas XI MA NU 03 Sunan Katong.

b. Secara Praktis

1) Bagi Pendidik

- (a) Membantu pendidik dalam memecahkan masalah yang muncul terkait materi biologi kelas XI.
- (b) Meningkatkan pemahaman pendidik terkait media pembelajaran yang digunakan dalam proses pembelajaran.
- (c) Menambah wawasan bagi pendidik mengenai media yang dapat membantu mempermudah

siswa dalam memahami materi pembelajaran.

2) Bagi Peserta didik

- (a) Membantu mempermudah siswa dalam memahami materi pembelajaran, terutama pada materi pokok sistem pertahanan tubuh.
- (b) Meningkatkan peran aktif siswa dalam proses belajar sehingga pembelajaran menjadi lebih menyenangkan.
- (c) Meningkatkan hasil belajar siswa terkait materi pokok sistem pertahanan tubuh.

3) Bagi Sekolah

(a) Memberikan sumbangan yang bermanfaat bagi sekolah, sehingga hasil penelitian ini dapat dijadikan sebagai bahan kajian bersama untuk rujukan pembelajaran di MA NU 03 Sunan Katong.

4) Bagi Peneliti

- (a) Menambah wawasan kepada peneliti terkait media pembelajaran dalam proses pembelajaran.
- (b) Mendapatkan pengalaman sekaligus bekal bagi peneliti sebagai calon guru biologi

mengenai proses pembelajaran *cooperative* learning tipe STAD dengan menggunakan media biopuzzle.

BAB II

LANDASAN TEORI

A. Deskripsi Teori

1. Efektivitas

Efektivitas yang dimaksud dalam penelitian ini adalah keberhasilan pembelajaran biologi dengan menggunakan media pembelajaran biopuzzle dalam pembelajaran cooperative learning tipe STAD terhadap hasil belajar siswa materi pokok sistem pertahanan tubuh kelas XI MA NU 03 Sunan Katong. Penggunaan media biopuzzle dalam pembelajaran cooperative learning tipe STAD dikatakan efektif terhadap hasil belajar siswa pada materi pokok sistem pertahanan tubuh apabila 60%-75% dari jumlah siswa kelas eksperimen dapat mencapai nilai KKM (kriteria ketuntasan minimal) (Djamarah, 2014: 107).

2. Media pembelajaran

a. Pengertian Media Pembelajaran

Kata "Media" berasal dari bahasa Latin dan merupakan bentuk jamak dari kata "Medium" yang secara harfiah berarti "perantara atau pengantar", dengan demikian media merupakan wahana penyalur informasi belajar atau penyalur pesan. Kehadiran media mempunyai arti cukup penting dalam proses pembelajaran, karena dalam kegiatan tersebut ketidakjelasan bahan yang disampaikan dapat dibantu dengan menggunakan media sebagai perantara. Penggunaan media harus sejalan dengan isi dari tujuan pembelajaran yang dirumuskan (Komsiyah, 2012: 73).

Menurut Sadiman (2009: 19) media atau bahan merupakan perangkat lunak (*Software*) yang berisi pesan atau informasi pendidikan yang biasanya disajikan dengan menggunakan peralatan. Sedangkan menurut Daryanto (2011: 2), kata media merupakan bentuk jamak dari kata *medium. Medium* dapat didefinisikan sebagai perantara atau pengantar terjadinya komunikasi dari pengirim menuju penerima. Media pembelajaran merupakan sarana yang dapat digunakan sebagai alat dan bahan dalam proses pembelajaran.

Berdasarkan pengertian media pembelajaran di atas, dapat disimpulkan bahwa media pembelajaran merupakan suatu perantara atau alat yang digunakan untuk menyalurkan pesan atau informasi mengenai materi pelajaran yang

disampaikan oleh guru kepada peserta didik agar peserta didik mampu memahami materi pelajaran yang disampaikan oleh guru sehingga dapat tercapainya tujuan pembelajaran yang telah dirumuskan.

Media pembelajaran dalam perspektif Islam menurut (Yusuf, 2013: 140) salah satunya dijelaskan dalam al-Qur'an surat Fussilat (41) ayat 37-39 yang berbunyi:

فَإِنِ اسْتَكْبَرُوا فَالَّذِينَ عِندَ رَبِّكَ يُسَبِّحُونَ لَهُ بِاللَّيْلِ وَالنَّهَارِ وَهُمْ لَا يَسْأَمُونَ (٣٧) وَمِنْ آيَاتِهِ أَنَّكَ تَرَى الأَرْضَ حَاشِعَةً فَإِذَا أَنْكَ تَرَى الأَرْضَ حَاشِعَةً فَإِذَا أَنْلَنَا عَلَيْهَا الماء اهْتَزَّتْ وَرَبَتْ إِنَّ الَّذِي أَحْيَاهَا لَمُحْيِي المؤتَى إِنَّهُ عَلَى كُلِّ شَيْءٍ قَدِيرٌ (٣٨) إِنَّ الَّذِينَ يُلْحِدُونَ فِي آيَاتِنَا لاَ يَخْفُونَ عَلَيْنَا أَفَمَن يُلقَى فِي النَّارِ حَيْرٌ أَم مَّن يَأْتِي آمِناً يَوْمَ القِيَامَةِ اعْمَلُوا مَا شِمْتُمْ إِنَّهُ بِمَا تَعْمَلُونَ بَصِيرٌ (٣٩)

"Dan sebagian dari tanda-tanda kebesaran-Nya adalah malam, siang, matahari dan bulan. Janganlah bersujud kepada matahari dan jangan (pula) kepada bulan, tetapi bersujudlah kepada Allah yang menciptakannya, jika kamu hanya menyembah kepada-Nya. Jika mereka menyombongkan diri, maka mereka (malaikat) yang di sisi Tuhanmu bertasbih kepada-Nya pada malam dan siang hari, sedang mereka tidak pernah jemu. Dan sebagian dari tanda-

tanda (kebesaran)-Nya, engkau melihat bumi itu kering dan tandus, tetapi apabila Kami menurunkan hujan di atasnya, niscaya ia bergerak dan subur. Sesungguhnya (Allah) yang menghidupkannya pasti dapat menghidupkan yang mati; Sesungguhnya Dia Maha kuasa atas segala sesuatu".

Tafsir surat Fussilat ayat 37 dan 38 di atas Allah mengingatkan tentang kuasa-Nya yang berkaitan dengan benda-benda langit (Shihab, 2008: 418). Setelah ayat 37-38 menyinggung sekelumit bukti-bukti kekuasaan-Nya di langit dan sikap penghuni langit terhadap Allah, kini ayat 39 menguraikan bukti-bukti kekuasaan-Nya di bumi (Shihab, 2008: 421).

Ayat tersebut menggambarkan peristiwa malam, siang, matahari dan bulan sebagai media. Secara tidak langsung, ayat-ayat tersebut juga mengajarkan atau mendorong para tenaga pendidik agar dalam melaksanakan pembelajaran menggunakan media, sesuai dengan materi yang diajarkan. Banyak hal yang dapat digunakan sebagai media dalam pembelajaran. Lingkungan hidup yang beraneka ragam dapat dijadikan media, untuk itu guru dituntut agar mampu membuat media atau

merekayasa hal-hal yang terdapat di sekitarnya menjadi alat pembelajaran (Yusuf, 2013: 140)

b. Manfaat Media Pembelajaran

Menurut Kustandi dan Sutjipto (2013: 23) media pembelajaran di dalam proses belajar mengajar mempunyai beberapa manfaat, diantaranya adalah sebagai berikut:

- Media pembelajaran dapat memperjelas penyajian pesan dan informasi sehingga dapat memperlancar serta meningkatkan proses dan hasil belajar.
- 2) Media pembelajaran dapat meningkatkan dan mengarahkan perhatian anak sehingga dapat menimbulkan motivasi belajar, interaksi yang lebih langsung antara siswa dan lingkungannya dan kemungkinan siswa untuk belajar sendirsendiri sesuai dengan kemampuan dan minatntya.
- 3) Media pembelajaran dapat mengatasi ketebatasan indera, ruang dan waktu.
- 4) Media pembelajaran dapat memberikan kesamaan pengalaman kepada siswa tentang peristiwa-peristiwa di lingkungan mereka serta

memungkinkan terjadinya interaksi langsung dengan guru, masyarakat dan lingkungannya, misalnya melalui karya wisata, kunjungankunjungan ke museum atau kebun binatang.

Sudjana dan Riva'i (2009: 2) menyatakan bahwa manfaat media pembelajaran dalam proses belajar siswa adalah sebagai berikut:

- Pembelajaran akan lebih menarik perhatian siswa, sehingga dapat menumbuhkan motivasi belajar.
- Bahan pelajaran akan lebih jelas maknanya sehingga lebih dapat dipahami oleh siswa dan memungkinkannya menguasai dan mencapai tujuan pembelajaran.
- 3) Metode mengajar akan lebih bervariasi, tidak semata-mata komunikasi verbal melalui penuturan kata-kata oleh guru, sehingga siswa lebih aktif dalam pembelajaran.
- 4) Siswa dapat lebih banyak melakukan kegiatan belajar, karena tidak hanya mendengarkan uraian guru, tetapi juga aktivitas lain seperti mengamati, melakukan, mendemonstrasikan dan memerankan.

Kesimpulannya bahwa manfaat dari media dalam proses pembelajaran adalah sebagai alat untuk menyalurkan informasi mengenai materi pembelajaran yang disampaikan oleh guru dan sebagai alat untuk menarik perhatian siswa sehingga dapat meningkatkan aktivitas belajar dan siswa mampu dengan mudah memahami materi yang disampaikan oleh guru.

c. Macam-Macam Media Pembelajaran

Media pembelajaran dalam proses pembelajaran terdiri dari berbagai macam jenis dan bentuk. Keseluruhan jenis media dalam proses pembelajaran harus benar-benar diperhatikan, dipahami dan dipertimbangkan oleh guru agar media pembelajaran tersebut tepat sesuai dengan materi dan tujuan pembelajaran yang akan dicapai. Macam-macam media pembelajaran diantaranya adalah sebagai berikut:

1) Media pembelajaran dilihat dari jenisnya

Media pembelajaran dilihat dari jenisnya terdiri dari media *auditif,* media *visual* dan media *audiovisual*. Media *auditif* merupakan media yang hanya mengandalkan suara seperti radio, cassete recorder dan piringan hitam. Media visual merupakan media yang hanya mengandalkan indera penglihatan saja seperti film strip, foto, gambar atau lukisan dan cetakan. Sedangkan media audiovisual adalah media yang mempunyai unsur suara dan unsur gambar. Media audiovisual ini terdiri atas media audiovisual gerak dan media audiovisual diam (Fathurrohman dan Sutikno, 2011: 68).

2) Media pembelajaran dilihat dari daya liputnya

Menurut Arsyad (2011: 33), media pembelajaran berdasarkan daya liputnya dibagi menjadi tiga macam, yaitu:

a) Media dengan daya liput luas serentak

Penggunaan media dengan daya liput luas serentak ini tidak dibatasi oleh tempat dan ruangan, serta dapat terjangkau keseluruhan jumlah anak didik yang banyak dalam waktu yang sama. Contohnya seperti radio.

 b) Media dengan daya liput yang terbatas ruang dan tempat Penggunaan media dengan daya liput yang terbatas ruang dan tempat ini membutuhkan ruangan dan tempat khusus. Contohnya seperti film, *Sound slide* dan film rangkai.

c) Media untuk pengajaran individual

Penggunaan media untuk pengajaran individual ini hanya digunakan untuk satu orang sendiri. Contohnya seperti modul berprogram dan pengajaran melalui komputer.

Media pembelajaran dilihat dari bahan pembuatannya

Jika dilihat dari bahan pembuatannya, media pembelajaran terbagi menjadi dua, yaitu media sederhana dan media kompleks. Media sederhana adalah media yang bahan dasarnya mudah diperoleh dengan harga yang murah, cara pembuatannya mudah dan dala penggunaannya tidak sulit. Sedangkan media kompleks adalah media dengan bahan dasar yang sulit didapat, peralatannya tidak mudah dibuat dan harganya relatif mahal.

4) Media pembelajaran dilihat dari segi pengadaannya

Menurut Sadiman seperti dikutip oleh Komsiyah (2012: 81), media pembelajaran dilihat dari segi pengadaannya dapat dibagi menjadi dua macam, yaitu:

a) Media jadi (by utilization)

Media jadi (by utilization) adalah sudah meniadi komoditi media yang perdagangan. Media ini bisa untuk menghemat waktu, hemat tenaga dan hemat Namun. media ini kecil biaya. kemungkinannya untuk sesuai dengan tujuan pembelajaran. Hal ini disebabkan karena tujuan pembuatan media tersebut dibuat lebih umum untuk kelompok sasaran yang umum juga.

b) Media rancangan (by design)

Media rancangan (*by* design) adalah media yang dirancang secara khusus untuk mencapai suatu tujuan pembelajaran tertentu. Media ini besar kemungkinan sesuai dengan tujuan pembelajaran.

5) Media pembelajaran dilihat dari sifat pemanfaatannya

Media pembelajaran jika dilihat dari sifat pemanfaatannya terbagi menjadi dua macam, yaitu media primer dan media sekunder. Media primer adalah media yang diperlukan atau harus digunakan guru untuk membantu siswa dalam proses pembelajarannya. Sedangkan media sekunder adalah media yang bertujuan dalam memberikan pengayaan materi (Komsiyah, 2012: 82).

3. Media Biopuzzle

a. Pengertian Biopuzzle

Biopuzzle berasal dari dua kata "Bio" yang berarti biologi dan "Puzzle" yang berarti kesukaran atau teka-teki. Media Puzzle merupakan media dua dimensi yang mempunyai kemampuan untuk menyampaikan informasi secara visual tentang segala sesuatu sebagai pindahan dari wujud yang sebenarnya (Wahyuni, 2010: 4-5). Menurut Widyanarti (2007: 2) puzzle adalah kepingan tipis yang terdiri dari 2 sampai 3 atau lebih potongan

yang terbuat dari kayu atau lempeng karton yang nantinya akan membentuk suatu gambar.

Biopuzzle adalah suatu media pembelajaran biologi yang terbuat dari potongan-potongan kayu yang harus disusun agar membentuk suatu gambar yang utuh. Biopuzzle ini merupakan suatu media pembelajaran yang diintegrasikan dari permainan dan diadopsi dari permainan puzzle pada umumnya. Menyusun kepingan biopuzzle berarti mengingat gambar secara utuh, kemudian menyusun komponennya agar menjadi sebuah gambar yang utuh dan sempurna.

Permainan biopuzzle dijadikan sebagai media pembelajaran biologi dibuat dengan tujuan agar peserta didik aktif, kreatif dan dapat mempermudah peserta didik dalam memahami materi pembelajaran sehingga tercapainya tujuan pembelajaran yang telah dirumuskan. Permainan biopuzzle ini terfokus pada pembahasan mengenai materi pokok sistem pertahanan tubuh manusia.

Biopuzzle sebagai media pembelajaran yang diintegrasikan dari permainan memiliki beberapa manfaat, diantaranya seperti yang dinyatakan oleh Sadiman (2009: 78-79), permainan sebagai media pendidikan dapat memungkinkan adanya partisipasi aktif dari peserta didik dalam proses pembelajaran, karena permainan mempunyai kemampuan untuk melibatkan siswa dalam proses belajar secara aktif. Selain itu, permainan dapat memberikan umpan balik secara langsung sehingga akan memungkinkan proses belajar lebih efektif.

Manfaat lain dari media biopuzzle sebagai media yang diadopsi dari permainan puzzle pada umumnya menurut Al-Azizi dalam Ningsih dkk (2013: 3) adalah mengasah otak, melatih koordinasi mata dan tangan, melatih nalar, melatih kesabaran serta memberikan pengetahuan. Pengetahuan yang diperoleh dengan cara bermain biasanya akan lebih berkesan dibandingkan dengan pengetahuan yang dihafalkan.

b. Langkah Bermain Biopuzzle

Langkah-langkah dalam permainan *biopuzzle* dalam pembelajaran *cooperative learning* tipe STAD pada materi sistem pertahanan tubuh adalah sebagai berikut:

- Guru menyampaikan materi pembelajaran sesuai dengan kompetensi inti, kompetensi dasar, indikator pencapaian dan tujuan pembelajaran materi sistem pertahanan tubuh.
- Guru membagi siswa menjadi beberapa kelompok yang heterogen, setiap kelompok terdiri dari 4-5 peserta didik.
- Guru membagikan lembar diskusi siswa serta membagiikan potongan-potongan biopuzzle yang masih acak kepada setiap kelompok.
- 4) Guru menjelaskan cara kerja media biopuzzle.
- Peserta didik menyusun biopuzzle menjadi kesatuan gambar yang utuh sesuai dengan cara kerja yang dijelaskan oleh guru.
- 6) Kelompok yang mampu menyusun dengan cepat dan tepat akan mendapatkan penghargaan dari guru.

c. Cara Menyusun Biopuzzle

Cara menyusun *biopuzzle* agar menjadi kesatuan gambar yang utuh adalah sebagai berikut:

1) Peserta didik harus memahami materi yang telah disampaikan oleh guru.

- Diskusikan dengan anggota kelompok tentang materi yang disampaikan oleh guru.
- 3) Carilah kepingan *biopuzzle* yang bertanda lingkaran untuk ditempatkan di pojok kiri atas.
- 4) Urutkan kepingan *biopuzzle* sesuai dengan pemahaman peserta didik sampai selesai.

4. Pembelajaran Cooperative Learning

kooperatif Pembelaiaran disebut juga pembelajaran kelompok (group learnina) yang merupakan istilah generik bagi bermacam prosedur instruksional vang melibatkan kelompok kecil vang interaktif. Siswa bekerja sama untuk menyelesaikan suatu tugas akademik dalam suatu kelompok kecil untuk saling membantu dan belajar bersama dalam kelompok mereka serta dengan kelompok yang lain (Warsono dan Hariyanto, 2013: 161).

Pembelajaran kooperatif (cooperative learning) menurut Wisudawati dan Sulistyowati (2014: 53) merupakan suatu model pembelajaran yang dapat meningkatkan pencapaian akademik dan sikap sosial perserta didik melalui kerjasama diantara mereka. Karakteristik pembelajaran kooperatif menurut Arend seperti dikutip oleh Wisudawati dan Sulistyowati (2014:

54) adalah (1) peserta didik bekerja dalam kelompok untuk mencapai kompetensi yang telah ditentukan (2) tim yang dibentuk dari peserta didik dengan kemampuan tinggi, sedang dan rendah (3) tim yang dibentuk heterogen (4) sistem penghargaan diorientasikan pada kelompok dan individu.

Hosnan (2014: 243) menyatakan bahwa prinsip dari pembelajaran kooperatif adalah sebagai berikut:

- a. Kemampuan kerjasama
- b. Otonomi kelompok
- c. Interaksi bersama
- d. Keikutsertaan bersama
- e. Tanggungjawab individu
- f. Ketergantungan positif
- g. Kerja sama merupakan suatu nilai

Berdasarkan pengertian di atas dapat disimpulkan bahwa *cooperative learning* adalah sebuah model dalam pembelajaran yang melibatkan siswa belajar bersama dalam kelompok tanpa memandang latar belakangnya untuk mencapai tujuan bersama.

5. Pembelajaran Cooperative learning tipe STAD

a. Pengertian Pembelajaran Cooperative Learning Tipe STAD

kooperatif Pembelajaran tipe STAD merupakan salah satu tipe dari model pembelajaran menggunakan kooperatif dengan kelompokkelompok kecil dengan jumlah anggota tiap kelompok 4-5 orang siswa secara heterogen, diawali dengan penyampaian tuiuan pembelajaran, penyampaian materi, kegiatan kelompok, kuis dan penghargaan kelompok (Trianto, 2013: 68).

Pembelajaran kooperatif tipe STAD (*student teams-achievement divisions*) menurut Hosnan (2014: 246) terdiri dari lima komponen utama berikut:

- Penyajian kelas; Guru menyampaikan materi pembelajaran sesuai dengan penyajian kelas.
 Penyajian kelas tersebut mencakup pembukaan, pengembangan dan latihan terbimbing.
- 2) Kegiatan kelompok; Siswa mendiskusikan lembar kerja yang diberikan dan diharapkan saling membantu sesama anggota kelompok

- untuk memahami bahan pelajaran dan menyelesaikan permasalahan yang diberikan.
- 3) Kuis; Kuis adalah tes yang dikerjakan secara mandiri dengan tujuan untuk mengetahui keberhasilan siswa setelah belajar kelompok. Hasil tes digunakan sebagai hasil perkembangan individu dan disumbangkan sebagai nilai perkembangan dan keberhasilan kelompok.
- 4) Skor kemajuan (perkembangan) individu; Skor kemajuan individu ini tidak berdasarkan pada skor mutlak siswa, tetapi berdasarkan pada seberapa jauh skor kuis terkini yang melampaui rata-rata skor siswa yang lalu.
- 5) Penghargaan kelompok; Penghargaan kelompok adalah pemberian predikat kepada masing-masing kelompok. Predikat ini diperoleh dengan melihat skor kemajuan kelompok. Skor kemajuan kelompok diperoleh dengan mengumpulkan skor kemajuan masingmasing kelompok sehingga diperoleh skor ratarata kelompok.

b. Langkah Kerja Pembelajaran *Cooperative Learning* Tipe STAD

Sintaks atau cara kerja pembelajaran STAD menurut Warsono dan Hariyanto (2014: 197) adalah sebagai berikut:

- 1) Guru membentuk kelompok heterogen yang isinya sekitar 4-6 orang, dalam pengertian heterogen ada siswa yang cepat belajar, lambat belajar, rata-rata, ada siswa laki-laki, ada siswa perempuan, dari berbagai suku dan ras.
- 2) Guru melakukan presentasi, menyajikan pelajaran.
- 3) Guru memberi tugas kepada kelompok.
- Guru membolehkan siswa yang cepat belajar untuk mengajari siswa yang lambat belajar sampai akhirnya siswa mengetahui materi pelajarannya.
- 5) Guru memberi kuis atau soal, dalam hal ini siswa tidak boleh bekerjasama.
- 6) Guru melakukan evaluasi dan refleksi.

c. Kelebihan dan Kekurangan Model *Cooperative*Learning Tipe STAD

Model pembelajaran cooperative learning tipe STAD memiliki kelenbihan dan kekurangan. Menurut Shoimin (2014: 189) kelebihan yang diperoleh dari model pembelajaran cooperative learning tipe STAD diantaranya yaitu siswa mampu dalam bekeriasama mencapai tujuan dengan menjunjung tinggi norma-norma kelompok, siswa aktif membantu dan memberi semangat untuk berhasil bersama, siswa berperan aktif sebagai tutor sebaya untuk lebih meningkatkan keberhasilan kelompok, meningkatkan kecakapan individu dan meningkatkan kecakapan kelompok.

Sedangkan kekurangan model pembelajaran cooperative learning tipe STAD diantaranya yaitu membutuhkan waktu yang lebih lama untuk siswa sehingga sulit untuk mencapai target, siswa yang mempunyai kemampuan akademik bagus akan merasa dirugikan jika mendapatkan anggota kelompok yang kemampuan akademiknya kurang dan apabila guru tidak bisa mengelola kelas maka kelas akan menjadi gaduh (Shoimin, 2014: 190).

6. Hasil Belajar

a. Pengertian Hasil Belajar

Hasil belajar adalah kemampuan yang dimiliki siswa setelah mengalami proses belajar dan ditandai dengan adanya perubahan tingkah laku peserta didik yang mencakup bidang kognitif, afektif dan psikomotor (Sudjana, 2014: 3). Suprijono (2011: 45) menyatakan bahwa hasil belajar adalah keseluruhan perubahan perilaku yang tidak hanya mencakup salah satu aspek potensi kemanusiaan saja.

Berdasarkan pengertian di atas dapat disimpulkan bahwa hasil belajar merupakan perubahan yang terjadi pada aspek kognitif, afektif dan psikomotor pada peserta didik setelah mengikuti proses belajar. Hasil belajar peserta didik dapat diketahui setelah adanya penilaian yang dilakukan oleh guru.

Hasil belajar dalam penelitian ini dibatasi hanya pada hasil belajar aspek kognitif, karena media yang dibuat berkaitan dengan bagaimana agar siswa dapat memahami materi yang disampaikan oleh guru dengan baik dan juga keterbatasan waktu yang dimiliki oleh peneliti.

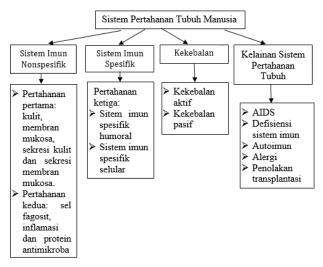
b. Aspek-aspek Hasil Belajar

1) Aspek hasil belajar bidang kognitif

Aspek hasil belajar bidang kognitif adalah ranah yang mencakup kegiatan mental atau otak. Menurut Bloom, segala upaya yang menyangkut aktivitas otak adalah termasuk dalam ranah kognitif. Ranah kognitif terdapat enam jenjang proses berfikir yang meliputi pengetahuan, hafalan, pemahaman, penerapan, analisis, sintesis dan evaluasi (Sudijono, 2009: 49).

2) Aspek hasil belajar bidang afektif

Aspek hasil belajar bidang afektif berkenaan dengan sikap dan nilai yang terdiri dari lima aspek. Kelima aspek dimulai dari aspek dasar atau sederhana sampai tingkat yang kompleks (Purwanto, 2009: 51). Menurut Krathwohl, Bloom dan Maisa dalam Widoyoko (2014: 41) ranah afektif dibedakan menjadi lima jenjang, dari jenjang yang dasar atau sederhana sampai jenjang yang kompleks, yai tu menerima atau memperhatiakn (*receiving* atau *attending*), menanggapi (*responding*), menilai


atau menghargai (valuing), mengatur atau mengorganisasikan (organization) dan karakterisasi dengan suatu nilai atau kompleks nilai (characterization by evalue or value complex).

3) Aspek hasil belajar bidang psikomotor

Hasil belajar bidang psikomotor merupakan kelanjutan dari hasil belajar kognitif (memahami sesuatu) dan hasil belajar afektif (yang baru tampak dalam bentuk kecenderungan-kecenderungan berperilaku). Hasil belajar bidang psikomotor tampak dalam bentuk keterampilan-keterampilan atau skills dan kemampuan bertindak individu. Menurut Bloom, ranah psikomotor dibedakan menjadi tujuh, yaitu persepsi (perception), kesiapan (set), respon terbimbing (guided response), terbiasa gerakan (mechanism), respon kompleks (complex overt response), adaptasi (adaptation), (origination) dan originasi (Widovoko, 2014: 46).

7. Materi Pokok Sistem Pertahanan Tubuh Manusia

Materi pokok sistem pertahanan tubuh manusia merupakan materi pembelajaran biologi kelas XI SMA / MA semester genap. Materi tersebut termasuk dalam kompetensi dasar (KD) 3.14 pada kurikulum 2013 yaitu menganalisis peran sistem imun dan imunisasi terhadap fisiologi di dalam tubuh. Materi sistem proses pertahanan tubuh mencakup pembahasan tentang imun non spesifik, sistem imun spesifik. imuniasasi dan kelainan pada sistem imun. Skema tentang materi sistem pertahanan tubuh manusia dapat dilihat pada gambar berikut ini:

Gambar 2.1 Skema Sistem Pertahanan Tubuh Manusia Sumber: Sudjadi dan Laila, 2007: 324

Sistem imun atau pertahanan tubuh manusia adalah sistem yang berperan penting dalam menjaga kesehatan tubuh manusia. Sistem tersebut di dalam tubuh dapat mengenali dan membedakan antara materi asing yang berasal dari luar tubuh dengan materi dari dalam tubuh. Materi asing dari luar tubuh antara lain seperti debu, polen, virus, mikroba dan lain-lain. Jika seseorang terinfeksi oleh materi asing maka sistem pertahanan tubuh akan bereaksi dan berusaha mencegah materi tersebut masuk ke dalam tubuh karena akan membahayakan jaringan tubuh (Sudjadi dan Laila, 2007: 325).

Sistem imun sedikitnya mempunyai tiga fungsi utama, yang pertama adalah suatu fungi yang sangat spesifik, yaitu kesanggupan untuk mengenal dan membedakan berbagai molekul target sasaran dan juga mempunyai respon yang spesifik. Fungsi kedua adalah kesanggupan membedakan antara antigen diri dan antigen asing. Fungsi ketiga adalah fungsi memori yaitu kesanggupan melalui kontak sebelumnya dengan zat asing patogen untuk

bereaksi lebih cepat dan lebih kuat dari kontak pertama (Munasir, 2001: 193).

Menurut Irnaningtyas dan Istiadi (2013: 273) sistem pertahanan tubuh memiliki bebe mrapa fungsi, diantaranya yaitu untuk mempertahankan tubuh dari patogen invasif (dapat masuk ke sel inang), misalnya virus dan bakteri. Melindungi tubuh terhadap suatu agen dari lingkungan eksternal yang berasal dari tumbuhan dan hewan (makanan tertentu, serbuk sari dan rambut binatang) serta zat kimia (obat-obatan dan polutan). Menyingkirkan sel-sel yang sudah rusak akibat suatu sehingga penyakit atau cedera memudahkan penyembuhan luka dan perbaikan jaringan. Mengenali dan menghancurkan sel abnormal (mutan) seperti kanker.

Septianing dkk (2014: 107) menyatakan bahwa Mekanisme kekebalan tubuh berfungsi untuk melawan berbagai jenis infeksi yang umum terjadi. Mekanisme mengatasi infeksi dengan menghambat masuknya patogen ke dalam tubuh atau menghancurkan mikroba tersebut dengan bantuan antibodi.

Menurut Yahya (2002: 78) Firman Allah yang berkaitan dengan cara kerja sistem pertahanan tubuh

manusia yaitu tercantum dalam surat Al-An'am ayat 101 yang berbunyi:

"...Dia menciptakan segala sesuatu; dan Dia mengetahui segala sesuatu." (QS. Al-An'am: 101).

Yahya (2002: 78) menyatakan bahwa sistem pertahanan tubuh mematuhi tujuan penciptaannya untuk menjadi elemen kehidupan yang kritis dan sangat diperlukan. Sel-sel yang bekerja dalam sistem pertahanan tubuh seperti juga segala sesuatu di alam semesta ini tanpa terkecuali dari yang terkecil sampai terbesar telah diciptakan khusus oleh Allah.

Penerapan sistem pertahanan tubuh dalam kehidupan salah satunya adalah proses pembuatan vaksin. Proses pembuatan vaksin dilakukan dengan mengambil bagian tubuh atau produk dari patogen yang biasa dijadikan antigen bagi seseorang, sehingga dapat merangsang sistem kekebalan orang tersebut (Septianing dkk, 2014: 113).

Mekanisme pertahanan tubuh manusia dibedakan atas respons nonspesifik dan respons spesifik. Respons nonspesifik meliputi pertahanan fisik, biokimia, humoral dan seluler terhadap agen infeksi dan tidak dipengaruhi oleh infeksi sebelumnya. Artinya, respons tersebut tidak memiliki memori terhadap infeksi sebelumnya. Sedangkan respons spesifik memiliki fungsi khusus dan substansi kimia (antibodi) yang dapat bereaksi terhadap agen infeksi tertentu. Artinya, respons spesifik memiliki memori sehingga ketika agen infeksi yang sama berusaha menyerang kembali, respon spesifik bereaksi lebih keras terhadap agen infeksi tersebut (Sudjadi dan Laila, 2007: 325).

a. Sistem Imun Nonspesifik

Sistem imun nonspesifik berfungsi untuk melawan berbagai jenis infeksi yang umum terjadi. Mekanisme ini mengatasi infeksi dengan menghambat masuknya patogen ke dalam tubuh atau menghancurkan mikroba tersebut dengan bantuan antibodi. Mekanisme ini memiliki dua garis pertahanan, yaitu garis pertahanan pertama dan garis pertahanan kedua (Septianing dkk, 2014: 108).

1) Garis pertahanan pertama

a) Kulit

Kulit merupakan garis pertahanan pertama tubuh terhadap patogen. Kulit yang utuh terdiri atas epidermis yang tersusun atas sel-sel epitel yang sangat rapat, sehingga menyulitkan mikroorganisme untuk masuk ke dalam tubuh (Bakhtiar, 2011: 241).

b) Membran mukosa

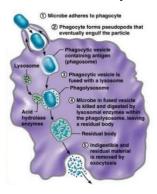
Membran mukosa melapisi saluran saluran respirasi, saluran pencernaan, kelamin dan saluran ekskresi. Membran mukosa tidak dapat ditembus oleh bakteri dan virus karena antara satu membran dengan membran yang lain sangat rapat. Selain itu, membran mukosa juga melawan bakteri dengan pertahanan kimiawi. Membran mukosa menghasilkan mukus yang merupakan cairan kental untuk mengikat dan menggumpalkan bakteri. Gumpalan ini kemudian akan dibuang oleh tubuh dalam bentuk cairan kental (Bakhtiar, 2011: 241).

c) Sekresi kulit dan membran mukosa

Sekresi kelenjar keringat dan kelenjar lemak pada kulit membuat keasaman (pH) permukaan kulit pada kisaran 3-5. Kondisi tersebut cukup asam dan mencegah banyak mikroorganisme berkoloni di kulit. Air liur,

air mata dan sekresi mukosa (mukus) yang disekresikan jaringan epitel dan mukosa dapat melenyapkan bibit penyakit yang potensial. Sekresi ini mengandung lisozim, yaitu suatu enzim yang dapat menguraikan dinding sel bakteri (Ferdinand dan Ariebowo, 2009: 204-205).

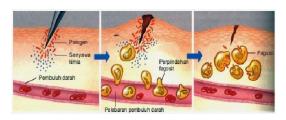
2) Garis pertahanan kedua


a) Sel fagosit

Fagosit adalah sel darah putih yang memiliki kemampuan menelan dan menghancurkan mikroba dan material asing yang masuk ke dalam tubuh (Sudjadi dan Laila, 2007: 327). Sel yang termasuk fagosit (sel pemakan) misalnya makrofag, neutrofil dan eosinofil. Makrofag berasal dari monosit, yang merupakan bagian dari sel darah putih. Monosit, neutrofil dan eusinofil dihasilkan di sumsum merah bersifat fagositik dan masuk ke jaringan vang terinfeksi. Eosinofil merupakan fagosit vang lemah, tetapi berperan penting dalam pertahanan tubuh

melawan cacing parasit (Pratiwi dkk, 2006: 272).

Sel yang diserang oleh mikroba akan menhasilkan sinyal kimiawi yang berfungsi memanggil neutrofil. Neutrofil dapat meninggalkan peredaran darah menuju jaringan yang terinfeksi kemudian menelan mikroba dan menhancurkan yang menyebabkan infeksi (Bakhtiar, 2011: 205). Saat neutrofil melakukan tugasnya melawan benda asing, monosit akan menyusul mendatangi daerah luka. Setelah mengalami pematangan, sel monosit bersirkulasi dalam darah untuk beberapa jam, kemudian dalam waktu 12 jam setelah monosit meninggalkan darah dan masuk ke jaringan, monosit akan membesar dan menghasilkan banyak lisosom. Lisosom akan berkembang menjadi makrofag. Makrofag akan menggantikan fungsi neutrofil dalam pertempuran melawan benda asing. Makrofag mampu dengan memfagosit 100 bakteri cara menempel ke bakteri dengan kaki


pseudopodium kemudian merusaknya (Pratiwi dkk, 2006: 273).

Gambar 2.2 Mekanisme fagositosis Sumber: Pratiwi dkk, 2006: 272

b) Peradangan (Inflamasi)

Inflamasi adalah reaksi akibat timbulnya infeksi dan terbukanya arteriol di sekitar daerah yang terluka sehingga suplai darah ke daerah yang terluka meningkat. Inflamasi dikontrol oleh sejumlah enzim dan beberapa komponen lainnya, seperti serotonin, platelet dan basofil. (Sudjadi dan Laila, 2007: 328).

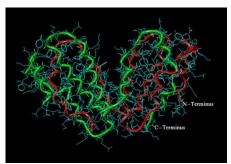
Gambar 2.3 Proses peradangan (inflamasi) Sumber: Bakhtiar, 2011: 243

Jika mikroba telah merusak jaringan, sel-sel jaringan yang telah rusak tersebut kemudian akan mengirimkan sinyal. Sinyal yang diberikan oleh sel terinfeksi akan ditangkap oleh sel darah putih jenis basofil yang kemudian akan melepaskan histamin ke jaringan. Histamin menyebabkan pembuluh darah prakapiler sekitar jaringan sedangkan pembuluh embesar, vena mengecil. Keadaan tersebut mengakibatkan jaringan mengalami pembengkakan atau peradangan (Bakhtiar, 2011: 243). Respons peradangan (inflamasi) dapat dilihat pada skema berikut:

Bakteri masuk melalui luka yang terbuka, kemudian langsung menyerang jaringan. Sel yang terinfeksi melepaskan histamin.

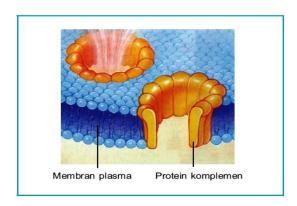
Histamin merangsang pembesaran atau dibatasi pori prakapiler sehingga fagosit dan cairan keluar menuju jaringan yang diserang.

Sel-sel fagosit menelan semua bakteri penyerang dan sel-sel yang telah rusak.


Gambar 2.4 Skema Respons peradangan.

Sumber: Bakhtiar, 2011: 243

c) Protein antimikroba


Protein antimikroba meningkatkan pertahanan dalam tubuh dengan melawan mikroorganisme secara langsung atau dengan menghalangi kemampuannya untuk bereproduksi. Protein antimikroba yang paling penting adalah interferon dan protein komplemen. Interferon merupakan suatu protein yang dihasilkan oleh sel tubuh yang terinfeksi virus untuk melindungi baian sel lain di sekitarnya. Interferon mampu menghambat perbanyakan sel-sel

terinfeksi, namun dapat meningkatkan diferensiasi sel-sel (Pratiwi dkk, 2006: 273). Struktur interferon dapat dilihat pada gambar berikut ini:

Gambar 2.5 Struktur interferon Sumber: Pratiwi dkk, 2006: 273

Protein komplemen adalah sekelompok plasma protein yang bersirkulasi di darah dalam keadaan tidak aktif. Protein komplemen dapat diaktifkan oleh munculnya ikatan antigen dan antibodi atau jika protein komplemen bertemu dengan molekul polisakarida di permukaan tubuh mikroorganisme. Struktur komplemen dapat dilihat pada gambar berikut:

Gambar 2.6 Struktur protein komplemen Sumber: Bakhtiar, 2011: 244

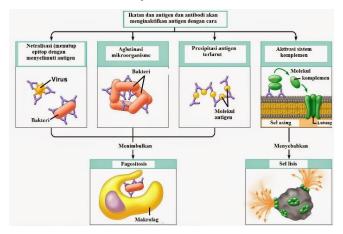
Menurut Sudjadi dan Laila (2007: 326), protein komplemen membantu pertahanan lapis kedua dengan beberapa cara, antara lain sebagai berikut:

- (1) Menempel pada mikroba sehingga fagosit lebih mudah mengenalinya.
- (2) Merangsang fagosit untuk lebih aktif.
- (3) Memicu fagosit menuju lokasi terjadinya infeksi.
- (4) Mengancurkan membrane mikroba yang menyerang.
- (5) Berperan dalam kekebalan yang diperoleh.

b. Sistem Imun Spesifik

Sistem imun spesifik mempunyai kemampuan untuk mengenal benda yang dianggap asing bagi dirinya. Benda asing yang pertama kali terpajan dengan tubuh segera dikenal oleh sistem imun spesifik. Pajanan tersebut menimbulkan sensitasi, sehingga antigen yang sama dan masuk ke tubuh untuk kedua kali akan dikenal lebih cepat kemudian dihancurkan. Oleh karena itu, sistem tersebut disebut spesifik (Bratawidjaja dan Rengganis, 2009: 39).

Sistem spesifik lebih efektif imun dibandingkan dengan sistem imun nonspesifik dan mempunyai suatu komponen memori mempercepat waktu tanggapan ketika benda asing yang sama menyerang kembali (Bakhtiar, 2011: 244). Pertahanan tubuh spesifik ini dipicu oleh antigen (antibody generating), zat asing yang menjadi bagian permukaan virus, bakteri atau patogen lain. Semua zat asing yang memicu sistem kekebalan tubuh disebut antigen. Sistem kekebalan tubuh bereaksi terhadap antigen tertentu dengan mengaktifkan sel limfosit dan memproduksi protein


khusus yang disebut antibodi (Ferdinand dan Ariebowo, 2009: 207).

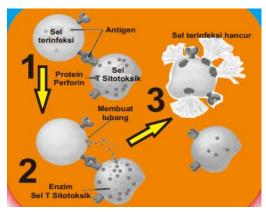
Sistem imun spesifik merupakan pertahanan lapis ketiga. Pertahanan lapis ketiga melibatkan sel darah putih khusus yang disebut limfosit. Secara sederhana, limfosit dapat mengenali mikroba yang berpotensi menyerang serta memiliki memori atas mikroba tersebut. Jika suatu waktu mikroba tersebut berusaha menyerang kembali, maka respons yang diberikan akan lebih besar (Sudjadi dan Laila, 2007: 329). Sistem imun spesifik terdiri atas sistem humoral dan sistem selular.

1) Sistem imun spesifik humoral

Imunitas humoral menghasilkan pembentukan antibodi yang disekresikan oleh sel limfosit B. Antibodi ini berada dalam plasma darah dan cairan limfa dalam bentuk protein. Pembentukan antibodi ini dipicu oleh kehadiran antigen. Antibodi secara spesifik akan bereaksi dengan antigen. Spesifik berarti antigen A hanya akan bereaksi dengan antibodi A, tidak dengan antibodi B (Ferdinand dan ariebowo, 2009: 208).

Antibodi tidak dapat langsung menghancurkan antigen. Antibodi hanya akan menonaktifkan antigen dan menandainya agar dihancurkan oleh fagosit. Setiap antibodi dibentuk khusus untuk tiap antigen yang umumnya berupa kuman penyakit (Pratiwi dkk, 2006: 274). Terdapat beberapa cara antibodi menghancurkan patogen atau antigen, yaitu netralisasi, penggumpalan, pengendapan dan pengaktifan sistem komplemen (Ferdinand dan Ariebowo, 2009: 208).

Gambar 2.7 Cara antibodi menghancurkan patogen


Sumber: Ferdinand dan Ariebowo, 2009: 209

2) Sistem imun spesifik selular

Limfosit T atau sel T berperan pada sistem imun spesifik selular. Sel tersebut juga berasal dari sel asal yang sama seperti sel B (Bratawidjaja dan Rengganis, 2010: 40). Sel T terdiri dari sel T sitotoksik, sel T penolong, sel T suppressor dan sel T memori. Tugas utama sistem imun spesifik selular adalah untuk menghancurkan sel tubuh yang telah terinfeksi patogen, misalnya oleh bakteri atau virus (Ferdinand dan Ariebowo, 2009: 210).

Sebenarnya hanya sel T sitotoksik yang dapat menghancurkan sel yang terinfeksi. Sel yang terinfeksi memiliki antigen asing virus atau bakteri yang menyerangnya. Sel T sitotoksik membawa reseptor yang dapat berikatan dengan antigen sel terinfeksi. Setelah berikatan dengan sel yang terinfeksi, sel T sitotoksik menghasilkan protein perforin yang dapat melubangi membrane sel terinfeksi, kemudian dengan adanya lubang tersebut enzim sel T dapat masuk dan menyebabkan

kematian pada sel terinfeksi beserta patogen yang menyerangnya (Ferdinand dan Ariebowo, 2009: 210).

Gambar 2.8 Cara sel T sitotoksik menghancurkan sel terinfeksi Sumber: Ferdinand dan Ariebowo, 2009: 210

c. Kelainan pada Sistem Imun

1) AIDS

(Acquired *Immunodeficiency* **AIDS** Syndrome) dicirikan dengan kerusakan sel-sel penting dalam sistem imunitas. Penyakit ini disebabkan oleh virus *Human Immunodeficiency* Virus (HIV). Virus ini menyerang sel dalam sistem imunitas menyebabkan yang berkurangnya jumlah sel T. Sel T inilah yang bertugas mengaktifkan limfosit yang

merupakan komponen dasar dari imunitas (Septianing dkk, 2014: 11).

2) Defisiensi sistem imun

Defisiensi sistem imun mencerminkan kegagalan pewarisan suatu gen individu kepada generasi berikutnya sehingga dihasilkan makrofag yang tidak mampu mencerna dan menghancurkan organisme penyerbu. Contohnya pada penderita *Severe Combined Immunodeficiency* yang harus ditinggal di lingkungan yang steril agar tidak terkena infeksi (Septianing dkk, 2014: 117).

3) Autoimun

Kemampuan sistem imun dalam membedakan dan mengenali antara sel tubuh dengan materi asing dapat mengalami kegagalan. Jika hal itu terjadi, maka sistem imun bereaksi seolah-olah sel tubuh adalah materi asing. Sel B dan sel T akan menyerang sel tubuh layaknya menghancurkanmikroba seperti penginfeksi. Kondisi itu disebut autoimun. Serangan terhadap sel tubuh umumnya terjadi ke seluruh sel tubuh atau organ tertentu (Sudjadi dan Laila, 2007: 340). Contoh dari penyakit autoimun adalah penyakit Addison kelenjar adrenal, toroiditis, artritis rematoid, *multiple sclerosis*, anemia pernisius dan lupus (Pratiwi dkk, 2006: 275).

4) Alergi

Keadaan sistem pertahanan tubuh yang sangat peka terhadap antigen tertentu disebut alergi. Reaksi alergi dapat disebabkan antara lain oleh bulu binatang, serbuk sari dan debu. Antibodi yang terlibat dalam reaksi alergi adalah dari kelas IgE. Jika ada zat penyebab alergi masuk ke dalam tubuh, IgE akan merangsang makrofag untuk melepaskan histamin dan penyebab peradangan lain (Pratiwi dkk, 2006: 274).

5) Penolakan transplantasi

Sistem kekebalan dapat mengenali dan menyerang apapun yang secara normal berbeda dari yang ada di dalam tubuh seseorang, seperti organ dan jaringan yang dicangkokkan. Penolakan transplantasi dapat dibagi menjadi tiga kategori, yaitu penolakan hiperakut (terjadi

segera begitu transplantasi dilakukan), akut (terjadi beberapa hari setelah transplantasi dilakukan) dan kronis (terjadi karena adanya pembekuan darah pada pembuluh dalam organ) (Septianing dkk, 2014: 117).

d. Imunisasi

Imunisasi adalah pemberian perlindungan pada tubuh dari serangan penyakit dengan memberikan vaksin (Rachmawati dkk, 2009: 187). Vaksin adalah bibit penyakit yang telah mati atau dilemahkan dan dapat merangsang produksi antibodi di dalam tubuh. Vaksin berisi virus atau bakteri yang telah mati dan masih dapat berperan sebagai antigen. Vaksin dapat juga berupa mikroorganisme hidup yang telah dilemahkan (Septianing dkk, 2014: 113).

Kekebalan tubuh dilihat dari segi ingatan imunologis, dibagi atas kekebalan aktif dan kekebalan pasif. Kekebalan aktif dapat mengingat patogen tertentu yang pernah masuk kedalam tubuh. Imunitas aktif cepat dan efektif dalam dalam melawan patogen, karena memberikan ingatan yang tahan lama. Sedangkan ingatan kekebalan pasif lebih

bersifat jangka pendek. Namun, kedua jenis kekebalan tersebut saling melengkapi dan memiliki efek sinergis (Pratiwi dkk, 274-275).

1) Kekebalan aktif

Kekebalan aktif terjadi apabila tubuh memperoleh sistem imun secara aktif dan menghasilkan respons imun utama. Kekebalan aktif melalui dua cara, yaitu kekebalan alami dan vaksinasi. Kekebalan alami diperoleh jika tubuh menderita sakit dan cepat pulih kembali (Rachmawati dkk, 2009: 187). Mekanisme kekebalan aktif alami yaitu kuman penyakit yang masuk ke dalam tubuh telah merangsang tubuh menghasilkan antibodi untuk melawan Apabila penyakit. penyakit yang sama menyerang kembali, tubuh telah memiliki antibodi sehingga tubuh menjadi kebal dan tidak terserang penyakit (Pratiwi dkk, 2006: 275).

Kekebalan aktif juga dapat terbentuk secara buatan, yaitu dengan vaksinasi. Tubuh dirangsang untuk menghasilkan antibodi sehingga jika penyakit sesungguhnya menyerang, tubuh telah memiliki antibodi untuk melawannya. Misalnya, vaksin polio diberikan pada anak agar anak tersebut kebal terhadap virus polio (Pratiwi dkk, 2006: 275).

2) Kekebalan pasif

Kekebalan pasif adalah kekebalan yang didapat dari pemindahan antibodi dari suatu individu ke individu lainnya. Hal ini dapat teriadi secara alami pada bavi dalam kandungan. Antibodi wanita hamil akan masuk ke tubuh bayi lewat plasenta. Antibodi-antibodi tertentu juga dapat masuk ke tubuh bayi lewat air susu ibu pertama yang diminum oleh bayi. Kekebalan pasif juga dapat terjadi secara buatan dengan menyuntikkan antibodi dari manusia atau hewan yang telah kebal terhadap suatu penyakit, misalnya rabies (Pratiwi dkk, 2006: 275).

B. Kajian Pustaka

Kajian pustaka mendeskripsikan hubungan antara masalah yang diteliti dengan sumber-sumber kepustakaan yang relevan dan benar-benar terfokus dengan tema yang dibahas sebagai dasar penelitian. Selanjutnya, hasil tinjauan pustaka dijadikan sebagai dasar posisi penelitian sehingga berbeda dari peneliti-peneliti sebelumnya. Kajian pustaka yang digunakan dalam penelitian ini adalah sebagi berikut:

- 1. Jurnal Mahasiswa Teknologi Pendidikan, Vol. 1, No. 2, Tahun 2010, penelitian yang dilakukan oleh Nanik Wahyuni dan Irena Yolanita Maureen yang berjudul "Pemanfaatan Media Puzzle Metamorfosis Dalam Pembelajaran Sains Untuk Meningkatkan Hasil Belajar Siswa Kelas II SDN Sawunggaling I/382 Surabaya". Hasil penelitian tersebut menunjukkan terdapat pengaruh yang signifikan antara pemanfaatan media *Puzzle* terhadap hasil belajar, hal ini ditunjukan dengan menggunakan uji-t yang diperoleh nilai 7,22 dengan db = 42-1 = 41 taraf signifikan 5% sehingga diperoleh t tabel 1,70. Hasil perhitungan tersebut menunjukkan bahwa t hitung lebih besar dari t tabel, yaitu 7,22 > 1,70.
- 2. Jurnal Sari Pediatri, Vol. 2, No. 4, Tahun 2001, penelitian yang dilakukan oleh Zakiudin Munasir yang berjudul "Respons Imun terhadap Infeksi Bakteri". Hasil penelitian tersebut menunjukkan bahwa Respons imun terhadap bakteri meliputi bakteri ekstraseluler dan intraselular. Pada infeksi bakteri yang berat dapat

- terjadi kelelahan respons imun (*exchaustion*), dalam keadaan ini pemberian terapi penunjang imunoglobulin intra vena dapat dipertimbangkan.
- Skripsi Intan Kurniawati (4401410084) tahun 2014 3. mahasiswi Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Semarang yang berjudul "Woodv Puzzle" "Pengembangan Media Untuk Meningkatkan Motivasi, Aktivitas dan Hasil Belajar Siswa Materi Struktur Jaringan Tumbuhan". Hasil penelitian ini menunjukan bahwa media woody puzzle sangat valid, efektif karena ≥ 75% dari jumlah siswa termotivasi, aktif, tuntas secara individual, klasikal dan hasil belajar meningkat serta dapat diterapkan sebagai media pembelajaran di SMA Negeri 2 Kendal.
- 4. Skripsi Mualimaturrochmah (4401411097) tahun 2016 mahasiswi Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Semarang yang berjudul "Efektivitas Model *Student Teams Achievement Divisions* (STAD) Berbantuan Modul Berbasis Pendidikan Karakter pada Materi Tumbuhan Terhadap Hasil Belajar Siswa". Hasil penelitian ini menunjukan bahwa penerapan model pembelajaran *cooperative learning* tipe STAD berbantuan modul berbasis pendidikan karakter efektif terhadap

- hasil belajar siswa pada materi tumbuhan di SMA Negeri 1 Kragan.
- 5. Skripsi Muamanah (K4310058) tahun 2014 mahasiswi Fakultas Keguruan dan Ilmu Penddikan Universitas Negeri Surakarta yang berjudul "Pengembangan Media *Flip Book* Menggunakan Kvisoft Flipbook Maker 3.6.1 Untuk Pembelajaran Biologi SMA Kelas XI IPA Pada Materi Sistem Pertahanan Tubuh". Hasil penelitian tersebut menunjukan bahwa hasil validasi produk media yang dihasilkan adalah dsangat layak untuk digunakan, karena diperoleh rata-rata sebesar 87%.

C. Rumusan Hipotesis

Rumusan hipotesis dalam penelitian ini adalah sebagai berikut:

- Ho: Media *biopuzzle* dalam pembelajaran *cooperative learning* tipe STAD tidak efektif dalam meningkatkan hasil belajar materi pokok sistem pertahanan tubuh kelas XI MA NU 03 Sunan Katong.
- Ha: Media *biopuzzle* dalam pembelajaran *cooperative learning* tipe STAD efektif dalam meningkatkan hasil belajar materi pokok sistem pertahanan tubuh kelas XI MA NU 03 Sunan Katong.

BAB III METODE PENELITIAN

A. Jenis dan Pendekatan Penelitian

Jenis Penelitian yang digunakan dalam penelitian ini adalah penelitian kuantitatif. Menurut Alsa (2010:13) penelitian kuantitatif adalah penelitian yang bekerja dengan angka yang datanya berwujud dengan bilangan (skor atau atau frekuensi), kemudian nilai, peringkat dianalisa menggunakan statistik untuk menjawab pertanyaan atau hipotesis penelitian yang sifatnya spesifik dan untuk melakukan prediksi hahwa suatu variabel tertentu mempengaruhi variabel yang lain. Penelitian kuantitatif ini dilaksanakan dengan menggunakan metode eksperimen. Metode eksperimen adalah metode penelitian digunakan untuk mencari pengaruh perlakuan tertentu terhadap yang lain dalam kondisi yang terkendalikan (Sugivono, 2015: 107).

Desain penelitian yang digunakan adalah *Pretest-Posttest Control Group Design*. Penelitian dengan desain ini menggunakan dua kelompok yang dipilih secara random. Kelompok pertama diberi perlakuan dan kelompok yang lain tidak diberi perlakuan, kelompok yang diberi perlakuan disebut kelompok eksperimen, sedangkan kelompok yang

tidak diberi perlakuan disebut kelompok kontrol (Sugiyono, 2015: 113). Prosedur penelitian dilakukan dengan membandingkan kedua kelas. Kelas pertama sebagai kelas eksperimen diberi perlakuan menggunakan media *biopuzzle* dengan pembelajaran *cooperative learning* tipe STAD dan kelas kedua sebagai kelas kontrol yang diberi perlakuan tidak menggunakan *biopuzzle* dan model pembelajaran *cooperative learning* tipe STAD.

Desain penelitian *Pretest-Posttest Control Group Design* menurut Sugiyono (2015: 112) yaitu:

R ₁	01	X	O ₂
R ₂	O_3		O_4

Gambar 3.1 Pola Pretest-Posttest Control Group Design

Keterangan:

R₁ : Kelompok eksperimen

 R_2 : Kelompok kontrol

01 dan 03 : Hasil *pretest* kedua kelompok sebelum

perlakuan.

02 : Hasil belajar *posttest* kelas eksperimen setelah

mendapat perlakuan menggunakan media biopuzzle dalam pembelajaran cooperative

learning tipe STAD.

O4 : Hasil belajar *posttest* kelas kontrol setelah mendapat perlakuan tanpa menggunakan media *biopuzzle* dan model pembelajaran *cooperative learning* tipe STAD.

X : Perlakuan pembelajaran biologi dengan menggunakan media *biopuzzle* dalam pembelajaran *cooperative learning* tipe STAD.

Berdasarkan gambar di atas, kedua kelas diberi soal pretest sebelum diberi perlakuan. Kem udian dari soal pretest dilakukan uji normalitas dan homogenitas. Kelas eksperimen diberi perlakuan menggunakan media biopuzzle dalam pembelajaran cooperative learning tipe STAD dan kelas kontrol diberi perlakuan tanpa menggunakan media biopuzzle dan model pembelajaran cooperative learning tipe STAD. Setelah kelas eksperimen dan kelas kontrol tersebut mendapatkan perlakuan yang berbeda, dilakukan posttest materi pokok sistem pertahanan tubuh terhadap kedua kelas tersebut untuk mengetahui perbandingan hasil belajar.

B. Tempat dan Waktu Penelitian

Penelitian skripsi ini dilakukan di MA NU 03 Sunan Katong Kaliwungu Kendal pada Semester Gasal Tahun Pelajaran 2017-2018. Waktu penelitian dilakukan pada tanggal 05 Oktober-05 November 2017.

C. Populasi dan Sampel Penelitian

1. Populasi

Populasi merupakan wilayah generalisasi yang terdiri dari obyek atau subyek yang mempunyai kualitas dan karakteristik tertentu yang ditetapkan oleh peneliti untuk dipelajari dan selanjutnya ditarik kesimpulan (Sugiyono, 2015: 117). Populasi dalam penelitian ini adalah seluruh peserta didik kelas XI IPA MA NU 03 Sunan Katong yang berjumlah 65 siswa dan dibagi menjadi dua kelas, yaitu kelas XI IPA 1 berjumlah 34 siswa dengan jumlah 6 siswa laki-laki dan 28 siswa perempuan serta kelas XI IPA 2 berjumlah 31 siswa dengan jumlah 8 siswa dan 23 siswa perempuan.

2. Sampel

Sampel adalah sebagian jumlah atau wakil dari populasi yang dipilih untuk diteliti (Arikunto, 2013: 174). Pengambilan sampel dalam penelitian ini dilakukan dengan menggunakan teknik *simple random sampling*. Teknik pengambilan sampel ini dilakukan secara acak tanpa memperhatikan strata yang ada dalam populasi itu (Sugiyono, 2015: 120). Sampel dalam penelitian ini

diambil secara acak dari 2 kelas yang telah diuji normalitas dan homogenitas. Pengujian ini dilakukan untuk mengetahui bahwa sampel yang dipilih dalam penelitian memiliki kondisi awal yang sama.

D. Variabel dan Indikator Penelitian

Variabel adalah karakteristik yang akan diobservasi dari satuan pengamatan (Muhidin dan Abdurahman, 2007: 13). Penelitian ini menggunakan dua variabel, yaitu variabel bebas atau *independent variable* dan variabel terikat atau *dependent variable*.

1. Variabel Bebas (*Independent Variable*)

Variabel bebas adalah variabel yang menjadi sebab terjadi atau terpengaruhnya variabel dependen atau terikat (Muhidin dan Abdurahman, 2011: 14). Variabel bebas dalam penelitian ini adalah penggunaan media pembelajaran *biopuzzle* dalam pembelajaran *cooperative learning* tipe STAD pada materi pokok sistem pertahanan tubuh kelas XI MA NU 03 Sunan Katong, dengan indikator penelitian peserta didik mampu menggunakan media pembelajaran *cooperative learning* tipe STAD pada materi pokok sistem pertahanan tubuh.

2. Variabel Terikat (dependent variable)

Variabel terikat adalah variabel yang nilainya dipengaruhi oleh variabel independen atau bebas (Muhidin dan Abdurahman, 2011: 14). Variabel terikat dalam penelitian ini adalah hasil belajar siswa materi pokok sistem pertahanan tubuh kelas XI MA NU 03 Sunan Katong, dengan indikator penelitian 60-75% siswa pada kelas eksperimen dapat mencapai nilai KKM (kriteria ketuntasan minimal) ≥75.

E. Teknik Pengumpulan Data

Metode pengumpulan data dalam penelitian ini adalah sebagai berikut:

1. Metode Tes

Tes merupakan alat atau prosedur yang digunakan untuk mengetahui atau mengukur sesuatu dalam suasana, dengan cara dan aturan-aturan yang sudah ditentukan (Arikunto, 2013: 67). Tes digunakan untuk melakukan penilaian terhadap hasil pembelajaran yang diberikan oleh guru kepada peserta didik (Purwanto, 2008: 33). Tes dalam penelitian ini digunakan untuk mengukur hasil belajar peserta didik pada materi pokok sistem pertahanan tubuh.

Jenis tes yang digunakan adalah tes objektif pilihan ganda (*Multiple choiche test*) yang dapat digunakan untuk mengukur hasil belajar yang lebih kompleks dan berkenaan dengan aspek ingatan, pengertian, aplikasi, analisis, sintesis dan evaluasi (Arifin, 2009: 138). Tes diberikan pada kelas eksperimen dan kelas kontrol. Soal terlebih dahulu diujikan pada kelas uji coba untuk mengetahui validitas, reliabilitas, tingkat kesukaran dan daya pembeda tiap butir soal. Hasil tes inilah yang akan digunakan untuk menarik kesimpulan pada akhir penelitian.

2. Metode Kuesioner

adalah kuesioner sejumlah Angket atau pertanyaan tertulis yang akan digunakan untuk memperoleh informasi dari responden dalam artian tentang pribadinya atau hal-hal lainnya yang ia ketahui (Arikunto, 2013: 225). Angket terbagi menjadi dua jenis, yaitu angket terbuka dan angket tertutup. Penelitian ini menggunakan jenis angket tertutup. Angket dibuat dengan skala *Likert* dengan pilihan jawaban 1-5 dalam bentuk *check list*. Angket dalam penelitian ini digunakan pada saat validasi media oleh validator (ahli materi dan media).

3. Metode Dokumentasi

Metode dokumentasi adalah mencari data mengenai hal-hal atau variabel yang berupa catatan, transkip, buku, surat kabar, majalah, prasasti, notulen rapat, agenda dan sebagainya (Arikunto, 2013: 274). Metode dokumentasi dalam penelitian ini digunakan untuk memperoleh nama-nama peserta didik, jumlah peserta didik dan data-data yang dibutuhkan dalam penelitian.

F. Teknik Analisis Data

1. Analisis Instrumen Penelitian

Instrumen penelitian (tes) sebelum diujikan perlu diuji coba dan dianalisis untuk mengetahui baik dan tidaknya instrumen soal tes. Analisis uji instrumen soal meliputi analisis validitas, reliabilitas, tingkat kesukaran dan daya pembeda soal.

a. Validitas

Menurut Arikunto (2013:79) validitas adalah suatu ukuran yang menunjukkan tingkat kevalidan atau kesahihan suatu instrumen. Suatu instrumen yang valid atau sahih mempunyai validitas tinggi. Sebaliknya instrumen yang kurang valid berarti memiliki validitas rendah. Uji validitas instrumen tes

menggunakan korelasi *point biserial* menggunakan rumus:

$$r_{pbis} = \frac{M_p - M_t}{S_t} \sqrt{\frac{p}{q}}$$

Keterangan:

 r_{pbis} : Koefisien korelasi *point biserial*

 M_p : Rata-rata skor total yang menjawab benar pada butir soal

 M_t : Rata-rata skor total

 S_t : Standar deviasi skor total

p : Peserta didik yang menjawab benar pada setiap butir soal

q : Peserta didik yang menjawab salah pada setiap butir soal

Setelah diperoleh r_{pbis} , selanjutnya dibandingkan dengan hasil r_{tabel} product moment dengan taraf signifikansi 5%. Butir soal dikatakan valid jika $r_{pbis} > r_{tabel}$.

b. Reliabilitas

Arikunto (2013: 115) menyatakan bahwa uji reliabilitas digunakan untuk menunjukan bahwa instrumen tersebut cukup dipercaya untuk digunakan

sebagai alat pengumpulan data, karena instrumen tersebut sudah baik. Rumus yang digunakan adalah sebagai berikut:

$$r_{11} = \left(\frac{n}{(n-1)}\right) \left(\frac{S^2 - \sum pq}{S^2}\right)$$

Keterangan:

 r_{11} : Reliabilitas tes secara keseluruhan

p : Proporsi subjek yang menjawab item dengan benar

q : Proporsi subjek yang menjawab item dengan salah

 $\sum pq$: Jumlah hasil perkalian p dan q

n : Banyaknya item
 S² : Standar deviasi.

Hasil r_{11} yang diperoleh, kemudian dilihat pada r tabel *product moment* dengan taraf signifikan 5%. Selanjutnya dari hasil tersebut dilihat, jika r_{11} lebih besar dari r_{tabel} maka soal yang diuji tersebut dikatakan reliabel.

c. Daya Pembeda Soal

Menurut Arikunto (2013: 226) daya pembeda soal digunakan untuk mengukur kemampuan suatu soal dalam membedakan antara peserta didik yang pandai (berkemampuan tinggi) dengan peserta didik yang bodoh (berkemampuan rendah). Daya pembeda butir soal tersebut menurut Arikunto (2013: 228-229) dihitung menggunakan rumus:

$$D = \frac{BA}{IA} - \frac{BB}{IB} = PA - PB.$$

Keterangan:

D: Daya pembeda

BA: Banyaknya kelompok atas yang menjawab benar

BB: Banyaknya kelompok bawah yang menjawab benar

JA: Banyaknya peserta kelompok atas

JB: Banyaknya peserta kelompok bawah

PA: Proporsi kelompok atas yang menjawab benar

PB: Proporsi kelas bawah yang menjawab benar.

Klasifikasi daya pembeda menurut Arikunto (2013: 232) adalah sebagai berikut:

0,00-0,20 : Soal memiliki daya pembeda lemah sekali atau jelek

0,20-0,40 : Soal memiliki daya pembeda sedang atau cukup

0,40-0,70 : Soal memiliki daya pembeda baik

0,70-1,00 : Soal memiliki daya pembeda baik sekali.

d. Tingkat Kesukaran Soal

Arikunto (2013: 222) menyatakan bahwa soal dikatakan baik apabila tidak terlalu sukar dan tidak terlalu mudah. Rumus yang digunakan untuk menguji tingkat kesukaran soal adalah sebagai berikut (Arikunto: 2013: 225):

$$P = \frac{B}{IS}$$

Keterangan:

P: Indeks kesukaran.

B : Jumlah peserta didik yang menjawab soal dengan benar.

JS : Jumlah keseluruhan peserta yang mengikuti tes.

Klasifikasi tingkat kesukaran soal menurut Arikunto (2013: 225) adalah sebagai berikut:

Soal dengan P 0,00 sampai 0,30 termasuk soal sukar.

Soal dengan P 0,31 sampai 0,70 termasuk soal sedang. Soal dengan P 0,71 sampai 1,00 termasuk soal mudah.

2. Analisis Validasi Media Biopuzzle

Biopuzzle yang digunakan sebagai media pembelajaran biologi materi sistem pertahanan tubuh dalam penelitian ini dilakukan validasi oleh validator (dosen ahli materi dan media). Hal ini dilakukan agar media tersebut valid dan layak digunakan dalam kelas eksperimen pada penelitian ini. Validator dalam uji ini adalah Saifullah Hidayat, M.Sc. Aspek yang dinilai diantaranya adalah sebagai berikut:

- a. Aspek kelayakan isi terdiri dari kelengkapan materi, keluasan materi, kedalaman materi, kejelasan indikator, keakuratan konsep dan definisi, keakuratan fakta dan data, keakuratan contoh, keakuratan gambar, keakuratan istilah, menggunakan contoh kasus yang terdapat dalam kehidupan seharihari dan mendorong rasa ingin tahu.
- Aspek kelayakan penyajian terdiri dari keakuratan konsep, keterlibatan peserta didik dan kedalaman berpikir peserta didik.
- c. Aspek kelayakan bahasa terdiri dari ketepatan struktur kalimat, keefektifan kalimat, pemahaman terhadap pesan atau informasi, kemampuan memotivasi peserta didik, kesesuaian dengan tingkat perkembangan intelektual peserta didik, ketepatan tata bahasa dan ketepatan ejaan.
- d. Aspek kemanfaatan produk terdiri dari media dapat meningkatkan minat belajar peserta didik, mempermudah peserta didik dalam memahami

materi sistem pertahanan tubuh dan penggunaan media kembali.

e. Aspek pengoperasian atau penggunaan terdiri dari kejelasan petunjuk penggunaan, kesesuaian lembar kerja dan soal pada lembar kerja.

Data yang diperoleh dari angket validasi penilaian media pembelajaran *biopuzzle* materi sistem pertahanan tubuh oleh validator kemudian dianalisis dengan menggunakan rumus (Sudijono, 2009: 43):

$$P = \frac{f}{N} \times 100\%$$

Keterangan:

P : Presentase

f : Banyaknya Skor yang diperoleh

N: Skor maksimal

Data hasil uji validasi media pembelajaran biopuzzle dianalisis secara deskriptif. Adapun kriteria kelayakan media pembelajaran oleh validator menurut Purwanto (2010: 102) adalah sebagai berikut:

Tabel 3.1. Kriteria Kelayakan

Persentase	Kriteria Kelayakan	
≥ 80%	Sangan layak	
60-79%	Layak	
50-59%	Kurang layak	
≤ 50%	Tidak layak	

3. Analisis Data Tahap Awal

- a. Uji Populasi untuk Menentukan Sampel
 - 1) Uji Normalitas

Uji normalitas dilakukan untuk mengetahui data yang diperoleh berdistribusi normal atau tidak. Uji normalitas untuk menentukan sampel dilakukan menggunakan nilai UTS semester gasal pada populasi yaitu kelas XI IPA 1 dan XI IPA 2 dengan rumus *Chi-Kuadrat*. Rumus *Chi-Kuadrat* menurut Riduwan dan Sunarto (2014: 68-71) adalah sebagai berikut:

$$\chi^2 = \sum \frac{(f_o - f_e)^2}{f_e}$$

Keterangan:

 χ^2 : Chi-Kuadrat

 f_o : Frekuensi empiris

 f_{e} : Frekuensi teoritis

Rumus mencari frekuensi teoritis:

$$f_e = \frac{(\sum fk) \times (\sum fb)}{\sum T}$$

Keterangan:

f_e : Frekuensi yang diharapkan (Frekuensi teoritis)

 \sum fk : Jumlah frekuensi pada kolom

 \sum fb : Jumlah frekuensi pada baris

∑T : Jumlah keseluruhan baris atau kolom

Langkah-langkah dalam uji *Chi-Kuadrat* adalah sebagai berikut:

- a) Membuat Ha dan Ho dalam bentuk kalimat.
- b) Mencari frekuensi yang diharapkan (f_e) pada tiap sel.
- c) Mencari *Chi-Kuadrat* (χ^2).
- d) Mencari χ^2_{tabeb} kemudian dibandingkan Antara χ^2_{hitung} dengan χ^2_{tabel} , jika $\chi^2_{hitung} > \chi^2_{tabel}$, maka Ho ditolak atau signifikan dan jika $\chi^2_{hitung} < \chi^2_{tabel}$, maka Ho diterima atau tidak signifikan.
- e) Membuat kesimpulan.

2) Uji Homogenitas

Uji homogenitas dilakukan untuk mengetahui apakah semua mempunyai varians yang sama atau tidak. Uji homogenitas dilakukan menggunakan uji F, dengan rumus sebagai berikut (Boediono, dan Wayan, 2008:100):

$$F = \frac{S^2 terbesar}{S^2 terkecil}$$

Sampel homogen apabila F_{hitung} lebih kecil dari F_{tabel} pada taraf signifikansi 5%, F_{tabel}

diperoleh dari tabel dengan dk pembilang = n_b -1 dan dk penyebut = n_k -1.

b. Uji Data Tahap Awal

1) Uji Normalitas

Uji normalitas dilakukan untuk mengetahui data yang diperoleh berdistribusi normal atau tidak. Uji normalitas data tahap awal dilakukan menggunakan nilai *pretest*, dengan rumus *Chi-Kuadrat*. Rumus *Chi-Kuadrat* menurut Riduwan dan Sunarto (2014: 68-71) adalah sebagai berikut:

$$\chi^2 = \sum \frac{(f_o - f_e)^2}{f_e}$$

Keterangan:

 χ^2 : Chi-Kuadrat

 f_o : Frekuensi empiris

 f_{ρ} : Frekuensi teoritis

Rumus mencari frekuensi teoritis:

$$f_e = \frac{(\sum fk) \times (\sum fb)}{\sum T}$$

Keterangan:

 f_e : Frekuensi yang diharapkan (Frekuensi teoritis)

 $\sum fk$: Jumlah frekuensi pada kolom

 \sum fb : Jumlah frekuensi pada baris

∑T : Jumlah keseluruhan baris atau kolom

Langkah-langkah dalam uji *Chi-Kuadrat* adalah sebagai berikut:

- a) Membuat Ha dan Ho dalam bentuk kalimat.
- b) Mencari frekuensi yang diharapkan (f_e) pada tiap sel.
- c) Mencari *Chi-Kuadrat* (χ^2).
- d) Mencari χ^2_{tabel} , kemudian dibandingkan Antara χ^2_{hitung} dengan χ^2_{tabel} , jika $\chi^2_{hitung} > \chi^2_{tabel}$, maka Ho ditolak atau signifikan dan jika $\chi^2_{hitung} < \chi^2_{tabel}$, maka Ho diterima atau tidak signifikan.
- e) Membuat kesimpulan.

2) Uji Homogenitas

Uji homogenitas dilakukan untuk mengetahui variansi dari sampel yang diteliti, apakah kedua kelompok mempunyai varians yang sama atau tidak. Uji homogenitas dilakukan menggunakan uji F, dengan rumus sebagai berikut (Boediono, dan Wayan, 2008:100):

$$F = \frac{S^2 \text{ terbesar}}{S^2 \text{ terkecil}}$$

Sampel homogen apabila F_{hitung} lebih kecil dari F_{tabel} pada taraf signifikansi 5%, F_{tabel} diperoleh dari tabel dengan dk pembilang = n_b -1 dan dk penyebut = n_k -1.

3) Uji Persamaan Dua Rata-Rata

Uji persamaan dua rata-rata digunakan untuk menguji apakah kedua kelompok (eksperimen dan kontrol) bertitik awal sama atau tidak sebelum dikenai perlakuan. Uji yang digunakan adalah dengan menggunakan uji *t-test*. Hipotesis yang digunakan adalah sebagai berikut:

Ho : $\mu_1 = \mu_2$

Ha : $\mu_1 \neq \mu_2$

Keterangan:

 $\mu_1 \qquad : Rata\text{-}rata \ nilai \ kelas \ eksperimen$

μ₂ : Rata-rata nilai kelas kontrol

Rumus yang digunakan menurut Sugiyono (2015: 273) adalah sebagai berikut :

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt[s]{\frac{1}{n_1} + \frac{1}{n_2}}}$$

dengan:

$$S = \sqrt{\frac{(n_1 - 1))s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Keterangan:

 x_1 : Rata-rata kelas eksperimen

 x_2 : Rata-rata kelas kontrol

 n_1 : Banyanya subjek dari kelas eksperimen

*n*₂ : Banyaknya subjek dari kelas kontrol

 s_{1}^{2} : Varians kelas eksperimen

 s_2^2 : Varians kelas kontrol

Kriteria pengujian Ho diterima apabila -

 t_{tabel} < t_{hitung} < t_{tabel} dengan derajat kebebasan (dk) =

 n_{1} + n_{2} – 2, taraf signifikan 5% dan Ha ditolak untuk harga t lainnya.

4. Analisis Data Tahap Akhir

Uji data tahap akhir menggunakan *Posttest* atau tes akhir setelah kedua sampel diberi perlakuan yang berbeda. Data hasil tes akhir yang diperoleh digunakan sebagai dasar dalam menguji hipotesis, apakah hipotesis tersebut diterima atau ditolak. Beberapa langkah dalam melakukan analisis data tahap akhir sama dengan tahap awal pada kelas eksperimen dan kelas kontrol. Langkahlangkah tersebut diantaranya adalah sebagai berikut:

a. Uji Normalitas

Uji normalitas data tahap akhir dilakukan dengan menggunakan data nilai hasil belajar siswa setelah mendapatkan perlakuan (posttest). Uji normalitas ini dilakukan dengan tujuan untuk mengetahui apakah hasil belajar siswa kelas kontrol dan kelas eksperimen setelah mendapatkan perlakuan berdistribusi normal atau tidak. Langkahlangkah uji normalitas pada tahap ini sama dengan langkah-langkah uji normalitas pada tahap awal.

b. Uji Homogenitas

Uji homogenitas data tahap akhir dilakukan untuk mengetahui kedua kelompok mempunyai varians yang sama atau tidak. Apabila kedua kelompok mempunyai varians yang sama maka kelompok tersebut dikatakan homogen. Langkahlangkah yang digunakan dalam pengujian ini sama dengan langkah-langkah uji homogenitas data tahap awal.

c. Uji Perbedaan Dua Rata-rata

Uji perbedaan rata-rata bertujuan untuk mengolah data yang terkumpul yaitu dengan data hasil belajar siswa. Data hasil tes akhir siswa diambil setelah kedua sampel diberi perlakuan yang berbeda dan data tersebut digunakan untuk menguji hipotesis penelitian. Rumus yang digunakan adalah uji *t-test* dengan ketentuan sebagai berikut:

Ho: $\mu_1 = \mu_2$

Ha : $\mu_1 \neq \mu_2$

Keterangan:

 μ_1 : Rata-rata hasil belajar kelas eksperimen

μ₂ : Rata-rata hasil belajar kelas kontrol

Sugiyono (2015: 273) menyatakan bahwa dalam menganalisis hipotesis ini menggunakan rumus *t-test* sebagai berikut:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt[s]{\frac{1}{n_1} + \frac{1}{n_2}}}$$

dengan:

$$S = \sqrt{\frac{(n_1 - 1))s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Keterangan:

 $t:t_{\text{hitung}}$

 \bar{X}_1 : Rata-rata kelas eksperimen

 \bar{X}_2 : Rata-rata kelas kontrol

 n_1 : Jumlah responden dari kelas eksperimen

 n_2 : Jumlah responden dari kelas kontrol

s: Standar deviasi

Setelah hasil perhitungan tersebut diperoleh, maka tahap selanjutnya yaitu menguji signifikansi dengan membandingkan $t_{\rm hitung}$ dan $t_{\rm tabel}$ dengan dk = $n_1 + n_2 - 2$ dan taraf kesalahan 5%. Sehingga ada dua kemungkinan hasil akhir yaitu signifikan atau tidak signifikan. Apabila $t_{\rm hitung}$ > $t_{\rm tabel}$ maka hasil akhir signifikan (Ho ditolak, Ha diterima) dan apabila $t_{\rm hitung}$ < $t_{\rm tabel}$ maka hasil akhir tidak signifikan (Ho diterima, Ha ditolak) (Sugiyono, 2015: 275-276).

BAB IV

DESKRIPSI DAN ANALISIS DATA

A. Deskripsi Data

Penelitian ini termasuk dalam penelitian kuantitatif eksperimental. Jenis metode eksperimen yang digunakan adalah *true experimental* dengan desain *pretest-posttest control group*, yaitu desain penelitian eksperimen dengan melihat perbedaan nilai *pretest* dan *posttest* antara kelas eksperimen dan kelas kontrol.

Peserta didik yang digunakan sebagai kelas eksperimen adalah kelas XI IPA 1 dengan diberi perlakuan menggunakan media pembelajaran biopuzzle dalam pembelajaran cooperative learning tipe STAD dan kelas XI IPA 2 dijadikan sebagai kelas kontrol yang diberi perlakuan tanpa menggunakan media pembelajaran biopuzzle dan model pembelajaran cooperative learning tipe STAD. Sebelum dilakukan pembelajaran pada kelas eksperimen dan kontrol siswa diberi *pretest* untuk mengetahui hasil belajar sebelum diberi perlakuan. Kegiatan pembelajaran pada kedua kelas secara garis besar sesuai dengan RPP (lampiran 20) yang telah dibuat oleh peneliti, yaitu sebanyak 3 kali pertemuan (6 JP x 45 menit).

Langkah pembelajaran pada kelas eksperimen dimulai dengan guru menjelaskan materi pembelajaran secara umum. Selanjutnya siswa dibagi menjadi 7 kelompok, masing-masing kelompok terdiri dari 4-5 orang siswa yang dipilih secara heterogen. Kemudian setiap kelompok diberi media pembelajaran biopuzzle dan lembar kerja untuk mendiskusikan materi sistem pertahanan tubuh serta menjawab soal yang ada pada lembar kerja. Selama berjalannya diskusi setiap anggota kelompok yang cepat memahami materi memiliki tanggungjawab untuk membantu temannya yang mengalami kesulitan. Pada akhir kegiatan kelompok guru memberi kuis kepada seluruh anggota kelompok untuk menjawab soal secara individu.

Langkah pembelajaran pada kelas kontrol hampir sama dengan langkah pembelajaran pada kelas eksperimen, namun pada kelas kontrol tidak menggunakan media pembelajaran biopuzzle dan pada akhir kegiatan kelompok tidak diberi kuis, karena tidak menggunakan model pembelajaran cooperative learning tipe STAD. Setelah kedua kelas mendapat perlakuan yang berbeda kemudian siswa diberi posttest untuk mengetahui hasil belajar pada materi yang telah dipelajari. Langkah akhir yang dilakukan peneliti setelah mendapat nilai posttest adalah melakukan analisis data dan melakukan perhitungan sesuai dengan data yang diperoleh.

B. Analisis Data

1. Analisis Uji Instrumen Soal

Instrumen yang digunakan dalam penelitian ini adalah tes objektif pilihan ganda yang berjumlah 50 butir soal dengan 5 pilihan jawaban. Soal diujikan pada siswa yang pernah mendapatkan materi sistem pertahanan tubuh, yaitu kelas XII IPA 1. Uji coba instrumen dilakukan dengan tujuan untuk mengetahui validitas, reliabilitas, daya pembeda dan tingkat kesukaran soal.

Berdasarkan uji instrumen soal yang telah dilakukan diperoleh hasil bahwa perhitungan validitas butir soal uji coba (lampiran 5) terdapat 78% soal uji coba yang valid dan 22% soal uji coba tidak valid. Perhitungan reliabilitas soal (lampiran 6) diperoleh koefisien reliabilitas r₁₁ = 0,792 yang merupakan hasil kriteria pengujian tinggi. Hasil analisis daya pembeda soal uji coba (lampiran 7) diperoleh 20% soal dengan kriteria sangat jelek, 34% soal dengan kriteria jelek, 40% soal dengan kriteria cukup, 6% soal dengan kriteria baik dan 0% soal dengan kriteria baik sekali. Hasil analisis tingkat kesukaran soal (lampiran 8) diperoleh 4% soal dengan kriteria sukar, 66% soal dengan kriteria sedang dan 30% soal dengan kriteria mudah.

Hasil uji coba instrumen soal yang berjumlah 50 butir yang mencakup 5 indikator telah dianalisis validitas, reliabilitas, daya pembeda dan tingkat kesukaran soal, menghasilkan 22 item soal (lampiran 4). Soal yang dapat dijadikan *pretest* dan *posttest* berdasarkan soal analisis uji coba berjumlah 20 soal. Soal tersebut diujikan pada kelas eksperimen dan kelas kontrol.

2. Analisis Uji Validasi Media *Biopuzzle*

Uji validasi media *biopuzzle* bertujuan untuk mengetahui apakah media tersebut valid dan layak digunakan dalam kelas eksperimen pada penelitian ini. Media pembelajaran *biopuzzle* materi sistem pertahanan tubuh divalidasi oleh validator (ahli mengenai kandungan materi dan desain media). Validator dalam uji ini adalah Saifullah Hidayat, M.Sc yang merupakan dosen Pendidikan Biologi Fakultas Sains dan Teknologi UIN Walisongo Semarang. Adapun hasil penilaian yang diberikan oleh validator adalah sebagai berikut:

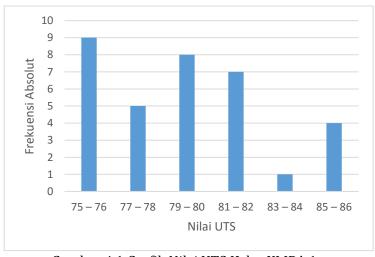
Tabel 4.1 Hasil Uji Validasi Ahli Materi dan Media

No	Butir Penilaian Evaluasi	Skor Validasi
1	Kelengkapan materi	4
2	Keluasan materi	4
3	Kedalaman materi	4
4	Kejelasan indicator	4
5	Keakuratan konsep dan definisi	5
6	Keakuratan fakta dan data	5
7	Keakuratan contoh	3
8	Keakuratan gambar	5

No	Butir Penilaian Evaluasi	Skor Validasi	
9	Keakuratan istilah	5	
10	Menggunakan contoh kasus	5 3	
	yang terdapat dalam kehidupan		
	sehari-hari		
11	Mendorong rasa ingin tahu	3	
12	Keruntutan konsep	4	
13	Keterlibatan peserta didik	4	
14	Kedalaman berpikir peserta didik	4	
15	Ketepatan struktur kalimat	5	
16	Keefektifan kalimat	<u>5</u> 5	
17	Pemahaman terhadap pesan	5	
	atau informasi		
18	Kemampuan memotivasi	4	
	peserta didik		
19	Kesesuaian dengan tingkat	4	
	perkembangan intelektual		
	peserta didik		
20	Ketepatan tata Bahasa	5	
21	Ketepatan ejaan	<u>5</u> 5	
22	Media dapat meningkatkan	5	
	minat belajar peserta didik		
23	Mempermudah peserta didik	5	
	memahami materi sistem		
	pertahanan tubuh		
24	Penggunaan media kembali	5	
25	Kejelasan petunjuk penggunaan	4	
26	Kesesuaian lembar kerja	5 4	
27	27 Soal pada lembar kerja		
	Jumlah 118		
Persentase 87,41%			

Berdasarkan tabel 4.1 mengenai hasil uji validasi ahli materi dan media diperoleh skor validasi 118 atau 87,41% yang masuk pada kategori sangat layak digunakan. Selain melskukan penilaian, validator juga memberikan komentar dan saran terhadap media pembelajaran yang telah dibuat. Saran tersebut dijadikan sebagai dasar untuk merevisi atau memperbaiki media yang dibuat agar menjadi lebih baik. Komentar dan saran yang diberikan oleh validator adalah terdapat beberapa warna media yang kurang jelas, silahkan dicetak ulang agar kalimat bisa dibaca secara utuh.

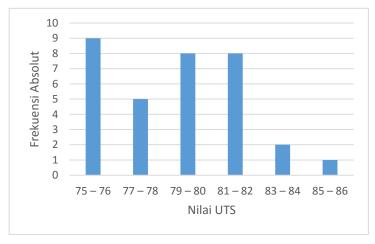
Berdasarakan komentar dan saran, peneliti melakukan revisi atau perbaikan pada media pembelajaran *biopuzzle* sesuai dengan saran validator yang terdapat pada angket lembar validasi, yaitu dengan mencetak ulang media pembelajaran *biopuzzle*. Angket hasil penilaian ahli selengkapnya dapat dilihat pada lampiran 31.


3. Analisis Data Hasil Penelitian

- a. Analisis Data Tahap Awal
 - 1) Uji Populasi untuk Menentukan Sampel
 - a) Uji Normalitas

Uji normalitas untuk menentukan sampel dilakukan menggunakan nilai UTS semester gasal pada populasi, yaitu kelas XI IPA 1 dan XI IPA 2 dengan rumus *Chi-Kuadrat*. Data nilai UTS kelas XI IPA 1 dan kelas XI IPA 2 disajikan dalam bentuk tabel dan grafik sebagai berikut:

Tabel 4.2 Daftar Distribusi Frekuensi Nilai UTS Kelas XI IPA 1


No	Kelas Interval	Frekuensi Absolut	Frekuensi Relatif
1	75 – 76	9	26,47%
2	77 - 78	5	14,71%
3	79 - 80	8	23,53%
4	81 - 82	7	20,59%
5	83 - 84	1	2,94%
6	85 - 86	4	11,76%
Jum	lah	34	100%

Gambar 4.1 Grafik Nilai UTS Kelas XI IPA 1

Tabel 4.3 Daftar Distribusi Frekuensi Nilai UTS Kelas XI IPA 2

0 10 110100 111 11 11						
No	Kelas	Frekuensi	Frekuensi			
NU	Interval	Absolut	Relatif			
1	75 – 76	7	22,58%			
2	77 – 78	5	16,13%			
3	79 – 80	8	25,81%			
4	81 - 82	8	25,81%			
5	83 - 84	2	6,45%			
6	85 - 86	1	3,23%			
Jum	lah	31	100%			

Gambar 4.2 Grafik Nilai UTS Kelas XI IPA 2

Hipotesis statistik yang digunakan dalam uji normalitas adalah sebagai berikut:

Ho: data tidak berdistribusi normal.

Ha: data berdistribusi normal.

Kriteria pengujian jika $\chi^2_{\text{hitung}} > \chi^2_{\text{tabel}}$, maka Ho ditolak atau signifikan dan jika χ^2_{hitung} $< \chi^2_{\text{tabel}}$, maka Ho diterima atau tidak signifikan dengan taraf signifikan 5% dan dk = k-1. Hasil uji normalitas untuk menentukan sampel dapat dilihat pada tabel berikut:

Tabel 4.4 Hasil Perhitungan Uji Normalitas untuk Menentukan Sampel

Kelas	χ^2 hitung	dk	χ^2 tabel	Keterangan
XI IPA 1	8,6189	5	11,070	Normal
XI IPA 2	4,9194	5	11,070	Normal

Berdasarkan tabel di atas diketahui bahwa kelas XI IPA 1 dan XI IPA 2 semuanya berdistribusi normal, sehingga tahap selanjutnya dilakukan uji homogenitas pada kelas kedua kelas tersebut. Perhitungan uji normalitas untuk menentukan sampel selengkapnya dapat dilihat pada lampiran 12 dan 13.

b) Uji Homogenitas

Uji homogenitas dilakukan untuk mengetahui apakah semua sampel mempunyai varians yang sama atau tidak. Uji homogenitas dilakukan menggunakan uji F. Kedua kelas mempunyai varians yang sama apabila Fhitung <

 F_{tabel} dengan taraf signifikansi 5%. Berdasarkan hasil perhitungan diperoleh hasil $S_{1^2} = 11,1631$ dan $S_{2^2} = 7,2645$. Nilai tersebut kemudian digunakan untuk menghitung F_{hitung} sebagai berikut:

$$F_{\text{hitung}} = \frac{11,1631}{7,2645} = 1,537.$$

Perhitungan uji homogenitas untuk sampel diatas diperoleh F_{hitung} = 1,537 dengan peluang $\frac{1}{2}\alpha$ dan taraf signifikansi sebesar α = 5%, serta dk pembilang 34-1=33 dan dk penyebut 31-1= 30, maka F_{tabel} = 2,051. Nilai F_{hitung} < F_{tabel} maka data tersebut memiliki varians yang sama atau homogen.

Tabel 4.5 Hasil Uji Homogenitas untuk Menentukan Sampel

No	Kelas	Fhitung	F _{tabel}	Kriteria	
1	XI IPA 1	1,537	2,051	Homogen	
2	XI IPA 2				

Berdasarkan tabel di atas dapat diketahui bahwa kedua kelas berada pada kondisi awal yang tidak jauh berbeda, sehingga teknik *random sampling* dapat digunakan untuk menentukan kelas eksperimen dan kelas kontrol. Penentuan kelas eksperimen dan kelas

kontrol dilakukan secara acak. Kelas yang digunakan sebagai kelas eksperimen adalah kelas XI IPA 1 dan kelas XI IPA 2 dijadikan sebagai kelas kontrol. Perhitungan selengkapnya dapat dilihat pada lampiran 14.

2) Uji Data Tahap Awal

Data yang digunakan untuk analisis data tahap awal dalam penelitian ini adalah data nilai pretest kelas eksperimen dan kelas kontrol. Uji statistik yang digunakan untuk menganalisis data tahap awal penelitian adalah menggunakan uji normalitas, uji homogenitas dan uji persamaan dua rata-rata.

a) Uji Normalitas

Uji normalitas data digunakan untuk mengetahui data yang diperoleh berdistribusi normal atau tidak, dengan menggunakan rumus *Chi-Kuadrat*. Data hasil *pretest* kelas eksperimen dan kelas kontol disajikan dalam bentuk tabel sebagai berikut:

Tabel 4.6 Daftar Distribusi Frekuensi Nilai *Pretest* Kelas Eksperimen

No	Kelas Interval	Frekuensi Absolut	Frekuensi Relatif
1	30 - 36	6	17,65%
2	37 - 43	6	17,65%

No	Kelas	Frekuensi	Frekuensi
140	Interval	Absolut	Relatif
3	44 - 50	7	20,59%
4	51 – 57	5	14,71%
5	58 - 64	3	8,82%
6	65 – 71	7	20,59%
Jumlah		34	100%

Tabel 4.7 Daftar Distribusi Frekuensi Nilai *Pretest* Kelas Kontrol

No	Kelas Interval	Frekuensi Absolut	Frekuensi Relatif
1	30 - 35	3	9,7%
2	36 - 41	6	19,4%
3	42 - 47	4	12,9%
4	48 - 53	5	16,1%
5	54 - 59	6	19,4%
6	60 - 65	7	22,6%
Jumlah		31	100%

Hipotesis statistik yang digunakan dalam uji normalitas adalah sebagai berikut:

Ho: data tidak berdistribusi normal.

Ha: data berdistribusi normal.

Kriteria pengujian jika $\chi^2_{\rm hitung} > \chi^2_{\rm tabel}$, maka Ho ditolak atau signifikan dan jika $\chi^2_{\rm hitung}$ $<\chi^2_{\rm tabel}$, maka Ho diterima atau tidak signifikan dengan taraf signifikan 5% dan dk = k-1. Perhitungan uji normalitas data tahap

awal pada kelas eksperimen dan kontrol dapat dilihat pada tabel berikut:

Tabel 4.8 Hasil Perhitungan Uji Normalitas Data Tahap Awal

Kelas	χ^2 hitung	dk	χ^2 tabel	Keterangan
Eksperimen	5,4515	5	11,070	Normal
Kontrol	9,5468	5	11,070	Normal

Perhitungan uji normalitas data tahap awal selengkapnya dapat dilihat pada lampiran 20 dan 21.

b) Uji Homogenitas

Uji homogenitas dilakukan untuk mengetahui variansi dari sampel yang diteliti, apakah kedua kelompok mempunyai varians yang sama atau tidak. Uji homogenitas dilakukan menggunakan uji F dan hipotesis statistik yang digunakan adalah sebagai berikut:

Ho $:\sigma_1^2 \neq \sigma_2^2$, artinya kedua kelompok sampel berasal dari populasi dengan variansi tidak sama.

 $\operatorname{Ha}: \sigma_1^2 = \sigma_2^2$, artinya kedua kelompok sampel berasal dari populasi dengan variansi sama.

Kedua kelas mempunyai varians yang sama apabila F_{hitung} < F_{tabel} dengan taraf signifikansi 5%, berdasarkan hasil perhitungan diperoleh S_1^2 = 147,526 dan S_2^2 = 88,495. Nilai tersebut digunakan untuk menghitung F_{hitung} sebagai berikut:

$$F_{\text{hitung}} = \frac{147,526}{88,495} = 1,667.$$

Perhitungan uji homogenitas untuk sampel di atas diperoleh F_{hitung} = 1,667 dengan peluang $\frac{1}{2}\alpha$ dan taraf signifikansi sebesar α = 5%, serta dk pembilang 34-1=33 dan dk penyebut 31-1= 30, maka F_{tabel} = 2,051. Nilai F_{hitung} < F_{tabel} maka data tersebut memiliki varians yang homogen.

Tabel 4.9 Hasil Uji Homogenitas Data Tahap Awal

No	Kelas	Fhitung	F _{tabel}	Kriteria
1	XI IPA 1	1,667	2,051	Homogen
2	XI IPA 2			

Perhitungan selengkapnya dapat dilihat pada lampiran 20.

c) Uji Persamaan Dua Rata-Rata

Uji persamaan dua rata-rata digunakan untuk menguji apakah kedua kelompok

(eksperimen dan kontrol) bertitik awal sama sebelum dikenai perlakuan. Uji yang digunakan adalah dengan menggunakan uji *t-test* dan menggunakan hipotesis sebagai berikut:

Ho : $\mu_1 = \mu_2$

Ha : $\mu_1 \neq \mu_2$

Keterangan:

Ho: Rata-rata kemampuan siswa kelas eksperimen dan kelas kontrol sama

Ha : Rata-rata kemampuan siswa kelas eksperimen dan kelas kontrol tidak sama

Uji homogenitas sebelumnya menyatakan bahwa kedua kelas mempunyai varians yang sama, maka perhitungan uji persamaan dua rata-rata menggunakan rumus sebagai berikut:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt[s]{\frac{1}{n_1} + \frac{1}{n_2}}}$$

dengan:

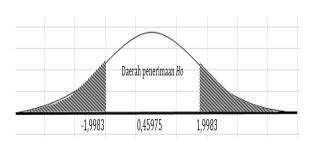
$$S = \sqrt{\frac{(n_1 - 1))s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Keterangan:

 x_1 : Rata-rata kelas eksperimen

_

 x_2 : Rata-rata kelas kontrol


 n_1 : Banyaknya subjek dari kelas eksperimen

*n*₂ : Banyaknya subjek dari kelas kontrol

s : Standar deviasi gabungan data eksperimen dan kontrol

Tabel 4.10 Hasil Perhitungan Uji *t-test* Kelas Eksperimen dan Kelas Kontrol

Kelas		S ²	S	N	t _{hitung}
Eksperimen	50,441	147,526	12,146	34	0,4597
Kontrol	49,193	88,495	9,407	31	

Gambar 4.3 Kurva hasil uji persamaan dua rata-rata nilai *pre test* antara kelas eksperimen dan kelas kontrol

Hasil perhitungan uji *t-test* persamaan dua rata-rata kelas eksperimen dan kelas kontrol pada α = 5% dengan dk = 34 + 31 – 2 = 63 diperoleh t_{hitung} = 0,4597 dan t_{tabel} = 1,9983. t_{hitung} < t_{tabel} maka Ho diterima, artinya tidak ada perbedaan rata-rata antara kelas eksperimen dan kelas kontrol. Perhitungan selengkapnya dapat dilihat pada lampiran 21.

b. Analisis Data Tahap Akhir

Analisis data tahap akhir digunakan untuk menguji hipotesis yang diajukan dalam penelitian, yaitu untuk menguji keefektifan media pembelajaran biopuzzle dalam pembelajaran cooperative learning tipe STAD pada kelas eksperimen dibandingkan dengan kelas kontrol yang tanpa menggunakan media pembelajaran biopuzzle dan model pembelajaran cooperative learning tipe STAD. Data yang digunakan untuk analisis data tahap akhir dalam penelitian ini adalah data nilai *posttest* kelas eksperimen dan kelas kontrol. Uji statistik yang digunakan untuk menganalisis data tahap akhir sama dengan uji statistik yang digunakan pada analisis data tahap awal, vaitu menggunakan uji normalitas, uji homogenitas dan uji persamaan dua rata-rata.

1) Uji Normalitas

Langkah-langkah yang digunakan dalam pengujian ini sama seperti langkah-langkah uji normalitas data tahap awal. Hasil perhitungan uji normalitas data tahap akhir disajikan dalam tabel berikut ini:

Tabel 4.11 Daftar Distribusi Frekuensi Nilai *Posttest* Kelas Eksperimen

No	Kelas Interval		
1	60 - 65	3	8,8%
2	66 - 71	2	5,9%
3	72 – 77	5	14,7%
4	78 – 83	10	29,4%
5	84 - 89	7	20,6%
6	90 – 95	7	20,6%
Juml	ah	34	100%

Tabel 4.12 Daftar Distribusi Frekuensi Nilai *Posttest* Kelas Kontrol

No	Kelas Interval	Frekuensi Absolut	Frekuensi Relatif
1	50 - 55	2	6,45%
2	56 - 61	3	9,68%
3	62 - 67	3	9,68%
4	68 - 73	3	9,68%
5	74 - 79	10	32,26%
6	80 - 85	10	32,26%
Juml	ah	31	100%

Hipotesis statistik yang digunakan dalam uji normalitas adalah sebagai berikut:

Ho: data tidak berdistribusi normal.

Ha: data berdistribusi normal.

Kriteria pengujian jika $\chi^2_{\rm hitung} > \chi^2_{\rm tabel}$, maka Ho ditolak atau signifikan dan jika $\chi^2_{\rm hitung} < \chi^2_{\rm tabel}$, maka Ho diterima atau tidak signifikan dengan taraf signifikan 5% dan dk = k-1. Perhitungan uji normalitas data tahap akhir pada kelas eksperimen dan kontrol dapat dilihat pada tabel berikut:

Tabel 4.13 Hasil Perhitungan Uji Normalitas Data Tahap Akhir

Kelas	χ^2 hitung	dk	χ^2 tabel	Keterangan
Eksperimen (XI IPA 1)	5,1357	5	11,070	Normal
Kontrol (XI IPA 2)	9,4994	5	11,070	Normal

Perhitungan uji normalitas data tahap akhir selengkapnya dapat dilihat pada lampiran 25 dan 26.

2) Uji Homogenitas

Langkah-langkah yang digunakan dalam pengujian ini sama seperti langkah-langkah uji homogenitas data tahap awal. Berdasarkan hasil perhitungan diperoleh S_{1^2} = 72,9278 dan S_{2^2} = 72,5806. Nilai tersebut digunakan untuk menghitung F_{hitung} sebagai berikut:

$$F_{\text{hitung}} = \frac{72,9278}{72.5806} = 1,005.$$

Perhitungan uji homogenitas untuk sampel diatas diperoleh F_{hitung} = 1,005 dengan peluang $\frac{1}{2}\alpha$ dan taraf signifikansi sebesar α = 5%, serta dk pembilang 34-1=33 dan dk penyebut 31-1= 30, maka F_{tabel} = 2,051. Nilai F_{hitung} < F_{tabel} maka data tersebut memiliki varians yang homogen.

Tabel 4.14 Hasil Uji Homogenitas Data Tahap Akhir

No	Kelas	Fhitung	F _{tabel}	Kriteria
1	XI IPA 1	1,005	2,051	Homogen
2	XI IPA 2			

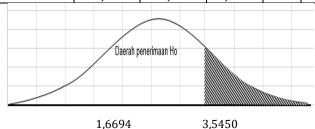
Perhitungan selengkapnya dapat dilihat pada lampiran 27.

3) Uji Perbedaan Dua Rata-Rata

Uji perbedaan dua rata-rata bertujuan untuk mengolah data yang terkumpul, yaitu data hasil belajar siswa. Data hasil tes akhir siswa diambil setelah kedua sampel diberi perlakuan yang berbeda dan data tersebut digunakan untuk menguji hipotesis penelitian. Rumus yang

digunakan adalah uji *t-test* dengan ketentuan sebagai berikut:

Ho : $\mu_1 = \mu_2$ Ha : $\mu_1 \neq \mu_2$ Keterangan :


μ₁ : Rata-rata hasil belajar kelas eksperimen

 μ_2 : Rata-rata hasil belajar kelas kontrol

Kriteria Ho diterima jika $t_{hitung} < t_{tabel}$ dan Ha diterima jika $t_{hitung} > t_{tabel}$. Hasil perhitungan perbedaan dua rata-rata pada analisis data tahap akhir dapat dilihat pada tabel dan kurva berikut ini:

Tabel 4.15 Hasil Perhitungan Perbedaan Dua Rata-Rata Kelas Eksperimen dan Kelas Kontrol

	110100 1101101 01					
Kelas	\bar{x}	S ²	S	N	t _{hitung}	
Eksperimen	80,735	72,927	8,539	34	3,5450	
Kontrol	73,225	72,580	8,519	31		

Gambar 4.4 Kurva hasil uji perbedaan dua ratarata nilai *post test* antara kelompok eksperimen dan kontrol

Hasil perhitungan uji t-test perbedaan dua rata-rata kelas eksperimen dan kelas kontrol pada $\alpha = 5\%$ dengan dk = 34 + 31 - 2 = 63 diperoleh t_{hitung} 3.5450 dan $t_{tabel} = 1.6694$. Perhitungan selengkapnya dapat dilihat pada lampiran 28. thitung > t_{tabel} maka Ho ditolak dan Ha diterima, artinya nilai rata-rata hasil belajar kognitif siswa pada materi sistem pertahanan tubuh dengan media biopuzzle dalam menggunakan pembelajaran cooperative learning tipe STAD pada kelas eksperimen lebih tinggi daripada nilai ratarata hasil belajar kognitif siswa yang tanpa menggunakan media pembelajaran biopuzzle dan model pembelajaran cooperative learning tipe STAD.

C. Pembahasan Hasil Penelitian

1. Pembahasan Data Tahap Awal

Data tahap awal pada penelitian ini merupakan data nilai *pretest* materi sistem pertahanan tubuh kelas eksperimen dan kelas kontrol (lampiran 17). Soal *pretest* yang diberikan pada kelas eksperimen dan kelas kontrol sebelumnya telah diuji coba kepada siswa yang pernah mendapatkan materi sistem pertahanan tubuh, yaitu kelas XII IPA 1 pada sekolah yang sama.

Soal yang diujikan terdiri dari 50 butir soal dengan 5 pilihan jawaban (lampiran 2B). Soal yang telah diuji coba kemudian diuji validitas, reliabilitas, taraf kesukaran dan daya beda soal sehingga diperoleh soal yang benar-benar sesuai untuk mengukur kemampuan siswa kelas eksperimen dan kelas kontrol. Berdasarkan hasil perhitungan uji validitas (lampiran 4), reliabilitas (lampiran 6), daya beda soal (lampiran 7) dan taraf kesukaran soal (lampiran 8) terdapat 20 soal yang layak digunakan untuk soal *pretest* dan *posttest*.

Hasil *pretest* dari kelas eksperimen dan kelas kontrol kemudian diuji normalitas, homogenitas dan uji persamaan dua rata-rata. Uji normalitas dilakukan untuk mengetahui apakah sampel yang diuji berdistribusi normal atau tidak. Uji normalitas dihitung dengan menggunakan rumus *Chi-Kuadrat* dan kriteria pengujian jika $\chi^2_{\text{hitung}} > \chi^2_{\text{tabel}}$, maka Ho ditolak atau signifikan dan jika $\chi^2_{\text{hitung}} < \chi^2_{\text{tabel}}$, maka Ho diterima atau tidak signifikan dengan taraf signifikan 5% dan dk = k-1.

Hasil perhitungan data nilai *pretest* kelas XI IPA 1 diperoleh χ^2_{hitung} = 5,4515 dan kelas XI IPA 2 diperoleh χ^2_{hitung} = 9,5468 dengan χ^2_{tabel} = 11,070 maka $\chi^2_{\rm hitung}$ < $\chi^2_{\rm tabel}$. Hal ini menunjukkan bahwa kelas XI IPA 1 dan XI IPA 2 berdistribusi normal (tabel 4.8), sehingga dapat dilakukan perhitungan selanjutnya.

Perhitungan selanjutnya adalah perhitungan uji homogenitas. Uji homogenitas dilakukan untuk mengetahui apakah kedua sampel yang diteliti memiliki varians yang sama atau tidak. Kedua kelas mempunyai varians yang sama apabila $F_{\rm hitung} < F_{\rm tabel}$ dengan peluang $\frac{1}{2}\alpha$ dan taraf signifikansi 5%. Berdasarkan hasil perhitungan diperoleh $F_{\rm hitung} = 1,667$ dan $F_{\rm tabel} = 2,051$. Nilai $F_{\rm hitung} < F_{\rm tabel}$, maka kelas XI IPA 1 dan XI IPA 2 memiliki varians yang sama (tabel 4.9).

Uji persamaan dua rata-rata nilai *pretest* kelas kontrol dan kelas eksperimen diperoleh $t_{\rm hitung} = 0,4597$ dan $t_{\rm tabel} = 1,9983$. Kriteria pengujian untuk kesamaan dua rata-rata adalah Ho diterima jika $t_{\rm hitung} < t_{\rm tabel}$ dengan dk = $(n_1+n_2)-2$. Berdasarkan hasil perhitungan diketahui bahwa $t_{\rm hitung} < t_{\rm tabel}$, sehingga dapat disimpulkan bahwa rata-rata kemampuan siswa kelas eksperimen dan kelas kontrol sama.

Berdasarkan hasil perhitungan uji normalitas, uji homogenitas dan uji persamaan dua rata-rata antara kelas XI IPA 1 dan kelas XI IPA 2 menunjukkan bahwa kedua kelas tersebut berdistribusi normal, memiliki varians yang sama (homogen) dan memiliki rata-rata kemampuan yang sama. Hal ini menunjukkan bahwa kemampuan awal siswa sebelum diberi perlakuan yang berbeda adalah relatif sama. Sehingga kelas XI IPA 1 dan kelas XI IPA 2 bisa dijadikan sampel penelitian dengan diberi perlakuan yang berbeda.

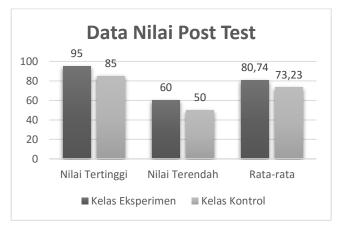
Kelas XI IPA 1 yang dijadikan sebagai kelas eksperimen diberi perlakuan menggunakan media pembelaiaran biopuzzle dalam pembelajaran cooperative learning tipe STAD dan kelas XI IPA 2 yang dijadikan sebagai kelas kontrol diberi perlakuan pembelajaran biologi menggunakan media power point, diskusi metode ceramah dan metode tanpa menggunakan media pembelajaran biopuzzle dalam pembelajaran cooperative learning tipe STAD.

2. Pembahasan Data Tahap Akhir

Data tahap akhir yang digunakan dalam penelitian ini adalah nilai *posttest* kelas eksperimen dan kelas kontrol materi sistem pertahanan tubuh. Kegiatan *posttest* dilakukan setelah selesai kegiatan pembelajaran materi sistem pertahanan tubuh pada kelas eksperimen dan kelas kontrol. Hasil dari nilai *posttest* kemudian diuji normalitas, uji homogenitas dan uji perbedaan dua rata-rata.

Langkah pertama yang dilakukan dalam mengolah data tahap akhir yaitu melakukan uji normalitas nilai *posttest* kelas eksperimen dan kelas kontrol. Uji normalitas yang digunakan pada data tahap akhir sama dengan uji normalitas data tahap awal, yaitu menggunakan rumus *chi-kuadrat* dan untuk mengetahui apakah sampel yang diuji berdistribusi normal atau tidak. Kriteria pengujian jika $\chi^2_{\text{hitung}} > \chi^2_{\text{tabel}}$, maka Ho ditolak atau signifikan dan jika χ^2_{hitung} $<\chi^2_{\text{tabel}}$, maka Ho diterima atau tidak signifikan dengan taraf signifikan 5% dan dk = k-1.

Berdasarkan hasil perhitungan pada kelas eksperimen diperoleh $\chi^2_{\rm hitung}$ = 5,1357 dan $\chi^2_{\rm hitung}$ = 9,4994 pada kelas kontrol. $\chi^2_{\rm tabel}$ = 11,070 pada kedua kelas tersebut, sehingga dapat diketahui bahwa $\chi^2_{\rm hitung}$ < $\chi^2_{\rm tabel}$. Hal ini dapat disimpulkan bahwa data hasil nilai *posttest* kelas eksperimen dan kelas kontrol berdistribusi normal (tabel 4.13).


Langkah selanjutnya yang dilakukan yaitu uji homogenitas. Uji homogenitas yang digunakan pada data tahap akhir sama dengan uji homogenitas data tahap awal, yaitu menggunakan uji F dan dilakukan untuk mengetahui variansi dari sampel yang diteliti, apakah kedua kelompok mempunyai varians yang

sama atau tidak. Kedua kelas mempunyai varians yang sama apabila $F_{hitung} < F_{tabel}$ dengan taraf signifikansi 5%. Berdasarkan hasil perhitungan uji F diperoleh hasil $F_{hitung} = 1,005$ dan $F_{tabel} = 2,051$. F_{hitung} lebih kecil daripada F_{tabel} , sehingga dapat disimpulkan bahwa kelas eksperimen dan kelas kontrol memiliki varians yang sama atau homogen (tabel 4.14).

Berdasarkan hasil analisis data tahap akhir, hasil posttest terhadap 34 siswa kelas eksperimen dan 31 siswa kelas kontrol menunjukkan bahwa pada kelas eksperimen mendapat nilai tertinggi 95 dan nilai terendah adalah 60 dengan rata-rata nilai kelas 80,74, sedangkan pada kelas kontrol nilai tertinggi adalah 85 dan nilai terendah adalah 50 dengan rata-rata nilai kelas 73,23 (lampiran 24).

Berdasarkan pengujian hipotesis diperoleh t_{hitung} = 3,5450, sedangkan t_{tabel} dengan taraf signifikansi 5% dengan dk = 34 + 31 - 2 = 63 diperoleh t_{tabel} = 1,6694. Nilai t_{hitung} lebih besar daripada t_{tabel} , hal ini menunjukkan bahwa terdapat perbedaan antara hasil belajar kelas eksperimen dengan hasil belajar kelas kontrol. Hasil tersebut juga didasarkan pada rata-rata nilai *posttest* siswa. Gambaran hasil nilai *posttest* siswa

pada kelas eksperimen dan kelas kontrol dapat dilihat pada grafik berikut:

Gambar 4.5 Grafik nilai *post test* kelas eksperimen dan kelas kontrol

Berdasarkan gambar 4.5 dapat diketahui bahwa pada kelas eksperimen nilai posttest tertinggi adalah 95 dan nilai terendah 60, sedangkan pada kelas kontrol nilai tertinggi adalah 85 dan nilai terendah 50. Ratarata nilai posttest kelas eksperimen yang diberi perlakuan menggunakan media pembelajaran biopuzzle dalam pembelajaran cooperative learning tipe STAD yaitu 80,74 lebih besar dari rata-rata kelas kontrol yang diberi perlakuan tanpa menggunakan media pembelajaran biopuzzle dan model pembelajaran cooperative learning tipe STAD yaitu 73,23.

Hasil belajar siswa kelas eksperimen setelah mendapat perlakuan terdapat 29 siswa atau 85,29% siswa yang sudah mencapai KKM ≥ 75 dan 5 siswa atau 14,71% siswa belum mencapai KKM, sedangkan pada kelas kontrol terdapat 20 siswa atau 64,52% siswa yang sudah mencapai KKM ≥ 75 dan 11 siswa atau 35,48% siswa belum mencapai KKM.

Menurut Djamarah dan Zain (2014: 107) setiap proses belajar mengajar selalu menghasilkan hasil belajar. Keberhasilan proses mengajar itu dibagi atas beberapa tingkatan atau taraf. Tingkat keberhasilan tersebut adalah sebagai berikut:

Istimewa/maksimal : Apabila seluruh bahan pelajaran yang diajarkan itu dapat dikuasai oleh siswa.

Baik sekali/optimal : Apabila sebagian besar (76% - 99%) bahan pelajaran yang diajarkan dapat dikuasai oleh siswa.

Baik/minimal : Apabila bahan yang diajarkan hanya 60% - 75% saja dikuasai oleh siswa.

Kurang

: Apabila bahan pelajaran yang diajarkan kurang dari 60% dikuasai oleh siswa.

Berdasarkan hasil penelitian, diketahui bahwa hasil belajar siswa kelas eksperimen yang sudah mencapai nilai KKM \geq 75 adalah sebanyak 85,29% siswa, maka hasil belajar tersebut masuk dalam kategori baik sekali atau optimal dan telah memenuhi kriteria indikator keberhasilan penelitian yang telah direncanakan, yaitu 60%-75% dari jumlah siswa pada kelas eksperimen dapat mencapai KKM (kriteria ketuntasan minimal) \geq 75.

Hasil belajar adalah kemampuan yang dimiliki siswa setelah mengalami proses belajar dan ditandai dengan adanya perubahan tingkah laku peserta didik yang mencakup bidang kognitif, afektif dan psikomotor (Sudjana, 2014: 3). Hasil belajar yang diteliti dalam penelitian ini adalah hasil belajar siswa ranah kognitif.

Aspek hasil belajar bidang kognitif adalah ranah yang mencakup kegiatan mental atau otak. Menurut Bloom, segala upaya yang menyangkut aktivitas otak adalah termasuk dalam ranah kognitif. Ranah kognitif terdapat enam jenjang proses berfikir yang meliputi

pengetahuan, hafalan, pemahaman, penerapan, analisis, sintesis dan evaluasi (Sudijono, 2009: 49).

Siswa kelas eksperimen yang diberi perlakuan menggunakan media *biopuzzle* dalam pembelajaran cooperative learning tipe STAD memiliki hasil belajar yang lebih tinggi dibandingkan dengan siswa kelas kontrol yang diberi perlakuan tanpa menggunakan biopuzzle media pembelajaran dan model pembelajaran cooperative learning tipe STAD, dengan demikian dapat dikatakan bahwa penggunaan media biopuzzle dalam pembelajaran cooperative learning tipe STAD pada materi pokok sistem pertahanan tubuh terbukti efektif terhadap hasil belajar siswa kelas XI di MA NU 03 Sunan Katong.

Berdasarkan hasil penelitian, ketika proses pembelajaran berlangsung pada tahap kegiatan kelompok siswa kelas eksperimen siswa terlihat sangat aktif, saling bekerjasama dalam menjawab soal-soal yang terdapat dalam lembar kerja. Lembar kerja antara kelas eksperimen dan kelas kontrol memiliki indikator yang sama dan terdiri dari lembar kerja pada pertemuan pertama, kedua dan ketiga (lampiran 33E). Hasil nilai lembar kerja yang diperoleh pada kelas eksperimen lebih tinggi daripada kelas kontrol. Hal ini

disebabkan karena pada kelas eksperimen menggunakan media pembelajaran *biopuzzle* dalam pembelajaran *cooperative learning* tipe STAD, sehingga siswa lebih aktif dalam kegiatan kelompok dan saling bekerjasama untuk menyelesaikan soal-soal yang terdapat dalam lembar kerja.

Biopuzzle merupakan media pembelajaran yang diintegrasikan dari permainan. Penggunaan media tersebut dapat menjadikan siswa berpartisipasi aktif dalam proses pembelajaran. Sadiman (2009: 78-79) menyatakan bahwa bahwa permainan sebagai media pendidikan dapat memungkinkan adanya partisipasi aktif dari peserta didik dalam proses pembelajaran, karena permainan mempunyai kemampuan untuk melibatkan siswa dalam proses belajar secara aktif.

Penggunaan media pembelajaran biopuzzle pada kelas eksperimen dapat meningkatkan aktivitas siswa yang pada akhirnya dapat meningkatkan hasil belajar siswa. Hal ini sesuai dengan pernyataan Harjanto (2008: 246) yang menyatakan bahwa dengan menggunakan media pendidikan secara tepat dan bervariasi maka sikap pasif akan menjadi berkurang. Selain itu, pada kelas eksperimen juga menggunakan model pembelajaran cooperative learning tipe STAD.

Materi yang dipilih pada media pembelajaran biopuzzle dengan menggunakan model pembelajaran cooperative learning tipe STAD adalah materi sistem pertahanan tubuh. Materi tersebut berdasarkan hasil wawancara dengan guru mata pelajaran biologi di MA NU 03 Sunan Katong merupakan materi yang abstrak dan sulit dipahami oleh siswa, dengan menggunakan media biopuzzle dan model pembelajaran cooperative learning tipe STAD berdasarkan penelitian siswa lebih mudah memahami mamahami materi sistem pertahanan tubuh. Hal tersebut dibuktikan dengan meningkatnya hasil belajar siswa pada kelas eksperimen.

Salah satu komponen dari model pembelajaran cooperative learning tipe STAD adalah adanya kuis (lampiran 33D). Menurut Hosnan (2014: 246) kuis adalah tes yang dikerjakan secara mandiri dengan tujuan untuk mengetahui keberhasilan siswa setelah belajar kelompok. Hasil tes digunakan sebagai hasil perkembangan individu dan disumbangkan sebagai nilai perkembangan dan keberhasilan kelompok.

Berdasarkan hasil pengamatan selama proses pembelajaran dapat diketahui bahwa saat mengerjakan soal kuis, siswa mengerjakan secara mandiri. Langkah mengerjakan kuis dalam pembelajaran cooperative learning tipe STAD memberikan kesempatan bagi siswa untuk mengimplementasikan nilai karakter sikap mandiri. Kuis dikerjakan secara individu dan siswa tidak diperbolehkan untuk saling membantu, sehingga setiap siswa bertanggungjawab secara individu untuk memahami materi. Oleh karena itu, sikap tanggungjawab akan meningkatkan pemahaman siswa terhadap materi yang dipelajari dan menyebabkan hasil belajar siswa maksimal.

Model pembelajaran cooperative learning tipe STAD lebih menekankan pada aktivitas dan interaksi diantara siswa untuk saling membantu memahami materi pelajaran agar tercapainya tujuan Ngalimun pembelajaran. Menurut (2014: 168) Aktivitas dalam pembelajaran kooperatif tipe STAD cenderung berpusat pada siswa, siswa dituntut untuk aktif berinisiatif dan berpartisipasi dalam keseluruhan proses pembelajaran, sedangkan guru diharapkan untuk lebih berfungsi sebagai fasilitator, motivator dan koordinator kegiatan pembelajaran.

Penggunaan media pembelajaran yang disertai dengan model pembelajaran pada kelas eksperimen menjadikan siswa lebih banyak melakukan kegiatan belajar, sebab siswa tidak hanya mendengarkan uraian dari guru tetapi juga dapat melakukan aktivitas belajar lain seperti bekerja sama, berdiskusi, saling membantu dan belajar bersama dalam kelompok. Berbeda dengan pembelajaran pada kelas kontrol, pada saat proses pembelajaran berlangsung hanya terlihat beberapa siswa yang aktif. Siswa terlihat tidak bersemangat saat mendengarkan ceramah dan saat kegiatan diskusi berlangsung hanya beberapa siswa saja yang melakukan diskusi dengan temannya, sebagian siswa terlihat ada yang mengobrol dan mengantuk. Hal ini mungkin disebabkan siswa kurang tertarik terhadap pembelajaran yang dilakukan oleh guru.

Menurut Fathurrohman dan Sutikno (2011: 19) motivasi merupakan kondisi psikologis yang mendorong seseorang untuk melakukan sesutu. Dalam kegiatan belajar, motivasi tentu sangat diperlukan, sebab seseorang yang tidak mempunyai motvasi dalam belajar maka tidak munkin melakukan aktivitas belajar.

Berdasarkan pembahasan di atas dapat diketahui bahwa terdapat perbedaan rata-rata antara kelas eksperimen yang menggunakan media *biopuzzle* dalam pembelajaran *cooperative learning* tipe STAD dengan kelas kontrol yang tidak menggunakan media

biopuzzle dalam pembelajaran cooperative learning tipe STAD, dengan demikian media biopuzzle dalam pembelajaran cooperative learning tipe STAD efektif dalam meningkatkan hasil belajar ranah kognitif siswa pada materi pokok sistem pertahanan tubuh.

D. Keterbatasan Penelitian

Keterbatasan dalam penelitian ini diantaranya adalah sebagai berikut:

1. Keterbatasan Tempat Penelitian

Penelitian ini hanya terbatas pada satu tempat, yaitu di MA NU 03 Sunan Katong sehingga apabila ada perbedaan hasil pada penelitian di tempat lain, kemungkinan berbeda hasil penelitian yang diperoleh oleh peneliti lain.

2. Keterbatasan Waktu Penelitian

Waktu yang digunakan oleh peneliti sangat terbatas. Penelitian ini masih terdapat kekurangan waktu untuk menghitung skor kemajuan individu dalam proses pembelajaran pada kelas eksperimen khususnya pada pertemuan pertama, sehingga perolehan skor total kemajuan individu pada setiap kelompok dan pemberian penghargaan kelompok diberikan pada pertemuan kedua.

3. Keterbatasan materi

Penelitian ini terbatas pada materi pokok sistem pertahanan tubuh, sehingga kemungkinan hasil penelitian yang berbeda akan diperoleh pada materi lain. Meskipun terdapat sejumlah keterbatasan dalam penelitian ini dapat diyakini bahwa data yang diperoleh dalam penelitian ini telah melalui prosedur yang benar sehingga dapat dipertanggungjawabkan.

BAB V

PENUTUP

A. Kesimpulan

Berdasarkan hasil penelitian yang telah dilakukan di MA NU 03 Sunan Katong pada siswa kelas XI MIPA diperoleh hasil uji perbedaan rata-rata satu pihak, yaitu pihak kanan diperoleh bahwa $t_{hitung} = 3,545$ dan $t_{tabel\ (0,05)\ (63)} = 1,6694$. Nilai $t_{hitung} > t_{tabel}$ maka Ho ditolak dan Ha diterima, yang berarti nilai rata-rata hasil belajar siswa kelas eksperimen lebih tinggi daripada kelas kontrol.

Kelas eksperimen dengan perlakuan menggunakan media pembelajaran biopuzzle dalam pembelajaran cooperative learning tipe STAD memperoleh nilai rata-rata hasil belajar 80,74 dan sebanyak 85,29% siswa sudah mencapai nilai KKM ≥ 75. Hasil presentase tersebut melebihi indikator penelitian yaitu sebesar 60%-75% dari jumlah siswa kelas eksperimen dapat mencapai nilai KKM. Sedangkan pada kelas kontrol tanpa menggunakan media pembelajaran biopuzzle dan model pembelajaran cooperative learning tipe STAD memperoleh nilai rata-rata hasil belajar 73,23, sebanyak 64,52% siswa yang sudah mencapai KKM ≥ 75, sehingga dapat disimpulkan bahwa media pembelajaran biopuzzle dalam pembelajaran cooperative learning tipe STAD efektif terhadap hasil belajar siswa materi pokok sistem pertahanan tubuh kelas XI MA NU 03 Sunan Katong.

B. Saran

Berdasarkan penelitian yang telah dilakukan, peneliti memberikan saran yang dapat dijadikan rekomendasi yaitu agar penelitian selanjutnya dapat dilakukan penelitian mengenai media *biopuzzle* dengan menggunakan materi dan model pembelajaran yang berbeda atau melakukan penelitian yang lebih mendalam dengan mengukur variabel dari aspek afektif maupun aspek psikomotorik yang belum terukur dalam penelitian ini.

DAFTAR PUSTAKA

- Agung, Iskandar. 2010. *Meningkatkan Kreativitas Pembelajaran Bagi Guru*. Jakarta: Bestari Buana Murni.
- Alsa, Asmadi. 2013. *Pendekatan Kualitatif dan Kuantitatif Serta Kombinasinya dalam Penelitian Psikologi.* Yogyakarta: Pustaka Pelajar.
- Arifin, Zainal. 2013. *Evaluasi Pembelajaran.* Bandung: PT Remaja Rosdakarya.
- Arikunto, Suharsimi. 2013. *Dasar-Dasar Evaluasi Pendidikan.*Jakarta: PT Bumi Aksara.
- Arikunto, Suharsimi. 2013. *Prosedur Penelitian Suatu Pendekatan Praktik.* Jakarta: PT Rineka Cipta.
- Arsyad, Azhar. 2011. *Media Pembelajaran*. Jakarta: PT RajaGrafindo Persada.
- Bakhtiar, Suaha. 2011. *Biologi untuk SMA dan MA Kelas XI.* Jakarta:
 Pusat Kurikulum dan Perbukuan Kementerian Pendidikan
 Nasional.
- Boediyono dan Wayan Koster. 2008. *Teori dan Aplikasi Statistika dan Probabilitas*. Bandung: PT Remaja Rosdakarya.
- Bratawidjaja, Karnen Garna dan Iris Rengganis. 2010. *Imunologi*Dasar Edisi ke-10. Jakarta: Balai Penerbit FKUI.

- Daryanto. 2011. Media Pembelajaran. Bandung: Nurani Sejahtera.
- Djamarah, Syaiful *Bahri* dan Aswan Zain. 2014. *Strategi Belajar* dan Mengajar. Jakarta: Rineka Cipta.
- Fathurrohman, Pupuh dan Sobry Sutikno. 2011. *Strategi Belajar Mengajar Melalui Penanaman Konsep Umum dan Konsep Islami*. Bandung: PT Refika Aditama.
- Fathurrohman. 2012. Belajar dan Pembelajaran. Yogyakarta: Penerbit Teras.
- Ferdinand, Fictor *dan* Moekti Ariebowo. 2009. *Praktis Belajar Biologi 2 untuk SMA/MA Kelas XI.* Jakarta: Pusat Perbukuan Departemen Pendidikan Nasional.
- Harjanto. 2008. Perencanaan Pengajaran. Jakarta: Rineka Cipta.
- Hosnan. 2014. Pendekatan Saintifik dan Kontekstual dalam Pembelajaran Abad 21. Bogor: Ghalia Indonesia.
- Irnaningtyas dan Yossa *Istiadi*. 2013. *Biologi untuk SMA / MA Kelas XI.* Jakarta: Penerbit Erlangga.
- Komsiyah, Indah. 2012. *Belajar dan Pembelajaran. Yogyakarta*:

 Penerbit Teras.
- Kurniawati, Intan. 2014. "Pengembangan Media "Woody Puzzle" untuk Meningkatkan Motivasi, Aktivitas dan Hasil Belajar Siswa Materi Struktur Jaringan Tumbuhan". Skripsi. Semarang: Universitas Negeri Semarang.

- Kustandi, Cecep *dan* Bambang Sutjipto. 2013. *Media Pembelajaran Manual dan Digital*. Bogor: Ghalia Indonesia.
- Majid, Abdul. 2013. *Strategi Pembelajaran.* Bandung: PT Remaja Rosdakarya.
- Mualimaturrochmah. 2016. "Efektivitas Model *Student Teams Achievement Divisions* (STAD) Berbantuan Modul Berbasis Pendidikan Karakter pada Materi Tumbuhan Terhadap Hasil Belajar Siswa". *Skripsi.* Semarang: Universitas Negeri Semarang.
- Muamanah. 2014. "Pengembangan Media *Flip Book* Menggunakan Kvisoft Flipbook Maker 3.6.1 untuk Pembelajaran Biologi SMA Kelas XI IPA pada Materi Sistem Pertahanan Tubuh". *Skripsi*. Surakarta: Universitas Negeri Surakarta.
- Muhidin, Sambas *Ali* dan Abdurahman Maman. 2011. *Analisis Korelasi, Regresi dan Jalur dalam Penelitian*. Bandung:

 Pustaka Setia.
- Munasir, Zakiudin. 2001. Respons Imun Terhadap Infeksi Bakteri. *Jurnal Sari Pediatri*. Vol. 2. No. 4.
- Ngalimun, 2014. *Strategi dan Model Pembelajaran.* Yogyakarta: Aswaja Pressindo.
- Ningsih, Sri. dkk. 2013. Pengaruh Pemberian Media *Puzzle* dan Model Pembelajaran *Talking Stick* terhadap Hasil Belajar

- Biologi Siswa Kelas X MAN Koto Baru Dharmasraya. *Jurnal Mahasiswa Pendidikan Biologi*. Vol. 2. No. 2.
- Pratiwi, D.A. dkk. 2006. *Biologi SMA Jilid 2 untuk Kelas XI.* Jakarta: *Penerbit* Erlangga.
- Purwanto, Ngalim. 2008. *Prinsip-Prinsip dan Teknik Evaluasi Pembelajaran*. Bandung: PT Remaja Rosdakarya.
- Purwanto, Ngalim. 2009. Evaluasi Hasil Belajar. *Yogyakarta*: Pustaka Pelajar.
- Rachmawati, Faidah dkk. 2009. *Biologi untuk SMA/MA Kelas XI Program IPA.* Jakarta: Pusat Perbukuan Departemen

 Pendidikan Nasional.
- Riduwan dan Sunarto. 2014. *Pengantar Statistika Untuk Penelitian Pendidikan, Sosial, ekonomi, Komunikasi dan Bisnis*.

 Bandung: Alfabeta.
- Sadiman, Arief S. 2009. Media Pendidikan, Pengertian,
 Pengembangan dan Pemanfaatannya. Jakarta: Rajawali
 Pers.
- Sanjaya, Wina. 2012. *Strategi Pembelajaran Berorientasi Standar Proses Pendidikan*. Jakarta: Kencana Prenada Media Group.
- Septianing, Rasti dkk. 2014. *Panduan Belajar Biologi 2B SMA Kelas XI.* Jakarta: Yudhistira.

- Shihab, M. Quraish. 2008. *Tafsir Al-Mishbah: Pesan, Kesan dan Keserasian Al-Qur'an.* Jakarta: Lentera Hati.
- Sudijono, Anas. 2009. *Pengantar Evaluasi Pendidikan.* Jakarta: Rajawali Pers.
- Sudjadi, Bagod dan Siti Laila. 2007. Biologi 2. Jakarta: Yudhistira.
- Sudjana, Nana *dan* Ahmad Rivai. 2009. *Media Pengajaran*. Bandung: Sinar Baru Algesindo.
- Sudjana, Nana. 2014. *Penilaian Proses Hasil Belajar Mengajar.*Bandung: PT Remaja Rosda Karya.
- Sugiyono. 2015. *Metode Penelitian Kuantitatif, Kualitatif dan R&D.*Bandung: Alfabeta.
- Suprijono, Agus. 2012. *Cooperative Learning Teori dan Aplikasi PAIKEM.* Yogyakarta: Pustaka Pelajar.
- Trianto. 2009. Mendesain Model Pembelajaran Inovatif-Progresif.
 Jakarta: Kencana Prenada Media Group.
- Wahyuni, Nanik dan Irena Yolanita Maureen. 2010. Pemanfaatan Media *Puzzle* Metamorfosis dalam Pembelajaran Sains untuk Meningkatkan Hasil Belajar Siswa Kelas II SDN Sawunggaling I/382 Surabaya. *Jurnal Mahasiswa Teknologi Pendidikan*. Vol 1. No. 2.
- Warsono dan Haryanto. 2014. *Pembelajaran Aktif.* Bandung: PT Remaja Rosda Karya.

- Widoyoko, S. Eko Putro. 2014. *Penilaian Hasil Pembelajaran di Sekolah.* Yogyakarta: Pustaka Pelajar.
- Widyanarti, Sri. 2007. Penggunaan Media *Puzzle* dalam Model Pembelajaran Langsung untuk Meningkatkan Hasil Belajar Siswa pada Mata Pelajaran IPS Kelas V SDN Rangkah I Tambaksari Surabaya. *Jurnal Penelitian Pendidikan Guru Sekolah Dasar*, Vol. 1 No. 1
- Wisudawati, Asih Widi dan Eka Sulistyowati. 2014. Metodologi Pembelajaran IPA. Jakarta: Bumi Aksara.
- Yahya, Harun. 2002. Sistem Kekebalan Tubuh dan Keajaiban di Dalamnya. Bandung: PT Syaamil Cipta Media.
- Yusuf, Kadar M. 2013. *Tafsir Tarbawi: Pesan-Pesan Al-Qur'an Tentang Pendidikan*. Jakarta: Amzah.

Lampiran 1A

DAFTAR SISWA KELAS UJI COBA INSTRUMEN (XII IPA 1)

No	Nama Siswa	Kode
1	Ade Irvianti	Uc-01
2	Aditya Rahman	Uc-02
3	Alifian Budiyanto	Uc-03
4	Ayu Nur Alissa	Uc-04
5	Baeti Pertiwi	Uc-05
6	Dina Anibal Arifah	Uc-06
7	Eka Nur Safitri	Uc-07
8	Fina Damayanti	Uc-08
9	Fissilmi	Uc-09
10	Galang Asmoro	Uc-10
11	Hamzah Maulana	Uc-11
12	Isniatun	Uc-12
13	Kemuning Mitasari	Uc-13
14	Kholifah	Uc-14
15	Laelatul Musarofah	Uc-15
16	Lama'atus Shobah	Uc-16
17	Luthfi Miftahul Anwar	Uc-17
18	Miftah Anshori	Uc-18
19	Mu'ashomah Rahmaniyyah	Uc-19
20	Muhammad Nafis Sabilillah	Uc-21
21	Nabih Berry	Uc-22
22	Nanang Aldiansyah	Uc-23
23	Nasyatul 'Aisyi	Uc-24
24	Nurul Afifah	Uc-25
25	Rina Yuliana	Uc-26
26	Rimi Yuliani	Uc-27
27	Rizal Setiyawan	Uc-28
28	Fikrotul Khusniah	Uc-29
29	Say Fajar Sidiq	Uc-30
30	Septi Liana Sari	Uc-31
31	Siti Maemunah	Uc-32
32	Thia Allfana	Uc-33
33	Tri Lestari	Uc-34
34	Umi Shofarotin Nasiroh	Uc-35
35	Nanang Iskandar	Uc-36
36	Avinia Putri Atmajaya	Uc-38

Lampiran 1B

DAFTAR SISWA KELAS EKSPERIMEN (XI IPA 1)

No	Kode	Nama	L/P
1	E-01	Achmad Choirudin	L
2	E-02	Ade Irma Mulyani	P
3	E-03	Anita Chaerunisa	P
4	E-04	Anwar Soleh	L
5	E-05	Aslamiyah	P
6	E-06	Azifatul Tasrirohmah	P
7	E-07	Eka Nurhayati	P
8	E-08	Eka Rizqiyani	P
9	E-09	Hanik Fathiyyatul Rizqiyyah	P
10	E-10	Intan Fatmawati	P
11	E-11	Kharisma Fadhilatus Sholihah	P
12	E-12	Massa Marisa	P
13	E-13	Miftahul Huda	L
14	E-14	Muhammad Zaenal Arifin	L
15	E-15	Naila Farikhah	P
16	E-16	Nikmatul Nur Faizah	P
17	E-17	Nila Soraya	P
18	E-18	Novita Rahmadani	P
19	E-19	Nurul Auli'ak	P
20	E-20	Nurul Ismatul Uyun	P
21	E-21	Resa Melinda Sari	L
22	E-22	Rosalinda	P
23	E-23	Silvia Hidayanti	P
24	E-24	Siti Almaidah	P
25	E-25	Siti Malikhah	P
26	E-26	Siti Nur Aisyah	P
27	E-27	Tiyas Nurrahmawati	P
28	E-28	Tutik Pujiarti	P
29	E-29	Wulandari	P
30	E-30	Yazha Azizul Islami	P
31	E-31	Yosi Amalinda	P
32	E-32	Zulva Dias Fransiska	P
33	E-33	M. Asyfaq Rizal Zultian	L
34	E-34	Siti Faiqoh Mahfudzoh	P

Lampiran 1C

DAFTAR SISWA KELAS KONTROL (XI IPA 2)

No	Kode	Nama	L/P
1	K-01	Agus Setiawan	L
2	K-02	Almi Shovia Ramadhani	P
3	K-03	Ananda Aulia	P
4	K-04	Arif Rahman Barokah	L
5	K-05	Erika Handayani	P
6	K-06	Farikhatul Hidayah	P
7	K-07	Fina Rohmatul Ummah	P
8	K-08	Illa Nur Rohmah	P
9	K-09	Isri Nafia	P
10	K-10	Kalih Dias Utami	P
11	K-11	Kamiatun	P
	K-12	Koimatun	P
13	K-13	Kukuh Rias Anifa	L
14	K-14	Laura Puspita Sari	P
15	K-15	Lazimatul Rochmah	P
16	K-16	Lusiawati	P
17	K-17	Muhammad Dadan	L
18	K-18	Nafahatul Asna	P
19	K-19	Nana Ariantama	P
20	K-20	Rihhadotul 'Aisyi	P
21	K-21	Rukhiyah Nafis	P
22	K-22	Sephia Zahralatifa	P
23	K-23	Sigit Ahmad Fauzan	L
24	K-24	Sinta Nur Liana	P
25	K-25	Siti Nur Haliza	P
26	K-26	Sulis Lina Fatmawati	P
27	K-27	Syafuatul Izza	P
28	K-28	Syahrul Ad'hani	L
29	K-29	Thoha Kholilir Rohman	L
30	K-30	Vicki Nurul Latifah	L
31	K-31	Zahrotul Fuadiyah	P

Lampiran 2A

KISI-KISI INSTRUMEN SOAL

Satuan Pendidikan : MA NU 03 Sunan Katong

Jumlah soal : 50

Kelas/Semester : XI/I

Waktu : 60 menit

Mata Pelajaran : Biologi

Bentuk Soal : Pilihan Ganda

Kompetensi Dasar : 3.14 Menganalisis peran sistem imun dan

imunisasi terhadap proses fisiologi di dalam

tubuh.

Soal	1								2										23		
Nunci Kererensi	Septianing	dkk (2014)							Septianing	dkk (2014)									Sudjadi	dan Laila	(2002)
Villa Vila Vi	A								C										ы		
2021	1. Yang termasuk fungsi mekanisme sistem imun pada A	manusia adalah	a. Mempertahankan tubuh dari patogen invasif	Meningkatkan kerja sel imun	b. Meningkatkan kerja sel imun	c. Menyamarkan sel target	d. Membawa pesan antar sel pada sistem imun	e. Mengaktifkan antigen	2. Bagaimana mekanisme sistem kekebalan tubuh dalam	mengatasi infeksi?	a. Membiarkan patogen masuk ke dalam tubuh	b. Mempercepat masuknya patogen ke dalam tubuh	c. Menghambat atau menghancurkan patogen yang	masuk ke dalam tubuh dengan bantuan antibodi	d. Mempertahankan patogen yang masuk ke dalam	tubuh	e. Mempercepat pertumbuhan patogen yang masuk	ke dalam tubuh	3. Mekanisme sistem pertahanan tubuh pada manusia	dibedakan menjadi dua macam, yaitu	a. sistem imun humoral dan selular
Aspek Kognitif	C2								C2										C1		
Indikator Soai	Mengemukakan fungsi	mekanisme sistem imun	pada manusia						Menjabarkan	mekanisme sistem	kekebalan tubuh dalam	mengatasi infeksi pada	sistem imun manusia						Menunjukan mekanisme	sistem imun pada	manusia
INGIKATOF HASII BELAJAF	Mengidentifikasi mekanisme	sistem imun pada manusia																			
ON .	-																				

	4	ın	9
	Septianing dkk (2014)	Sudjadi dan Laila (2007)	Sudjadi dan Laila (2007)
	<u>m</u>	<u>ы</u>	Ü
 b. sistem imun garis pertahanan pertama dan kedua c. sistem imun garis pertahanan kedua dan ketiga d. sistem imun garis pertahanan pertama dan ketiga e. sistem imun nonspesifik dan spesifik 	4. Apa fungsi sistem imun nonspesifik dalam tubuh? a. Membentuk sel memori terhadap agen infeksi sebelumnya b. Melawan berbagai jenis infeksi yang umum terjadi c. Menyamarkan sel-sel patogen yang masuk ke dalam tubuh d. Mereaksikan agen infeksi yang pernah masuk sebelumnya e. Memproduksi antibody	5. Yang termasuk sistem imun nonspesifik adalah a. Fagositosit, inflamasi, sel B b. Sel T, Sel B, protein komplemen c. Interferon, sel B, sel T d. Komplemen, sel T dan sel B e. Protein antimikroba, fagositosit, inflamasi	bawah ini termasuk ciri respons imun nonspesifik, kecuali Bereaksi sama terhadap semua agen infeksi Tidak membentuk sel memori terhadap agen
	13	7	8
	fungsi	Mengemukakan mekanisme yang termasuk ke dalam sistem imun nonspesifik	Menentukan ciri respons imun nonspesifik
	Menjabarkan sistem imun nonspesifik		

		c. Memiliki memori terhadap inteksi sebelumnya d. Tingkat reaksi sama pada tiap agen infeksi yang			
		berusaha menyerang			
		e. Menghambat masuknya patogen ke dalam tubuh			
Mengemukakan garis	CZ	7. Yang termasuk garis pertahanan pertama dalam A		Bakhtiar	7
pertahanan pertama		sistem imun nonspesifik adalah	(2	(2011)	
pada sistem imun		a. Kulit, membran mukosa, sekresi kulit dan			
nonspesifik		membran mukosa			
		b. Sel fagosit, inflamasi, interferon, komplemen			
		c. Sel B, sel T, kulit			
		d. Membran mukosa, sel T, inflamasi			
		e. kulit, antibodi dan sel T			
Menganalisis cara kerja	C4	8. Kulit melakukan pertahanan terhadap mikroba B		Bakhtiar	8
kulit dalam melakukan		dengan cara	(2)	(2011)	
pertahanan tubuh		a. Mengeluarkan antibody			
		b. Menghalangi masuknya mikroba ke dalam tubuh			
		c. Menelan dan mencerna mikroba			
		d. Mengenali antigen			
		e. Mengenali antibodi			
Menunjukkan enzim	C1	9. Air mata dapat melenyapkan bibit penyakit yang A		Ferdinand	6
yang dapat menguraikan		potensial. Hal ini terjadi karena air mata mengandung	dan	9	
dinding sel bakteri		suatu enzim yang dapat menguraikan dinding sel	Ar	Ariebowo	

bakteri pada air mata		bakteri yang disebut		(2009)	
		a. Lisozim			
		b. Pirogen			
		c. Antibodi			
		d. Basofil			
		e. Neutrofil			
Menjelaskan penyebab C1	CI	10. Membran mukosa tidak dapat ditembus oleh bakteri	ы	Bakhtiar	10
membran mukosa tidak		atau virus karena		(2011)	
dapat ditembus oleh		a. Antara satu membran dengan membran yang lain			
bakteri atau virus		renggang			
		b. Antara satu membran dengan membran yang lain			
		berhubungan			
		c. Antara satu membran dengan membran yang lain			
		kencang			
		d. Antara satu membran dengan membran yang lain			
		kuat			
		e. Antara satu membran dengan membran yang lain			
		sangat rapat			
Menunjukan fungsi	C1	11. Membran mukosa menghasilkan mukus yang	A	Bakhtiar	111
mukus yang dihasilkan		merupakan cairan kental yang berfungsi untuk		(2011)	
oleh membran mukosa		a. mengikat dan menggumpalkan bakteri			
		b. memproduksi bakteri			
		c. mempercepat pertumbuhan bakteri			

		 d. menguraikan dinding sel bakteri 		
		e. menelan bakteri		
Mengemukakan garis	CZ	12.Yang termasuk garis pertahanan kedua pada sistem C	Pratiwi	12
pertahanan kedua pada		imun nonspesifik adalah	dkk (2006)	0
sistem imun nonspesifik		a. Komplemen, sekresi membran mukosa, fagositosit		
		b. Kulit, interferon, makrofag		
		c. Sel fagosit, inflamasi, protein antimikroba		
		d. Protein antimikroba, membran mukosa, sel B		
		e. Inflamasi, kulit, protein antimikroba		
Mengidentifikasi jenis	C1	13. Fagosit yang berperan dalam pertahanan tubuh E	Pratiwi	13
fagosit yang berperan		melawan cacing parasit adalah	dkk (2006)	
dalam pertahanan tubuh		a. Basofil		
melawan pathogen		b. Neutrofil		
		c. Makrofag		
		d. Antibodi		
		e. Eosinofil		
Menentukan fungsi	8	14.berikut ini fungsi protein komplemen dalam B	Sudjadi	14
protein komplemen		membantu pertahanan lapis kedua, kecuali	dan Laila	E .
dalan membantu		 Merangsang fagosit untuk lebih aktif 	(2007)	
pertahanan lapis kedua		 b. Membuat sel target lebih kebal terhadap infeksi 		
		c. Memicu fagosit menuju lokasi infeksi		
		d. Menghancurkan membran mikroba yang		
		menyerang		

		e. Berperan dalam kekebalan yang diperoleh			
Menunjukan cara kerja	C1	15.Interferon bekerja dengan cara	_	Sudjadi	15
interferon		a. Menyamarkan sel target		dan Laila	
		b. Bereaksi terhadap sel-sel yang belum terinfeksi		(2002)	
		agar lebih kebal terhadap partikel virus			
		c. Menempel pada mikroba sehingga lebih mudah			
		dikenali sel fagosit			
		d. Membawa pesan antar sel pada sistem imun			
		e. Mengenali patogen yang masuk ke dalam tubuh			
Menjelaskan proses	C1	16. Perhatikan gambar di bawah ini.	133	Sudjadi	16
inflamasi				dan Laila (2007)	
		Gambar di atas menunjukan bahwa seseorang telah			
		mengalami			
		a. Autoimunitas			
		b. Alergi			
		c. Lupus			
		d. Imunodefisiensi			
		e. Inflamasi			
Menunjukan asal	C1	17. Makrofag berasal dari sel darah putih jenis	D	Rachmawa 17	17
makrofag		a. Limfosit		ti dkk	
			1		

_				18	ila					19										d 20		
(2009)				Sudjadi	dan Laila	(2007)				Bakhtiar	(2011)									Ferdinand	dan	Ariebowo
				۵						A										m		
b. Basofil	c. Neutrofil	d. Monosit	e. Fagosit	18. Yang termasuk sistem imun spesifik adalah	a. Fagositosit, protein komplemen, interferon	b. Protein komplemen, interferon, sel B	c. Interferon, inflamasi, sel T	d. Sel B, Sel T, sel B memori	e. Membran mukosa, inflamasi, sel T	19. Di bawah ini yang termasuk ciri respons imun spesifik	adalah	a. Mempunyai suatu komponen memori	 b. Tidak mempunyai komponen memori 	c. Bekerja tidak efektif apabila patogen masuk ke	dalam tubuh	d. Menghambat waktu tanggapan ketika patogen	masuk ke dalam tubuh	e. Mempercepat perkembangan patogen yang masuk	ke dalam tubuh	20. Semua zat asing yang memicu sistem kekebalan tubuh	disebut	a. Infeksi
				C2						C1										C1		
				Mengemukakan sistem	spesifik					Menunjukan ciri	respons imun spesifik									Mengidentifikasi	pengertian antigen	
				Menjabarkan sistem sistem	imun spesifik																	
				m																		

Rachmawa 22 ti dkk (2009) Ferdinand 23 dan Ariebowo (2009)	ω <	d. Antibodi e. Komplemen 22. Antibodi disekresikan oleh a. Limfosit T b. Limfosit B c. Sel mast d. Sumsum tulang belakang e. Kelenjar limfa 23. Perhatikan gambar di bawah ini!	2 2	Menunjukkan hasil sekresi limfosit B Menganalisis cara antibodi menghancurkan patogen dalam imunitas
_	A	23. Perhatikan gambar di bawah ini!		Menganalisis cara antibodi menghancurkan
		d. Sumsum tulang belakang e. Kelenjar limfa		
		c. Sel mast d. Sumsum tulang belakang		
(2009)		b. Limfosit B		
		a. Limfosit T		sekresi limfosit B
_	В	22. Antibodi disekresikan oleh	C1	Menunjukkan hasil C1
		e. Komplemen		
		d. Antibodi		
		c. Interferon		
		b. Fagositosit		
(2009)		a. Antigen		
Ariebowo		memproduksi protein khusus yang disebut		
dan		tertentu dengan mengaktifkan sel limfosit dan		pengertian antibody
Ferdinand 21	۵	21. Sistem kekebalan tubuh bereaksi terhadap antigen	CI	Mengidentifikasi
		e. Inflamasi		
		d. Alergi		
		c. Antibodi		
(2009)		b. Antigen		

		b. SelT		(2010)	
		c. Sel mast			
		d. SelA			
		e. Sel B dan sel T			
Menjelaskan tugas	CI	26.Tugas utama imunitas selular adalah	A	Ferdinand	56
utama imunitas selular		a. Menghancurkan sel tubuh yang telah terinfeksi		dan	
		patogen		Ariebowo	
		b. Menghambat sel tubuh dalam menghancurkan		(2009)	
		patogen			
		c. Memberi jalan masuk patogen untuk			
		menghancurkan sel tubuh			
		d. Mempercepat pertumbuhan sel patogen yang			
		masuk ke dalam tubuh			
		e. Menghancurkan patogen yang masuk ke dalam			
		tubuh			
Menentukan jenis sel T	C	27. Di bawah ini termasuk jenis sel T, kecuali	ы	Ferdinand	27
		a. Sel T penolong		dan	
		b. SelTsuppressor		Ariebowo	
		c. Sel T memori		(2006)	
		d. Sel Ttoksik			
		e. Sel T sitotoksik			
Menunjukan fungsi sel T	C1	28. Fungsi dari sel T sitotoksik adalah	C	Bakhtiar	28
sitotoksik		a. Sekresi antibodi		(2011)	

				50							30											
				Septianing	dkk (2014)						Pratiwi	dkk (2006)										
				۵							۵											
b. Menyajıkan antıgen	c. Melisis sel T memori	d. Melisis sel terinfeksi	e. Melisis sel T penolong	29.Di bawah ini termasuk kelainan pada sistem imun,	kecuali	a. Defisiensi sistem imun	b. Alergi	c. Autoimun	d. Penolakan transplantasi	e. Transplantasi	30.HIV telah merenggut banyak sekali korban, mulai yang	tua, muda atau bahkan anak-anak. Sistem imunitas	tubuh dilemahkan oleh virus HIV yang menyebabkan	berbagai macam penyakit mudah masuk dan ganas.	Hal tersebut menyebabkan kematian yang umum	dialami oleh orang yang terserang HIV, karena terjadi	kerusakan pada	a. Eritrosit	b. Monosit	c. Trombosit	d. Limfosit	e. Neutrofil
				8							C4											
				Menentukan jenis-jenis	penyakit pada sistem	imun					Menganalisis kerusakan	sistem imun pada	penyakit HIV									
				Mengklasifikasi penyakit pada	sistem imun manusia																	
				4																		

_	Menunjukkan zat yang	<u></u>	31. Zat yang dilepaskan saat terjadinya alergi adalah	Pratiwi	31
	dilepaskan saat	-	a. Antitoksin	dkk (2006)	(9)
_	terjadinya alergi		b. Presipitin		
			c. Histamin		
			d. Gammaglobulin		
			e. Globulin		
	Menunjukan penyebab C1	C1	32. Autoimun terjadi karena	Pratiwi	32
_	terjadinya kelainan		a. Antibodi tidak mengenali jaringan tubuh dan	dkk (2006)	(9)
14	auitoimun		menganggapnya sebagai antigen		
			b. Antibodi menghancurkan jaringan tubuh yang		
			rusak		
			c. Antibodi mengenali adanya antigen		
			d. Antibodi membiarkan antigen masuk ke dalam		
			tubuh		
			e. Antibodi menyerang antigen yang datang dari		
			dalam tubuh		
	Menjabarkan pengertian	C2	33. Defisiensi sitem imun adalah	Septianing	ng 33
	kelainan defisiensi		a. Kemampuan sistem imun dalam membedakan dan	dkk (2014)	4
-	sistem imun		mengenali antara sel tubuh dengan materi asing		
			mengalami kegagalan		
			b. Keadaan sistem pertahanan tubuh yang sangat		
			peka terhadap antigen tertentu		
			c. Kegagalan pewarisan suatu gen individu kepada		

	generasi berikutnya sehingga dihasilkan makrofag vane tidak mamni mencerna dan menehancurkan		_
	organisme penyerbu		
	d. penyakit yang menyerang sel dalam sistem		
	imunitas yang menyebabkan berkurangnya jumlah		
	sel T		
	e. Penyakit pada sistem imun yang menganggap sel		
	tubuh adalah materi asing		
Menjabarkan pengertian C	C2 34. Alergi adalah	Pratiwi	34
alergi	a. Kemampuan sistem imun dalam membedakan	dkk (2006)	(9)
	dan mengenali antara sel tubuh dengan materi		
	asing mengalami kegagalan		_
	b. Keadaan sistem pertahanan tubuh yang sangat		
	peka terhadap antigen tertentu		
	c. Kegagalan pewarisan suatu gen individu kepada		
	generasi berikutnya sehingga dihasilkan makrofag		
	yang tidak mampu mencerna dan menghancurkan		
	organisme penyerbu		
	d. Penyakit pada sistem imun yang menganggap sel		
	tubuh adalah materi asing		_
	e. Penyakit yang menyerang sel dalam sistem		
	imunitas yang menyebabkan berkurangnya		
	jumlah sel T		

Menunjukan jenis	C1	35. Antibodi yang terlibat dalam reaksi alergi adalah	E Pratiwi		32
antibodi yang terlibat		a. IgA	dkk	dkk (2006)	
dalam alergi		b. IgB			
		c. IgM			
		d. IgD			
		e. 18E			
Menjabarkan pengertian	C2	36. Penolakan transplantasi adalah	A Septi	Septianing	36
penolakan transplantasi		a. Sistem kekebalan mengenali dan menyerang organ	dkk	dkk (2014)	
		atau jaringan yang dicangkokkan dari tubuh orang			
		lain			
		b. Penyakit pada sistem imun yang menganggap sel			
		tubuh adalah materi asing			
		c. Keadaan sistem pertahanan tubuh yang sangat			
		peka terhadap antigen tertentu			
		d. Penyakit yang menyerang sel dalam sistem			
		imunitas yang menyebabkan berkurangnya jumlah			
		sel T			
		e. Penolakan Kemampuan sistem imun dalam			
		membedakan dan mengenali antara sel tubuh			
		dengan materi asing mengalami kegagalan			
Mengklasifikasi	S	37.Penolakan transplantasi dapat dibagi menjadi tiga	A Septi	Septianing	37
penolakan transplantasi		kategori, yaitu	dkk	dkk (2014)	
		a. Penolakan hiperakut, akut, kronis			

40	Septianing	۵	40. Penolakan transplantasi kronis adalah	CZ	Menjabarkan pengertian
			pembekuan darah pada pembuluh dalam organ		
			e. Penolakan yang terjadi terjadi karena adanya		
			d. Penolakan yang terjadi sangat cepat		
			transplantasi dilakukan		
			c. Penolakan yang terjadi terjadi segera begitu		
			 b. Penolakan yang terjadi secara sadar 		
			setelah transplantasi dilakukan		akut
	dkk (2014)		a. Penolakan yang terjadi terjadi beberapa hari		penolakan transplantasi
33	Septianing	A	39. Penolakan transplantasi akut adalah	C2	Menjabarkan pengertian
			pembekuan darah pada pembuluh dalam organ		
			e. Penolakan yang terjadi terjadi karena adanya		
			d. Penolakan yang terjadi secara tidak sadar		
			c. Penolakan yang terjadi secara lambat		
			transplantasi dilakukan		
			b. Penolakan yang terjadi terjadi segera begitu		
			setelah transplantasi dilakukan		hiperakut
	dkk (2014)		a. Penolakan yang terjadi terjadi beberapa hari		penolakan transplantasi
38	Septianing	m	38. Penolakan transplantasi hiperakut adalah	C2	Menjabarkan pengertian
			e. Penolakan kronis, lambat, akut		
			d. Penolakan secara cepat, sadar dan tidak sadar		
			c. Penolakan langsung, lambat, akut		
			D. I CHOIGNAIL ICHIDAN, NASSAI, HAILAS		

penolakan transplantasi a. Pen	a. Pen	a. Pen	Penolakan yang terjadi terjadi beberapa hari cetelah temenlantasi dilabukan	dkk (2014)		
	KIOIIIS		Setelah transpiantasi unakukan			
			b. Penolakan yang terjadi terjadi segera begitu			
			transplantasi dilakukan			
			c. Penolakan yang terjadi sangat cepat			
			d. Penolakan yang terjadi terjadi karena adanya			
			pembekuan darah pada pembuluh dalam organ			
			e. Penolakan yang terjadi secara tidak sadar			
Menganalisis jenis-jenis	Menjabarkan pengertian	C2	41. Imunisasi adalah	Rachmawa	41	_
kekebalan pada tubuh manusia	imunisasi		a. Pemberian perlindungan pada tubuh dari	ti, dkk		
			serangan penyakit dengan memberikan vaksin	(2009)		
			b. Memberikan perlindungan pada virus			
			c. Menyembuhkan penyakit pada tubuh manusia			
			d. Mempercepat pertumbuhan virus pada tubuh			
			manusia			
			e. Menyembuhkan infeksi			
	Menjabarkan pengertian	C2	42. Vaksin adalah	Septianing	42	
	vaksin		a. Virus yang dikuatkan	dkk (2014)		
			b. Virus yang diproduksi untuk dimasukkan ke			
			dalam tubuh manusia			
			c. Bibit penyakit yang telah mati atau dilemahkan			
			dan dapat merangsang produksi antibodi di dalam			
			tubuh			

s

ahkan sistem Rachmi respon dari h respon dari ti ti ti ti ti memperoleh renghasilkan		wa 43	dkk						wa 44	dkk					wa 45	dkk			-
d. Bibit penyakit yang berkembang biak e. Virus atau bakteri yang dapat melemahkan sistem pertahanan tubuh manusaia 2. 43. Kekebalan alami adalah a. Kekebalan karena dibuat b. Kekebalan yang muncul karena respon dari adanya infeksi dan dapat sembuh c. Kekebalan yang muncul karena respon dari adanya infeksi dan tidak dapat sembuh d. Kekebalan yang tidak diharapkan e. Kekebalan baran adalah a. Kekebalan yang muncul karena respon dari adanya infeksi dan dapat sembuh c. Kekebalan yang muncul karena respon dari adanya infeksi dan dapat sembuh c. Kekebalan yang muncul dengan sendirinya d. Kekebalan yang tidak diharapkan d. Kekebalan yang tidak diharapkan e. Kekebalan yang tidak diharapkan b. Kekebalan yang tidak diharapkan b. Kekebalan yang tidak diharapkan b. Kekebalan yang tidak diharapkan respons imun utama		Rachma		(2009)					Rachma		(2009)				Rachma		(2009)		
C2 43.Kel e. e. e. c. C2 45.Kel e.		В							A						В				
Menjabarkan pengertian C2 kekebalan alami Menjabarkan pengertian C2 Kekebalan buatan Menjabarkan pengertian C2	Bibit penyakit yang berkembang biak Virus atau bakteri yang dapat melemahkan sistem pertahanan tubuh manusaia	43. Kekebalan alami adalah	a. Kekebalan karena dibuat	b. Kekebalan yang muncul karena respon dari	adanya infeksi dan dapat sembuh	adanya infeksi dan tidak dapat sembuh	d. Kekebalan yang tidak diharapkan	e. Kekebalan yang diharapkan	44. Kekebalan buatan adalah	a. Kekebalan karena dibuat	b. Kekebalan yang muncul karena respon dari	adanya infeksi dan dapat sembuh	d. Kekebalan yang muncul dengan sendirinya	e. Kekebalan yang diharapkan	45. Kekebalan aktif adalah	a. Kekbalan yang tidak diharapkan	b. Kekebalan yang terjadi apabila tubuh memperoleh	sistem imun secara aktif dan menghasilkan	respons imun utama
Menjabarkan pengertian kekebalan alami Menjabarkan pengertian kekebalan buatan Menjabarkan pengertian		C2							CZ						CZ				
		Menjabarkan pengertian	kekebalan alami						Menjabarkan pengertian	kekebalan buatan					Menjabarkan pengertian	kekebalan aktif			

48	Pratiwi	A	diperoleh	dapat	buatan	secara	n pasif	48.Kekebalan pasif secara buatan dapat diperoleh	C1	cara	Menunjukan
							batan	e. Pengobatan	_		
								d. ASI			
							ıasi	c. Vaksinasi			
				ıta	wat plaser	tibodi le	erian an	b. Pemberian antibodi lewat plasenta			
						akit	laman s	a. Pengalaman sakit		uatan	aktif secara buatan
5	dkk (2006)							melalui	_	kekebalan	memperoleh kekebalan
47	Pratiwi	Ü	diperoleh	dapat	buatan	secara	aktif	47.Kekebalan aktif secara buatan dapat diperoleh C	5	cara	Menunjukan
				libuat	l karena d	ng timbu	oalan ya	e. Kekebalan yang timbul karena dibuat			
					pkan	Kekbalan yang diharapkan	ılan yan	d. Kekba			
			lainnya	ndividu	antibodi dari suatu individu ke individu lainnya	suatu inc	odi dari	antibo			
			Kekebalan yang didapat dari pemindahan	lari pe	idapat	yang d	alan	c. Kekeb			
				ч	adanya infeksi dan dapat sembuh	si dan da	a infeks	adany			
			Kekebalan yang muncul karena respon dari	ena re	ncul kar	ang mu	alan y	b. Kekeb			
				ma	menghasilkan respons imun utama	nespons	hasilkar	meng			
			memperoleh sistem imun secara aktif dan	secara	imum	sistem	oeroleh	mem			
2	dkk (2006)		a tubuh	apabila	Kekebalan yang terjadi	yang	alan	a. Kekeb		sif	kekebalan pasif
46	Pratiwi	Ü				dalah	n pasif a	46. Kekebalan pasif adalah	C	pengertian	Menjabarkan pengertian C2
				ainnya	dari suatu individu ke individu lainnya	ividu ke	uatu ind	dari su			
			Kekebalan yang didapat dari pemindahan antibodi	mindaha	at dari pe	ng didapa	alan yaı	e. Kekeb			
				ibuat	Kekebalan yang timbul karena dibuat	ng timbul	alan yar	d. Kekeb			
				_	adanya infeksi dan dapat sembuh	i dan dap	a infeks	adany			
			man made		nekebalali yang muncui karena respon	91112	alam y	C. Veken			

memperoleh kekebalan		melalui	dkk	dkk (2006)	
pasif secara buatan		a. Penyuntikkan antibodi dari manusia atau hewan			
		yang telah kebal terhadap suatu penyakit			
		b. ASI			
		c. Pengalaman sakit			
		d. Vaksinasi			
		e. Pengobatan			
Menganalisis contoh	C4	49. Jika seseorang menerima injeksi immunoglobulin	Sudjadi		49
kekebalan pasif buatan		(antibodi), misalnya hepatitis B, maka orang tersebut	dan	dan Laila	
		memperoleh kekebalan	(2007)	(2)	
		a. Kekebalan aktif			
		b. Kekebalan pasif			
		c. Kekebalan aktif buatan			
		d. Kekebalan pasif buatan			
		e. Kekbalan alami			
Menganalisis contoh	C4	50. Di bawah ini termasuk contoh kekebalan aktif:	Pratiwi,		20
kekebalan aktif buatan		1) Vaksin polio yang diberikan pada anak agar anak	dkk	dkk (2006)	
		tersebut kebal terhadap virus polio			
		2) Vaksin cacar yang diberikan pada anak agar anak			
		tersebut kebal terhadap virus cacar			
		3) Kuman penyakit yang masuk ke dalam tubuh			
		kemudian merangsang tubuh menghasilkan			
		antibodi untuk melawan penyakit			

Yang termasuk dalam kekebalan aktif buatan adalah a. 1 dan 3 b. 1 dan 2	
c. 1	
d, 3	

e. Semua jawaban benar

Keterangan

C1 = Pengetahuan = 22 soal

C2 = Pemahaman = 18 soal

C3 = Penerapan = 5 soal

C4 = Analisis = 5 soal

Daftar Referensi

Bakhtiar, Suaha. 2011. *Biologi untuk SMA dan MA Kelas XI.* Jakarta: Pusat Kurikulum dan Perbukuan Kementerian Pendidikan Nasional.

Bratawidjaja, Karnen Garna dan Iris Rengganis. 2010. *Imunologi Dasar Edisi ke-10*. Jakarta: Balai Penerbit FKUI.

Ferdinand, Fictor dan Moekti Ariebowo. 2009. *Praktis Belajar Biologi 2 untuk SMA/MA Kelas XI.* Jakarta: Pusat Perbukuan Departemen

Pendidikan Nasional.

Pratiwi, D.A. dkk. 2006. *Biologi SMA Jilid 2 untuk Kelas XI.* Jakarta: PenerbitErlangga.

Rachmawati, Faidah dkk. 2009. *Biologi untuk SMA/MA Kelas XI Program IPA*. Jakarta: Pusat Perbukuan Departemen Pendidikan Nasional.

Septianing, Rasti dkk. 2014. *Panduan Belajar Biologi 2B SMA Kelas XI.*Jakarta: Yudhistira.

Sudjadi, Bagod dan Siti Laila. 2007. Biologi 2. Jakarta: Yudhistira.

SOAL UII COBA INSTRUMEN

 Mata Pelajaran
 : Biologi
 Nama
 :

 Materi
 : Sistem Pertahanan Tubuh
 Kelas
 :

 Waktu
 : 60 menit
 TTD
 :

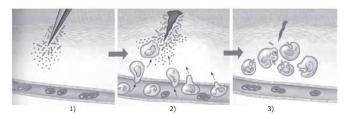
Petunjuk Umum:

- 1. Tulis identitas Anda (Nama, kelas, TTD) pada tempat yang tersedia
- 2. Bacalah baik-baik sebelum menjawab
- 3. Berilah tanda silang (X) pada jawaban yang paling benar.
- 4. Berdoalah sebelum mengerjakan
- 1. Yang termasuk fungsi mekanisme sistem imun pada manusia adalah....
 - a. Mempertahankan tubuh dari patogen invasif Meningkatkan kerja sel imun
 - Meningkatkan kerja sel imun
 - c. Menyamarkan sel target
 - d. Membawa pesan antar sel pada sistem imun
 - e. Mengaktifkan antigen
- 2. Bagaimana mekanisme sistem kekebalan tubuh dalam mengatasi infeksi?
 - a. Membiarkan patogen masuk ke dalam tubuh
 - b. Mempercepat masuknya patogen ke dalam tubuh
 - c. Menghambat atau menghancurkan patogen yang masuk ke dalam tubuh dengan bantuan antibodi
 - d. Mempertahankan patogen yang masuk ke dalam tubuh
 - e. Mempercepat pertumbuhan patogen yang masuk ke dalam tubuh
- 3. Mekanisme sistem pertahanan tubuh pada manusia dibedakan menjadi dua macam, yaitu.....
 - Sistem imun humoral dan selular
 - b. Sistem imun garis pertahanan pertama dan kedua
 - c. Sistem imun garis pertahanan kedua dan ketiga
 - d. Sistem imun garis pertahanan pertama dan ketiga
 - e. Sistem imun nonspesifik dan spesifik
- 4. Apa fungsi sistem imun nonspesifik dalam tubuh?
 - a. Membentuk sel memori terhadap agen infeksi sebelumnya
 - b. Melawan berbagai jenis infeksi yang umum terjadi
 - c. Menyamarkan sel-sel patogen yang masuk ke dalam tubuh
 - d. Mereaksikan agen infeksi yang pernah masuk sebelumnya
 - e. Memproduksi antibodi
- 5. Yang termasuk sistem imun nonspesifik adalah....
 - a. Fagositosit, inflamasi, sel B
 - b. Sel T, Sel B, protein komplemen
 - c. Interferon, sel B, sel T
 - d. Komplemen, sel T dan sel B
 - e. Protein antimikroba, fagositosit, inflamasi
- Di bawah ini termasuk ciri respons imun nonspesifik, kecuali...
 - a. Bereaksi sama terhadap semua agen infeksi
 - b. Tidak membentuk sel memori terhadap agen infeksi

- Memiliki memori terhadap infeksi sebelumnya c.
- d. Tingkat reaksi sama pada tiap agen infeksi yang berusaha menyerang
- e. Menghambat masuknya patogen ke dalam tubuh.
- Yang termasuk garis pertahanan pertama dalam sistem imun nonspesifik adalah.....
 - Kulit, membran mukosa, sekresi kulit dan membran mukosa а
 - Sel fagosit, inflamasi, interferon, komplemen b.
 - Sel B, sel T, kulit c.

7.

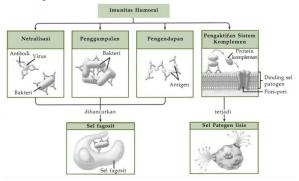
- d. Membran mukosa, sel T, inflamasi
- e. Kulit, antibodi dan sel T
- 8. Kulit melakukan pertahanan terhadap mikroba dengan cara....
 - Mengeluarkan antibodi a.
 - h. Menghalangi masuknya mikroba ke dalam tubuh
 - Menelan dan mencerna mikroba
 - d. Mengenali antigen
 - Mengenali antibodi e.


Lisozim

- Air mata dapat melenyapkan bibit penyakit yang potensial. Hal ini terjadi karena air mata mengandung suatu enzim yang dapat menguraikan dinding sel bakteri yang disebut.....
 - a.

d.

- Pirogen
- c. Antibodi
- Basofil d
- Neutrofil
- 10. Membran mukosa tidak dapat ditembus oleh bakteri atau virus karena.....
 - Antara satu membran dengan membran yang lain renggang a.
 - b. Antara satu membran dengan membran yang lain berhubungan
 - c. Antara satu membran dengan membran yang lain kencang
 - Antara satu membran dengan membran yang lain kuat Antara satu membran dengan membran yang lain sangat rapat
- 11. Membran mukosa menghasilkan mukus yang merupakan cairan kental yang berfungsi untuk.....
 - a. mengikat dan menggumpalkan bakteri
 - b. memproduksi bakteri
 - mempercepat pertumbuhan bakteri c.
 - d. menguraikan dinding sel bakteri
 - menelan bakteri
- 12. Yang termasuk garis pertahanan kedua pada sistem imun nonspesifik adalah....
 - a. Komplemen, sekresi membran mukosa, fagositosit
 - b. Kulit, interferon, makrofag
 - C. Sel fagosit, inflamasi, protein antimikroba
 - d. Protein antimikroba, membran mukosa, sel B
 - Inflamasi, kulit, protein antimikroba
- 13. Fagosit yang berperan dalam pertahanan tubuh melawan cacing parasit adalah....
 - a. Basofil
 - h. Neutrofil
 - c. Makrofag
 - Antibodi


- e. Eosinofil
- 14. berikut ini fungsi protein komplemen dalam membantu pertahanan lapis kedua, kecuali....
 - a. Merangsang fagosit untuk lebih aktif
 - Membuat sel target lebih kebal terhadap infeksi
 - c. Memicu fagosit menuju lokasi infeksi
 - d. Menghancurkan membran mikroba yang menyerang
 - e. Berperan dalam kekebalan yang diperoleh
- 15. Interferon bekerja dengan cara....
 - a. Menyamarkan sel target
 - b. Bereaksi terhadap sel-sel yang belum terinfeksi agar lebih kebal terhadap partikel virus
 - c. Menempel pada mikroba sehingga lebih mudah dikenali sel fagosit
 - d. Membawa pesan antar sel pada sistem imun
 - e. Mengenali patogen yang masuk ke dalam tubuh
- 16. Perhatikan gambar di bawah ini.

Gambar di atas menunjukan bahwa seseorang telah mengalami.....

- a. Autoimunitas
- b. Alergi
- c. Lupus
- d. Imunodefisiensi
- e. Inflamasi
- 17. Makrofag berasal dari sel darah putih jenis...
 - a. Limfosit
 - b. Basofil
 - c. Neutrofil
 - d. Monosit
 - e. Fagosit
- 18. Yang termasuk sistem imun spesifik adalah....
 - a. Fagositosit, protein komplemen, interferon
 - b. Protein komplemen, interferon, sel B
 - c. Interferon, inflamasi, sel T
 - d. Sel B, Sel T, sel B memori
 - e. Membran mukosa, inflamasi, sel T
- 19. Di bawah ini yang termasuk ciri respons imun spesifik adalah.....
 - a. Mempunyai suatu komponen memori
 - b. Tidak mempunyai komponen memori
 - c. Bekerja tidak efektif apabila patogen masuk ke dalam tubuh

- d. Menghambat waktu tanggapan ketika patogen masuk ke dalam tubuh
- e. Mempercepat perkembangan patogen yang masuk ke dalam tubuh
- 20. Semua zat asing yang memicu sistem kekebalan tubuh disebut....
 - a. Infeksi
 - b. Antigen
 - c. Antibodi
 - d. Alergi
 - e. Inflamasi
- Sistem kekebalan tubuh bereaksi terhadap antigen tertentu dengan mengaktifkan sel limfosit dan memproduksi protein khusus yang disebut......
 - a. Antigen
 - b. Fagositosit
 - c. Interferon
 - d. Antibodi
 - e. Komplemen
- 22. Antibodi disekresikan oleh...
 - a. Limfosit T
 - b. Limfosit B
 - Sel mast
 - d. Sumsum tulang belakang
 - e. Kelenjar limfa
- 23. Perhatikan gambar di bawah ini!

Gambar di atas menunjukan cara antibodi menghacurkan patogen. Cara yang dilakukan adalah......

- a. Netralisasi, penggumpalan, pengendapan, pengaktifan sistem komplemen
- b. Penggumpalan, pengendapan, pengaktifan sistem komplemen, netralisasi
- c. Pengendapan, netralisasi, pengaktifan sistem komplemen, penggumpalan
- d. Netralisasi, pengendapan, penggumpalan, pengaktifan sistem komplemen
- e. Netralisasi, pengaktifan sistem komplemen, pengendapan, penggumpalan
- 24. Limfosit yang berperan dalam imunitas humoral adalah.....
 - a. Limfosit T
 - b. Limfosit T memori
 - c. Limfosit B
 - d. Limfosit T helper

	e.	Limfosit T suppressor
25.	Limfo	sit yang berperan dalam imunitas selular adalah
	a.	Sel B
	b.	Sel T
	c.	Sel mast
	d.	Sel A
	e.	Sel B dan sel T
26.	Tugas	s utama imunitas selular adalah
	a.	Menghancurkan sel tubuh yang telah terinfeksi patogen
	b.	Menghambat sel tubuh dalam menghancurkan patogen
	c.	Memberi jalan masuk patogen untuk menghancurkan sel tubuh
	d.	Mempercepat pertumbuhan sel patogen yang masuk ke dalam tubuh
	e.	Menghancurkan patogen yang masuk ke dalam tubuh
27.	Di ba	wah ini termasuk jenis sel T, <i>kecuali</i>
	a.	Sel T penolong
	b.	Sel T suppressor
	c.	Sel T memori
	d.	Sel T toksik
	e.	Sel T sitotoksik
28.	Fungs	si dari sel T sitotoksik adalah
	a.	Sekresi antibodi
	b.	Menyajikan antigen
	c.	Melisis sel T memori
	d.	Melisis sel terinfeksi
	e.	Melisis sel T penolong
29.	Di ba	wah ini termasuk kelainan pada sistem imun, kecuali
	a.	Defisiensi sistem imun
	b.	Alergi
	C.	Autoimun
	d.	Penolakan transplantasi
	e.	Transplantasi
30.	HIV t	elah merenggut banyak sekali korban, mulai yang tua, muda atau bahkan anak-anak. Sistem imunitas tubuh
	dilem	ahkan oleh virus HIV yang menyebabkan berbagai macam penyakit mudah masuk dan ganas. Hal tersebut
	meny	ebabkan kematian yang umum dialami oleh orang yang terserang HIV, karena terjadi kerusakan pada
	a.	Eritrosit
	b.	Monosit
	C.	Trombosit
	d.	Limfosit

e.

b.

c.

d.

Neutrofil

Antitoksin

Presipitin

Histamin

Gammaglobulin Globulin

31. Zat yang dilepaskan saat terjadinya alergi adalah...

- 32. Autoimun terjadi karena....
 - a. Antibodi tidak mengenali jaringan tubuh dan menganggapnya sebagai antigen
 - b. Antibodi menghancurkan jaringan tubuh yang rusak
 - c. Antibodi mengenali adanya antigen
 - d. Antibodi membiarkan antigen masuk ke dalam tubuh
 - e. Antibodi menyerang antigen yang datang dari dalam tubuh
- 33. Defisiensi sitem imun adalah.....
 - Kemampuan sistem imun dalam membedakan dan mengenali antara sel tubuh dengan materi asing mengalami kegagalan
 - b. Keadaan sistem pertahanan tubuh yang sangat peka terhadap antigen tertentu
 - c. Kegagalan pewarisan suatu gen individu kepada generasi berikutnya sehingga dihasilkan makrofag yang tidak mampu mencerna dan menghancurkan organisme penyerbu
 - d. penyakit yang menyerang sel dalam sistem imunitas yang menyebabkan berkurangnya jumlah sel T
 - e. Penyakit pada sistem imun yang menganggap sel tubuh adalah materi asing
- 34. Alergi adalah....
 - Kemampuan sistem imun dalam membedakan dan mengenali antara sel tubuh dengan materi asing mengalami kegagalan
 - b. Keadaan sistem pertahanan tubuh yang sangat peka terhadap antigen tertentu
 - c. Kegagalan pewarisan suatu gen individu kepada generasi berikutnya sehingga dihasilkan makrofag yang tidak mampu mencerna dan menghancurkan organisme penyerbu
 - d. Penyakit pada sistem imun yang menganggap sel tubuh adalah materi asing
 - e. Penyakit yang menyerang sel dalam sistem imunitas yang menyebabkan berkurangnya jumlah sel T
- 35. Antibodi yang terlibat dalam reaksi alergi adalah....
 - a. Ig A
 - b. Ig B
 - c. Ig M
 - d. Ig D
 - e. Ig E
- Penolakan transplantasi adalah....
 - a. Sistem kekebalan mengenali dan menyerang organ atau jaringan yang dicangkokkan dari tubuh orang lain
 - b. Penyakit pada sistem imun yang menganggap sel tubuh adalah materi asing
 - c. Keadaan sistem pertahanan tubuh yang sangat peka terhadap antigen tertentu
 - d. Penyakit yang menyerang sel dalam sistem imunitas yang menyebabkan berkurangnya jumlah sel T
 - Penolakan Kemampuan sistem imun dalam membedakan dan mengenali antara sel tubuh dengan materi asing mengalami kegagalan
- 37. Penolakan transplantasi dapat dibagi menjadi tiga kategori, yaitu....
 - a. Penolakan hiperakut, akut, kronis
 - Penolakan lembut, kasar, halus
 - c. Penolakan langsung, lambat, akut
 - Penolakan secara cepat, sadar dan tidak sadar
 - e. Penolakan kronis, lambat, akut
- 38. Penolakan transplantasi hiperakut adalah....
 - a. Penolakan yang terjadi terjadi beberapa hari setelah transplantasi dilakukan
 - b. Penolakan yang terjadi terjadi segera begitu transplantasi dilakukan
 - c. Penolakan yang terjadi secara lambat

- d. Penolakan yang terjadi secara tidak sadar
- e. Penolakan yang terjadi terjadi karena adanya pembekuan darah pada pembuluh dalam organ

39. Penolakan transplantasi akut adalah....

- a. Penolakan yang terjadi terjadi beberapa hari setelah transplantasi dilakukan
- b. Penolakan yang terjadi secara sadar
- c. Penolakan yang terjadi terjadi segera begitu transplantasi dilakukan
- d. Penolakan yang terjadi sangat cepat
- e. Penolakan yang terjadi terjadi karena adanya pembekuan darah pada pembuluh dalam organ

40. Penolakan transplantasi kronis adalah...

- a. Penolakan yang terjadi terjadi beberapa hari setelah transplantasi dilakukan
- b. Penolakan yang terjadi terjadi segera begitu transplantasi dilakukan
- c. Penolakan yang terjadi sangat cepat
- d. Penolakan yang terjadi terjadi karena adanya pembekuan darah pada pembuluh dalam organ
- Penolakan yang terjadi secara tidak sadar

41. Imunisasi adalah....

- a. Pemberian perlindungan pada tubuh dari serangan penyakit dengan memberikan vaksin
- Memberikan perlindungan pada virus
- c. Menyembuhkan penyakit pada tubuh manusia
- d. Mempercepat pertumbuhan virus pada tubuh manusia
- e. Menyembuhkan infeksi

42. Vaksin adalah....

- a. Virus yang dikuatkan
- b. Virus yang diproduksi untuk dimasukkan ke dalam tubuh manusia
- c. Bibit penyakit yang telah mati atau dilemahkan dan dapat merangsang produksi antibodi di dalam tubuh
- Bibit penyakit yang berkembang biak
- e. Virus atau bakteri yang dapat melemahkan sistem pertahanan tubuh manusaia

43. Kekebalan alami adalah...

- Kekebalan karena dibuat
- b. Kekebalan yang muncul karena respon dari adanya infeksi dan dapat sembuh
- c. Kekebalan yang muncul karena respon dari adanya infeksi dan tidak dapat sembuh
- d. Kekebalan yang tidak diharapkan
- e. Kekebalan yang diharapkan

Kekebalan buatan adalah...

- Kekebalan karena dibuat
- b. Kekebalan yang muncul karena respon dari adanya infeksi dan dapat sembuh
- Kekebalan yang tidak diharapkan
- d. Kekebalan yang muncul dengan sendirinya
- e. Kekebalan yang diharapkan

Kekebalan aktif adalah....

- a. Kekebalan yang tidak diharapkan
- Kekebalan yang terjadi apabila tubuh memperoleh sistem imun secara aktif dan menghasilkan respons imun utama
- c. Kekebalan yang muncul karena respon dari adanya infeksi dan dapat sembuh
- d. Kekebalan yang timbul karena dibuat
- e. Kekebalan yang didapat dari pemindahan antibodi dari suatu individu ke individu lainnya

- 46. Kekebalan pasif adalah....
 - Kekebalan yang terjadi apabila tubuh memperoleh sistem imun secara aktif dan menghasilkan respons imun utama
 - b. Kekebalan yang muncul karena respon dari adanya infeksi dan dapat sembuh
 - c. Kekebalan yang didapat dari pemindahan antibodi dari suatu individu ke individu lainnya
 - d. Kekebalan yang diharapkan
 - e. Kekebalan yang timbul karena dibuat
- 47. Kekebalan aktif secara buatan dapat diperoleh melalui.....
 - a. Pengalaman sakit
 - b. Pemberian antibodi lewat plasenta
 - c. Vaksinasi
 - d. ASI
 - e. Pengobatan
- 48. Kekebalan pasif secara buatan dapat diperoleh melalui...
 - a. Penyuntikkan antibodi dari manusia atau hewan yang telah kebal terhadap suatu penyakit
 - b. ASI
 - c. Pengalaman sakit
 - d. Vaksinasi
 - e. Pengobatan
- Jika seseorang menerima injeksi immunoglobulin (antibodi), misalnya hepatitis B, maka orang tersebut memperoleh kekebalan...
 - a. Kekebalan aktif
 - b. Kekebalan pasif
 - c. Kekebalan aktif buatan
 - Kekebalan pasif buatan
 - e. Kekebalan alami
- 50. Di bawah ini termasuk contoh kekebalan aktif:
 - 1) Vaksin polio yang diberikan pada anak agar anak tersebut kebal terhadap virus polio
 - 2) Vaksin cacar yang diberikan pada anak agar anak tersebut kebal terhadap virus cacar
 - Kuman penyakit yang masuk ke dalam tubuh kemudian merangsang tubuh menghasilkan antibodi untuk melawan penyakit

Yang termasuk dalam kekebalan aktif buatan adalah....

- a. 1 dan 3
- b. 1 dan 2
- c. 1
- d.
- e. Semua jawaban benar

Lampiran 2C

KUNCI JAWABAN SOAL UJI COBA INSTRUMEN

1.	Α	11. A	21. D	31. C	41. A
2.	С	12. C	22. B	32. A	42. C
3.	Е	13. E	23. A	33. C	43. B
4.	В	14. B	24. C	34. B	44. A
5.	E	15. B	25. B	35. E	45. B
6.	С	16. E	26. A	36. A	46. C
7.	Α	17. D	27. E	37. A	47. C
8.	В	18. D	28. C	38. B	48. A
9.	Α	19. A	29. D	39. A	49. D
10.	. Е	20. B	30. D	40. D	50. B

Lampiran 3

ANALISIS VALIDITAS, TARAF KESUKARAN, DAYA PEMBEDA, DAN RELIABILITAS ITEM SOAL PILIHAN GANDA

The column The	No																
1	No	Kode	-	2	2	-				0	0	10	-11	12	12	14	15
2	- 1	Hc-01															15
1					1		_	_	1	_	_		_	1	0		1
S	3	Uc-03	1	0	1	1	0	1	1	0	1	0	0	0	1	1	1
Section Continue				1	1				1						1		1
Total Tota			-	Ü	1				1				-	-	1		1
B				0	1								_	1	0		1
10 10 10 10 10 11 11 11			_	1	1					•			•	0	1		1
10 10 1 1 1				0	0				_						1		1
12 10 12 1 1 1 1 1 1 1 1	10		1	0	1	1	1	0	0	1	1	1	1	1	1	1	1
11 10 13 1 1 1 1 1 1 1 1																	1
1				-										-	1		0
15 16 16 16 17 18 18 18 18 18 18 18	$\overline{}$				_										1		1
The color The					1				1					1	1		0
19			•	Ü	1			_	1					1	1		0
190 10 10 10 11 10 11 10			1	0	0		0	0	0	0			0	0	1		1
	18			1	1				1								1
1				1	0									0			0
22				1	1			_					_	1	0		1
23 U-224 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0				-	_												
24					_	-			_					-	-		0
Section Color Co			1	1	1	0	0		1		1			0	0	1	0
28				1	-		_		_	_		-	_	1			0
28					1				_								0
290 Uc-30				0	1				_	_				0	-		1
1				1					_					0			_
31 Uc-32				1					_				_	-	1		_
33 Uc-34 1				1	1				0	0				0	0	1	0
1	32	Uc-33		0	0	1	0	1	0	0	1	0	1	1	0	1	0
36				1					1					1	0		0
Second Process Seco				1	0		1	1	0					0	1		0
			-	1	1		0	1	0	-				1	0		0
1			_	21	22			_	-	_				15	19	_	17
No. Post P	,	Mn.	_														
		Mt	29.3333	29.333333	29.3333	29.3333	29.3333	29.3333	29.3333	29.3333	29.3333	29.3333				29.3333333	29.3333
Registration Regi		р															
1	ltas .	q															
	Valid	p/q															
Part		9															
		rtabel									0.12107	3.57203	10.0702	1.5515551	0.7 15 15	1.0257 002	0.17151
No. 1		Kriteria	Invalid	Invalid	Valid	Valid	Invalid	Valid									
Note	a t	В															
Note	ingla sukar	IS															
Name	E §	IK															
Big		RA															
Fig.	g	вв															
Fig.	emp emp	JA.															
Fig.	da ya	JВ															
New Normal New	_ ^	D															
P 0.83 0.94 0.97 0.69 0.58333 0.28 0.75 0.58333 0.72 0.67 0.75 0.53 0.56 0.44 0.64 0.64 0.67 0.75 0.07	Veitoria e1	Kriteria															
Q	IN ILES IN SOAI	l															
Beg 0.14 0.06 0.03 0.21 0.24 0.20 0.19 0.24 0.20 0.22 0.19 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25																	
k 36 36 36 36 36 36 36 36 36 36 36 36 36																	
S2 43.41 43	12																
S2 43.41 43	eliabi																
rii 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85	ž																
		AL PACE OF															

16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	0	1	0	1	0	0	1	1	1	1	1	1	1	1
0	0	1	0	1	1	1	1	1	1	1	1	1	1	1
1	0	0	0	1	0	0	1	0	0	1	1	1	1	1
1	0		1	1	1	1	1	1	0	1	0	1	0	- 1
1	1	1	1	1	1	0	0	0	1	1	0	1	0	(
1	1	1	1	1	1	0	1	0	1	1	0	1	1	1
1	0	1	1	1	0	1	1	0	1	1	1	1	0	- 1
1	1	0	0	1	1	0		0			1			
1	1	1	0	1	0	0	0	0	1	1	0	1	0	1
0	0	1	1	1	1	1	1	0	1	1	1			
0	0		0	0	1	0					0			
1	1	1	1	1	1	0	1	0	0	1	0	1	1	- 1
1	0	0	0	1	0	0	1	0	0	1	1	1	1	1
1	0	0	0	1	0	1	1	1	0	1	1	0	0	1
1	1	0	0	1	1	0					0			
1	0		0	1	0	1					0			-
0	0		1	1	0	1	1	1	0		1	0		-
1	0		0	0	0	1					0			
1	1	0	0	1	1	0					0			
1	0		0	1	0	1					0			(
1	0		1	1	0	1					1			
0	0		1	0	0	1					0	_		
0	0		0	1	0	1					1			1
0	1	0	0		0	0					0			
1	1	1	0	1	0	1	1	1	1	1	0	0	1	1
1	0		0	0	0	1	0				0			(
0			1	1	0	1	0			1	0			1
1	0	0	0	0	0	0	1			1	0	1	0	
0	1	1	0	1	0	1	1	0	0	1	0	0	1	0
0	0	0	1	0	0	1	1	1	0	1	0	1	1	C
0	1	1	0	1	0	1	1	0	1	1	0	1	0	1
1	0	0	1	0	1	0	0	0	0	1	0	0	0	
0	0	0	1	1	0	0	1	0	1	0	1	1	0	1
0	1	0	1	1	0	1	0	0	0	1	0	0	1	
1	0	0	1	0	1	1	0	1	0	0	1	1	0	1
0	1	0	1	0	0	0	0	0	1	0	1	1	0	1
22	13	15	16	27	12	20	24	14	13	32	14	25	16	23
31,0909	29	32,5333	29,5625	30,2593	74,5	29,35	30,75	68,7143	31,6923	18,7813	38	20,04	31,3125	31,9565
29,3333						29,333333					29,3333			29,3333
0,61111	0,3611111	0,41667			0,33333									0,63889
0,38889										0,11111				0,36111
1,57143					0,5	1,25		0,63636				2,27273		1,76923
0,27074	0,2707443			0,27074										
	-0,9256082													
Valid	Invalid	Valid	Valid	Valid	Valid	Invalid	Valid	Valid	Valid	Invalid	Valid	Invalid	Valid	Valid
22														
36					36									
0,61111	0,3611111					0,555556								
Sedang	Sedang	Sedang			Sedang				Sedang	Mudah		Sedang		Sedang
14									8	18				
8			9	11	3	12	9	7			5	11	8	,
18					18						18			
18					18						18			
	-0,0555556									0,22222				0,27778
	Sangat jelek									Cukup	Cukup			Cukup
							Dipakai							
0,11	0,75			0,38889										
0,11	0,75	0,12	0,00		0,01	0,07		0,12	0,23	0,11		0,51		0,00

0,39

Reliable Reliable Reliable

0,31 0,47 0,58 0,75 0,89

0,21 0,25 0,24 0,19 0,10 0,24 0,21 0,24

43,41 43,41 43,41 43,41 43,41 43,41 43,41 43,41 43,41

0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,85

36 36 36 36 36 36 36

0,14 0,61

0,12 0,24 0,24

43,41 43,41 43,41

0,85 0,85 0,85

36 36 36

0,58

Reliable Reliable Reliable Reliable Reliable Reliable Reliable

7,71 7,71

0,69 0,42

0,17

36

7,71

0,25 0,58

0,19 0,24

36 36

7,71

43,41 43,41

0,85 0,85

Reliable Reliable

0,89

0,10

7,71

43,41

0,85

Reliable Reliable

36

31 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	32 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	33 1 0 11 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	34 1 1 1 1 1 1 1 1 1 1 1 1 1	35 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	36 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	37 0 1 1 1 1 1 1 1 1 1 1 1 1 1	38 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	41 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	42 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1	44 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45
	0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0	1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0	0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1	1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1	1 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0	1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1	1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0	1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0	1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1	1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1	1 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0	1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1	1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0	1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0	1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1	0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1	1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 0 1 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0	0 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1	1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0	11 00 11 11 11 00 00 00 00 00 00 00 00 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 00 11 11 11 00 00 00 00 11 10 00 00 11 00 00	0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0	1 1 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1	1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1	1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1	1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0	1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0	1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0	0 0 0 1 1 0 0 0 1 1 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0	1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 0 0	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0	0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0	1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0	0 1 0 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0	1 1 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1	1 1 1 1 0 1 1 1 0 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 0 0 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 10 00 00 00 00 11 00 00 11 00 00	0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0	1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0	1 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1	1 1 1 1 1 1 1 1 1 1	1 1 1 0 1 1 0 1 1 0 0 0 1 1 1 0 0	1 0 0 0 1 0 1 0 1 1 1	1 1 1 0 1 1 0 1 1 1 1	1 1 1 1 1 1 1 0 1 0	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0	0 1 1 0 1 1 1 1 1 0 0 0 0 0 0	1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1	1 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0	0 0 1 0 0 0 1 0 1 1 1 0 0 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 0	0 0 0 0 1 1 0 1 1 1	1 1 0 1 1 0 1 1 1 1	1 1 1 1 1 1 0 1 0	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 0 0 0 0 0 0 0 0	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0	1 1 0 1 1 1 1 1 1 0 0 0 0 0 0	1 0 0 1 1 1 1 1 0 0	0 1 1 0 0 1 1 1 1 0 0	1 0 0 0 1 0 1 1 1 0 0 1 1 1 1	1 1 1 1 1 1 1 1	1 0 1 0 1 0 0 0 0	0 0 0 1 0 1 0 1 1 1 1	1 0 1 1 0 1 1 1 1	1 1 1 1 1 1 0 1 0	
	1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0	1 0 1 1 1 1 1 0 0 0 0	0 0 1 1 1 1 1 1 0 0	1 0 0 1 1 1 1 0 0	0 0 1 0 1 1 1 0 0	1 1 1 1 1 1 1 1	0 1 0 1 0 0 0 1 1	0 1 0 1 0 1 1 1	0 1 1 0 1 1 1	1 1 1 1 0 1 0 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 1 0 1 0 0 0	0 1 1 1 1 1 0 0 0 0	0 1 1 1 1 1 1 0 0	1 0 0 1 1 1 1 0 0	0 1 0 1 1 0 1 1	1 1 1 1 1 1	1 0 1 0 0 0 1	1 0 1 0 1 1 1	1 0 1 1 1 1	1 1 1 1 0 1 0	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 1 1 0 0	1 1 1 1 1 1 1 1 1 1	0 0 0 1 0 1 0 0 0	1 1 1 1 0 0 0 0 1 1	1 1 1 1 1 0 0	0 0 1 1 1 0 0	1 0 1 1 0 0 1	1 1 1 1	0 1 0 0 0	0 1 0 1 1	1 0 1 1 1	1 1 0 1 0	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 1 1 0 0	1 1 1 1 1 1 1 1 1 1	0 0 0 1 0 1 0 0 0	1 1 1 1 0 0 0 0 1 1	1 1 1 1 1 0 0	0 0 1 1 1 0 0	1 0 1 1 0 0 1	1 1 1 1	1 0 0 1	0 1 0 1 1	1 0 1 1 1	1 1 0 1 0	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 0 0 0 1 1 0 0	0 0 0 0 0 0 1 0 0	1 1 1 1 1 1 1 1 1	0 0 1 0 1 0 0 0 1	1 1 1 0 0 0 1	1 1 1 1 0 0	0 1 1 1 0 0	0 1 1 0 1 1	1 1 1 1	1 0 0 1	1 0 1 1	0 1 1 1 1	1 0 1 0	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 0 0 0 1 0 0 0 0 0	0 0 0 0 0 0 1 0 0	1 1 1 1 1 1 1 1	0 1 0 1 0 0 0 0	1 1 0 0 0 1	1 1 1 0 0	1 1 1 0 0	1 1 0 1	1 1 1	0 0 1 1	0 1 1 1	1 1 1 1	0 1 0 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 1 0 0 0	0 0 0 1 0 0 0	1 1 1 1 1 1 1	1 0 1 0 0 0	1 0 0 0 0 1	1 1 0 0	1 1 0 0	1 0 1 1	1 1	0 1 1	1 1	1 1 1	1 0 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 0 0 0 0	0 0 0 1 0 0 0	1 1 1 1 1 1	0 1 0 0 1	0 0 0 1	1 0 0	1 0 0	0 1 1	1	1	1	1	0 1	
1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1	0 0 1 0 0 0	0 0 1 0 0 0	1 1 1 1	1 0 0 1	0 0 1	0 0	0	1	1	1	1	1	1	
1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1	0 1 0 0 0	0 1 0 0 0	1 1 1 1	0 0 1 0	0 1 0	0	0	1						
1 1 1 1 0 1 1 1 1 1 1 1 1	1 0 0 0 0	0 0 0 0	1 1 1	0 1 0	1 0	1	0		0	1				
1 1 1 1 0 1 1 1 1 1 1 1 1	0 0 0 0	0 0	1 1	1 0	0			0			0	1	1	
0 1 1 1 1 1 1 1 0	0 0 0	0	1	0		1			1	1	1	1	1	
0 1 1 1 1 1 1 1 0	0 0 0	0	1		0		0	1	1	1	0	1	1	
0 1 1 1 1 1 1 1 0	0 0 0	0	1			0	0		1	0	0		1	
0 1 1 1 1 1 1 1 0	0	0			1	0	0		0	1	1	1	1	
0 1 1 1 1 1 1 1 0	0		1	1	1	0	0		1	1	0		1	
1 1 1 1 1 1 0	_	U			0									
1 1 1 1 1 1 0	01		1	0		1	0		1	1	1		0	
1 1 1 0		0	1	1	1	0	1		1	1	1		1	
1 1 1 0	0	0	1	0	1	0	1		1	1	1	1	1	
1 0	0	0	1	1	1	0	0	1	1	1	1	1	1	
1 0	0	0	1	1	1	0	1	1	1	1	1	1	0	
0	0	0	0	0	0	0	0	1	0	1	1	0	1	
	0	0	- 1	0	0	1	0	1	- 1	1	1	- 1	1	
	1	0	1	0	1	0	1		1	0	1		1	
1	0	1	1	1	1	0	0		0	1	1	1	1	_
	0	1	1	1	0	0	0		0	1	1		0	
0		_	_							_		1		
1	0	0	1	0	1	0	0		1	1	1	0	0	
1	1	0	0	1	1	1	1		1	1	1		1	
0	0	0	1	1	0	0	1	1	1	1	1	1	1	
30	10	11	33	19	20	17	16	26	31	29	26	31	29	
29.8	33,4	32,6364	29.1515	31,8947				29,192308			28,88461538	29.8387	30,1034	30,
											29,33333333			
											0,722222222			
											0,27777778			
	0,38462	0,44		1,11765		0,89474				4,1428571			4,14286	1,
											0,270744287			0,270
3,85418	9,31521	8,09244	-2,2273	10,0016	2,95946297	6,85044	6,53835	-0,839896	5,83453	-2,5059328	-2,672396	4,64784	5,78957	5,85
Valid Va	Valid	Valid	Invalid	Valid	Valid	Valid	Valid	Invalid	Valid	Invalid	Invalid	Valid	Valid '	Valid
30		11				17							29	
36	36	36	36	36									36	
											0,72222222			
											Mudah			
16	7			_										
14		3	16	9	11	5	6	15	14	16	15	15	14	
18	3		18	18			18	18	18	18	18	18	18	
18	3 18	18	18	18						18			18	
		18 18	18								-0 2222222			

1	0	0	1	0	1	0	0	1	0	1	1	1	1	1
1	0	0	1	1	1	0	0	1	1	1	0	1	1	0
0	0	0	1	0	0	1	0	1	1	1	1	1	0	0
1	0	0	1	1	1	0	1	0	1	1	1	1	1	0
1	0	0	1	0	1	0	1	1	1	1	1	1	1	0
1	0	0	1	1	1	0		1	1	1	1	1	1	0
1	0	0	1	1	1	0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	0	_	1	0	1	1	0	1	0
1	0	0	-	0	0	1	0	1	1	1	1	1	1	0
0	1	0	1	0	1	0		1	1	0	1	1	1	1
1	0	1	1	1	1	0	0	1	0	1	1	1	1	0
0	0	1	1	1	0	0		1	0	1	1	1	0	0
1	0	0		0	1	0	_	0	1	1	1	0	0	1
1	1	0		1	1	1	1	1	1	1	1	1	1	1
0	0	0		1	0	0		1	1	1	1	1	1	0
30	10	11			20	17	16		31	29	26	31	29	20
29,8	33,4		29,1515				31,3125				28,88461538		30,1034	
	29,3333				29,3333333									
	0,27778				0,5555556									
	0,72222				0,44444444									
	0,38462	0,44		1,11765		0,89474		2,6			2,6			1,25
											0,270744287			., .
3,85418	9,31521	8,09244	-2,2273	10,0016	2,95946297	6,85044	6,53835	-0,839896	5,83453	-2,5059328	-2,672396	4,64784	5,78957	5,8501
Valid	Valid	Valid	Invalid	Valid	Valid	Valid	Valid	Invalid	Valid	Invalid	Invalid	Valid	Valid	Valid
30	10	11	33	19	20	17	16	26	31	29	26	31	29	20
36	36	36	36	36	36			36	36	36	36	36	36	36
0,83333	0,27778	0,30556	0,91667	0,52778	0,5555556	0,47222	0,44444	0,7222222	0,86111	0,8055556	0,72222222	0,86111	0,80556	0,55556
							Sedang			Mudah				Sedang
16	7	8	17	10	9	12	10	11	17	13	11			13
14	3	3	16	9	11	5	6	15	14	16	15	15	14	7
18	18	18	18	18	18	18	18	18	18	18	18	18	18	18
18	18											18		
0,11111	0,22222	0,27778	0,05556	0,05556	-0,1111111					-0,1666667	-0,22222222	0,05556	0,05556	0,33333
Jelek	Cukup	Cukup	Jelek	Jelek	Sangat jelek			Sangat jelek	Jelek	Sangat jelek				Cukup
Dibuang	Dipakai	Dipakai	Dibuang	Dibuang			Dipakai	Dibuang	Dibuang	Dibuang	Dibuang	Dibuang	Dibuang	Dipakai
0,83	0,75	0,08	0,36	0,36	0,75	0,92	0,44	0,44	0,42	0,81	0,72	0,86	0,81	0,56
0,17	0,25	0,92	0,64	0,64	0,25	0,08	0,56	0,56	0,58	0,19	0,28	0,14	0,19	0,44
0,14	0,19	0,07	0,23	0,23	0,19	0,07	0,25	0,25	0,24	0,15	0,20	0,12	0,15	0,25

36 36

43,41 43,41 0,85

0,85

36

7,71

43,41

0,85

Reliable

Reliable Reliable

43,41 0,85 43,41 43,41 43,41 0,85

36 36 36 36

7,71 7,71 7,71

0,85 0,85

Reliable Reliable Reliable

36

7,71 7,71

43,41 43,41 43,41

0,85

36 36

0,85

Reliable Reliable Reliable

36

7,71

36

Reliable Reliable Reliable Reliable Reliable

36

0,85 0,85

36

7,71 7,71 7,71

43,41 43,41 43,41 43,41 43,41

0,85

46	47	48	49	50	Y	YZ	
1	0	0	1	0	36	1296	
1	1	1	1	1	41	1681	
O	1	0	1	0	30	900	
1	1	1	1	1	41	1681	
0	0	0	0	О	29	841	
1	1	1	1	0	37	1369	
0	0	0	0	0	36	1296	
1	1	0	0	1	34	1156	
1	1	1	0	1	33	1089	
0	1	1	0	1	34	1156	
1	0	0	1	О	26	676	
1	1	1	1	0	35	1225	
1	0	0	1	0	30	900	
O	0	1	0	0	31	961	
1	0	0	1	1	36	1296	
0	0	0	1	О	26	676	
1	1	0	0	0	26	676	
1	1	1	0	О	30	900	
1	1	1	0	0	26	676	
1	0	0	0	1	29	841	
О	1	0	0	1	23	529	
0	0	0	1	1	24	576	
1	0	0	1	0	26	676	
0	0	0	0	0	17	289	
1	0	0	1	0	34	1156	
1	1	0	0	0	23	529	
1	0	0	0	0	29	841	
1	0	0	1	0	25	625	
0	0	0	1	1	23	529	
1	0	0	1	0	26	676	
0	0	1	0	1	27	729	
1	1	0	1	0	23	529	
1	1	0	1	0	27	729	
О	0	0	1	0	21	441	
1	0	0	0	1	37	1369	
1	0	0	1	0	25	625	
		10	20	12	1056	32140	
24	15	10	20				
30,625							
	30,8667		29,6	31,8333			
30,625	30,8667 29,3333	33,5 29,3333	29,6 29,3333	31,8333			
30,625 29,3333	30,8667 29,3333 0,41667	33,5 29,3333	29,6 29,3333	31,8333 29,3333			
30,625 29,3333 0,66667	30,8667 29,3333 0,41667 0,58333	33,5 29,3333 0,27778	29,6 29,3333 0,55556	31,8333 29,3333 0,33333			
30,625 29,3333 0,66667 0,33333	30,8667 29,3333 0,41667 0,58333 0,71429	33,5 29,3333 0,27778 0,72222	29,6 29,3333 0,55556 0,44444	31,8333 29,3333 0,33333 0,66667			
30,625 29,3333 0,66667 0,33333 2	30,8667 29,3333 0,41667 0,58333 0,71429 0,27074	33,5 29,3333 0,27778 0,72222 0,38462	29,6 29,3333 0,55556 0,44444 1,25	31,8333 29,3333 0,33333 0,66667 0,5			
30,625 29,3333 0,66667 0,33333 2 0,27074	30,8667 29,3333 0,41667 0,58333 0,71429 0,27074	33,5 29,3333 0,27778 0,72222 0,38462 0,27074	29,6 29,3333 0,55556 0,44444 1,25 0,27074	31,8333 29,3333 0,33333 0,66667 0,5 0,27074			
30,625 29,3333 0,66667 0,33333 2 0,27074	30,8667 29,3333 0,41667 0,58333 0,71429 0,27074	33,5 29,3333 0,27778 0,72222 0,38462 0,27074	29,6 29,3333 0,55556 0,44444 1,25 0,27074	31,8333 29,3333 0,33333 0,66667 0,5 0,27074			
30,625 29,3333 0,66667 0,33333 2 0,27074 6,74693	30,8667 29,3333 0,41667 0,58333 0,71429 0,27074 4,78645	33,5 29,3333 0,27778 0,72222 0,38462 0,27074 9,54427	29,6 29,3333 0,55556 0,44444 1,25 0,27074 1,1012	31,8333 29,3333 0,33333 0,66667 0,5 0,27074 6,52929 Valid			
30,625 29,3333 0,66667 0,33333 2 0,27074 6,74693	30,8667 29,3333 0,41667 0,58333 0,71429 0,27074 4,78645 Valid	33,5 29,3333 0,27778 0,72222 0,38462 0,27074 9,54427	29,6 29,3333 0,55556 0,44444 1,25 0,27074 1,1012	31,8333 29,3333 0,33333 0,66667 0,5 0,27074 6,52929 Valid			
30,625 29,3333 0,66667 0,33333 2 0,27074 6,74693 Valid	30,8667 29,3333 0,41667 0,58333 0,71429 0,27074 4,78645 Valid	33,5 29,3333 0,27778 0,7222 0,38462 0,27074 9,54427 Valid 10 36	29,6 29,3333 0,55556 0,44444 1,25 0,27074 1,1012 Valid	31,8333 29,3333 0,33333 0,66667 0,5 0,27074 6,52929 Valid			
30,625 29,3333 0,66667 0,33333 2 0,27074 6,74693 Valid 24 36 0,66667	30,8667 29,3333 0,41667 0,58333 0,71429 0,27074 4,78645 Valid	33,5 29,3333 0,27778 0,72222 0,38462 0,27074 9,54427 Valid 10 36 0,27778 Sukar	29,6 29,3333 0,55556 0,44444 1,25 0,27074 1,1012 Valid 20 36 0,55556 Sedang	31,8333 29,3333 0,33333 0,66667 0,5 0,27074 6,52929 Valid			
30,625 29,3333 0,66667 0,33333 2 0,27074 6,74693 Valid 24 36	30,8667 29,3333 0,41667 0,58333 0,71429 0,27074 4,78645 Valid 15 36 0,41667 Sedang	33,5 29,3333 0,27778 0,72222 0,38462 0,27074 9,54427 Valid 10 36 0,27778 Sukar	29,6 29,3333 0,55556 0,44444 1,25 0,27074 1,1012 Valid 20 36 0,55556 Sedang	31,8333 29,3333 0,33333 0,66667 0,5 0,27074 6,52929 Valid 12 36 0,33333			
30,625 29,3333 0,66667 0,33333 2 0,27074 6,74693 Valid 24 36 0,66667 Sedang	30,8667 29,3333 0,41667 0,58333 0,71429 0,27074 4,78645 Valid 15 36 0,41667 Sedang	33,5 29,3333 0,27778 0,77222 0,38462 0,27074 9,54427 Valid 10 36 0,27778	29,6 29,3333 0,55556 0,44444 1,25 0,27074 1,1012 Valid 20 36 0,55556 Sedang	31,8333 29,3333 0,33333 0,66667 0,5 0,27074 6,52929 Valid 12 36 0,33333 Sedang			
30,625 29,3333 0,66667 0,33333 2 0,27074 6,74693 Valid 24 36 0,66667 Sedang	30,8667 29,3333 0,41667 0,58333 0,71429 0,27074 4,78645 Valid 15 36 0,41667 Sedang	33,5 29,3333 0,27778 0,72222 0,38462 0,27074 9,54427 Valid 10 36 0,27778 Sukar 8	29,6 29,3333 0,55556 0,44444 1,25 0,27074 1,1012 Valid 20 36 0,55556 Sedang	31,8333 29,3333 0,33333 0,66667 0,5 0,27074 6,52929 Valid 12 36 0,33333 Sedang			
30,625 29,3333 0,66667 0,33333 2 0,27074 6,74693 Valid 24 36 0,66667 Sedang 12	30,8667 29,3333 0,41667 0,58333 0,71429 0,27074 4,78645 Valid 15 36 0,41667 Sedang 10	33,5 29,3333 0,27778 0,72222 0,38462 0,27074 9,54427 Valid 10 36 0,27778 Sukar 8	29,6 29,3333 0,55556 0,44444 1,25 0,27074 1,1012 Valid 20 36 0,55556 Sedang 10	31,8333 29,3333 0,33333 0,66667 0,5 0,27074 6,52929 Valid 12 36 0,33333 Sedang 6			
30,625 29,3333 0,66667 0,33333 2 0,27074 6,74693 Valid 24 36 0,66667 Sedang 12 12	30,8667 29,3333 0,41667 0,58333 0,71429 0,27074 4,78645 Valid 15 36 0,41667 Sedang 10 5 18	33,5 29,3333 0,27778 0,72222 0,38462 0,27074 9,54427 Valid 10 36 0,27778 Sukar 8 2 18	29,6 29,3333 0,55556 0,44444 1,25 0,27074 1,1012 Valid 20 36 0,55556 Sedang 10 18 18	31,8333 29,3333 0,33333 0,66667 0,5 0,27074 6,52929 Valid 12 36 0,33333 Sedang 6 6			
30,625 29,3333 0,66667 0,33333 2 0,27074 6,74693 Valid 24 36 0,66667 Sedang 12 12 18 18	30,8667 29,3333 0,41667 0,58333 0,71429 0,27074 4,78645 Valid 15 36 0,41667 Sedang 10 10 11 18 0,27778	33,5 29,3333 0,27778 0,72222 0,38462 0,27074 9,54427 Valid 10 36 0,27778 Sukar 8 2 18 18 0,33333	29,6 29,3333 0,55556 0,44444 1,25 0,27074 1,1012 Valid 20 36 0,55556 Sedang 10 18 18 18	31,8333 29,3333 0,33333 0,66667 0,5 0,27074 6,52929 Valid 12 36 0,33333 Sedang 6 6 18 18 0			
30,625 29,3333 0,66667 0,33333 2 0,27074 6,74693 Valid 24 36 0,66667 Sedang 12 12 18 18 0 Jelek	30,8667 29,3333 0,41667 0,58333 0,71429 4,78645 Valid 15 36 0,41667 Sedang 10 0,27778 Cukup	33,5 29,3333 0,27778 0,72222 0,38462 0,27074 9,54427 Valid 10 36 0,27778 Sukar 8 2 18 0,33333 Cukup	29,6 29,3333 0,55556 0,44444 1,25 0,27074 1,1012 Valid 20 36 0,55556 Sedang 10 10 18 18 0 Jelek	31,8333 29,3333 0,33333 0,66667 0,5 0,27074 6,52929 Valid 12 36 0,33333 Sedang 6 18 18 0 Jelek			
30,625 29,3333 0,66667 0,33333 2 0,27074 6,74693 Valid 24 36 0,66667 Sedang 12 12 18 18 0 Jelek Dibuang	30,8667 29,3333 0,41667 0,58333 0,71429 0,27074 4,78645 Valid 15 36 0,41667 Sedang 10 5 18 0,27778 Cukup Dipakai	33,5 29,3333 0,27778 0,72222 0,38462 0,27074 9,54427 Valid 10 36 0,27778 Sukar 8 2 18 18 0,33333 Cukup Dipakai	29,6 29,3333 0,55556 0,44444 1,25 0,27074 1,1012 Valid 20 36 0,55556 Sedang 10 10 18 18 0 Jelek Dibuang	31,8333 29,3333 0,33333 0,66667 0,5 0,27074 6,52929 Valid 12 36 0,33333 Sedang 6 6 18 18 0 Jelek Dibuang			
30,625 29,3333 0,66667 0,33333 2 0,27074 6,74693 Valid 24 36 0,66667 Sedang 12 18 18 0 0 Jelek Dibuang	30,8667 29,3333 0,41667 0,58333 0,71429 0,27074 4,78645 Valid 15 36 0,41667 Sedang 10 5 18 0,27778 Cukup Dipakai 0,42	33,5 29,3333 0,27778 0,72222 0,38462 0,27074 9,54427 Valid 10 36 0,27778 Sukar 8 2 18 0,33333 Cukup Dipakai 0,28	29,6 29,3333 0,55556 0,44444 1,25 0,27074 1,1012 Valid 20 36 0,55556 Sedang 10 18 18 0 Jelek Dibuang 0,56	31,8333 29,3333 0,33333 0,66667 0,5 0,27074 6,52929 Valid 36 0,33333 Sedang 6 6 18 18 0 0 Jelek Dibuang			
30,625 29,3333 0,66667 0,333333 2 0,27074 6,74693 Valid 24 36 0,66667 Sedang 12 18 18 0 Jelek Dibuang 0,67	30,8667 29,3333 0,41667 0,58333 0,71429 0,27074 4,78645 Valid 15 36 0,41667 Sedang 10 5 18 0,27778 Cukup Dipakai 0,42 0,58	33,5 29,3333 0,27778 0,72222 0,38462 0,27074 9,54427 Valid 10 36 0,27778 Sukar 8 2 18 0,33333 Cukup Dipakai 0,28 0,72	29,6 29,3333 0,55556 0,44444 1,25 0,27074 1,1012 Valid 20 36 0,55556 Sedang 10 18 18 0 Jelek Dibuang 0,56	31,8333 29,3333 0,33333 0,66667 0,5 0,27074 6,52929 Valid 12 36 0,33333 Sedang 6 6 18 18 0 Jelek Dibuang 0,33			
30,625 29,3333 0,66667 0,33333 2 0,27074 6,74693 Valid 24 36 0,66667 Sedang 12 12 18 18 0 Jelek Dibuang 0,67 0,33	30,8667 29,3333 0,41667 0,58333 0,71429 0,27074 4,78645 Valid 15 36 0,41667 Sedang 10 18 0,27778 Cukup Dipakai 0,42 0,58 0,24	33,5 29,3333 0,27778 0,72222 0,38462 0,27074 9,54427 Valid 10 36 0,27778 Sukar 8 18 0,33333 Cukup Dipakai 0,28 0,72 0,20	29,6 29,3333 0,555556 0,44444 1,25 0,27074 1,1012 Valid 20 36 0,55556 Sedang 10 18 18 0 Jelek Dibuang 0,56 0,44	31,8333 29,3333 0,33333 0,66667 0,5 0,27074 6,52929 Valid 12 36 0,33333 Sedang 6 18 18 0 0 Jelek Dibuang 0,33 0,33			
30,625 29,3333 0,66667 0,333333 2 0,27074 6,74693 Valid 24 36 0,66667 Sedang 12 18 18 0 Jelek Dibuang 0,67	30,8667 29,3333 0,41667 0,58333 0,71429 0,27074 4,78645 Valid 15 36 0,41667 Sedang 10 18 0,27778 Cukup Dipakai 0,42 0,58 0,24	33,5 29,3333 0,27778 0,72222 0,38462 0,27074 9,54427 Valid 10 36 0,27778 Sukar 8 2 18 0,33333 Cukup Dipakai 0,28 0,72	29,6 29,3333 0,55556 0,44444 1,25 0,27074 1,1012 Valid 20 36 0,55556 Sedang 10 18 18 0 Jelek Dibuang 0,56	31,8333 29,3333 0,33333 0,66667 0,5 0,27074 6,52929 Valid 12 36 0,33333 Sedang 6 6 18 18 0 Jelek Dibuang 0,33			
30,625 29,3333 0,66667 0,33333 2 0,27074 6,74693 Valid 24 36 0,66667 Sedang 12 12 18 18 0 Jelek Dibuang 0,67 0,33	30,8667 29,3333 0,41667 0,58333 0,71429 4,78645 Valid 15 36 0,41667 Sedang 10 5 18 18 0,27778 Cukup Dipakai 0,42 0,58 0,24 36	33,5 29,3333 0,27778 0,72222 0,38462 0,27074 9,54427 Valid 10 36 0,27778 Sukar 8 18 0,33333 Cukup Dipakai 0,28 0,72 0,20	29,6 29,3333 0,555556 0,44444 1,25 0,27074 1,1012 Valid 20 36 0,55556 Sedang 10 18 18 0 Jelek Dibuang 0,56 0,44	31,8333 29,3333 0,33333 0,66667 0,5 0,27074 6,52929 Valid 12 36 0,33333 Sedang 6 18 18 0 0 Jelek Dibuang 0,33 0,33			
30,625 29,3333 0,666667 0,333333 2 0,27074 6,74693 Valid 24 36 0,66667 Sedang 12 12 12 18 0 Jelek Dibuang 0,67 0,33 0,22 36 7,71	30,8667 29,3333 0,41667 0,58333 0,71429 0,27074 4,78645 Valid 15 36 0,41667 Sedang 10 5 18 0,27778 Cukup Dipakai 0,42 0,58 0,24 3,46 7,71	33,5 29,3333 0,27778 0,72222 0,38462 0,27074 9,54427 Valid 10 36 0,27778 8 2 18 18 0,33333 Cukup Dipakai 0,28 0,72 0,20 36 7,71	29,6 29,3333 0,55556 0,44444 1,25 0,27074 1,1012 Valid 20 36 0,5555 Sedang 10 10 18 18 18 0 Jelek Dibuang 0,56 0,44 0,25 36 7,71	31,8333 29,3333 0,33333 0,66667 0,5 0,27074 6,52929 Valid 12 36 0,333333 Sedang 6 6 18 0 19 19 19 19 19 19 19 19 19 19 19 19 19			
30,625 29,3333 0,66667 0,33333 2 0,27074 6,74693 Valid 24 36 0,66667 Sedang 12 18 18 0 Jelek Dibuang 0,67 0,33 0,22 36 7,71 43,41	30,8667 29,3333 0,41667 0,58333 0,71429 0,27074 4,78645 Valid 15 36 0,41667 Sedang 10 5 18 0,27778 Cukup Dipakai 0,42 0,58 0,58 36 7,71 43,41	33,5 29,3333 0,27778 0,72222 0,38462 0,27074 9,54427 Valid 10 36 0,27778 Sukar 8 2 18 0,33333 Cukup Dipakai 0,28 0,72 0,20 36 7,71 43,41	29,6 29,3333 0,55556 0,44444 1,25 0,27074 1,1012 Valid 20 36 0,55556 Sedang 10 10 18 18 18 0 Jelek Dibuang 0,56 0,44 0,25 36 7,71 43,41	31,8333 29,3333 0,33333 0,66667 0,5 0,27074 6,52929 Valid 12 36 0,33333 Sedang 6 6 18 18 0 0 Jelek Dibuang 0,33 0,67 0,22 36 7,71			
30,625 29,3333 0,66667 0,33333 2 0,2704 6,74693 Valid 24 36 0,66667 Sedang 12 18 18 0 Jelek Dibuang 0,67 0,33 0,22 36 7,71 43,41	30,8667 29,3333 0,41667 0,58333 0,71429 0,27074 4,78645 Valid 15 36 0,41667 Sedang 18 0,27778 Cukup Dipakai 0,42 0,58 0,24 36 7,71 43,41 0,85	33,5 29,3333 0,27778 0,72222 0,38462 0,27074 9,54427 Valid 10 36 0,27778 Sukar 8 2 18 0,33333 Cukup Dipakai 0,28 0,72 0,20 36 7,71 43,41	29,6 29,3333 0,55556 0,44444 1,25 0,27074 1,1012 Valid 20 36 0,55556 Sedang 10 18 18 0 Jelek Dibuang 0,56 0,44 0,25 36 7,71 43,41	31,8333 29,3333 0,33333 0,66667 0,5 0,27074 6,52929 Valid 12 36 0,33333 Sedang 6 18 18 0 0 Jelek Dibuang 0,33 0,67 0,22 36 7,71 43,41			
30,625 29,3333 0,66667 0,33333 2 0,2704 6,74693 Valid 24 36 0,66667 Sedang 12 18 18 0 Jelek Dibuang 0,67 0,33 0,22 36 7,71 43,41	30,8667 29,3333 0,41667 0,58333 0,71429 0,27074 4,78645 Valid 15 36 0,41667 Sedang 10 5 18 0,27778 Cukup Dipakai 0,42 0,58 0,58 36 7,71 43,41	33,5 29,3333 0,27778 0,72222 0,38462 0,27074 9,54427 Valid 10 36 0,27778 Sukar 8 2 18 0,33333 Cukup Dipakai 0,28 0,72 0,20 36 7,71 43,41	29,6 29,3333 0,55556 0,44444 1,25 0,27074 1,1012 Valid 20 36 0,55556 Sedang 10 18 18 0 Jelek Dibuang 0,56 0,44 0,25 36 7,71 43,41	31,8333 29,3333 0,33333 0,66667 0,5 0,27074 6,52929 Valid 12 36 0,33333 Sedang 6 18 18 0 0 Jelek Dibuang 0,33 0,67 0,22 36 7,71 43,41			

Nilai	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
10	36	36	0	36	36	36	36	36	36	0	36	0	36	36	
11,38889	41	0	41	41	0	41	41	41	41	41	41	41	0	41	
8,333333	30	0	30	30	0	30	30	0	30	0	0	0	30	30	
11,38889	0	41	41	41	0	41	41	41	41	41	41	0	41	41	
8,055556	29	0	29	29	29	0	29	0	29	29	29	0	29	0	
10,27778	37	0	37	0	37	0	0	37	37	37	37	37	0	0	
10	36	36	36	36	36	36	0	36	36	36	36	36	36	36	
9,444444	34	34	34	34	0	34	34	0	34	34	0	0	34	34	
9,166667	33	0	0	33	33	0	33	33	33	33	33	0	33	33	
9,444444	34	0	34	34	34	0	0	34	34	34	34	34	34	34	
7,222222	26	26	26	26	0	0	26	26	26	26	0	0	26	26	
9,722222	35	0	35	35	35	35	35	35	35	35	0	0	35	0	
8,333333	30	0	0	30	30	30	30	0	30	30	30	0	30	30	
8,611111	31	31	31	31	31	31	31	0	31	31	0	31	31	31	
10	36	0	36	36	36	36	36	0	36	36	36	36	36	36	
7,222222	26	0	26	26	26	26	26	26	26	26	0	26	26	26	
7,222222	26	0	0	26	0	0	0	0	26	26	0	0	26	26	
8,333333	30	30	30	30	0	0	30	30	30	30	30	0	0	30	
7,222222	0	26	0	26	0	0	0	26	26	0	0	0	0	26	
8,055556	29	29	29	0	29	29	29	0	29	0	29	29	0	29	
6,388889	23	0	0	23	0	0	0	0	23	0	0	23	0	23	
6,666667	24	24	0	24	0	0	24	0	0	24	24	0	0	24	
7,222222	26	0	0	26	26	0	26	0	26	0	0	0	0	26	
4,722222	17	17	17	0	0	0	17	0	17	0	0	0	0	17	
9,444444	34	34	0	34	34	0	34	34	34	34	34	34	0	34	
6,388889	0	23	23	23	0	0	23	0	23	0	0	0	23	23	
8,055556	29	0	29	29	29	0	29	29	29	29	0	0	0	29	
6,944444	25	25	0	25	25	0	25	0	25	0	0	25	0	25	
6,388889	23	23	0	23	0	0	23	0	23	23	23	0	0	23	
7,222222	26	26	0	26	0	0	26	26	26	0	0	0	26	26	
7,5	27	27	27	0	0	0	0	0	27	0	27	0	0	27	
6,388889	0	0	0	23	0	23	0	0	23	0	23	23	0	23	
7,5	27	27	27	27	0	0	27	27	27	27	0	27	0	27	
5,833333	21	21	0	21	21	21	0	0	0	0	0	0	21	21	
10,27778	37	37	37	37	37	37	37	37	37	0	37	37	37	37	
6,944444	25	25	25	0	0	25	0	25	25	0	0	25	0	25	
293,3333	943	598	680	921	564	511	778	579	1011	662	580	464	590	955	

16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
36	0	36	0	36	36	0	36	36	36	36	36	0	0	3
0	0	41	0	41	41	41	41	41	41	41	0	41	41	4
30	0	0	0	30	0	0	30	30	0	30	30	0	0	3
41	0	41	41	41	41	41	41	41	0	0	41	0	0	4
29	29	29	29	29	29	0	0	29	29	0	29	29	29	
37	37	37	37	37	37	0	37	37	37	0	0	37	37	3
36	0	36	36	36	0	36	36	36	36	0	36	36	36	3
34	34	0	0	34	34	0	34	34	0	0	34	34	34	3
33	33	33	0	33	33	0	0	33	33	33	33	0	0	3
0	0	34	34	34	34	34	34	0	34	34	0	34	34	3
0	0	0	0	0	26	0	26	26	0	0	0	26	26	2
35	35	35	35	35	35	0	35	35	0	35	35	0	0	3
30	0	0	0	30	30	0	30	30	0	30	30	0	0	3
31	0	0	0	31	31	31	31	31	0	31	31	31	31	:
36	36	0	0	36	36	0	36	36	0	36	36	36	36	;
26	0	0	0	26	26	26	0	26	0	0	26	26	26	
0	0	0	26	26	26	26	26	26	0	0	0	0	0	
30	0	30	0	0	30	30	30	30	30	0	0	0	0	
26	26	0	0	26	26	0	0	26	0	26	26	0	0	7
29	0	0	0	29	29	29	0	29	0	0	29	0	0	
23	0	23	23	23	23	23	23	23	23	0	0	0	0	
0	0	0	24	0	24	24	24	24	0	24	0	0	0	7
0	0	0	0	26	26	26	26	26	0	26	0	0	0	
0	17	0	0	17	0	0	0	17	0	0	17	0	0	
34	34	34	0	34	34	34	34	34	34	34	0	34	34	
23	0	0	0	0	23	23	0	23	0	23	0	23	23	
0	0	29	29	29	29	29	0	29	0	29	0	0	0	
25	0	0	0	0	25	0	25	25	0	25	0	25	25	
0	23	23	0	23	23	23	23	0	0	0	0	0	0	
0	0	0	26	0	26	26	26	26	0	0	26	0	0	
0	27	27	0	27	0	27	27	27	27	27	0	27	27	
23	0	0	23	0	23	0	0	23	0	23	0	0	0	
0	0	0	27	27	0	0	27	27	27	0	0	0	0	7
0	21	0	21	21	21	21	0	21	0	21	0	0	0	
37	0	0	37	0	37	37	0	0	0	37	37	37	37	
0	25	0	25	0	0	0	0	25	25	0	0	25	25	
684	377	488	473	817	894	587	738	962	412	601	532	501	501	7:
001	511	.00	.,,	517	331	337	. 30	302	.12	501	332	551	551	

31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
36	36	36	36	36	36	36	0	36	36	36	36	36	0	0	36	0	0	36	0
41	0	0	41	41	41	0	41	41	41	41	41	41	41	41	41	41	41	41	41
0	0	30	30	30	30	30	0	30	30	30	0	30	30	30	0	30	0	30	0
41	41	41	41	41	0	41	0	41	41	41	41	41	41	41	41	41	41	41	41
29	29	0	29	0	0	29	29	0	29	0	29	29	29	29	0	0	0	0	0
37	37	37	37	37	0	0	37	0	37	37	37	37	37	37	37	37	37	37	0
0	36	36	36	36	0	36	36	36	36	36	36	36	36	0	0	0	0	0	0
34	0	34	34	34	0	34	34	0	34	34	0	34	34	34	34	34	0	0	34
33	0	0	33	0	33	33	0	33	33	33	0	33	33	33	33	33	33	0	33
34	34	34	0	34	34	0	34	0	34	0	0	0	34	0	0	34	34	0	34
26	0	0	26	0	0	0	26	0	26	26	26	26	26	0	26	0	0	26	0
35	0	35	35	0	35	35	0	35	35	0	0	35	35	35	35	35	35	35	0
30	0	0	30	0	30	30	0	0	30	30	30	0	30	30	30	0	0	30	0
31	31	0	31	0	31	31	31	31	31	0	0	31	0	0	0	0	31	0	0
36	0	0	36	36	36	36	36	36	36	0	36	36	36	36	36	0	0	36	36
26	0	0	26	0	0	26	26	0	26	26	26	26	0	26	0	0	0	26	0
26	0	0	26	26	0	0	0	26	26	26	26	26	26	26	26	26	0	0	0
30	0	0	30	0	0		0	30	0	30	0	30	30	30	30	30	30	0	0
26	26	26	26	0	26	26	0	0	26	26	26	26	26	26	26	26	26	0	0
29	0	0	29	29	0	29	0	29	29	29	0	29	29	29	29	0	0	0	29
23	0	0	23	0	0	0	0	23	23	0	0	0	23	23	0	23	0	0	23
24	0	0	24	0	24	0	0	24	0	24	24	24	24	24	0	0	0	24	24
26	0	0	26	26	26	-	0	26	26	26	0		26	0	26	0	0	26	0
0	0	0	17	0	0	_	0	17	17	17	17	17	0	0	0	0	0	0	0
34	0	0	34	34	34	0	34	0	34	34	34	34	34	0	34	0	0	34	0
23	0	0	23	0	23	-	23	23	23	23	23		23	0	23	23	0	0	0
29	0	0	29	29	29	$\overline{}$	0	29	29	29	29		29	0	29	0	0	0	0
25	0	0	25	25	25	0	25	25	25	25	25	25	0	0	25	0	0	25	0
23	0	0	0	0	0	0	0	23	0	23	23	0	23	0	0	0	0	23	23
26	0	0	26	0	0	_	0	26	26	26	26		26	0	26	0	0	26	0
0	27	0	27	0	27		27	27	27	0	27	27	27	27	0	0	27	0	27
23	0	23	23	23	23		0	23	0	23	23	23	23	0	23	23	0	23	0
0	0	27	27	27	0	-	0	27	0	27	27	27	0	0	27	27	0	27	0
21	0	0	21	0	21	_	0	0	21	21	21	0	0	21	0	0	0	21	0
37	37	0	0	37	37		37	37	37	37	37	37	37	37	37	0	0	0	37
0	0	0	25	25	0	0	25	25	25	25	25	25	25	0	25	0	0	25	0
894	334	359	962	606	601	532	501	759	929	841	751	925	873	615	735	463	335	592	382
	Ī	Ī	Ī				Ī	Ī						Ī			Ī	Ī	

					N	o Soal								
20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
1	1	0	1	0	0	0	1	1	1	1	1	1	0	1
1	1	1	1	0	0	0	0	1	1	1	1	1	0	1
0	0	1	1	0	0	0	0	0	0	0	1	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	0	1	0	0	0	0	0	0	0	1	1	1	0	0
0	1	1	1	1	0	0	0	1	1	1	1	1	0	1
0	1	1	0	0	1	0	0	0	0	0	1	1	0	0
0	0	1	1	1	1	0	0	0	1	1	1	0	0	1
0	0	1	0	1	1	0	1	1	1	1	0	0	0	1
0	0	1	0	1	0	0	0	0	1	1	1	0	0	0
1	1	0	1	1	1	0	0	1	0	1	1	0	0	1
1	1	1	1	1	0	0	0	1	1	1	1	1	0	1
0	0	1	1	1	1	0	0	0	1	1	1	1	0	0
0	1	0	1	0	0	0	0	0	1	1	1	1	0	1
1	1	0	1	0	0	0	1	0	0	1	1	1	0	0
1	0	0	1	0	0	0	1	0	0	1	1	0	0	1
1	1	0	1	0	0	0	1	0	1	0	1	1	0	0
0	0	1	0	0	1	0	0	0	0	0	0	1	0	0
1	1	0	1	0	0	0	1	0	1	1	1	1	0	0
0	0	1	0	0	0	0	0	1 0	0	0	0	1	0	0
1	0	0	1	0	1	1	0	0	0	1	0	1	0	0
0	1	0	0	0	0	0	0	0	1	1	1	1	0	0
0	1	1	1	0	0	0	1	1	1	1	1	1	0	1
0	0	1	0	1	0	1	1	0	0	1	1	1	0	0
0	1	1	0	1	0	0	1	0	0	1	1	1	1	0
1	1	1	1	0	0	0	0	1	1	1	1	1	0	1
0	1	1	1	0	0	0	1	1	1	1	1	1	0	0
0	1	1	0	0	0	0	0	0	1	1	1	1	0	0
0	1	1	0	1	0	0	1	0	1	1	1	1	0	0
0	0	0	0	1	0	1	0	0	0	1	1	1	0	0
0	1	1	0	1	0	0	1	0	0	1	1	1	0	0
0	1	1	0	1	0	0	1	0	0	1	1	1	0	0
1	1	1	0	0	0	0	0	0	1	1	0	0	1	1
1	1	1	0	0	0	0	0	0	1	1	1	0	0	0
0	0	0	0	0	1	0	1	0	1	1	1	0	0	0
14	22	25	19	15	9	4	15	11	21	30	30	27	3	13
0,38889	0,61	0,69	0,53	0,42	0,25	0,11	0,42	0,31	0,58	0,83	0,83	0,75	0,08	0,36
0,61111	0,39	0,31	0,47	0,58	0,75	0,89	0,58	0,69	0,42	0,17	0,17	0,25	0,92	0,64
													·	
0,24	0,24	0,21	0,25	0,24	0,19	0,10	0,24	0,21	0,24	0,14	0,14	0,19	0,08	0,23

X2	χ	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36
		0	1		0	1	0	0	1	1	1	1	1	1	1	1
	39	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	18	0	1	0	1	0	1	1	1	0	1	0	1	0	1	0
	46	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	20	0	0	0	0	0	1	1	1	1	0	0	0	0	1	0
	42	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	25	0	0	0	0	0	0	1	1	1	1	0	0	0	1	1
	32	1	0	0	1	1	1	1	1	0	1	1	1	1	1	0
	37	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1
	21	1	0	1	1	0	0	1	0	0	0	0	0	1	0	1
	28	0	1	0	0	1	0	1	1	1	1	0	0	0	1	1
		0	1	1	1	1	1	1	1	0	0	1	1	1	1	1
		0	1		0	1	1	1	0	1	1	1	1	1	1	1
		0	0		0	0	0	0	1	0	0	0	0	0	1	1
	31	1	1	0	0	1	1	1	1	1	0	0	0	1	1	1
	21	0	1	0	0	0	1	0	1	1	1	0	0	0	0	1
	_	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
		0	0	1	1	1	1	1	1	0	1	0	0	0	1	0
	36	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1
	21	1	0	0	0	1	1	1	1	0	1	0	0	0	1	0
	18	1	0	0	1	0	1	1	0	0	0	0	0	0	1	0
	27	1	1			0	1	1	1	1	1	1	1	0	1	0
	_	0	1	-	0	1	0	1	1	0	1	0	0	0	1	1
	_	0	0		0	0	0	0	1	1	1	1	1	1	1	1
		0	1	-	0	1	0	1	1	1	1	0	0	0	1	1
	32	0	0	0	1	1	0	1	1	1	1	0	0	0	1	1
		0	0	0	0	1	0	1	1	1	1	1	1	1	1	1
		0	1	- 1	0	1	0	0	1	1	1	1	1	1	1	1
	24	1 0	1	0	0	0	0	1	0	1	1	0	0	0	1	1
			1			1	_		-					_	_	
	22	1 0	0	1 0	0	0	1 0	1	1	1	0	0	0	0	1	0
		0	1	0	1	1	0	0	1	1	1	0	0	0	1	1
		0	1	0	0	0	1	0	0	1	1	0	1	0	1	1
	28	1	0	_	0	1	1	1	1	1	1	1	0	1	1	1
		0	1	0	0	1	0	1	1	1	1	0	0	0	0	0
30	1029	12	20	10	15	24	20	29	31	26	29	15	16	16	33	27
1058	_	0,33	0,56	0,28	0,42	0,67	0,56	0,81	0,86	0,72	0,81	0,42	0,44	0,44	0,92	0,75
3		0,53	0,30	0,20	0,58	0,07	0,30	0,01	0,00	0,72	0,01	0,58	0,56	0,56	0,08	0,73
	∑X2 =	_				0,33						_				
	∑pq =	0,22	0,25	0,20	0,24	0,44	0,25	0,16	0,12	0,20	0,16	0,24	0,25	0,25	0,08	0,19

HASIL AKHIR ANALISIS SOAL UJI COBA

		Н	ASIL AKH	IR ANALIS	SIS SOAL UJI (СОВА		
No		Validitas	;	Daya	Pembeda	Tingkat	Kesukaran	Kriteria
NO	rpbis	ttabel	Kriteria	DP	Kriteria	IK	Kriteria	Kriteria
1	0,06736	0,329	Invalid	0,11111	Jelek	0,88889	Mudah	Dibuang
2	-3,7459	0,329	Invalid	-388889	Sangat jelek	0,58333	Sedang	Dibuang
3	7,29588	0,329	Valid	0,33333	Cukup	0,61111	Sedang	Dipakai
4	3,46116	0,329	Valid	0,16667	Jelek	0,86111	Mudah	Dibuang
5	7,38704	0,329	Valid	0,22222		0,5	Sedang	Dipakai
6	8,60309	0,329	Valid	0,33333	Cukup	0,44444	Sedang	Dipakai
7	3,51229	0,329	Valid	0,11111	Jelek	0,72222	Mudah	Dibuang
8	10,465	0,329	Valid	0,2222	Cukup	0,5	Sedang	Dipakai
9	6,12137	0,329	Valid	0,1111	Jelek	0,94444	Mudah	Dibuang
10	9,57289	0,329	Valid	0,6111	Baik	0,58333	Sedang	Dipakai
11	10,6702	0,329	Valid	0,2222	Cukup	0,5	Sedang	Dipakai
12	4,99455	0,329	Valid		Sangat jelek	0,41666		Dibuang
13	6,71343	0,329	Valid	0,61111		0,52778	0	Dipakai
14	-4,8258	0,329	Invalid		Sangat jelek	0,91666		Dibuang
15	8,49454	0,329	Valid		Baik	0,47222		Dipakai
16	8,13771	0,329	Valid	0,3333		0,61111)	Dipakai
17	-0,9256	0,329	Invalid		Sangat jelek	0,36111		Dibuang
18	9,98911	0,329	Valid	0,2778		0,41667		Dipakai
19	0,75707	0,329	Valid		Sangat jelek	0,44444		Dibuang
20	5,92349	0,329	Valid	0,27778			Mudah	Dipakai
21	117,962	0,329	Valid	0,33333	•	0,33333		Dipakai
22	0,06882	0,329	Invalid		Sangat jelek	0,55555		Dibuang
23	7,39986	0,329	Valid	0,3333		0,66667		Dipakai
24	116,032	0,329	Valid		Jelek	0,38889		Dibuang
25	6,55046	0,329	Valid	0,16667		0,36111		Dibuang
26		0,329	Invalid	0,16667	,	0,88889	0	U
27	-110,24 25,5356	0,329	Valid	0,2222		0,88889		Dibuang
		0,329		0,2222				Dipakai
28	-51,747		Invalid			0,69444		Dibuang
29	6,53835	0,329	Valid		Jelek	0,44444		Dibuang
30	12,8873	0,329	Valid	0,2778		0,63889	0	Dipakai
31	3,85418	0,329	Valid	0,1111		0,83333		Dibuang
32	9,31521	0,329	Valid	0,2222	•	0,27778		Dipakai
33	8,09244	0,329	Valid	0,27778		0,30556		Dipakai
34	-2,2273	0,329	Invalid	0,05556		0,91667		Dibuang
35	10,0016	0,329	Valid	0,05556		0,52778		Dibuang
36	2,95946	0,329	Valid		Sangat jelek	0,55555		Dibuang
37	6,85044	0,329	Valid	0,38889	•	0,47222		Dipakai
38	6,53835	0,329	Valid	0,22222		0,44444		Dipakai
39	-0,8399	0,329	Invalid		Sangat jelek	0,72222		Dibuang
40	5,83453	0,329	Valid	0,16667	,	0,86111		Dibuang
41	-2,5059	0,329	Invalid		Sangat jelek	0,80555		Dibuang
42	-2,6724	0,329	Invalid	_	Sangat jelek	0,72222		Dibuang
43	4,64784	0,329	Valid	0,05556		0,86111		Dibuang
44	5,78957	0,329	Valid	0,05556	,	0,80556		Dibuang
45	5,8501	0,329	Valid	0,33333		0,55556		Dipakai
46	6,74693	0,329	Valid	0	Jelek	0,66667	Sedang	Dibuang
47	4,78645	0,329	Valid	0,27778		0,41667	Sedang	Dipakai
48	9,54427	0,329	Valid	0,3333	Cukup	0,27778	Sukar	Dipakai
49	1,1012	0,329	Valid		Jelek	0,55556	Sedang	Dibuang
50	6,52929	0,329	Valid	0	Jelek	0,33333	Sedang	Dibuang

PERHITUNGAN VALIDITAS BUTIR SOAL PILIHAN GANDA MATERI SISTEM PERTAHANAN TUBUH

No.	Kriteria	r _{tabel}	Nomor Soal	Jumlah	Persentase
1	Valid	0,329	3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 23, 24, 25, 27, 29, 30, 31, 32, 33, 35, 36, 37, 38, 40, 43, 44, 45, 46, 47, 48, 49, 50	39	78%
2	Invalid	0,329	1, 2, 14, 17, 22, 26, 28, 34, 39, 41, 42	11	22%

PERHITUNGAN RELIABILITAS BUTIR SOAL PILIHAN GANDA MATERI SISTEM PERTAHANAN TUBUH

Rumus:								
Rumus.								
	$\binom{n}{n}$	V 52	$2-\overline{\Sigma}$	pa				
$r_{11} =$	+	$\frac{s^2}{1}$						
	(n-		<i>S</i> 2)				
Keteran	an.							
r11 =		s yang dica	ri					
	Jumlah so		111					
	-	aı peserta tes						
•					1			
q = S2 =		peserta tes		saian	= 1 - p			
S2 =	varians =	$\frac{\sum X^2 - \frac{C}{N}}{N}$	N N					
		N						
V	Lunalah 3		awata la -	.				
$\sum pq =$	-	viasi dari r	erata kua	urat				
N =	Jumlah pe	serta tes						
** ** *								
Kriteria		77.1						
	erval	Krit						
r11 < 0,2		Sangat rer	idah					
0,2 < r11		Rendah						
0,4 < r11		Sedang						
0,6 < r11		Tinggi						
0,8 < r11	< 1,0	Sangat tin	ggi					
	kan tabel p	ada analisi	s ujicoba c	liperoleh:				
n = 50								
$\sum pq = 9,7$	'2							
		()2						
	$\nabla \mathbf{v}^2$	$(\sum X)^2$		30975		1058841		
S2 =	<u></u>	$\frac{(\sum X)^2}{N}$	=	30773	L L	36	43,41	
	^					36		
r11 =		50 50	0		43,41		9,72	1
		50	- 1			43,41		J
=	0,79193							
Nilai koef	fisien korel	asi tersebu	t pada int	erval 0,6 -	0,8 dalam ka	ategori tinggi		

PERHITUNGAN DAYA BEDA SOAL PILIHAN GANDA MATERI SISTEM PERTAHANAN TUBUH

No	Kriteria	Nomor soal	Jumlah	Persentase
1.	Sangat jelek	2, 12, 14, 17, 19, 22, 36, 39, 41, 42	10	20%
2.	Jelek	1, 4, 7, 9, 24, 25, 28, 29, 31, 34, 35, 40, 43, 44, 46, 49, 50	17	34%
3.	Cukup	3, 5, 6, 8, 11, 16, 18, 20, 21, 23, 26, 27, 30, 32, 33, 37, 38, 45, 47, 48	20	40%
4.	Baik	10, 13, 15	3	6%
5.	Baik sekali	-	0	0%

PERHITUNGAN TINGKAT KESUKARAN SOAL PILIHAN GANDA MATERI SISTEM PERTAHANAN TUBUH

No.	Kriteria	Nomor Soal	Jumlah	Persentase
1	Sukar	32, 48	2	4%
2	Sedang	2, 3, 5, 6, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, 33, 35, 36, 37, 38, 45, 46, 47, 49, 50	33	66%
3	Mudah	1, 4, 7, 9, 14, 20, 26, 31, 34, 39, 40, 41, 42, 43, 44	15	30%

KISI-KISI LEMBAR PENILAIAN MEDIA *BIOPUZZLE* MATERI SISTEM PERTAHANAN TUBUH

	Kriteria		Indikator	Nomor Soal
I.	Aspek kelayakan	A.	Kesesuaian materi	1,2,3
	isi		dengan KD	
		B.	Kesesuaian materi	4
			dengan indikator	
		C.	Keakuratan materi	5,6,7,8,9
		D.	Kemutakhiran materi	10
		E.		11
			keingintahuan	
II.	Aspek kelayakan	A.	Teknik penyajian	1
	penyajian	B.	Penyajian pembelajaran	2,3
III.	Aspek kelayakan	A.	Lugas	1,2
	bahasa	B.		3
		C.	Dialogis dan Interaktif	4
		D.		5
			perkembangan peserta	
			didik	
		E.		6,7
			kaidah bahasa	
IV.	Aspek	A.	Meningkatkan minat	1
	kemanfaatan		belajar peserta didik	
	produk	B.	Mempermudah	2
			memahami materi	
		C.	Kualitas media	3
V.	Aspek	A.) · I ·	1
	pengoperasian /	B.	Keseseuaian lembar	2,3
	Penggunaan		kerja	

ANGKET VALIDASI

MEDIA BIOPUZZLE MATERI SISTEM PERTAHANAN TUBUH

Judul Penelitian : Efektivitas media pembelajaran biopuzzle dalam pembelajaran

cooperative learning tipe STAD terhadap hasil belajar siswa materi pokok

sistem pertahanan tubuh kelas XI MA NU 03 Sunan Katong

Sasaran Program : Peserta didik kelas XI MIPA Materi : Sistem pertahanan tubuh

Peneliti : Devi Atiek Afiyani Validator : Saifullah Hidayat, M.Sc

Bapak /Ibu yang terhormat,

Saya memohon bantuan Bapak/ Ibu untuk mengisi lembar validitas ini. Lembar validitas ini dimaksudkan untuk mengetahui pendapat Bapak/Ibu selaku ahli materi dan media terhadap kelayakan produk media pembelajaran Biopuzzle. Pendapat, saran, penilaian, kritik dan komentar Bapak/Ibu akan sangat bermanfaat untuk memperbaiki dan meningkatkan kualitas media pembelajaran ini. Atas bantuan dan kesediaan Bapak/Ibu untuk mengisi lembar validasi ini, saya mengucapkan terima kasih.

PETUNJUK PENGISIAN ANGKET

Bapak/Ibu saya mohon memberikan tanda check (√) pada kolom yang Bapak/Ibu anggap sesuai dengan aspek penilaian yang ada dengan kriteria penilaian sebagai berikut:

- 5 = Sangat baik
- 4 = Baik
- 3 = Cukup
- 2 = Kurang baik
- 1 = Sangat kurang

I. ASPEK KELAYAKAN ISI

No	Butir Penilaian	Deskripsi	Rubrik
1	Kelengkapan materi	Materi yang disajikan mencakup materi yang terkandung dalam kompetensi dasar (KD), yaitu menganalisis peran sistem imun dan imunisasi terhadap proses fisiologi di dalam tubuh.	jika sebagian besar sesuai jika sebagian sesuai jika sebagian kecil sesuai
2	Keluasan materi		jika sangat sesuai jika sebagian besar sesuai

		mendukung pencapaian kompetensi dasar (KD).	3. jika sebagian sesuai 2. jika sebagian kecil sesuai 1. jika sama sekali tidak sesuai
3	Kedalaman materi	Materi yang disajikan mencakup mulai dari pengenalan konsep sampai dengan interaksi antarkonsep dan sesuai urutannya dengan yang tingkat pendidikan di SMA/MA dan sesuai dengan kompetensi dasar (KD).	jika sangat sesuai jika sebagian besar sesuai jika sebagian sesuai jika sebagian kecil sesuai jika sama sekali tidak sesuai
4	Kejelasan indikator	Materi yang disajikan sesuai dengan indikator.	jika sangat sesuai jika sebagian besar sesuai jika sebagian sesuai jika sebagian secil sesuai jika sama sekali tidak sesuai
5	Keakuratan konsep dan definisi	Konsep dan definisi yang disajikan tidak menimbulkan banyak tafsir dan sesuai dengan konsep definisi yang berlaku dalam ilmu biologi.	5. jika sangat akurat 4. jika sebagian besar akurat 3. jika sebagian akurat 2. jika sebagian kecil akurat 1. jika sama sekali tidak akurat
6	Keakuratan fakta dan data	Fakta dan data yang disajikan sesuai dengan kenyataan dan efisien untuk meningkatkan pemahaman peserta didik.	5. jika sangat akurat 4. jika sebagian besar akurat 3. jika sebagian akurat 2. jika sebagian kecil akurat 1. jika sama sekali tidak akurat
7	Keakuratan contoh	Contoh yang disajikan sesuai dengan kenyataan dan efisien untuk meningkatkan pemahaman peserta didik.	5. jika sangat akurat 4. jika sebagian besar akurat 3. jika sebagian akurat 2. jika sebagian kecil akurat 1. jika sama sekali tidak akurat
8	Keakuratan gambar	Gambar yang disajikan sesuai dengan kenyataan dan efisien untuk meningkatkan pemahaman peserta didik.	jika sangat akurat jika sebagian besar akurat jika sebagian akurat jika sebagian akurat jika sebagian kecil akurat jika sama sekali tidak akurat
9	Keakuratan istilah	Istilah-istilah sesuai dengan kelaziman yang berlaku dalam ilmu biologi	jika sangat akurat jika sebagian besar akurat jika sebagian akurat jika sebagian akurat jika sebagian kecil akurat jika sama sekali tidak akurat
10	Menggunakan contoh kasus yang terdapat dalam kehidupan sehari-hari	Contoh yang disajikan sesuai dengan situasi dan kondisi yang terjadi dalam kehidupan sehari- hari.	jika sangat akurat jika sebagian besar akurat jika sebagian akurat jika sebagian akurat jika sebagian kecil akurat jika sama sekali tidak akurat
11	Mendorong rasa ingin tahu	Penjelasan materi atau contoh- contoh yang disajikan mendorong peserta didik untuk mempelajarinya lebih jauh	jika sangat akurat jika sebagian besar akurat jika sebagian akurat jika sebagian akurat jika sebagian kecil akurat jika sama sekali tidak akurat

II. ASPEK KELAYAKAN PENYAIIAN

ASPE	K KELAYAKAN	PENYAJIAN	
No	Butir Penilaian	Deskripsi	Rubrik
1	Keruntutan	penyajian konsep disajikan secara	5. jika sangat sesuai
	konsep	runtut mulai dari yang mudah ke	jika sebagian besar sesuai
		sukar, dari yang konkret ke abstrak	3. jika sebagian sesuai
		dan dari yang sederhana ke	jika sebagian kecil sesuai
1		kompleks, dari yang dikenal	 jika sama sekali tidak sesuai
1		sampai yang belum dikenal. Matei	
1		bagian sebelumnya bisa	
1		membantu pemahaman materi	
		pada bagian selanjutnya.	
2	Keterlibatan	Penyajian materi bersifat interaktif	jika sangat sesuai
1	peserta didik	dan partisipatif	jika sebagian besar sesuai
1			3. jika sebagian sesuai
1			jika sebagian kecil sesuai
			 jika sama sekali tidak sesuai
3	Kedalaman	Penyajian materi dapat	jika sangat sesuai
	berpikir	merangsang kedalaman berpikir	jika sebagian besar sesuai
	peserta didik	peserta didik	3. jika sebagian sesuai
			jika sebagian kecil sesuai
			1. jika sama sekali tidak sesuai

III. ASPEK KELAYAKAN BAHASA

No	Butir Penilaian	Diskripsi	Rubrik
1	Ketepatan struktur kalimat	Kalimat yang digunakan mewakili isi pesan atau informasi yang ingin disampaikan dengan tetap mengikuti tata kalimat Bahasa Indonesia.	jika sangat sesuai jika sebagian besar sesuai jika sebagian sesuai jika sebagian sesuai jika sebagian kecil sesuai jika sama sekali tidak sesuai
2	Keefektifan kalimat	Kalimat yang digunakan sederhana dan langsung ke sasaran.	5. jika sangat sesuai 4. jika sebagian besar sesuai 3. jika sebagian sesuai 2. jika sebagian kecil sesuai 1. jika sama sekali tidak sesuai
3	Pemahaman terhadap pesan atau informasi	Pesan atau informasi disampaikan dengan bahasa yang menarik dan lazim dalam komunikasi tulis Bahasa Indonesia.	jika sangat komunikatif ijka sebagian besar komunikatif jika sebagian komunikatif jika sebagian kecil komunikatif jika sama sekali tidak komunikatif
4	Kemampuan memotivasi peserta didik	Bahasa yang digunakan membangkitkan rasa senang ketika peserta didik menyusun media dan mendorong mereka untuk mempelajari materi yang terdapat dalam media tersebut secara keseluruhan.	4. jika sebagian besar sesuai
5	Kesesuaian dengan tingkat perkembangan	Bahasa yang digunakan dalam menjelaskan suatu konsep harus sesuai dengan	jika sangat mendukung ijka sebagian besar mendukung jika sebagian mendukung

	intelektual peserta didik	tingkat perkembangan kognitif peserta didik.	jika sebagian kecil mendukung jika sama sekali tidak mendukung
6	Ketepatan tata	Tata kalimat yang digunakan	5. jika sangat sesuai
	bahasa	untuk menyampaikan pesan	4. jika sebagian besar sesuai
		mengacu kepada kaidah tata	3. jika sebagian sesuai
		bahasa yang baik dan benar.	2. jika sebagian kecil sesuai
			1. jika sama sekali tidak sesuai
7	Ketepatan	Ejaan yang digunakan	5. jika sangat sesuai
	ejaan	mengacu kepada pedoman	4. jika sebagian besar sesuai
		ejaan yang disempurnakan	3. jika sebagian sesuai
		(EYD).	2. jika sebagian kecil sesuai
			1. jika sama sekali tidak sesuai

IV. ASPEK KEMANFAATAN PRODUK

No	Butir Penilaian	Deskripsi	Rubrik
1	Media dapat meningkatkan minat belajar peserta didik	Media mempunyai daya kemenarikan yang tinggi, sehingga dapat meningkatkan minat belajar peserta didik.	jika sangat mendukung ijka sebagian besar mendukung jika sebagian mendukung jika sebagian mendukung jika sebagian kecil mendukung jika sama sekali tidak mendukung
2	Mempermudah peserta didik memahami materi sistem pertahanan tubuh	Media memudahkan siswa dalam memahami materi sistem pertahanan tubuh	jika sangat mendukung ijka sebagian besar mendukung jika sebagian mendukung jika sebagian mendukung jika sebagian kecil mendukung jika sama sekali tidak mendukung
3	Penggunaan media kembali	Media dapat digunakan kembali pada pembelajaran materi sistem pertahanan tubuh	jika sangat mendukung ijka sebagian besar mendukung jika sebagian mendukung jika sebagian mendukung jika sebagian kecil mendukung jika sama sekali tidak mendukung

V. ASPEK PENGOPERASIAN/PENGGUNAAN

No	Butir Penilaian	Deskripsi	Rubrik				
1	Kejelasan petunjuk penggunaan	Petunjuk permainan memberikan kejelasan pada siswa dalam setiap langkah yang harus dilakukan	5. jika sangat mudah 4. jika sebagian besar mudah 3. jika sebagian mudah 2. jika sebagian kecil mudah 1. jika sama sekali tidak mudah				
2	Kesesuaian lembar kerja	Lembar kerja sesuai dengan materi dan media yang digunakan dalam pembelajaran	jika sangat sesuai jika sebagian besar sesuai jika sebagian sesuai jika sebagian sesuai jika sebagian kecil sesuai jika sama sekali tidak sesuai				
3	Soal pada lembar kerja	Soal-soal yang diberikan dalam lembar kerja dapat melatih kemampuan memahami konsep isi materi pada media	jika sangat mendukung jika sebagian besar mendukung jika sebagian mendukung jika sebagian mendukung jika sebagian kecil mendukung iika sama sekali tidak mendukung				

	Komentar/Saran
	(Instrumen diadaptasi dari BNSP (2006) dan dimodifikasi dari penulis)
Ke	simpulan
Me	dia ini dinyatakan :
1.	Sangat layak digunakan dengan persentase ≥ 80%
2.	Layak digunakan tanpa revisi dengan persentase 60-79%
3.	Layak digunakan dengan revisi sesuai saran dengan persentase 50-59%
4.	Tidak layak digunakan dengan persentase ≤ 50%
(Me	ohon diberi tanda lingkaran pada nomor yang sesuai dengan kesimpulan Bapak/lbu)
	SemarangAhli Media

Saifullah Hidayat, M.Sc

NILAI UTS KELAS (XI IPA 1) DAN KELAS (XI IPA 2)

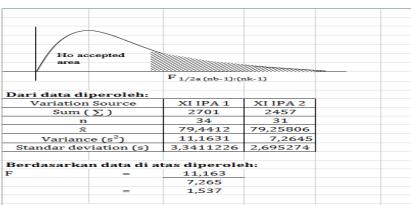
(XI IPA 1) (XI IPA 2) 1 82 76 2 80 79 3 78 82 4 79 75 5 82 84 6 82 79 7 82 81 8 81 80 9 81 81 10 77 81 11 75 79 12 80 81 13 79 76 14 79 78 15 80 78 16 86 82 17 77 75 18 75 76 19 84 79 20 86 81 21 78 80 22 76 83 23 76 75 25 80 80 26 81 82	No	KELAS EKSPERIMEN	KELAS KONTROL
2 80 79 3 78 82 4 79 75 5 82 84 6 82 79 7 82 81 8 81 80 9 81 81 10 77 81 11 75 79 12 80 81 13 79 76 14 79 78 15 80 78 16 86 82 17 77 75 18 75 76 19 84 79 20 86 81 21 78 80 22 76 83 23 76 78 24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85 <th></th> <th></th> <th></th>			
3 78 82 4 79 75 5 82 84 6 82 79 7 82 81 8 81 80 9 81 81 10 77 81 11 75 79 12 80 81 13 79 76 14 79 78 15 80 78 16 86 82 17 77 75 18 75 76 19 84 79 20 86 81 21 78 80 22 76 83 23 76 78 24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85			
4 79 75 5 82 84 6 82 79 7 82 81 8 81 80 9 81 81 10 77 81 11 75 79 12 80 81 13 79 76 14 79 78 15 80 78 16 86 82 17 77 75 18 75 76 19 84 79 20 86 81 21 78 80 22 76 83 23 76 78 24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85			
5 82 84 6 82 79 7 82 81 8 81 80 9 81 81 10 77 81 11 75 79 12 80 81 13 79 76 14 79 78 15 80 78 16 86 82 17 77 75 18 75 76 19 84 79 20 86 81 21 78 80 22 76 83 23 76 78 24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85			
6 82 79 7 82 81 8 81 80 9 81 81 10 77 81 11 75 79 12 80 81 13 79 76 14 79 78 15 80 78 16 86 82 17 77 75 18 75 76 19 84 79 20 86 81 21 78 80 23 76 78 24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85			
7 82 81 8 81 80 9 81 81 10 77 81 11 75 79 12 80 81 13 79 76 14 79 78 15 80 78 16 86 82 17 77 75 18 75 76 19 84 79 20 86 81 21 78 80 22 76 83 23 76 78 24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85			
8 81 80 9 81 81 10 77 81 11 75 79 12 80 81 13 79 76 14 79 78 15 80 78 16 86 82 17 77 75 18 75 76 19 84 79 20 86 81 21 78 80 22 76 83 23 76 78 24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85			-
9 81 81 10 77 81 11 75 79 12 80 81 13 79 76 14 79 78 15 80 78 16 86 82 17 77 75 18 75 76 19 84 79 20 86 81 21 78 80 22 76 83 23 76 78 24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85			
10 77 81 11 75 79 12 80 81 13 79 76 14 79 78 15 80 78 16 86 82 17 77 75 18 75 76 19 84 79 20 86 81 21 78 80 22 76 83 23 76 78 24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85			
11 75 79 12 80 81 13 79 76 14 79 78 15 80 78 16 86 82 17 77 75 18 75 76 19 84 79 20 86 81 21 78 80 22 76 83 23 76 78 24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85	9		
12 80 81 13 79 76 14 79 78 15 80 78 16 86 82 17 77 75 18 75 76 19 84 79 20 86 81 21 78 80 22 76 83 23 76 78 24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85	10	77	
13 79 76 14 79 78 15 80 78 16 86 82 17 77 75 18 75 76 19 84 79 20 86 81 21 78 80 22 76 83 23 76 78 24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85		75	79
14 79 78 15 80 78 16 86 82 17 77 75 18 75 76 19 84 79 20 86 81 21 78 80 22 76 83 23 76 78 24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85	12	80	81
15 80 78 16 86 82 17 77 75 18 75 76 19 84 79 20 86 81 21 78 80 22 76 83 23 76 78 24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85	13	79	76
16 86 82 17 77 75 18 75 76 19 84 79 20 86 81 21 78 80 22 76 83 23 76 78 24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85	14	79	78
17 77 75 18 75 76 19 84 79 20 86 81 21 78 80 22 76 83 23 76 78 24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85	15	80	78
18 75 76 19 84 79 20 86 81 21 78 80 22 76 83 23 76 78 24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85	16	86	82
19 84 79 20 86 81 21 78 80 22 76 83 23 76 78 24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85	17	77	75
20 86 81 21 78 80 22 76 83 23 76 78 24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85	18	75	76
21 78 80 22 76 83 23 76 78 24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85	19	84	79
22 76 83 23 76 78 24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85	20	86	81
23 76 78 24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85	21	78	80
24 76 75 25 80 80 26 81 82 27 85 78 28 75 77 29 80 85	22	76	83
25 80 80 26 81 82 27 85 78 28 75 77 29 80 85	23	76	78
26 81 82 27 85 78 28 75 77 29 80 85	24	76	75
26 81 82 27 85 78 28 75 77 29 80 85	25	80	80
27 85 78 28 75 77 29 80 85			
28 75 77 29 80 85			
29 80 85			
31 75 76			
32 76			
33 78			
34 85			

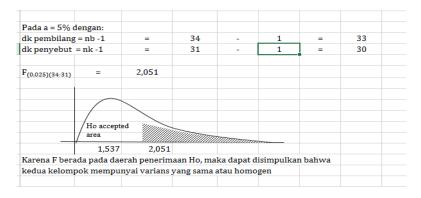
UJI NORMALITAS TAHAP AWAL NILAI UTS KELAS XI IPA I

Hipotesis								
Но		distribusi no	verno l					
На								
		k berdistrib	usi normai					
	Hipotesis							
	$\sum_{i=1}^{k} \frac{(O_i = 1)^{i}}{I}$	$(E)^2$						
2 ² =								
,,,	$\frac{2}{i}$	Ç						
Kriteria	yang digun	akan						
H	diterima jil	ca $\chi^2_{}$	$_{mg} < \chi^2_{tabel}$					
Penguiia	n Hipotesi	s	ing - inser					
Vilai mak		Ī	= 87					
Vilai minii			= 75					
Rentang r			= 86 -75 = 11					
	a kelas (k)		$= 1 + 3.3 \log 34$	= 6.05 = 6	lea lea			
			= 1 + 5,5 log 54 =11/6=1,833=2	= 6.03 = 6	Kelas			
Panjang k	elas (P)		=11/6=1,833=2					
			ncari Rata-rata d		r Deviasi			
	No	X	X- X	(X- X)^				
	1	82	2,558823529	6,54758				
	2	80	0,558823529	0,31228				
	3	78	-1,441176471	2,07699				
	4	79	-0,441176471	0,19464				
	5	82	2,558823529					
	6	82	2,558823529					
	7	82	2,558823529					
	8	81	1,558823529	2,42993				
	9	81	1,558823529					
	10	77	-2,441176471	5,95934				
		75						
	11		-4,441176471	19,724				
	12	80	0,558823529					
	13	79	-0,441176471					
	14	79	-0,441176471	0,19464				
	15	80	0,558823529					
	16	86	6,558823529					
	17	77	-2,441176471	5,95934				
	18	75	-4,441176471	19,724				
	19	84	4,558823529					
	20	86	6,558823529	43,0182				
	21	78	-1,441176471	2,07699				
	22	76	-3,441176471	11,8417				
	23	76	-3,441176471	11,8417				
	24	76	-3,441176471					
	25	80	0,558823529					
	26	81	1,558823529	2,42993				
	27	85	5,558823529	30,9005	1			
	28	75	-4,441176471	19,724				
	29	80	0,558823529				-	
	30	75	-4,441176471	19,724				
	31	75	-4,441176471	19,724	-		-	
	32	76	-3,441176471	11,8417	-			
	33	78	-1,441176471	2,07699				
	34	85	6	30,9005				
	jumlah	2701		368,382				
	Rata-ra	ta (\vec{X}) =	ΣX		01	=	79,44118	
		() -	N	3	34			
	Standar D	eviasi (S):	S^2	=	$\sum (X - \overline{X})^2$			
					n-1			
				=	368,3824			
							-	
	-				33			
	-		_	=	11,1631			
			S	=	3,341123			

No	Kelas			Bk	Z _i	P(Z _i)	Luas Daerah	0_{i}	E _i	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
				74,5	-1,4789	0,430416				
1	75	-	76				0,119766	9	4,072031	5,963825
				76,5	-0,8803	0,31065				
2	77	-	78				0,199739	5	6,791136	0,472405
				78,5	-0,28169	0,110911				
3	79	-	80				0,235254	8	7,998633	2,34E-07
				80,5	0,316906	-0,12434				
4	81	-	82				0,195695	7	6,653619	0,018032
				82,5	0,915508	-0,32004				
5	83	-	84				0,114963	1	3,908758	2,164594
				84,5	1,514108826	-0,43500088				
6	85	-	86				0,047686	4	1,621335	3,489746
				86,5	2,11270999	-0,482687201				
		Jumlah	1					34		8,6189
Keterangai	1									
Bk	=	Batas kelas Bk –X	bawah - 0,5 atai	ı batas ke	las atas + 0,5					
Z _i	=	S								
$P(Z_i)$	=	Nilai Z, pada	ı tabel luas di bav	wah lengki	ing kurva normal s	tandar dari O s/d Z				
Luas Daei	=	$P(Z_1) - P(Z_1)$	(2)							
E_i	=	Luas daerah								
0 _i	=	fi								
Untuk α = :	5%, deng	an dk = 6-1	= 5 diperoleh X ²	tabel = 11	,070					

UJI NORMALITAS TAHAP AWAL NILAI UTS KELAS XI IPA 2


Hipotes	is						
H ₀		distribusi r	normal				
H ₁			ibusi normal				
	n Hipotesis	lk bertistr	lbusi noi mai				
		-					
_	$e^2 = \sum_{i=1}^k \frac{C}{C}$	$(E_i)^2$					
- 2		E					
	<i>t</i> =1	L					
Vuitonia	yang digu	n a lean					
Kriteria	yang digu	11 2 2 2	$_{ng}<\chi^2_{tabel}$				
- н	o diterima j	ika <i>k hitu</i>	ng - A tabei	!			
Nilai mal	an Hipotes	15	= 85				
Nilai ma			= 75				
	nilai (R)		= 75 = 85-75= 10				
	iya kelas (k)		$= 1 + 3,3 \log 3$	1 -5 02- 6			
	kelas (P)		=10/6=1,67=2				
. anjang	as (i)		13/0-1,07-2				
	Tabel Pe	nolong M	encari Rata-ra	i ata dan St	andar Dev	viasi	
	No	X	X- <u>X</u>	36	(X X)^	- 1431	
	1	76	-3,2580645	-	10,614984	39	
	2	79	-0,2580645		0,0665972		
	3	82	2,7419355		7,5182102		
	4	75	-4,2580645		18,131113		
	5	84	4,7419355		22,485952		
	6	79	-0,2580645		0,0665972		
	7	81	1,7419355		3,0343392		
	8	80	0,7419355		0,5504682		
	9	81	1,7419355		3,0343392		
	10	81	1.7419355		3,0343392		
	11	79	-0,2580645		0,0665972		
	12	81	1,7419355		3,0343392	23	
	13	76	-3,2580645		10,614984	39	
	14	78	-1,2580645		1,5827263	33	
	15	78	-1,2580645		1,5827263	33	
	16	82	2,7419355		7,5182102	20	
	17	75	-4,2580645		18,131113	42	
	18	76	-3,2580645		10,614984	39	
	19	79	-0,2580645		0,0665972	29	
	20	81	1,7419355		3,0343392	23	
	21	80	0,7419355		0,5504682		
	22	83	3,7419355		14,002081		
	23	78	-1,2580645		1,5827263		
	24	75	-4,2580645		18,131113		
	25	80	0,7419355		0,5504682		
	26	82	2,7419355		7,5182102		
	27	78	-1,2580645		1,5827263		
	28	77	-2,2580645		5,0988553		
	29	85	5,7419355		32,969823		
	30	80	0,7419355		0,5504682		
	31	76	-3,2580645		10,614984		
	JUMLAH	2457	1	21	17,93548	38/	
			NV.			-	70 2501
	Rata-rata	(<i>X</i>) =	<u>ΣX</u>		<u>:57</u>		79,2581
	- · · -			S ²	1		
	Standar D	eviasi (S) :	:	5-	=	$\sum (X - \overline{X})^2$ n-1	
					=	217,94	
						30	
					=	7,264516	
				S	=	2,695277	


	Daftar F	rekuensi N	ilai Awal Ko	elas XI IPA	2					
No	Kelas			Bk	Z _i	P(Z _i)	Luas Daerah	0 _i	E _i	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
				74,5	-1,7653	0,46125				
1	75	-	76				0,11433	7	3,54424	3,36949
				76,5	-1,0233	0,34692				
2	77		78				0,23617	3 5	7,32135	0,73602
				78,5	-0,2813	0,11074				
3	79	-	80				0,28827	8	8,93624	0,09809
				80,5	0,46078	-0,1775				
4	81	-	82				0,20795	8	6,44659	0,37432
				82,5	1,20282	-0,3855				
5	83	-	84				0,08863	2	2,74743	0,20334
				84,5	1,9448599	915 -0,47410				
6	85	-	86				0,02229	1	0,69099	0,13819
				86,5	2,686898	775 -0,49639	9406			
				Jum	ah			31		4,9194
Keterangar	1									
Bk	=		bawah - 0,5	atau batas	kelas atas + 0,5					
Zi	=	Bk-X S								
$P(Z_i)$	=	Nilai Z _i pad	a tabel luas c	li bawah ler	ngkung kurva n	ormal standar dari 0	s/dZ			
Luas Daer	=	$P(Z_1) - P(Z_2)$	(2)							
E _i	=	Luas daera	h x N							
0 _i	=	f _i								
			= 5 diperolel	2						

 ${\sf Karena\,X^2}_{hitung}\,{\sf <X^2}_{tubel}\,{\sf maka}\,{\sf distribusi}\,{\sf data}\,{\sf awal}\,{\sf di}\,{\sf kelas}\,{\sf XI}\,{\sf IPA}\,{\sf 2}\,{\sf berdistribusi}\,{\sf NORMAL}$

UJI KESAMAAN DUA VARIANS (HOMOGENITAS) NILAI UTS ANTARA KELAS XI IPA 1 DAN KELAS XI IPA 2

Lampiran 15A

KISI-KISI SOAL PRE TEST

Satuan Pendidikan : MA NU 03 Sunan Katong

Kelas/Semester : XI/I

Mata Pelajaran : Biologi

Bentuk soal : Pilihan Ganda

Jumlah Soal : 20

Waktu : 1 x 40 menit

Kompetensi Dasar : 3.14 Menganalisis peran sistem imun dan

imunisasi terhadap proses fisiologi di

dalam tubuh.

asil Indikator Soal	Aspek		Soal		Kunci	Referensi	Nomor Soal
Belajar Kognitif	Kognitif	Kognitif					
Mengidentifikasi Menunjukan C1 1. Mekanisme sistem pertahanan tubuh pada manusia	C1		1. Mekanisme sistem pertahanan tubuh pada		ы	Sudjadi dan Laila	1
mekanisme sistem mekanisme dibedakan menjadi dua macam, yaitu	mekanisme	dibedakan menjadi dua macam, yaitu	dibedakan menjadi dua macam, yaitu			(2007)	
imun pada manusia sistem imun imun imun imun humoral dan selular	imun a.	a. Sistem imun humoral dan selular	a. Sistem imun humoral dan selular				
pada manusia b. Sistem imun garis pertahanan pertama dan	p.	b. Sistem imun garis pertahanan pertar	b. Sistem imun garis pertahanan pertar	na dan			
kedua	kedua	kedua	kedua				
c. Sistem imun garis pertahanan kedua dan ketiga				etiga			
d. Sistem imun garis pertahanan pertama dan				a dan			
ketiga	ketiga	ketiga	ketiga				
e. Sistem imun nonspesifik dan spesifik	e. Sistem imun nonspesifik dan spesifik	e. Sistem imun nonspesifik dan spesifik	e. Sistem imun nonspesifik dan spesifik				
Menjebarkan sistem Menjelaskan C1 2. Perhatikan gambar di bawah ini.	13		2. Perhatikan gambar di bawah ini.		ы	Sudjadi dan Laila	2
imun nonspesifik proses inflamasi	proses inflamasi	1 1				(2007)	
Gambar di atas menuniukan bahwa seseorang telah	Gambar di atas menuniukan bahwa seseora	Gambar di atas menuniukan bahwa seseora	Gambar di atas menuniukan bahwa seseora	ng telah			
mengalami	mengalami	mengalami	mengalami	1			
a. Autoimunitas	a. Autoimunitas	a. Autoimunitas	a. Autoimunitas				
b. Alergi	b. Alergi	b. Alergi	b. Alergi				
c. Lupus							
d. Imunodefisiensi	d. Imunodefisiensi	d. Imunodefisiensi	d. Imunodefisiensi				
e. Inflamasi	e. Inflamasi	e. Inflamasi	e. Inflamasi				

	Menunjukan	C1	e.	3. Membran mukosa menghasilkan mukus yang A	4	Bakhtiar (2011)	3
	fungsi mukus			merupakan cairan kental yang berfungsi untuk			
	yang dihasilkan			a. Mengikat dan menggumpalkan bakteri			
	oleh membran		_	b. Memproduksi bakteri			
	mukosa		Ī	c. Mempercepat pertumbuhan bakteri			
			Ī	d. Menguraikan dinding sel bakteri			
			-	e. Menelan bakteri			
	Menentukan ciri	C3	4	4. Di bawah ini termasuk ciri respons imun nonspesifik, C		Sudjadi dan Laila	4
	respons imun			kecuali		(2007)	
	nonspesifik			a. Bereaksi sama terhadap semua agen infeksi			
			_	b. Tidak membentuk sel memori terhadap agen			
				infeksi			
			Ī	c. Memiliki memori terhadap infeksi sebelumnya			
			-	d. Tingkat reaksi sama pada tiap agen infeksi yang			
				berusaha menyerang			
			Ī	e. Menghambat masuknya patogen ke dalam tubuh			
	Menunjukan	C1	5	5. Interferon bekerja dengan cara	В	Sudjadi dan Laila	5
	cara kerja			a. Menyamarkan sel target		(2007)	
	interferon		_	b. Bereaksi terhadap sel-sel yang belum terinfeksi			
				agar lebih kebal terhadap partikel virus			
			Ī	c. Menempel pada mikroba sehingga lebih mudah			
				dikenali sel fagosit			
			Ī	d. Membawa pesan antar sel pada sistem imun			

				e. Mengenali patogen yang masuk ke dalam tubuh		
		Mengemukakan	CZ	6. Yang termasuk sistem imun nonspesifik adalah E Sudj	Sudjadi dan Laila	9
		mekanisme yang		a. Fagositosit, inflamasi, sel B (200	(2007)	
		termasuk ke		b. Sel T, Sel B, protein komplemen		
		dalam sistem		c. Interferon, sel B, sel T		
		imun nonspesifik		d. Komplemen, sel T dan sel B		
				e. Protein antimikroba, fagositosit, inflamasi		
		Menganalisis	C4	7. Kulit melakukan pertahanan terhadap mikroba B Bakl	Bakhtiar (2011)	7
		cara kerja kulit		dengan cara		
		dalam		a. Mengeluarkan antibodi		
		melakukan		b. Menghalangi masuknya mikroba ke dalam tubuh		
		pertahanan		c. Menelan dan mencerna mikroba		
		tubuh		d. Mengenali antigen		
				e. Mengenali antibodi		
3	Menjabarkan sistem	Mengidentifikasi	C1	8. Sistem kekebalan tubuh bereaksi terhadap antigen D Ferd	Ferdinand dan	8
	sistem imun spesifik	pengertian		tertentu dengan mengaktifkan sel limfosit dan	Ariebowo (2009)	
		antibodi		memproduksi protein khusus yang disebut		
				a. Antigen		
				b. Fagositosit		
				c. Interferon		
				d. Antibodi		
				e. Komplemen		
		Menentukan	C3	9. Di bawah ini termasuk jenis sel T, kecuali D Ferd	Ferdinand dan	6

Ariebowo (2009)	Ariebowo (2009)
	V
a. Sel T penolong b. Sel T suppressor c. Sel T memori d. Sel T toksik e. Sel T sitotoksik	10. Perhatikan gambar di bawah ini! Gambar di atas menunjukan cara antibodi menghacurkan patogen. Cara yang dilakukan adalah a. Netralisasi, penggumpalan, pengendapan, pengaktifan sistem komplemen b. Penggumpalan, pengendapan, pengaktifan sistem komplemen, netralisasi, pengaktifan sistem komplemen, e. Netralisasi, pengaktifan sistem komplemen,
	\$5
jenis sel T	Menganalisis cara antibodi menghancurkan patogen dalam imunitas humoral

				pengendapan, penggumpalan			
		Mengemukakan	C2	11.Yang termasuk sistem imun spesifik adalah	۵	Sudjadi dan Laila	11
		sistem spesifik		a. Fagositosit, protein komplemen, interferon		(2007)	
				b. Protein komplemen, interferon, sel B			
				c. Interferon, inflamasi, sel T			
				d. Sel B, Sel T			
				e. Membran mukosa, inflamasi, sel T			
		Mengidentifikasi	C1	12.Semua zat asing yang memicu sistem kekebalan	В	Ferdinand dan	12
		pengertian		tubuh disebut		Ariebowo (2009)	
		antigen		a. Infeksi			
				b. Antigen			
				c. Antibodi			
				d. Alergi			
				e. Inflamasi			
4	Mengklasifikasi	Menjabarkan	C2	13. Defisiensi sitem imun adalah	C	Septianing dkk	13
	penyakit pada sistem	pengertian		a. Kemampuan sistem imun dalam membedakan		(2014)	
	imun manusia	kelainan		dan mengenali antara sel tubuh dengan materi			
		defisiensi sistem		asing mengalami kegagalan			
		imun		b. Keadaan sistem pertahanan tubuh yang sangat			
				peka terhadap antigen tertentu			
				c. Kegagalan pewarisan suatu gen individu kepada			
				generasi berikutnya sehingga dihasilkan			
				makrofag yang tidak mampu mencerna dan			

			menghancurkan organisme penyerbu		_	
			d. Penyakit yang menyerang sel dalam sistem			
			imunitas yang menyebabkan berkurangnya			
			jumlah sel T			
			e. Penyakit pada sistem imun yang menganggap sel			
			tubuh adalah materi asing			
Menj	Menjabarkan	C2	14. Penolakan transplantasi hiperakut adalah B	Septianing	dkk 14	
Buad	pengertian		a. Penolakan yang terjadi terjadi beberapa hari	(2014)		
beno	penolakan		setelah transplantasi dilakukan			
trans	transplantasi		b. Penolakan yang terjadi segera begitu			
hiper	hiperakut		transplantasi dilakukan			
			c. Penolakan yang terjadi secara lambat			
			d. Penolakan yang terjadi secara tidak sadar			
			e. Penolakan yang terjadi terjadi karena adanya			
			pembekuan darah pada pembuluh dalam organ			
Meng	Mengklasifikasi	C3	15.Penolakan transplantasi dapat dibagi menjadi tiga A	Septianing	dkk 15	
beno	penolakan		kategori, yaitu	(2014)		
trans	transplantasi		a. Penolakan hiperakut, akut, kronis			
			b. Penolakan lembut, kasar, halus			
			c. Penolakan langsung, lambat, akut			
			d. Penolakan secara cepat, sadar dan tidak sadar			
			e. Penolakan kronis, lambat, akut			
Meng	Menganalisis	C4	16.HIV telah merenggut banyak sekali korban, mulai D P	Pratiwi	dkk 16	
					$\frac{1}{2}$	

	<u> </u>	kerusakan		yang tua, muda atau bahkan anak-anak. Sistem (2	(2006)	
	is	sistem imun		imunitas tubuh dilemahkan oleh virus HIV yang		
	ď.	pada penyakit		menyebabkan berbagai macam penyakit mudah		
	#	ни		masuk dan ganas. Hal tersebut menyebabkan		
				kematian yang umum dialami oleh orang yang		
				terserang HIV, karena terjadi kerusakan pada		
				a. Eritrosit		
				b. Monosit		
				c. Trombosit		
				d. Limfosit		
				e. Neutrofil		
	N	Menunjukan	C1	17.Autoimun terjadi karena A Pr	Pratiwi dkk	17
	ā	penyebab		a. Antibodi tidak mengenali jaringan tubuh dan	(2006)	
	#	terjadinya		menganggapnya sebagai antigen		
	Ā	kelainan		b. Antibodi menghancurkan jaringan tubuh yang		
	ini	auitoimun		rusak		
				c. Antibodi mengenali adanya antigen		
				d. Antibodi membiarkan antigen masuk ke dalam		
				tubuh		
				e. Antibodi menyerang antigen yang datang dari		
				dalam tubuh		
2	Menganalisis jenis- M	Menunjukan	C1	18.Kekebalan pasif secara buatan dapat diperoleh A Pr	Pratiwi dkk	18
	jenis kekebalan pada ca	cara		melalui (2	(2006)	

tubuh manusia	memperoleh		 Penyuntikkan antibodi dari manusia atau hewan 			_	
	kekebalan pasif		yang telah kebal terhadap suatu penyakit				
	secara buatan		b. ASI				
			c. Pengalaman sakit				
			d. Vaksinasi				
			e. Pengobatan				
	Menjabarkan	C2	19. Kekebalan aktif adalah	В	Rachmawati	dkk	19
	pengertian		a. Kekebalan yang tidak diharapkan		(2009)		
	kekebalan aktif		b. Kekebalan yang terjadi apabila tubuh	4			
			memperoleh sistem imun secara aktif dan				
			menghasilkan respons imun utama				
			c. Kekebalan yang muncul karena respon dari	<u>=</u>			
			adanya infeksi dan dapat sembuh				
			d. Kekebalan yang timbul karena dibuat				
			e. Kekebalan yang didapat dari pemindahan				
			antibodi dari suatu individu ke individu lainnya				
	Menunjukan	C1	20.Kekebalan aktif secara buatan dapat diperoleh C	рС	Pratiwi	dkk	20
	cara		melalui		(2006)		
	memperoleh		a. Pengalaman sakit				
	kekebalan aktif		 b. Pemberian antibodi lewat plasenta 				
	secara buatan		c. Vaksinasi				
			d. ASI				
			e. Pengobatan				

Keterangan

C1 = Pengetahuan = 9 soal

C2 = Pemahaman = 5 soal

C3 = Penerapan = 3 soal

C4 = Analisis = 3 soal

Daftar Referensi

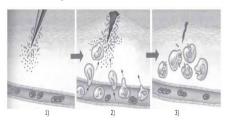
- Bakhtiar, Suaha. 2011. *Biologi untuk SMA dan MA Kelas XI*. Jakarta: Pusat Kurikulum dan Perbukuan Kementerian Pendidikan Nasional.
- Bratawidjaja, Karnen Garna dan Iris Rengganis.2010. *Imunologi Dasar Edisi ke-10*. Jakarta: Balai Penerbit FKUI.
- Ferdinand, Fictor dan Moekti Ariebowo. 2009. *Praktis Belajar Biologi 2 untuk SMA/MA Kelas XI.* Jakarta: Pusat Perbukuan Departemen

 Pendidikan Nasional.
- Pratiwi, D.A. dkk. 2006. *Biologi SMA Jilid 2 untuk Kelas XI.* Jakarta: Penerbit Erlangga.
- Rachmawati, Faidah dkk. 2009. *Biologi untuk SMA/MA Kelas XI Program IPA*. Jakarta: Pusat Perbukuan Departemen Pendidikan Nasional.
- Septianing, Rasti dkk. 2014. *Panduan Belajar Biologi 2B SMA Kelas XI.* Jakarta: Yudhistira.
- Sudjadi, Bagod dan Siti Laila. 2007. Biologi 2. Jakarta: Yudhistira.

Lampiran 15B

SOAL PRE TEST

Mata Pelajaran : Biologi Nama :

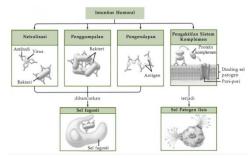

Materi : Sistem Pertahanan Tubuh Kelas :

Waktu : 40 menit TTD :

Petunjuk Umum:

1. Tulis identitas Anda (Nama, kelas, TTD) pada tempat yang tersedia

- 2. Bacalah baik-baik sebelum menjawab
- 3. Berilah tanda silang (X) pada jawaban yang paling benar.
- 4. Berdoalah sebelum mengerjakan
- Mekanisme sistem pertahanan tubuh pada manusia dibedakan menjadi dua macam, yaitu.....
 - a. Sistem imun humoral dan selular
 - b. Sistem imun garis pertahanan pertama dan kedua
 - c. Sistem imun garis pertahanan kedua dan ketiga
 - d. Sistem imun garis pertahanan pertama dan ketiga
 - e. Sistem imun nonspesifik dan spesifik
- 2. Perhatikan gambar di bawah ini.



Gambar di atas menunjukan bahwa seseorang telah mengalami.....

- a. Autoimunitas
- b. Alergi

- c. Lupus
- d. Imunodefisiensi
- e. Inflamasi
- 3. Membran mukosa menghasilkan mukus yang merupakan cairan kental yang berfungsi untuk.....
 - a. mengikat dan menggumpalkan bakteri
 - b. memproduksi bakteri
 - c. mempercepat pertumbuhan bakteri
 - d. menguraikan dinding sel bakteri
 - e. menelan bakteri
- 4. Di bawah ini termasuk ciri respons imun non spesifik, kecuali....
 - a. Bereaksi sama terhadap semua agen infeksi
 - b. Tidak membentuk sel memori terhadap agen infeksi
 - c. Memiliki memori terhadap infeksi sebelumnya
 - d. Tingkat reaksi sama pada tiap agen infeksi yang berusaha menyerang
 - e. Menghambat masuknya patogen ke dalam tubuh
- 5. Interferon bekerja dengan cara....
 - a. Menyamarkan sel target
 - b. Bereaksi terhadap sel-sel yang belum terinfeksi agar lebih kebal terhadap partikel
 - c. Menempel pada mikroba sehingga lebih mudah dikenali sel fagosit
 - d. Membawa pesan antar sel pada sistem imun
 - e. Mengenali patogen yang masuk ke dalam tubuh
- 6. Yang termasuk sistem imun non spesifik adalah....
 - a. Fagositosit, inflamasi, sel B
 - b. Sel T, Sel B, protein komplemen
 - c. Interferon, sel B, sel T
 - d. Komplemen, sel T dan sel B
 - e. Protein antimikroba, fagositosit, inflamasi
- 7. Kulit melakukan pertahanan terhadap mikroba dengan cara....
 - a. Mengeluarkan antibodi
 - b. Menghalangi masuknya mikroba ke dalam tubuh
 - c. Menelan dan mencerna mikroba
 - d. Mengenali antigen

- e. Mengenali antibodi
- 8. Sistem kekebalan tubuh bereaksi terhadap antigen tertentu dengan mengaktifkan sel limfosit dan memproduksi protein khusus yang disebut.........
 - a. Antigen
 - b. Fagositosit
 - c. Interferon
 - d. Antibodi
 - e. Komplemen
- 9. Di bawah ini termasuk jenis sel T, kecuali....
 - a. Sel T penolong
 - b. Sel T suppressor
 - c. Sel T memori
 - d. Sel T toksik
 - e. Sel T sitotoksik
- 10. Perhatikan gambar di bawahini!

Gambar di atas menunjukan cara anti bodi menghacurkan patogen. Cara yang dilakukan adalah......

- a. Netralisasi, penggumpalan, pengendapan, pengaktifan sistem komplemen
- b. Penggumpalan, pengendapan, pengaktifan sistem komplemen, netralisasi
- c. Pengendapan, netralisasi, pengaktifan sistem komplemen, penggumpalan
- d. Netralisasi, pengendapan, penggumpalan, pengaktifan sistem komplemen
- e. Netralisasi, pengaktifan sistem komplemen, pengendapan, penggumpalan
- 11. Yang termasuk sistem imun spesifik adalah....
 - a. Fagositosit, protein komplemen, interferon
 - b. Protein komplemen, interferon, sel B
 - c. Interferon, inflamasi, sel T

- d. Sel B, Sel T, sel B memori
- e. Membran mukosa, inflamasi, sel T
- 12. Semua zat asing yang memicu sistem kekebalan tubuh disebut....
 - a. Infeksi
 - b. Antigen
 - c. Antibodi
 - d. Alergi
 - e. Inflamasi
- 13. Defisiensi sitem imun adalah.....
 - a. Kemampuan sistem imun dalam membedakan dan mengenali antara sel tubuh dengan materi asing mengalami kegagalan
 - b. Keadaan sistem pertahanan tubuh yang sangat peka terhadap antigen tertentu
 - Kegagalan pewarisan suatu gen individu kepada generasi berikutnya sehingga dihasilkan makrofag yang tidak mampu mencerna dan menghancurkan organisme penyerbu
 - d. penyakit yang menyerang sel dalam sistem imunitas yang menyebabkan berkurangnya jumlah sel T
 - e. Penyakit pada sistem imun yang menganggap sel tubuh adalah materi asing
- 14. Penolakan transplantasi hiperakut adalah.....
 - a. Penolakan yang terjadi terjadi beberapa hari setelah transplantasi dilakukan
 - b. Penolakan yang terjadi terjadi segera begitu transplantasi dilakukan
 - c. Penolakan yang terjadi secara lambat
 - d. Penolakan yang terjadi secara tidak sadar
 - e. Penolakan yang terjadi terjadi karena adanya pembekuan darah pada pembuluh dalam organ
- 15. Penolakan transplantasi dapat dibagi menjadi tiga kategori, yaitu....
 - a. Penolakan hiperakut, akut, kronis
 - b. Penolakan lembut, kasar, halus
 - c. Penolakan langsung, lambat, akut
 - d. Penolakan secara cepat, sadar dan tidak sadar
 - e. Penolakan kronis, lambat, akut
- 16. HIV telah merenggut banyak sekali korban, mulai yang tua, muda atau bahkan anakanak. Sistem imun itas tubuh dilemahkan oleh virus HIV yang menyebabkan berbagai

macam penyakit mudah masuk dan ganas. Hal tersebut menyebabkan kematian yang umum dialami oleh orang yang terserang HIV, karena terjadi kerusakanpada.....

- a. Eritrosit
- Monosit
- c. Trombosit
- d. Limfosit
- e. Neutrofil

17. Autoimun terjadi karena....

- a. Antibodi tidak mengenali jaringan tubuh dan menganggapnya sebagai antigen
- b. Antibodi menghancurkan jaringan tubuh yang rusak
- c. Antibodi mengenali adanya antigen
- d. Antibodi membiarkan antigen masuk ke dalam tubuh
- e. Antibodi menyerang antigen yang datang dari dalam tubuh
- 18. Kekebalan pasif secara buatan dapat diperoleh melalui...
 - a. Penyuntikkan antibodi dari manusia atau hewan yang telah kebal terhadap suatu penyakit
 - b. ASI
 - c. Pengalaman sakit
 - d. Vaksinasi
 - e. Pengobatan
- 19. Kekebalan aktif adalah....
 - a. Kekebalan yang tidak diharapkan
 - b. Kekebalan yang terjadi apabila tubuh memperoleh sistem imun secara aktif dan menghasilkan respons imun utama
 - c. Kekebalan yang muncul karena respon dari adanya infeksi dan dapat sembuh
 - d. Kekebalan yang timbul karena dibuat
 - e. Kekebalan yang didapat dari pemindahan antibodi dari suatu individu ke individu lainnya
- 20. Kekebalan aktif secara buatan dapat diperoleh melalui.....
 - a. Pengalaman sakit
 - b. Pemberian antibodi lewat plasenta
 - c. Vaksinasi
 - d. ASI
 - e. Pengobatan

Lampiran 15C

KUNCI JAWABAN SOAL PRE TEST

1. E

11. D

2. E

12. B

3. A

13. C

4. C

14.

5. B

15. A

В

A

 C

6. E

16. D

7. B

17.

8. D

18. A

9. D

. .

19. B

10. A

20.

Lampiran 16A

KISI-KISI SOAL POST TEST

Satuan Pendidikan : MA NU 03 Sunan Katong

Kelas/Semester : XI/I

Mata Pelajaran : Biologi

Bentuk soal : Pilihan Ganda

Jumlah Soal : 20

Waktu : 1 x 40 menit

Kompetensi Dasar : 3.14 Menganalisis peran sistem imun dan

imunisasi terhadap proses fisiologi di

dalam tubuh.

Nomor Soal	-	74	3
Referensi	Sudjadi dan Laila (2007)	Sudjadi dan Laila (2007)	Sudjadi dan Laila (2007)
Kunci	ы	п	C
Soal	Mekanisme sistem pertahanan tubuh pada manusia dibedakan menjadi dua macam, yaitu Sistem imun humoral dan selular Sistem imun garis pertahanan pertama dan kedua Sistem imun garis pertahanan kedua dan ketiga Sistem imun garis pertahanan pertama dan ketiga Sistem imun garis pertahanan pertama dan ketiga Sistem imun nonspesifik dan spesifik	2. Yang termasuk sistem imun nonspesifik adalah a. Fagositosit, inflamasi, sel B b. Sel T, Sel B, protein komplemen c. Interferon, sel B, sel T d. Komplemen, sel T dan sel B e. Protein antimikroba, fagositosit, inflamasi	3. Di bawah ini termasuk ciri respons imun nonspesifik, ckecuoli a. Bereaksi sama terhadap semua agen infeksi b. Tidak membentuk sel memori terhadap agen infeksi c. Memiliki memori terhadap infeksi sebelumnya d. Tingkat reaksi sama pada tiap agen infeksi yang berusaha menyerang
Aspek Kognitif	D D	2	C3
Indikator Soal	Menunjukan mekanisme sistem imun pada manusia	m a c x	Menentukan ciri respons imun nonspesifik
Indikator Hasil Belajar	Mengidentifikasi mekanisme sistem imun pada manusia	Menjabarkan sistem Mengemukakan imun nonspesifik mekanisme yan termasuk k dalam sisten imun nonspesifil	
No.	1	2	

		e. Menghambat masuknya patogen ke dalam tubuh		_	
Menganalisis	C4	4. Kulit melakukan pertahanan terhadap mikroba dengan B	Bakhtiar (2011)	11) 4	
cara kerja kulit		cara			
dalam		a. Mengeluarkan antibodi			
melakukan		b. Menghalangi masuknya mikroba ke dalam tubuh			
pertahanan		c. Menelan dan mencerna mikroba			
tubuh		d. Mengenali antigen			
		e. Mengenali antibodi			
Menunjukan	C1	5. Membran mukosa menghasilkan mukus yang merupakan	Bakhtiar (2011)	11) 5	
fungsi mukus		cairan kental yang berfungsi untuk			
yang dihasilkan		a. Mengikat dan menggumpalkan bakteri			
oleh membran		b. Memproduksi bakteri			
mukosa		c. Mempercepat pertumbuhan bakteri			
		d. Menguraikan dinding sel bakteri			
		e. Menelan bakteri			
Menunjukan	C1	6. Interferon bekerja dengan cara	Sudjadi dan Laila	Laila 6	
cara kerja		a. Menyamarkan sel target	(2007)		
interferon		b. Bereaksi terhadap sel-sel yang belum terinfeksi agar			
		lebih kebal terhadap partikel virus			
		c. Menempel pada mikroba sehingga lebih mudah			
		dikenali sel fagosit			
		d. Membawa pesan antar sel pada sistem imun			
		e. Mengenali patogen yang masuk ke dalam tubuh			

		d. Alergi		_
		e. Inflamasi		
Mengidentifikasi	CI	10.Sistem kekebalan tubuh bereaksi terhadap antigen D	Ferdinand dan 10	
pengertian		tertentu dengan mengaktifkan sel limfosit dan	Ariebowo (2009)	
antibody		memproduksi protein khusus yang disebut		
		a. Antigen		
		b. Fagositosit		
		c. Interferon		
		d. Antibodi		
		e. Komplemen		
Menganalisis	C4	11. Perhatikan gambar di bawah inil	Ferdinand dan 11	
cara antibodi		The same of the sa	Ariebowo (2009)	
menghancurkan		1 2 3 1 1 2 3 1 3 1 3 1 3 1 3 1 3 1 3 1		
patogen dalam				
imunitas		100		
humoral				
		Gambar di atas menunjukan cara antibodi menghacurkan		
		patogen. Cara yang dilakukan adalah		
		a. Netralisasi, penggumpalan, pengendapan, pengaktifan		
		sistem komplemen		
		b. Penggumpalan, pengendapan, pengaktifan sistem		
		komplemen, netralisasi		
		c. Pengendapan, netralisasi, pengaktifan sistem		

					Kompiemen, penggumpalan			_	
					d. Netralisasi, pengendapan, penggumpalan, pengaktifan				
					sistem komplemen				
					e. Netralisasi, pengaktifan sistem komplemen,				
					pengendapan, penggumpalan				
		Menentukan		C3	12. Di bawah ini termasuk jenis sel T, kecuali	۵	Ferdinand d	dan 1	12
		jenis sel T			a. Sel T penolong		Ariebowo (2009)	_	
					b. Sel T suppressor				
					c. Sel T memori				
					d. Sel Ttoksik				
					e. Sel T sitotoksik				
4 Mengl	Mengklasifikasi	Menganalisis		C4	13. HIV telah merenggut banyak sekali korban, mulai yang tua,	_	Pratiwi d	dkk 1	13
penya	penyakit pada	kerusakan			muda atau bahkan anak-anak. Sistem imunitas tubuh		(2006)		
sisten	sistem imun	sistem	immi		dilemahkan oleh virus HIV yang menyebabkan berbagai				
manusia	sia	pada pen	penyakit		macam penyakit mudah masuk dan ganas. Hal tersebut				
		HIV			menyebabkan kematian yang umum dialami oleh orang				
					yang terserang HIV, karena terjadi kerusakan pada				
					a. Eritrosit				
					b. Monosit				
					c. Trombosit				
					d. Limfosit				
					e. Neutrofil				
		Menunjukan	_	C1	14. Autoimun terjadi karena	A	Pratiwi d	dkk 1	14

penyebab		a. Antibodi tidak mengenali jaringan tubuh dan	(2002)	
terjadinya		menganggapnya sebagai antigen		
kelainan		 b. Antibodi menghancurkan jaringan tubuh yang rusak 		
auitoimun		c. Antibodi mengenali adanya antigen		
		d. Antibodi membiarkan antigen masuk ke dalam tubuh		
		e. Antibodi menyerang antigen yang datang dari dalam		
		tubuh		
Menjabarkan	C2	15. Defisiensi sitem imun adalah	Septianing dkk	t 15
pengertian		a. Kemampuan sistem imun dalam membedakan dan	(2014)	
kelainan		mengenali antara sel tubuh dengan materi asing		
defisiensi sistem		mengalami kegagalan		
imun		b. Keadaan sistem pertahanan tubuh yang sangat peka		
		terhadap antigen tertentu		
		c. Kegagalan pewarisan suatu gen individu kepada		
		generasi berikutnya sehingga dihasilkan makrofag		
		yang tidak mampu mencerna dan menghancurkan		
		organisme penyerbu		
		d. Penyakit yang menyerang sel dalam sistem imunitas		
		yang menyebabkan berkurangnya jumlah sel T		
		e. Penyakit pada sistem imun yang menganggap sel		
		tubuh adalah materi asing		
Mengklasifikasi	C3	16.Penolakan transplantasi dapat dibagi menjadi tiga A	Septianing dkk	τ 16
penolakan		kategori, yaitu	(2014)	

	transplantasi		a. Peno	Penolakan hiperakut, akut, kronis				
			b. Peno	Penolakan lembut, kasar, halus				
			c. Peno	Penolakan langsung, lambat, akut				
			d. Peno	Penolakan secara cepat, sadar dan tidak sadar				
			e. Peno	Penolakan kronis, lambat, akut				
	Menjabarkan	C2	17. Penolaka	17. Penolakan transplantasi hiperakut adalah		Septianing	dkk 1	17
	pengertian		a. Peno	a. Penolakan yang terjadi terjadi beberapa hari setelah		(2014)		
	penolakan		trans	transplantasi dilakukan				
	transplantasi		b. Peno	Penolakan yang terjadi segera begitu transplantasi				
	hiperakut		dilak	dilakukan				
			c. Peno	Penolakan yang terjadi secara lambat				
			d. Peno	Penolakan yang terjadi secara tidak sadar				
			e. Peno	Penolakan yang terjadi terjadi karena adanya				
			peml	pembekuan darah pada pembuluh dalam organ				
Menganalisis jenis-	Menjabarkan	CZ	18. Kekebala	18. Kekebalan aktif adalah		Rachmawati	dkk 1	18
enis kekebalan	pengertian		a. Keke	Kekebalan yang tidak diharapkan	<u> </u>	(2003)		
pada tubuh	kekebalan aktif		b. Keke	Kekebalan yang terjadi apabila tubuh memperoleh				
manusia			sister	sistem imun secara aktif dan menghasilkan respons				
			imun	imun utama				
			c. Keke	Kekebalan yang muncul karena respon dari adanya				
			infek	infeksi dan dapat sembuh				
			d. Keke	Kekebalan yang timbul karena dibuat				
			e. Keke	Kekebalan yang didapat dari pemindahan antibodi dari				

			suatu individu ke individu lainnya			
Menunjukan	C1	19.Ke	19. Kekebalan aktif secara buatan dapat diperoleh melalui	U	Pratiwi dkk	119
cara		rti	a. Pengalaman sakit		(2006)	
memperoleh		ъ	 b. Pemberian antibodi lewat plasenta 			
kekebalan aktif		Ü	c. Vaksinasi			
secara buatan		Ď.	ASI			
		ai	Pengobatan			
Menunjukan	C1	20.Ke	20. Kekebalan pasif secara buatan dapat diperoleh melalui	A	Pratiwi dkk	50
cara		rti	a. Penyuntikkan antibodi dari manusia atau hewan yang		(2006)	
memperoleh			telah kebal terhadap suatu penyakit			
kekebalan pasif		þ.	ASI			
secara buatan		U	c. Pengalaman sakit			
		ņ	d. Vaksinasi			
		ď	Pengobatan			

Keterangan

C1 = Pengetahuan = 9 soal

C2 = Pemahaman = 5 soal

C3 = Penerapan = 3 soal

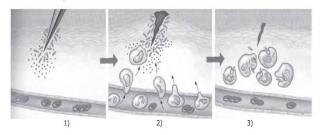
C4 = Analisis = 3 soal

Daftar Referensi

- Bakhtiar, Suaha. 2011. *Biologi untuk SMA dan MA Kelas XI.* Jakarta: Pusat Kurikulum dan Perbukuan Kementerian Pendidikan Nasional.
- Bratawidjaja, Karnen Garna dan Iris Rengganis.2010. *Imunologi Dasar Edisi ke-10* .Jakarta: Balai Penerbit FKUI.
- Ferdinand, Fictor dan Moekti Ariebowo. 2009. *Praktis Belajar Biologi 2 untuk SMA/MA Kelas XI.* Jakarta: Pusat Perbukuan Departemen

 Pendidikan Nasional.
- Pratiwi, D.A. dkk. 2006. *Biologi SMA Jilid 2 untuk Kelas XI.* Jakarta: Penerbit Erlangga.
- Rachmawati, Faidah dkk. 2009. *Biologi untuk SMA/MA Kelas XI Program IPA*. Jakarta: Pusat Perbukuan Departemen Pendidikan Nasional
- Septianing, Rasti dkk. 2014. *Panduan Belajar Biologi 2B SMA Kelas XI.* Jakarta: Yudhistira.
- Sudjadi, Bagod dan Siti Laila. 2007. Biologi 2. Jakarta: Yudhistira.

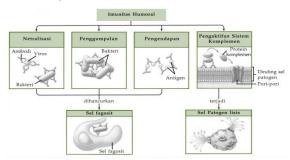
Lampiran 16B


SOAL POST TEST

Mata Pelajaran: BiologiNama:Materi: Sistem Pertahanan TubuhKelas:Waktu: 40 menitTTD:

Petunjuk Umum:

- 1. Tulis identitas Anda (Nama, kelas, TTD) pada tempat yang tersedia
- 2. Bacalah baik-baik sebelum menjawab
- 3. Berilah tanda silang (X) pada jawaban yang paling benar
- 4. Berdoalah sebelum mengeriakan
- Mekanisme sistem pertahanan tubuh pada manusia dibedakan menjadi dua macam, yaitu......
 - a. Sistem imun humoral dan selular
 - b. Sistem imun garis pertahanan pertama dan kedua
 - c. Sistem imun garis pertahanan kedua dan ketiga
 - d. Sistem imun garis pertahanan pertama dan ketiga
 - e. Sistem imun nonspesifik dan spesifik
- Yang termasuk sistem imun nonspesifik adalah....
 - a. Fagositosit, inflamasi, sel B
 - b. Sel T, Sel B, protein komplemen
 - c. Interferon, sel B, sel T
 - d. Komplemen, sel T dan sel B
 - e. Protein antimikroba, fagositosit, inflamasi
- 3. Di bawah ini termasuk ciri respons imun nonspesifik, kecuali....
 - Bereaksi sama terhadap semua agen infeksi
 - b. Tidak membentuk sel memori terhadap agen infeksi
 - c. Memiliki memori terhadap infeksi sebelumnya
 - d. Tingkat reaksi sama pada tiap agen infeksi yang berusaha menyerang
 - e. Menghambat masuknya patogen ke dalam tubuh
- 4. Kulit melakukan pertahanan terhadap mikroba dengan cara....
 - a. Mengeluarkan antibodi
 - b. Menghalangi masuknya mikroba ke dalam tubuh


- c. Menelan dan mencerna mikroba
- d. Mengenali antigen mikroba
- e. Mengenali antibodi
- 5. Membran mukosa menghasilkan mukus yang merupakan cairan kental yang berfungsi untuk.....
 - a. mengikat dan menggumpalkan bakteri
 - b. memproduksi bakteri
 - c. mempercepat pertumbuhan bakteri
 - d. menguraikan dinding sel bakteri
 - e. Menelan bakteri
- 6. Interferon bekerja dengan cara....
 - a. Menyamarkan sel target
 - b. Bereaksi terhadap sel-sel yang belum terinfeksi agar lebih kebal terhadap partikel virus
 - c. Menempel pada mikroba sehingga lebih mudah dikenali sel fagosit
 - d. Membawa pesan antar sel pada sistem imun
 - e. Mengenali patogen yang masuk ke dalam tubuh
- 7. Perhatikan gambar di bawah ini.

Gambar di atas menunjukan bahwa seseorang telah mengalami.....

- a. Autoimunitas
- b. Alergi
- c. Inflamasi
- d. Lupus
- e. Inflamasi
- 8. Yang termasuk sistem imun spesifik adalah....
 - a. Fagositosit, protein komplemen, interferon
 - b. Protein komplemen, interferon, sel B

- c. Interferon, inflamasi, sel T
- d. Sel B, Sel T, sel B memori
- e. Membran mukosa, inflamasi, sel T
- 9. Semua zat asing yang memicu sistem kekebalan tubuh disebut....
 - a. Infeksi
 - b. Antigen
 - c. Antibodi
 - d. Inflamasi
 - e. Inflamasi
- Sistem kekebalan tubuh bereaksi terhadap antigen tertentu dengan mengaktifkan sel limfosit dan memproduksi protein khusus yang disebut.......
 - a. Antigen
 - b. Fagositosit
 - c. Interferon
 - d. Antibodi
 - e. Komplemen
- 11. Perhatikan gambar di bawah ini!

Gambar di atas menunjukan cara antibodi menghacurkan patogen. Cara yang dilakukan adalah......

- a. Netralisasi, penggumpalan, pengendapan, pengaktifan sistem komplemen
- b. Penggumpalan, pengendapan, pengaktifan sistem komplemen, netralisasi
- c. Pengendapan, netralisasi, pengaktifan sistem komplemen, penggumpalan
- d. Netralisasi, pengaktifan sistem komplemen, pengendapan, penggumpalan
- e. Netralisasi, pengaktifan sistem komplemen, pengendapan, penggumpalan
- 12. Di bawah ini termasuk jenis sel T, kecuali....
 - a. Sel T penolong

- b. Sel T suppressor
- c. Sel T memori
- d. Sel T toksik
- e. Sel T sitotoksik
- 13. HIV telah merenggut banyak sekali korban, mulai yang tua, muda atau bahkan anakanak. Sistem imunitas tubuh dilemahkan oleh virus HIV yang menyebabkan berbagai macam penyakit mudah masuk dan ganas. Hal tersebut menyebabkan kematian yang umum dialami oleh orang yang terserang HIV, karena terjadi kerusakan pada.....
 - a. Eritrosit
 - b. Monosit
 - c. Trombosit
 - d. Limfosit
 - e. Neutrofil
- 14. Autoimun teriadi karena....
 - a. Antigen tidak mengenali jaringan tubuh dan menganggapnya sebagai antigen
 - b. Antibodi menghancurkan jaringan tubuh yang rusak
 - c. Antibodi mengenali adanya antigen
 - d. Antibodi menyerang antigen yang datang dari dalam tubuh
 - e. Antibodi menyerang antigen yang datang dari dalam tubuh
- 15. Defisiensi sitem imun adalah.....
 - a. Kemampuan sistem imun dalam membedakan dan mengenali antara sel tubuh dengan materi asing mengalami kegagalan
 - b. Keadaan sistem pertahanan tubuh yang sangat peka terhadap antigen tertentu
 - Kegagalan pewarisan suatu gen individu kepada generasi berikutnya sehingga dihasilkan makrofag yang tidak mampu mencerna dan menghancurkan organisme penyerbu
 - d. penyakit yang menyerang sel dalam sistem imunitas yang menyebabkan berkurangnya jumlah sel T
 - e. Penyakit pada sistem imun yang menganggap sel tubuh adalah materi asing
- 16. Penolakan transplantasi dapat dibagi menjadi tiga kategori, yaitu....
 - Penolakan hiperakut, akut, kronis
 - b. Penolakan lembut, kasar, halus
 - c. Penolakan langsung, lambat, akut
 - d. Penolakan kronis, lambat, akut

- e. Penolakan kronis, lambat, akut
- 17. Penolakan transplantasi hiperakut adalah.....
 - a. Penolakan yang terjadi terjadi beberapa hari setelah transplantasi dilakukan
 - b. Penolakan yang terjadi terjadi segera begitu transplantasi dilakukan
 - c. Penolakan yang terjadi secara lambat
 - d. Penolakan yang terjadi terjadi karena adanya pembekuan darah pada pembuluh dalam organ
 - Penolakan yang terjadi terjadi karena adanya pembekuan darah pada pembuluh dalam organ
- 18. Kekebalan aktif adalah....
 - a. Kekebalan yang terjadi apabila tubuh memperoleh sistem imun secara aktif dan menghasilkan respons imun utama
 - b. Kekebalan yang muncul karena respon dari adanya infeksi dan dapat sembuh
 - c. Kekebalan yang timbul karena dibuat
 - d. Kekebalan yang didapat dari pemindahan antibodi dari suatu individu ke individu lainnya
 - e. Kekebalan yang didapat dari pemindahan antibodi dari suatu individu ke individu lainnya
- 19. Kekebalan aktif secara buatan dapat diperoleh melalui.....
 - a. Pengalaman sakit
 - b. Pemberian antibodi lewat plasenta
 - c. Vaksinasi
 - d. ASI
 - e. Pengobatan
- 20. Kekebalan pasif secara buatan dapat diperoleh melalui...
 - a. Penyuntikkan antibodi dari manusia atau hewan yang telah kebal terhadap suatu penyakit
 - b. ASI
 - c. Pengalaman sakit
 - d. Vaksinasi
 - e. Pengobatan

Lampiran 16C

KUNCI JAWABAN SOAL POST TEST

1. E

11. A

2. E

12. D

3. C

13. D

4. B

14. A

5. A

15. C

A

В

В

6. B

16.

7. E

17.

8. D

18.

9. B

19.

. C

10. D

20. A

Lampiran 17

NILAI *PRE TEST* MATERI SISTEM PERTAHANAN TUBUH KELAS EKSPERIMEN (XI IPA 1) DAN KELAS KONTROL (XI IPA 2)

No	KELAS EKSPERIMEN	KELAS KONTROL
	(XI IPA 1)	(XI IPA 2)
1	70	45
2	55	65
3	70	30
4	45	55
5	35	60
6	70	40
7	65	35
8	50	40
9	40	60
10	55	40
11	35	50
12	40	55
13	30	45
14	60	35
15	65	40
16	55	50
17	50	50
18	35	40
19	40	60
20	65	65
21	50	55
22	40	45
23	60	55
24	35	65
25	60	45
26	50	50
27	45	40
28	50	50
29	40	55
30	35	50
31	70	55
32	55	
33	40	
34	55	

UJI NORMALITAS DATA TAHAP AWAL NILAI *PRE TEST* KELAS EKSPERIMEN (XI IPA 1)

Hipotesis	<u>i</u>				
H_0	: Data bere	distribusi no	ormal		
H_1	: Data tida	k berdistrib	ousi normal		
Pengujian	Hipotesis				
	k (0	E>2			
ν ² =	507	E_i			
λ	$\sum_{i=1}^{k} \frac{(O_i = 1)^{k}}{E}$	Ç			
		-			
Kriteria y	ang digun	akan			
H_0	diterima jik	$lpha~m{\chi}^2_{~hitu}$	$_{mg}<\chi^2_{tabel}$		
Pengujiar	ı Hipotesi	<u>s</u>			
Nilai maks	imal		= 70		
Nilai minir			= 30		
Rentang n			= 70 - 30 = 40		
	a kelas (k)		$= 1 + 3,3 \log 34$	= 6.05 = 6 kelas	
Panjang ke	elas (P)		=40/6=6.66=7		
	m 1 1 5				
				dan Standar Dev	riasi
	No	X	X-X	(X-X)^	
	1	70	19,55882353	382,5475779	
	2	55	4,558823529	20,78287197	
	3	70	19,55882353	382,5475779	
	4	45	-5,441176471	29,60640138	
	5	35	-15,44117647	238,4299308	
	6	70	19,55882353	382,5475779	
	7	65	14,55882353	211,9593426	
	8	50	-0,441176471	0,194636678	
	9	40	-10,44117647	109,0181661	
	10	55	4,558823529	20,78287197	
	11	35	-15,44117647	238,4299308	
	12	40	-10,44117647	109,0181661	
	13	30	-20,44117647	417,8416955	
	14	60	9,558823529	91,37110727	
	15	65	14,55882353	211,9593426	
	16	55	4,558823529	20,78287197	
	17	50	-0,441176471	0,194636678	
	18	35	-15,44117647	238,4299308	
	19	40	-10,44117647	109,0181661	
	20	65	14,55882353	211,9593426	
	21	50	-0,441176471	0,194636678	
	22	40	-10,44117647	109,0181661	
	23	60	9,558823529	91,37110727	
	24	35	-15,44117647	238,4299308	
	25	60	9,558823529	91,37110727	

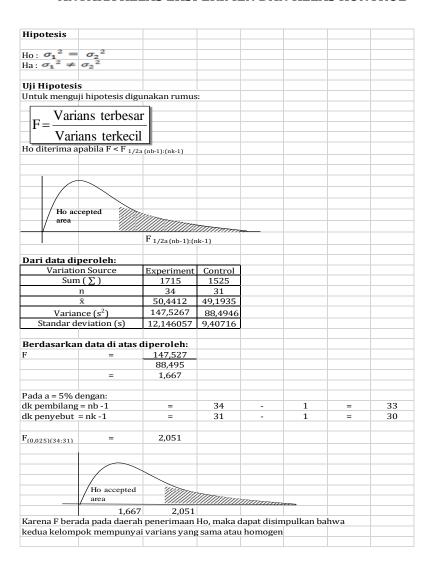
		1											
	26	50	-0,441176471	0,194636678									
	27	45	-5,441176471	29,60640138									
	28	50	-0,441176471	0,194636678									
	29	40	-10,44117647	109,0181661									
	30	35	-15,44117647	238,4299308									
	31	70	19,55882353	382,5475779									
	32	55	4,558823529	20,78287197									
	33	40	-10,44117647	109,0181661									
	34	55	4,558823529	20,78287197									
	jumlah	1715	1,000000000	4868,382353									
	_	. 6.	ΣX	1715	•		50,44118						
	Rata-ra	ata $(\overline{X}) =$	<u>Σ</u> X N	34		=							
	Standar I	eviasi (S):	S ²	=	$\sum (X - \overline{X})^2$								
	Standar L	cvasi(5).			n-1								
				=	4868,382								_
				_	33								-
				=	147,5267								-
			S		12,14606								
			J		12,14000								-
Daftar Fr	ekuensi	Nilai Awal	Kelas XI IPA 1										
		That I know	IXCIIIS AI II AI I						Luas			(0 - F) ²	
No	Kelas			Bk	Zi		$P(Z_i)$		Daerah	O_i	E _i	$\frac{(O_i - E_i)^2}{E_i}$	
				29,5	-1,72411		0,457656		Duciun				_
1	30	-	36	2/4/	1,72411		0,457050		0,083183	6	2,828222694	3 5570648	
1	30	-	30	36,5	-1,14779		0,374473		0,005105	0	2,020222074	3,3370040	_
2	37	-	43	50,5	1,14777		0,574475		0,158312	6	5,382604152	0.0708166	
	31	-	43	43,5	-0,57148		0,216161		0,136312	0	3,362004132	0,0708100	-
2	44		50	43,3	-0,3/146		0,210101		0.210002	- 7	7.41517/001	0.0222450	-
3	44	-	50	50,5	0,004843		-0,00193		0,218093	7	7,415176901	0,0232438	-
				30,3	0,004843		-0,00193		0.017500		7.205072041	0.7757027	-
4	51	-	57	50.5	0.5011.63		0.21042		0,217502	5	7,395073841	0,7/5/02/	-
	#0			57,5	0,581162		-0,21943		0.455000		# 0000 10 #OF	4.0044400	-
5	58	-	64	<i>(15</i>	1.1574	00204	0.0774	<1000	0,157028	3	5,338940507	1,0246682	-
			71	64,5	1,1574	80304	-0,3764	61909	0.002061		2.700001122	< 2522011	-
6	65	-	71	71.5	1 7227	000.40	0.4505	22110	0,082061	7	2,790081132	6,3522944	-
				71,5	1,7337	98949	-0,4585	25119		24		F 4515	_
		Ju	mlah				+			34		5,4515	 -
Vata													-
Keteranga	an =	Datas k: 1:	ıs bawah - 0,5 ata	un kataa kala :	0.5								-
Bk 7		Bk -X	is vawaii - 0,5 ala	au oatas keias ata	15 + 0,0								-
Z _i	=	5											-
D/7 :			1 - 1 12 - 21	11			1.0 //2						-
$P(Z_i)$	=		da tabel luas di ba	iwan lengkung ku	rva normal	standar d	arı O s/d Z						-
Luas Dae		$P(Z_1) - P(Z_1)$											
E_i	=	Luas daer	ah x N										
0,	=	f_i											
Untuk α =	5%, deng	an $dk = 6$ -	1 = 5 diperoleh X	2 tabel = 11,070									
	,			. ,									

UJI NORMALITAS DATA TAHAP AWAL NILAI *PRE TEST* KELAS KONTROL XI IPA 2

: Data ber	distribusi	normal	
: Data tida	k berdistr	ribusi normal	
otesis			
	>2		
$\sum_{i=1}^{k} (O_i)$	$=E_i)^2$		
/	E_{\cdot}		
g digunak	an	_	
diterima ji	ika $oldsymbol{\mathcal{X}}^{2}{}_{hi}$	$_{tung} < \chi^2_{tabel}$	
<u>ipotesis</u>			
ıl		= 65	
		= 30	
(R)		= 65-30= 35	
elas (k)		$= 1 + 3,3 \log 31 = 5,92$	= 6
(P)		=35/6=5.83=6	
	_		
		lencari Rata-rata da	
No	X	X-X	(X- X)^
1	45	-4,1935484	17,58584807
2	65	15,8064516	249,84391259
3	30	-19,1935484	368,39229969
4	55	5,8064516	33,71488033
5	60	10,8064516	116,77939646
6	40	-9,1935484	84,52133195
7	35	-14,1935484	201,45681582
8	40	-9,1935484	84,52133195
9	60	10,8064516	116,77939646
10	40	-9,1935484	84,52133195
11	50	0,8064516	0,65036420
12	55	5,8064516	33,71488033
13	45	-4,1935484	17,58584807
14	35	-14,1935484	201,45681582
15	40	-9,1935484	84,52133195
16	50	0,8064516	0,65036420
17	50	0,8064516	0,65036420
18	40	-9,1935484	84,52133195
19	60	10,8064516	116,77939646
20	65	15,8064516	249,84391259
21	55	5,8064516	33,71488033
22	45	-4,1935484	17,58584807
23	55	5,8064516	33,71488033
24	65	15,8064516	249,84391259
25	45	-4,1935484	17,58584807
26	50	0,8064516	0,65036420
27	40	-9,1935484	84,52133195
28	50	0,8064516	0,65036420
29	55	5,8064516	33,71488033
30	50	0,8064516	0,65036420
31	55	5,8064516	33,71488033
JUMLAH	1525		2654,83870968

	Rata-rata	(<u>v</u>) =	<u>Σ</u> X	_	<u>525</u>	_	49,1935					
	-ww rate	· (M)	N	_	31							
	Standar I	Deviasi (S) :		S ²	=	$\sum (X - \overline{X})^2$						
						n-1						
					=	<u>2654,84</u> 30						
					=	88,4946						
				S	=	9,40716						
	Dofton E	ualmanai 1	Nilai Awal Kelas XI	IIDA 2								
No	Kelas	rekuensi	<u>Niiai Awai Keias Ai</u>	Bk	Z _i		P(Z _i)		Luas Daerah	0 _i	Ei	$\frac{(O_i - E_i)^2}{E_i}$
				29,5	-2,0935		0,48185		Dacran			L _i
1	30	-	35	27,0	2,0700		0)10100		0,054591	3	1,69230719	1,01049
				35,5	-1,4557		0,42726					
2	36		41						0,133980	6	4,15337713	0,82102
				41,5	-0,8178		0,29328					
3	42		47						0,221841	4	6,8770743	1,20365
				47,5	-0,18		0,07143					
4	48	-	53						0,247881	5	7,68430921	0,93769
				53,5	0,45778		-0,1764					
5	54		59						0,186926	6	5,79470512	0,00727
				59,5	1,095	596725	-0,3633	72352				
6	60		65						0,095116	7	2,94860033	5,56665
				65,5	1,733	408903	-0,4584	88492				
				Jumlah						31		9,5468
eterangan												
k	=	Batas kela Bk –X	s bawah - 0,5 atau t	oatas kelas	atas + 0,5							

IIntukα – 506	dongon d	lk = 6 1 = 1	5 dinaralah V ² tahal =	11 070			
Untuk $\alpha = 5\%$, dengan $dk = 6 - 1 = 5$ diperoleh X^2 tabel = 11,070							


 $P(Z_i)$ Luas Daerah

 $= P(Z_1) - P(Z_2)$ = Luas daerah x N

= Nilai Z_i pada tabel luas di bawah lengkung kurva normal standar dari O s/d Z

Karena $X^2_{hitung} < X^2_{tabel}$ maka distribusi data awal di kelas XI IPA 2 berdistribusi NORMAL

UJI HOMOGENITAS DATA TAHAP AWAL NILAI PRE TEST ANTARA KELAS EKSPERIMEN DAN KELAS KONTROL

UJI PERSAMAAN DUA RATA-RATA NILAI *PRE TEST* ANTARA KELAS EKSPERIMEN DAN KELAS KONTROL

SILABUS PEMBELAJARAN

Sekolah : MA NU 03 Sunan Katong

Mata Pelajaran : Biologi

Kelas : XI (Sebelas)

Semester : 1 (Satu)

KI 1 : 1. Menghayati dan mengamalkan ajaran agama yang dianutnya.

KI 2 : 2. Menghayati dan mengamalkan perilaku jujur, disiplin, tanggung jawab, peduli (gotong royong, kerjasama, toleran,

damai), santun, responsif dan proaktif dan menunjukan sikap sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta dalam menempatkan diri sebagai cerminan bangsa

dalam pergaulan dunia.

KI 3 : 3. Memahami, menerapkan dan menganalisis pengetahuan

faktual, konseptual, prosedural dan metakognitif berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya

untuk memecahkan masalah.

KI 4 : 4. Mengolah, menalar, dan menyaji dalam ranah konkret dan

ranah abstrak terkait dengan pengembangan dari yang dipelajarinya di sekolah secara mandiri, bertindak secara

efektif dan kreatif, serta mampu menggunakan metoda sesuai

4. Menganalisis dan menyimpulkan hasil analisis proses terbentuknya kekebalan tubuh yang dapat terjadi secara pasif-aktif dan terjadi karena bekerjanya jaringan tubuh yang melawan benda asing masuk ke dalam tubuh. 5. Menjelaskan secara lisan tentang mekanisme terbentuknya sistem kekebalan dalam tubuh, dapat terganggu akibat berbagai sebab dan istilah-istilah baru yang berkaitan dengan sistem kekebalan	4. Menganalisis dan menyimpulkan hasil analisis proses terbentuknya kekebalan tubuh yang dapat terjadi secara pasif-aktif dan terjadi karena bekerjanya jaringan tubuh yang melawan benda asing masuk ke dalam tubuh 5. Menjelaskan secara lisan tentang mekanisme terbentuknya sistem kekebalan dalam tubuh, dapat terganggu akibat berbagai sebab dan istilah-istilah baru yang berkaitan dengan sistem kekebalan													
		4. Menganalisis dan menyimpulkan hasil	analisis proses terbentuknya	kekebalan tubuh yang dapat terjadi	secara pasif-aktif dan terjadi karena	bekerjanya jaringan tubuh yang	melawan benda asing masuk ke dalam	tubuh	5. Menjelaskan secara lisan tentang	mekanisme terbentuknya sistem	kekebalan dalam tubuh, dapat	terganggu akibat berbagai sebab dan	istilah-istilah baru yang berkaitan	dengan sistem kekebalan

Semarang, 20 Oktober 2017

SUNDRIVATION SUNAN KATONG

Peneliti

Devi Atiek Afiyani

NIM. 133811007

Lampiran 23A

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) (KELAS EKSPERIMEN)

Sekolah : MA NU 03 Sunan Katong

Mata Pelajaran : Biologi

Kelas / Semester : XI (Sebelas) / 1 (Satu)

Alokasi Waktu : 6 x 45 menit

A. Kompetensi Inti (KI)

- 3. Memahami, menerapkan dan menganalisis pengetahuan faktual, konseptual, prosedural dan metakognitif berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah.
- 4. Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengan pengembangan dari yang dipelajarinya di sekolah secara mandiri, bertindak secara efektif dan kreatif, serta mampu menggunakan metoda sesuai kaidah keilmuan.

B. Kompetensi Dasar dan Indikator Pencapaian

ŀ	Kompetensi Dasar		Indikator Pencapaian
3.14	Menganalisis peran	3.14.1	Mengidentifikasi mekanisme sistem
	sistem imun dan		imun pada manusia (C1)
	imunisasi terhadap	3.14.2	Menjabarkan sistem imun nonspesifik
	proses fisiologi di		(C2)
	dalam tubuh (C4)	3.14.3	Menjabarkan sistem sistem imun
			spesifik (C2)
		3.14.4	Mengklasifikasi penyakit pada sistem
			imun manusia (C3)
		3.14.5	Menganalisis jenis-jenis kekebalan
			pada tubuh manusia (C4)

C. Materi Pembelajaran

- 1. Sistem imun non spesifik
- 2. Sistem imun spesifik
- 3. Kelainan pada sistem imun
- 4. Imunisasi

D. Kegiatan Pembelajaran

Pertemuan Pertama (2 x 45 menit)

Model Pembelajaran : Cooperative learning tipe STAD

Metode Pembelajaran : Diskusi kelompok

Langkah Pembelajaran	Sintaks Model Pembelajaran	Deskripsi	Alokasi Waktu
Kegiatan Pendahuluan		1. Guru mengucapkan salam dan berdo'a 2. Guru menanyakan kabar siswa 3. Guru mengkonfirmasi kehadiran siswa 4. Guru membangun apersepsi dengan memberi pertanyaan "apa fungsi sistem pertahanan tubuh?"	5 menit
Kegiatan Inti	Merumuskan tujuan	Guru memberikan orientasi pembelajaran dengan menyampaikan tujuan pembelajaran	3 menit
	Menyajikan informasi	1. Guru menjelaskan materi tentang pengertian sistem imun, fungsi sistem imun dan sistem imun nonspesifik 2. Guru menjelaskan tentang	20 menit

membentuk kelompok Membentuk kelompok Membentuk kelompok Mendempok Membentuk siswa untuk berkelompok dengan satu kelompok terdiri dari 5 orang yang ditentukan oleh guru 2. Guru membagikan lembar kerja siswa serta membagikan potongan potongan potongan potongan biopuzzle yang masih acak kepada setiap kelompok 3. Guru menjelaskan cara menyusun media biopuzzle Bekerja dalam l. Siswa dalam kelompok Bekerja dalam l. Siswa dalam kelompok berdiskusi untuk menyusun potongan biopuzzle emenjadi satuan gambar yang utuh 2. Siswa berdiskusi dan memahami materi yang terdapat pada biopuzzle yang telah menjadi kesatuan gambar yang utuh 3. Guru membimbing setiap kelompok dalam berdiskusi				
Membentuk kelompok 1. Guru meminta siswa untuk berkelompok dengan satu kelompok terdiri dari 5 orang yang ditentukan oleh guru 2. Guru membagikan lembar kerja siswa serta membagikan potongan-potongan-potongan-potongan biopuzzle yang masih acak kepada setiap kelompok 3. Guru menjelaskan cara menyusun media biopuzzle Bekerja dalam kelompok Bekerja dalam kelompok 1. Siswa dalam kelompok berdiskusi untuk menyusun potongan biopuzzle menjadi satuan gambar yang utuh 2. Siswa berdiskusi dan memahami materi yang terdapat pada biopuzzle yang telah menjadi kesatuan gambar yang utuh 3. Guru membimbing setiap kelompok dalam berdiskusi			cooperative learning tipe	
kelompok 3. Guru menjelaskan cara menyusun media biopuzzle Bekerja dalam kelompok Bekerja dalam kelompok berdiskusi untuk menyusun potongan biopuzzle menjadi satuan gambar yang utuh 2. Siswa berdiskusi dan memahami materi yang terdapat pada biopuzzle yang terdapat pada biopuzzle yang telah menjadi kesatuan gambar yang utuh 3. Guru membimbing setiap kelompok dalam berdiskusi			Guru meminta siswa untuk berkelompok dengan satu kelompok terdiri dari 5 orang yang ditentukan oleh guru Guru membagikan lembar kerja siswa serta membagikan potongan- potongan biopuzzle mantukan siswa yang masih satu	5 menit
Bekerja dalam kelompok berdiskusi untuk menyusun potongan biopuzzle menjadi satuan gambar yang utuh 2. Siswa berdiskusi dan memahami materi yang terdapat pada biopuzzle yang telah menjadi kesatuan gambar yang utuh 3. Guru membimbing setiap kelompok dalam berdiskusi		3.	kelompok Guru menjelaskan cara menyusun media	
kelompok	,	2.	Siswa dalam kelompok berdiskusi untuk menyusun potongan biopuzzle menjadi satuan gambar yang utuh Siswa berdiskusi dan memahami materi yang terdapat pada biopuzzle yang telah menjadi kesatuan gambar yang utuh Guru membimbing setiap kelompok dalam berdiskusi Siswa dalam	20 menit

	bekerja sama untuk menjawab soal yang terdapat dalam LK (lembar kerja)	
Presentasi hasil kerja kelompok	Guru memerintahkan siswa yang cepat belajar untuk mengajari siswa yang lambat belajar pada masing-masing kelompok	5 menit
Menerima umpan balik (Penghargaan kelompok)	1. Guru memberikan kuis dan siswa mengerjakan kuis tersebut secara individu 2. Guru mengevaluasi hasil kuis yang telah dikerjakan oleh masing- masing siswa dan siswa mencocokkan jawaban kuis tersebut 3. Guru mrnghitung kemajuan skor individu dengan cara menghitung kenaikan skor dan dibandingkan dengan skor nilai pre test 4. Guru menghitung skor kemajuan kelompok untuk mengetahui kelompok yang mendapatkan skor terbaik dengan cara menjumlahkan semua skor kemajuan individu 5. Guru memberi	27 menit
	penghargaan	

	pada kelompok yang mendapatkan skor terbaik
Kegiatan Penutup	1. Guru memberi kesempatan pada siswa untuk bertanya mengenai materi yang belum jelas 2. Guru bersama siswa mengulas kembali secara singkat materi yang telah dipelajari
	3. Guru menutup pembelajaran dengan berdoa bersama siswa dan mengucapkan salam

Pertemuan Kedua (2 x 45 menit)

Model Pembelajaran : Cooperative learning tipe STAD

Metode Pembelajaran : Diskusi kelompok

Langkah	Sintaks Model		Alokasi
Pembelajaran	Pembelajaran	Deskripsi	Waktu
Kegiatan Pendahuluan		Guru mengucapkan salam dan berdo'a Guru menanyakan kabar siswa Guru mengkonfirmasi kehadiran siswa Guru membangun apersepsi dengan memberi pertanyaan "apakah ada yang mengetahui tentang sistem	5 menit
Kegiatan Inti	Merumuskan tujuan	imun spesifik?" Guru memberikan orientasi pembelajaran dengan menyampaikan tujuan pembelajaran	3 menit
	Menyajikan informasi	Guru menjelaskan materi tentang sistem imun spesifik Guru menjelaskan kembali tentang model pembelajaran cooperative learning tipe STAD	20 menit
	Membentuk kelompok	1. Guru meminta siswa untuk berkelompok dengan satu kelompok terdiri dari 5 orang yang ditentukan oleh guru 2. Guru membagikan lembar kerja siswa serta membagikan potongan potongan biopuzzle yang masih acak kepada setiap kelompok 3. Guru menjelaskan	5 menit

Т		lrombol:	
		kembali cara menvusun media	
		menyusun media <i>biopuzzle</i>	
	Bekerja dalam	1. Siswa dalam	20 menit
	Bekerja dalam kelompok	kelompok	20 memt
	кетопірок	berdiskusi untuk	
		menyusun	
		potongan	
		biopuzzle menjadi	
		satuan gambar	
		yang utuh	
		2. Siswa berdiskusi	
		dan memahami	
		materi yang	
		terdapat pada	
		biopuzzle yang	
		telah menjadi	
		kesatuan gambar	
		yang utuh	
		3. Guru membimbing	
		setiap kelompok	
		dalam berdiskusi	
		4. Siswa dalam	
		kelompok bekerja	
		sama untuk	
		menjawab soal	
		yang terdapat	
		dalam LK (lembar kerja)	
	Presentasi hasil	Guru memerintahkan	5 menit
	kerja kelompok	siswa yang cepat	3 meme
	kerja kelollipok	belajar untuk	
		mengajari siswa yang	
		lambat belajar pada	
		masing-masing	
		kelompok	
	Menerima umpan	1. Guru memberikan	27 menit
	balik	kuis dan siswa	
	(Penghargaan	mengerjakan kuis	
	kelompok)	tersebut secara	
		individu	
		2. Guru mengevaluasi	
		hasil kuis yang	
		telah dikerjakan	
		oleh masing-	
		masing siswa dan	
		siswa mencocokkan	
		jawaban kuis	
		tersebut	
		3. Guru menghitung	
		J. duru mengintung	

	kemajuan skor individu dengan cara menghitung kenaikan skor dan dibandingkan dengan skor nilai kuis pada pertemuan pertama 4. Guru menghitung skor kemajuan kelompok untuk mengetahui kelompok yang mendapatkan skor terbaik dengan cara menjumlahkan semua skor kemajuan individu 5. Guru memberi penghargaan pada kelompok yang mendapatkan skor
Kegiatan Penutup	terbaik 1. Guru memberi kesempatan pada siswa untuk bertanya mengenai materi yang belum jelas 2. Guru bersama siswa mengulas kembali secara singkat materi yang telah dipelajari 3. Guru menutup pembelajaran dengan berdoa bersama siswa dan mengucapkan salam

Pertemuan Ketiga (2 x 45 menit)
Model Pembelajaran : Cooperative learning tipe STAD
Metode Pembelajaran : Diskusi kelompok

Metode Pembe			
Langkah Pembelajaran	Sintaks Model Pembelajaran	Deskripsi	Alokasi Waktu
Kegiatan Pendahuluan		Guru mengucapkan salam dan berdo'a Guru menanyakan kabar siswa Guru mengkonfirmasi kehadiran siswa Guru menayangkan gambar tentang penyakit HIV / AIDS	5 menit
Kegiatan Inti	Merumuskan tujuan	Guru memberikan orientasi pembelajaran dengan menyampaikan tujuan pembelajaran	3 menit
	Menyajikan informasi	Guru menjelaskan materi tentang kelainan pada sistem imun dan imunisasi Guru menjelaskan kembali tentang model pembelajaran cooperative learning tipe STAD	10 menit
	Membentuk kelompok	1. Guru meminta siswa untuk berkelompok dengan satu kelompok terdiri dari 5 orang yang ditentukan oleh guru 2. Guru membagikan lembar kerja siswa serta membagikan potonganpotongan biopuzzle yang masih acak kepada setiap kelompok 3. Guru menjelaskan	5 menit
		kembali cara menyusun media	

	T	1
	biopuzzle	
Bekerja dalam kelompok	Siswa dalam kelompok berdiskusi untuk menyusun potongan biopuzzle menjadi satuan gambar yang utuh	20 menit
	Siswa berdiskusi dan memahami materi yang terdapat pada biopuzzle yang telah menjadi kesatuan gambar yang utuh Guru membimbing setiap kelompok	
	dalam berdiskusi 4. Siswa dalam kelompok bekerja sama untuk menjawab soal yang terdapat dalam LK (lembar kerja)	
Presentasi hasil kerja kelompok	Guru memerintahkan siswa yang cepat belajar untuk mengajari siswa yang lambat belajar pada masing-masing kelompok	5 menit
Menerima umpan balik (Penghargaan kelompok)	1. Guru memberikan kuis dan siswa mengerjakan kuis tersebut secara individu 2. Guru mengevaluasi hasil kuis yang telah dikerjakan oleh masing-masing siswa dan siswa mencocokkan jawaban kuis tersebut 3. Guru menghitung	20 menit
	3. Guru menghitung kemajuan skor individu dengan	

	cara menghitung kenaikan skor dan dibandingkan dengan skor nilai kuis pada pertemuan kedua 4. Guru menghitung skor kemajuan kelompok untuk mengetahui kelompok yang mendapatkan skor terbaik dengan	
	menjumlahkan semua skor kemajuan individu 5. Guru memberi penghargaan pada kelompok yang mendapatkan skor terbaik	
Kegiatan Penutup	1. Guru memberi kesempatan pada siswa untuk bertanya mengenai materi yang belum jelas 2. Guru bersama siswa mengulas kembali secara singkat materi	2 menit
	yang telah dipelajari 3. Siswa mengerjakan soal post test yang dibagikan oleh guru	
	4. Guru menutup pembelajaran dengan berdoa bersama siswa dan mengucapkan salam	

E. Penilaian

Teknik penilaian : Pretest dan Posttest

F. Media/alat, Bahan, dan Sumber Belajar

1. Media : Power point dan Biopuzzle

2. Alat dan bahan : Alat tulis, laptop, LCD, lembar kerja siswa

dan kuis.

3. Sumber Belajar

Bakhtiar, Suaha. 2011. Biologi untuk SMA dan MA Kelas XI. Jakarta:
 Pusat Kurikulum dan Perbukuan Kementerian Pendidikan Nasional.

- Irnaningtyas dan Yossa Istiadi. 2013. Biologi untuk SMA / MA Kelas XI.
 Jakarta: Penerbit Erlangga.
- c. Ferdinand, Fictor dan Moekti Ariebowo. 2009. Praktis Belajar Biologi 2 untuk SMA/MA Kelas XI. Jakarta: Pusat Perbukuan Departemen Pendidikan Nasional.
- d. Pratiwi, D.A. dkk. 2006. Biologi SMA Jilid 2 untuk Kelas XI. Jakarta: Penerbit Erlangga.
- e. Rachmawati, Faidah dkk. 2009. Biologi untuk SMA/MA Kelas XI Program IPA. Jakarta: Pusat Perbukuan Departemen Pendidikan Nasional.
- f. Septianing, Rasti dkk. 2014. Panduan Belajar Biologi 2B SMA Kelas XI. Jakarta: Yudhistira.
- g. Sudjadi, Bagod dan Siti Laila. 2007. Biologi 2. Jakarta: Yudhistira.
- h. Internet dan buku lain yang relevan.

Semarang, 20 Oktober 2017 Guru Praktikan

Devi Atiek Afiyani NIM 133811007

LEMBAR KERJA SISWA I

Kelo	mpok	:
Nam	a Anggota Kelompok	1
		2
		3
		4
		5
Cara	ı Kerja:	
1. 2. 3. 4.	Baca dan pahamilah mat Diskusikan materi yang t	n <i>biopuzzle</i> sehingga menjadi sebuah gambar yang utuh eri yang terdapat dalam <i>biopuzzle</i> erdapat dalam <i>biopuzzle</i> terdapat dalam lembar kerja bersama anggota kelompok
Soal	Diskusi:	
1.		n non spesifik garis pertahanan pertama! non spesifik garis pertahanan pertama!
b.	Bagaimana respon imun	non spesifik ketika terjadi inflamasi?
c.	Bagaimana mekanisme p	rotein antimikroba dalam melawan mikroorganisme?

LEMBAR KERJA SISWA II

Kelo	mpok	:
Nam	a Anggota Kelompok	1
		2
		3
		4
		5
Cara	ı Kerja:	
2. 3. 4.	Baca dan pahamilah mat Diskusikan materi yang t Kerjakan soal-soal yang t	n <i>biopuzzle</i> sehingga menjadi sebuah gambar yang utuh eri yang terdapat dalam <i>biopuzzle</i> erdapat dalam <i>biopuzzle</i> erdapat dalam lembar kerja bersama anggota kelompok
Soal	Diskusi:	ra imunitas humoral dan imunitas selular!
2.	Jelaskan pengertian istila	ıh di bawah ini!
	a. Antigen: b. Antibodi:	
3.	Bagaimana imunitas hun	noral dalam melawan patogen yang masuk ke dalam tubuh?

LEMBAR KERJA SISWA III

Kelo	mpok	:
Nama Anggota Kelompok		1
		2
		3
		4
		5
Cara	ı Kerja:	
1. 2. 3. 4.	Baca dan pahamilah mate Diskusikan materi yang t	n <i>biopuzzle</i> sehingga menjadi sebuah gambar yang utuh eri yang terdapat dalam <i>biopuzzle</i> erdapat dalam <i>biopuzzle</i> erdapat dalam lembar kerja bersama anggota kelompok
Soal	Diskusi:	
1.	Jelaskan kelainan pada si a. Penolakan transplan	stem pertahanan tubuh di bawah ini! tasi:
	b. Autoimun:	
	c. Defisiensi sitem imu	n:
2.	Mengapa orang yang mer	nderita AIDS mudah terserang penyakit?
3.	Jelaskan pengertian istila	h di bawah ini!
	a. Vaksin: b. Kekebalan aktif:	
	c. Kekebalan pasif:	

Kuis

Soal Kuis I

Nama	:
Mata	Pelajaran :
Kelas	/Semester :
Wakt	u :
Soal T	es Essay Singkat
Jawal	olah pertanyaan berikut dengan benar !
1.	Sebutkan 3 sistem imun non spesifik garis pertahanan pertama!
2.	Kulit terdiri atas yang tersusun atas sel-sel epital yang sangat rapat, sehingga menyulitkan mikroorganisme unruk masuk ke dalam tubuh.
3.	Membran mukosa tidak dapat ditembus oleh bakteri karenasangat rapat.
4.	Sebutkan 3 sistem imun non spesifik garis pertahanan
	kedua!
5.	Protein antimikroba yang paling penting adalahdandan

Soal Kuis II

Nan	ıa :			
Mata Pelajaran :				
Kela	ns/Semester :			
Wak	ktu :			
Soal	Tes Essay Singkat			
Jawa	ablah pertanyaan berikut dengan benar !			
1.	Sistem imun spesifik merupakan garis pertahanan			
2.	ke Sistem imun spesifik terdiri atas sistem imun			
۷.	spesifikdandan			
3.	Protein yang dibentuk sebagai respon terhadap suatu antigen			
	dan secara spesifik akan bereaksi dengan antigen			
	disebut			
4.	Semua zat asing yang memicu sistem kekebalan tubuh			
	disebut			
5.	Limfosit yang berperan dalam sistem imun spesifik selular			
	adalah			

Soal Kuis III

Nam	a :		
Mata	Pelajaran :		
Kela	Kelas/Semester :		
Wak	tu :		
Soal	Tes Essay Singkat		
Jawa	blah pertanyaan berikut dengan benar !		
1.	Keadaan sistem pertahanan tubuh yang sangat peka terhadap		
	antigen tertentu disebut		
2.	Sebutkan 3 kategori penolakan trasplantasi!		
3.	Pemberian perlindungan pada tubuh dari serangan penyakit dengan memberi vaksin disebut		
4.	Bibit penyakit yang telah mati atau dilemahlan & dapat		
	memasang produksi antibodi di dalam tubuh		
	disebut		
5.	Kekebalan dapat dibagi menjadi 2 macam yaitu kekebalan		
	dan		

Lampiran 23B

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) (KELAS KONTROL)

Sekolah : MA NU 03 Sunan Katong

Mata Pelajaran : Biologi

Kelas / Semester : XI (Sebelas) / 1 (Satu)

Alokasi Waktu : 6 x 45 menit

A. Kompetensi Inti (KI)

- 3. Memahami, menerapkan dan menganalisis pengetahuan faktual, konseptual, prosedural dan metakognitif berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah.
- 4. Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengan pengembangan dari yang dipelajarinya di sekolah secara mandiri, bertindak secara efektif dan kreatif, serta mampu menggunakan metoda sesuai kaidah keilmuan.

B. Kompetensi Dasar dan Indikator Pencapaian

Kompetensi Dasar		Indikator Pencapaian
3.14	Menganalisis peran sistem	3.14.1Mengidentifikasi mekanisme sistem
	imun dan imunisasi	imun pada manusia (C1)
	terhadap proses fisiologi di	3.14.2 Menjabarkan sistem imun
	dalam tubuh (C4)	nonspesifik (C2)
		3.14.3 Menjabarkan sistem sistem imun
		spesifik (C2)
		3.14.4 Mengklasifikasi penyakit pada sistem
		imun manusia (C3)
		3.14.5 Menganalisis jenis-jenis kekebalan
		pada tubuh manusia (C4)

C. Materi Pembelajaran

- 1. Sistem imun non spesifik
- 2. Sistem imun spesifik
- 3. Kelainan pada sistem imun
- 4. Imunisasi

D. Kegiatan Pembelajaran

Petemuan Pertama (2 x 45 menit)

Metode Pembelajaran : Diskusi kelompok

Langkah	Sintaks Model	Deskripsi	Alokasi
Pembelajaran	Pembelajaran		Waktu
Kegiatan pendahuluan		Guru mengucapkan salam dan berdo'a Guru menanyakan kabar siswa Guru mengkonfirmasikeha diran siswa Guru menyampaikan tujuan pembelajaran	10 menit
Kegiatan inti	Mengamati	Guru menjelaskan materi tentang pengertian sistem imun, fungsi sistem imun dan sistem imun non spesifik	20 menit
	Menanya	Guru memberi kesempatan kepada siswa untuk menanyakan terkait dengan penjelasan yang telah disampaikan oleh guru	5 menit
	Mengumpulkan data	1. Guru meminta siswa untuk berkelompok, masing-masing kelompok terdiri dari 5 orang 2. Guru membagikan lembar kerja pada setiap kelompok 3. Siswa dalam kelompok berdiskusi untuk menjawab soal yang terdapat dalam lembar kerja 4. Guru membimbing setiap kelompok dalam berdiskusi	30 menit
	Mengasosiasikan	Siswa mencocokkan hasil	5 menit

		diskusinya dengan internet atau buku paket yang tersedia
	Mengkomunikasikan	Setiap kelompok 10 menit mempresentasikan hasil diskusinya
Kegiatan penutup		1. Guru bersama siswa menyimpulkan hasil pembelajaran yang telah dilaksanakan
		2. Guru menginformasikan tentang materi yang akan dipelajari pada pertemuan yang akan datang
		3. Guru menutup pembelajaran dengan berdo'a dan mengucapkan salam

Petemuan Kedua (2 x 45 menit)

Metode Pembelajaran : Diskusi kelompok

Langkah	Sintaks Model	Deskripsi	Alokasi
Pembelajaran	Pembelajaran		Waktu
Kegiatan pendahuluan		Guru mengucapkan salam dan berdo'a Guru menanyakan kabar siswa Guru mengkonfirmasikeha diran siswa Guru menyampaikan tujuan pembelajaran	10 menit
Kegiatan inti	Mengamati	Guru menjelaskan materi tentang sistem imun spesifik	20 menit
	Menanya	Guru memberi kesempatan kepada siswa untuk menanyakan terkait dengan penjelasan yang telah disampaikan oleh guru	5 menit
	Mengumpulkan data	Guru meminta siswa untuk berkelompok, masing-masing kelompok terdiri dari 5 orang Guru membagikan lembar kerja pada	30 menit

	1	1				
		setiap kelompok				
		3. Siswa dalam				
		kelompok				
		berdiskusi untuk				
		menjawab soal yang				
		terdapat dalam				
		lembar kerja				
		4. Guru membimbing				
		setiap kelompok				
		dalam berdiskusi				
	Mengasosiasikan	Siswa mencocokkan hasil	5 menit			
		diskusinya dengan				
		internet atau buku paket				
		yang tersedia				
	Mengkomunikasikan	Setiap kelompok	10 menit			
		diskusinya				
Kegiatan penutup		1. Guru bersama siswa	10 menit			
		menyimpulkan hasil				
		pembelajaran yang				
		telah dilaksanakan				
		2. Guru				
		menginformasikan				
		tentang materi yang				
		akan dipelajari pada				
		pertemuan yang				
		akan datang				
		о опт				
		pembelajaran				
		dengan berdo'a dan				
		mengucapkan salam				

Petemuan Ketiga (2 x 45 menit)

Metode Pembelajaran : Diskusi kelompok

Langkah Pembelajaran	Sintaks Model Pembelajaran	Deskripsi	Alokasi Waktu
Kegiatan pendahuluan		 Guru mengucapkan salam dan berdo'a Guru menanyakan kabar siswa Guru mengkonfirmasi kehadiran siswa Guru menyampaikan tujuan pembelajaran 	10 menit
Kegiatan inti	Mengamati	Guru menjelaskan materi tentang penyakit pada sistem imun dan imunisasi	20 menit
	Menanya	Guru memberi kesempatan kepada siswa untuk menanyakan terkait dengan penjelasan yang telah disampaikan oleh guru	5 menit

	Mengumpulkan data	Guru meminta siswa untuk berkelompok, masing-masing kelompok terdiri dari 5 orang Guru membagikan lembar kerja pada setiap kelompok Siswa dalam kelompok berdiskusi untuk menjawab soal yang terdapat dalam lembar kerja Guru membimbing setiap kelompok dalam berdiskusi	30 menit
	Mengasosiasikan	Siswa mencocokkan hasil diskusinya dengan internet atau buku paket yang tersedia	5 menit
	Mengkomunikasikan	Setiap kelompok mempresentasikan hasil diskusinya	10 menit
Kegiatan penutup		Guru bersama siswa menyimpulkan hasil pembelajaran yang telah dilaksanakan Guru membagikan soal posttest Guru menutup pembelajaran dengan berdo'a dan mengucapkan salam	10 menit

E. Penilaian

Teknik penilaian : Pretest dan Posttest

F. Media/alat, Bahan, dan Sumber Belajar

1. Media : Power point

2. Alat dan bahan : Alat tulis, laptop, LCD dan lembar kerja

siswa.

3. Sumber Belajar

a. Bakhtiar, Suaha. 2011. Biologi untuk SMA dan MA Kelas XI. Jakarta:
 Pusat Kurikulum dan Perbukuan Kementerian Pendidikan Nasional.

Irnaningtyas dan Yossa Istiadi. 2013. Biologi untuk SMA / MA Kelas XI.
 Jakarta: Penerbit Erlangga.

c. Ferdinand, Fictor dan Moekti Ariebowo. 2009. Praktis Belajar Biologi 2 untuk SMA/MA Kelas XI. Jakarta: Pusat Perbukuan Departemen Pendidikan Nasional.

 d. Pratiwi, D.A. dkk. 2006. Biologi SMA Jilid 2 untuk Kelas XI. Jakarta: Penerbit Erlangga.

- e. Rachmawati, Faidah dkk. 2009. *Biologi untuk SMA/MA Kelas XI***Program IPA. Jakarta: Pusat Perbukuan Departemen Pendidikan Nasional.
- f. Septianing, Rasti dkk. 2014. *Panduan Belajar Biologi 2B SMA Kelas XI.* Jakarta: Yudhistira.
- g. Sudjadi, Bagod dan Siti Laila. 2007. Biologi 2. Jakarta: Yudhistira.
- h. Internet dan buku lain yang relevan

Semarang, 24 Oktober 2017 Guru Praktikan

Devi Atiek Afiyani NIM 133811007

Lembar Kerja Siswa Kelas Kontrol

LEMBAR KERJA SISWA I

Kelo	mpok	:			
Nam	a Anggota Kelompok	1			
		2			
		3			
		4			
		5			
Cara	Kerja:				
1. 2. 3.	Buatlah kelompok yang te Pahamilah materi yang d Diskusikan dengan kelom	isampaikan oleh guru			
Soal	Diskusi:				
	a. Sebutkan sistem imun non spesifik garis pertahanan pertama! b. Jelaskan sistem imun non spesifik garis pertahanan pertama!				
2.	Bagaimana respon imun i	non spesifik ketika terjadi inflamasi?			
3.	Bagaimana mekanisme p	rotein antimikroba dalam melawan mikroorganisme?			

LEMBAR KERJA SISWA II

Kelo	mpok	1
Nam	a Anggota Kelompok	1
		2
		3
		4
		5
Cara	ı Kerja:	
2. 1 3. 1 4. 1	Buatlah kelompok yang te Pahamilah materi yang di Diskusikan dengan kelom Kerjakan soal-soal yang te I Diskusi:	isampaikan oleh guru
		ra imunitas humoral dan imunitas selular!
-	,	
2.	Jelaskan pengertian istila	h di bawah ini!
	a. Antigen: b. Antibodi:	
3.	Bagaimana imunitas hum	noral dalam melawan patogen yang masuk ke dalam tubuh?

LEMBAR KERJA SISWA III

Kelor	npok	:
Nama	Anggota Kelompok	1
		2
		3
		4
		5
Cara	Kerja:	
2. P 3. D	uatlah kelompok yang t ahamilah materi yang di iskusikan dengan kelom erjakan soal-soal yang te	sampaikan oleh guru
Soal	Diskusi:	
1. J	elaskan kelainan pada si a. Penolakan transplan	stem pertahanan tubuh di bawah ini! tasi:
	b. Autoimun:	
	c. Defisiensi sitem imu	n:
2.	Mengapa orang yang mer	nderita AIDS mudah terserang penyakit?
3. J	elaskan pengertian istila a. Vaksin:	h di bawah ini!
	vaksin: Kekebalan aktif:	
	c. Kekebalan pasif:	

NILAI *POST TEST* MATERI SISTEM PERTAHANAN TUBUH KELAS EKSPERIMEN (XI IPA 1) DAN KELAS KONTROL (XI IPA 2)

No	KELAS EKSPERIMEN (XI IPA 1)	KELAS KONTROL (XI IPA 2)
1.	85	75
2.	75	70
3.	90	60
4.	95	80
5.	80	85
6.	80	75
7.	80	55
8.	95	80
9.	85	75
10.	75	75
11.	70	80
12.	85	75
13.	80	80
14.	85	75
15.	80	70
16.	65	85
17.	85	80
18.	90	60
19.	65	75
20.	80	65
21.	85	65
22.	85	50
23.	80	75
24.	80	80
25.	95	65
26.	90	80
27.	75	80
28.	80	80
29.	90	75
30.	75	70
31.	75	75
32.	60	
33.	70	
34.	80	

UJI NORMALITAS TAHAP AKHIR NILAI *POST TEST* KELAS XI IPA 1 (KELAS EKSPERIMEN)

Hipotesi	<u>s</u>					
H ₀		distribusi normal				
H ₁	· Data tida	k berdistribusi no	rmal			
	Hipotesis	k beruistribusi iio	i iiiai			
₂ 2	$\sum_{i=1}^{k} (O_i = I_i)^{-k}$	$(E_i)^2$				
- x =	$\sum_{\mathbf{r}}$,				
	<i>i</i> =1	ž				
Kritoria	vana diau	nakan				
ш	ditorima	nakan ikaX² hitung	$= v^2$			
Donguija	n Hipotes	ic hitting	- A tak	el		
Nilai maks		15	= 95			
Nilai maks			= 60			
Rentang n			= 95-65 = 35			
	ra kelas (k)		$=1 + 3,3 \log 34$	- 6 OF - 6		
Panjang k			= 35/6 = 5.833			
Panjang K	eias (P)		= 33/6 = 3.833	= 0		
	Tabel Pe	nolong Mencari	Rata-rata dan	Standar D	eviaci	
	No	X	$X-\overline{X}$	Januai D	(X- X)^	
	1	85	4,2647059		18,18771626	
	2	75	-5,7352941		32,89359862	
	3	90	9,2647059		85,83477509	
	4	95	14,2647059		203,48183391	
	5	80	-0,7352941		0,54065744	
	6	80	-0,7352941		0,54065744	
	7	80	-0,7352941		0,54065744	
	8	95	14,2647059		203,48183391	
	9	85	4,2647059		18,18771626	
	10	75	-5,7352941		32,89359862	
	11	70	-10,7352941		115,24653979	
	12	85	4,2647059		18,18771626	
	13	80	-0,7352941		0,54065744	
	14	85	4,2647059		18,18771626	
	15	80	-0,7352941		0,54065744	
	16	65	-15,7352941		247,59948097	
	17	85	4,2647059		18,18771626	
	18	90	9,2647059		85,83477509	
	19	65	-15,7352941		247,59948097	
	20	80	-0,7352941		0,54065744	
	21	85	4,2647059		18,18771626	
	22	85	4,2647059		18,18771626	
	23	80	-0,7352941		0,54065744	
	24	80	-0,7352941		0,54065744	
	25	95	14,2647059		203,48183391	
	26	90	9,2647059		85,83477509	
	27	75	-5,7352941		32,89359862	
	28	80	-0,7352941		0,54065744	
	29	90	9,2647059		85,83477509	
	30	75	-5,7352941		32,89359862	
	31	75	-5,7352941		32,89359862	
	32	60	-20,7352941		429,95242215	
	33	70	-10,7352941		115,24653979	
	34	80	-0,7352941		0,54065744	
	JUMLAH	2745			2406,61764706	

	Rata-rata	$(\bar{X}) =$	ΣX		2745					
	1444 1440	N N		34 =		80,73529412				
Stan	dar Devias	si (S) :	S ²	=	$\sum (X - \overline{X})^2$					
					n-1					
				=	2406,618					
					33					
				=	72,92780749					
			S	=	8,539777953					
	Daftar F	rekuensi Nilai Al	rhir Kelas XI IP	ν 1						
М.		- chachor miai Ai	mii neius Al II		7	D(7)	Luas	٥	г	$\frac{(O_i - E_i)^2}{E_i}$
No	Kelas			Bk	Zi	P(Z _i)	Daerah	0_{i}	Ei	E,
				59,5	-2,486633052	0,49355				
1	60		65				0,03076	3	1,01511	3,88118
		-		65,5	-1,784038672	0,46279				
2	66		71				0,1025	2	3,38386	0,56594
		-		71,5	-1,081444291	0,36025				
3	72		77				0,21265	5	7,01745	0,58000
		-		77,5	-0,378849911	0,1476				
4	78		83				0,27453	10	9,05964	0,09761
		-		83,5	0,323744469	-0,1269				
5	84		89				0,2207	7	7,28309	0,01100
		-		89,5	1,02633885	-0,347634055				
6	90		95				0,11046	7	3,64503	3,08799
		-		95,5	1,72893323	-0,458089477				
		1		Jumla				34		5,1357
Zeteranga	an									
lk	=	Batas kelas bawal	ı-0,5 atau bata	s kelas at	as + 0,5					
i	=	Bk-X								
		S								
$P(Z_i)$	=	Nilai Z _i pada tabel	luas di bawah le	engkung k	xurva normal standar dar	i 0 s/d Z				
1126 11201		P(7) . P(7)		0 . 0.		,				

Keterangan	1						
Bk	=	Batas kelas bawa	ıh - 0,5 atau bat	as kelas ata	as + 0,5		
Z_i	=	Bk-X					
		S					
$P(Z_i)$	=	Nilai Z _i pada tabe	el luas di bawah l	engkung k	urva normal stan	dar dari 0 :	5/
Luas Daer	=	P(7.) - P(7.)					

 E_i

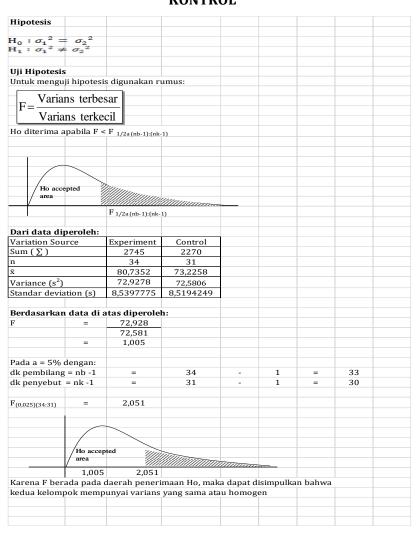
= Luas daerah x N

 ${\it Karena}\,X^2_{\it hitung} < X^2_{\it tubel} \, {\it maka} \, {\it distribusi} \, {\it data} \, {\it akhir} \, {\it di} \, {\it kelas} \, {\it XI} \, {\it IPA} \, 1 \, {\it berdistribusi} \, {\it NORMAL}$

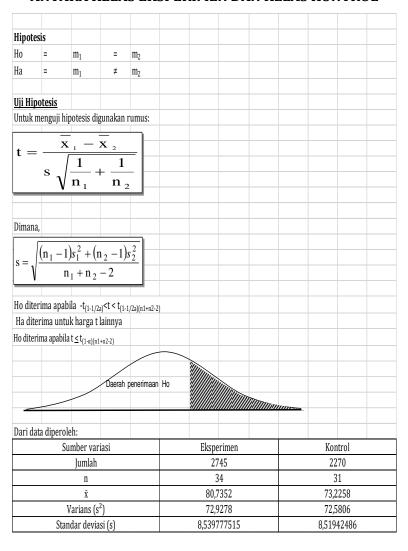
Untuk $\alpha = 5\%$, dengan dk = 6 - 1 = 5 diperoleh X^2 tabel = 11,070

UJI NORMALITAS TAHAP AKHIR NILAI *POST TEST* KELAS XI IPA 2 (KELAS KONTROL)

Hipot	esis				
H ₀	: Data ber	distribusi	normal		
H ₁			ibusi normal		
-		k bertisti	ibusi iidi iilai		
	ian Hipotesis	_			
- 2	k = Q =	$(E_i)^2$			
-x	$=\sum_{i=1}^{k}(O_{i})$	7			
	≓l 4	2			
Kriter	ia vang digu	nakan			
	H. diterima i	ika χ^2	$_{tung}<\chi^{2}_{ta}$	Z Z	
	iian Hipotes		ung >c ia	pei	
	aksimal		= 85		
	inimal		= 50		
Rentan	g nilai (R)		= 85-50 = 35		
Banyal	knya kelas (k)		=1 + 3,3 log 31 =	5.92 = 6	
Panjan	g kelas (P)		= 35/6 = 5.83 = 0	6	
				a dan Standar Deviasi	
	No	X	X- <i>X</i>	(X- <i>X</i>)^	
	1	75	1,7741935	3,14776275	
	2	70	-3,2258065	10,40582726	
	3	60	-13,2258065	174,92195630	
	4	80	6,7741935	45,88969823	
	5	85	11,7741935	138,63163371	
	6	75	1,7741935	3,14776275	
	7	55	-18,2258065	332,18002081	
	8	80	6,7741935	45,88969823	
	9	75	1,7741935	3,14776275	
	10	75	1,7741935	3,14776275	
	11	80	6,7741935	45,88969823	
	12	75	1,7741935	3,14776275	
	13	80	6,7741935	45,88969823	
	14	75	1,7741935	3,14776275	
	15	70	-3,2258065	10,40582726	
	16	85	11,7741935	138,63163371	
	17	80	6,7741935	45,88969823	_
	18	60	-13,2258065	174,92195630	
	19	75 CF	1,7741935	3,14776275	
	20	65	-8,2258065	67,66389178	
	21	65	-8,2258065	67,66389178	
	22	50	-23,2258065	539,43808533	_
	23	75	1,7741935	3,14776275	
	24	80	6,7741935	45,88969823	
	25	65	-8,2258065	67,66389178	
	26	80	6,7741935	45,88969823	
	27	80 80	6,7741935	45,88969823	-
	28		6,7741935	45,88969823	_
	29	75 70	1,7741935	3,14776275	
	30	70 75	-3,2258065	10,40582726	_
	31 JUMLAH	2270	1,7741935	3,14776275 2177,41935484	
	JUMLAH	22/0		21//,41933464	4


	Rata-rata	ı(v)=	<u>Σ</u> X	2270		= 73,22	58					
	rata rata	(A) -	N		31							
	Standar Devias		si (S): S ²		$\sum (X - \overline{X})^2$							
					n-1							
				=	2177,4194							
					30							
				=	72,58065							
			S	=	8,519428							
		<u> </u>										
	Daftar F	rekuensi Ni	lai Akhir Kela	s XI IPA	2						(o r)2	
No	Kelas			Bk	Z _i	P(Z _i)		Luas Daerah	0_{i}	Ei	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$	
				49,5	-2,78491	0,4973	2					
1	50	-	55					0,01606	2	0,52987	4,07893	
				55,5	-2,08063	0,4812	7					
2	56	-	61					0,06562	3	2,1655	0,32158	
				61,5	-1,37636	0,4156	5					
3	62	-	67					0,16641	3	5,49149	1,13039	
				67,5	-0,67209	0,2492	4					
4	68	-	73					0,26207	3	8,64843	3,68908	
				73,5	0,032185	-0,012	8					
5	74	-	79					0,25644	10	8,46239	0,27938	
				79,5	0,73645717	78 -0,2	59273741					
6	80	-	85					0,1559	10	5,14456	4,58257	
				85,5	1,44072985	53 -0,4	5169491					
Jumlah								31		9,4994		
eterang	an											
k	=		oawah - 0,5 ata	u batas l	xelas atas + 0,5							
i i	=	Bk-X										
		S										
$P(Z_i)$	=	Nilai Z _i pada	tabel luas di ba	ıwah len	gkung kurva norn	nal standar da	ri 0 s/d Z					
Luas Dae	r =	$P(Z_1) - P(Z_2)$	2)									

= Luas daerah x N


Untuk $\alpha = 5\%$, dengan dk = 6 - 1 = 5 diperoleh X^2 tabel = 11,070

Karena $X^2_{\it hitung} < X^2_{\it tubel}$ maka distribusi data akhir di kelas XI IPA 2 berdistribusi NORMAL

UJI KESAMAAN DUA VARIANS (HOMOGENITAS) NILAI POST TEST ANTARA KELAS EKSPERIMEN DAN KELAS KONTROL

UJI PERBEDAAN DUA RATA-RATA NILAI *POST TEST* ANTARA KELAS EKSPERIMEN DAN KELAS KONTROL

us di atas dipe	roleh:											
Γ	34		1	1 72,9278 34		+ [31 -	1]	72,5806		+	0.5304
- V						+	31		2		_ =	8,5301
_	80,7352			73,2258			254	ro.				
-	8,5301	\int	1 34	+	1 21	= .	3,3430					
an dk = 34 + 3	1 - 2 = 63 diperoleh	1 t _(0.05)[63) =			31							
	Daerah penerimaan	Но										
					Tim-							
	=	= 34 = 80,7352 = 85,301 an dk = 34 + 31 - 2 = 63 diperolel	= 80,7352 -	= 34 - 1 = 80,7352 - 1 8,5301	= 34 - 1 72; = 80,7352 - 73,2258 8,5301	= 34 - 1 72,9278 34 - 34 34 34 34 34 34 31 - 2 = 63 diperoleh t _{(0.05)(63)} = 1,6698	= 34 - 1 72,9278 + (34 + 1 34 + 1 = 80,7352 - 73,2258	= 34 - 1 72,9278 + [31 - 31 - 31 - 31 - 31 - 31 - 31 - 31	= 34 - 1 72,9278 + (31 - 1) 34 + 31 - 1	= 34 - 1 72,9278 + [31 - 1] 72, 34 + 31 - 2 = 80,7352 - 73,2258 8,5301	= 34 - 1 72,9278 + (31 - 1) 72,5806 34 + 31 - 2 = 80,7352 - 73,2258 8,5301 1 1 34 + 1 31 and k = 34 + 31 - 2 = 63 diperoleh t _{RMS/RS)} = 1,6698	= 34 - 1 72,9278 + (31 - 1) 72,5806 = = 80,7352 - 73,2258

Karena t berada pada daerah penerimaan Ho, maka dapat disimpulkan bahwa rata-rata hasil posttest kelompok eksperimen lebih tinggi dari kelompok kontrol.

FOTO MEDIA BIOPUZZLE SISTEM PERTAHANAN TUBUH

Bagian depan media Biopuzzle

Petunjuk penyusunan Biopuzzle

Biopuzzle sub materi sistem imun nonspesifik garis pertahanan pertama

Biopuzzle sub materi sistem imun nonspesifik garis pertahanan kedua

Biopuzzle sub materi sistem imun nonspesifik garis pertahanan ketiga

Biopuzzle sub materi kelainan pada sistem imun

Biopuzzle sub materi imunisasi

Bagian belakang media Biopuzzle

DOKUMENTASI FOTO PENELITIAN

A. KELAS EKSPERIMEN (XI IPA 1)

Siswa mengerjakan soal pretest

Guru menjelaskan materi

Siswa belajar dalam kelompok

Guru membimbing siswa dalam berdiskusi

Siswa menyusun *biopuzzle* dan mengerjakan lembar kerja

Siswa mengerjakan soal kuis

Guru memberi penghargaan pada kelompok yang mendapat skor terbaik

B. KELAS KONTROL (XI IPA 2)

Siswa mengerjakan soal *pre test*

Guru menjelaskan materi

Guru membimbing diskusi kelompok

Siswa mengerjakan lembar kerja

Siswa mengerjakan soal *post test*

ANGKET HASIL UJI AHLI MEDIA PEMBELAJARAN BIO PUZZLE MATERI SISTEM PERTAHANAN TUBUH

ANGKET VALIDASI MEDIA *BIOPUZZLE* MATERI SISTEM PERTAHANAN TUBUH

Judul Penelitian : Efektivitas media pembelajaran biopuzzie dalam pembelajaran

cooperative learning tipe STAD terhadap hasil belajar siswa materi pokok sistem pertahanan tubuh kelas XI MA NU 03 Sunan Katong

Sasaran Program : Peserta didik kelas XI MIPA

Materi : Sistem pertahanan tubuh

Peneliti : 'Devi Atiek Afiyani Validator : Saifullah Hidayat, M.Sc

Bapak /Ibu yang terhormat,

Saya memohon bantuan Bapak/ Ibu untuk mengisi lembar validitas ini. Lembar validitas ini dimaksudkan untuk mengetahui pendapat Bapak/ibu selaku ahli materi dan media terhadap kelayakan produk media pembelajaran Biopuzzle. Pendapat, saran, penilaian, kritik dan komentar Bapak/ibu akan sangat bermanfaat untuk memperbaiki dan meningkatkan kualitas media pembelajaran ini. Atas bantuan dan kesediaan Bapak/ibu untuk mengisi lembar validasi ini, saya mengucapkan terima kasih.

PETUNJUK PENGISIAN ANGKET

Bapak/lbu saya mohon memberikan tanda *check* (√) pada kolom yang Bapak/lbu anggap sesual dengan aspek penilaian yang ada dengan kriteria penilaian sebagai berikut:

- 5 = Sangat balk
- 4 = Baik
- 3 = Cukup
- 2 = Kurang baik
- 1 = Sangat kurang

I. ASPEK KELAYAKAN ISI

No	Butir Penilaian	Deskripsi	Rubrik
1	Kelengkapan materi	Materi yang disajikan mencakup materi yang terkandung dalam kompetensi dasar (KD), yaitu menganalisis peran sistem imun dan imunisasi terhadap proses fisiologi di dalam tubuh.	4. jika sebagian besar sesuai 3. jika sebagian sesuai 2. jika sebagian kecil sesuai
2	Keluasan materi	Materi yang disajikan mencerminkan jabaran yang	5. jika sangat sesuai 4. jika sebagian besar sesuai

		mendukung pencapalan kompetensi dasar (KD).	3. jika sebagian sesuai 2. jika sebagian kecil sesuai 1. jika sama sekali tidak sesuai
	Kedalaman materi	Materi yang disajikan mencakup mulai dari pengenalan konsep sampal dengan interaksi antarkonsep dan sesuai urutannya dengan yang tingkat pendidikan di SMA/MA dan sesuai dengan kompetensi dasar (KD).	5. jika sangat sesual [V] jika sebagian besar sesual 3. jika sebagian sesual 2. jika sebagian kecil sesual 1. jika sama sekali tidak sesual
4	Kejelasan Indikator	Materi yang disajikan sesual dengan indikator.	5. jika sangat sesual 1. jika sebagian besar sesuai 3. jika sebagian sesuai 2. jika sebagian kecil sesuai 1. jika sama sekali tidak sesuai
5	Keakuratan konsep dan definisi	Konsep dan definisi yang disajikan tidak menimbulkan banyak tafsir dan sesuai dengan konsep definisi yang berlaku dalam ilmu biologi.	5. jika sangat akurat 4. jika sebagian besar akurat 3. jika sebagian akurat 2. jika sebagian kecil akurat 1. jika sama sekall tidak akurat
6	Keakuratan fakta dan data	Fakta dan data yang disajikan sesuai dengan kenyataan dan efisien untuk meningkatkan pemahaman peserta didik.	W. Jika sangat akurat 4. jika sebagian besar akurat 3. jika sebagian akurat 2. jika sebagian kecil akurat 1. jika sama sekali tidak akurat
7	Keakuratan contoh	Contoh yang disajikan sesual dengan kenyataan dan efislen untuk meningkatkan pemahaman peserta didik.	5. jika sangat akurat 4. jika sebagian besar akurat Wika sebagian akurat 2. jika sebagian kecil akurat 1. jika sama sekali tidak akurat
8	Keakuratan gambar	Gambar yang disajikan sesuai dengan kenyataan dan efisien untuk meningkatkan pemahaman peserta didik.	V. jika sangat akurat 4. jika sebagian besar akurat 3. jika sebagian akurat 2. jika sebagian kecil akurat 1. jika sama sekali tidak akurat
9	Keakuratan istilah	Istilah-istilah sesuai dengan kelaziman yang berlaku dalam ilma biologi	5/ jika sangat akurat 4. jika sebagian besar akurat 3. jika sebagian akurat 2. jika sebagian kecil akurat 1. jika sama sekali tidak akurat
10	Menggunakan contoh kasus yang terdapat dalam kehidupan sehari-hari	dengan situasi dan kondisi yang terjadi dalam kehidupan sehari- hari.	5. jika sangat akurat 4. jika sebagian besar akurat 18. jika sebagian akurat 2. jika sebagian kecil akurat 1. jika sama sekali tidak akurat
11	Mendorong rasa ingin tahu	Penjelasan materi atau contoh- contoh yang disajikan mendorong peserta didik untuk mempelajarinya lebih jauh	

II. ASPEK KELAVAKAN PENYAHAN

No	Butir Penilaian	Deskripsi	Rubrik
1	Keruntutan konsep	penyajian konsep disajikan secara runtut mulai dari yang mudah ke sukar, dari yang konkret ke abstrak dan dari yang sederhana ke kompleks, dari yang dikenal sampai yang belum dikenal. Matei bagian sebelumnya bisa membantu pemahaman materi pada bagian selanjutnya.	5. jika sangat sesuai Vika sebagian besar sesuai 3. jika sebagian sesuai 2. jika sebagian kecil sesuai 1. jika sama sekali tidak sesuai
2	Keterlibatan peserta didik	Penyajian materi bersifat interaktif dan partisipatif	5. jika sangat sesuai 1. jika sebagian besar sesuai 3. jika sebagian sesuai 2. jika sebagian kecil sesuai 1. jika sama sekali tidak sesuai
3	Kedalaman berpikir peserta didik	Penyajian materi dapat merangsang kedalaman berpikir peserta didik	5. ika sangat sesuai V. jika sebagian besar sesuai 3. jika sebagian sesuai 2. jika sebagian kecil sesuai 1. jika sama sekali tidak sesuai

III. ASPEK KELAYAKAN BAHASA

No	Butir Penilaian	Diskripsi	Rubrik
1	Ketepatan struktur kalimat	Kalimat yang digunakan mewakili isi pesan atau informasi yang ingin disampaikan dengan tetap mengikuti tata kalimat Bahasa Indonesia.	√ jika sangat sesuai 4. jika sebagian besar sesuai 3. jika sebagian sesuai 2. jika sebagian kecil sesuai 1. jika sama sekali tidak sesuai
2	Keefektifan kalimat	Kailmat yang digunakan sederhana dan langsung ke sasaran.	// jika sangat sesuai 4. jika sebagian besar sesuai 3. jika sebagian sesuai 2. jika sebagian kecil sesuai 1. jika sama sekali tidak sesuai
3	Pemahaman terhadap pesan atau informasi	Pesan atau informasi disampaikan dengan bahasa yang menarik dan lazim dalam komunikasi tulis Bahasa Indonesia.	V. jika sangat komunikatif 4. jika sebagian besar komunikatif 3. jika sebagian komunikatif 2. jika sebagian kecil komunikatif 1. jika sama sekali tidak komunikatif
4	Kemampuan memotivasi peserta didik	Bahasa yang digunakan membangkitkan rasa senang ketika peserta didik menyusun media dan mendorong mereka untuk mempelajari materi yang terdapat dalam media tersebut secara keseluruhan.	2. jika sebagian kecil sesuai 1. jika sama sekali tidak sesuai
5	Kesesuaian dengan tingkat perkembangan	Banasa yang digunakan dalam menjelaskan suatu konsep harus sesuai dengan	Wika sebagian besar mendukung

	intelektual peserta didik	tingkat perkembangan kognitif peserta didik.	jika sebagian kecil mendukung lijika sama sekali tidak mendukung
6	Ketepatan tata bahasa	Tata kalimat yang digunakan untuk menyampaikan pesan mengacu kepada kaldah tata bahasa yang baik dan benar.	ilka sebagian besar sesual ilka sebagian sesual ilka sebagian kecil sesual ilka sama sekali tidak sesual
7	Ketepatan ejaan	Ejaan yang digunakan mengacu kepada pedoman ejaan yang disempurnakan (EYD).	V. jika sangat sesuai 4. jika sebagian besar sesuai 3. jika sebagian sesuai 2. jika sebagian kecil sesuai 1. jika sama sekali tidak sesuai

IV. ASPEK KEMANFAATAN PRODUK

No	Butir Penilaian	Deskripsi	Rubrik
1	Media dapat meningkatkan minat belajar peserta didik	Media mempunyai daya kemenarikan yang tinggi, sehingga dapat meningkatkan minat belajar peserta didik.	√, jika sangat mendukung 4. jika sebagian besar mendukung 3. jika sebagian mendukung 2. jika sebagian kecil mendukung 1. jika sama sekali tidak mendukung
2	Mempermudah peserta didik memahami materi sistem pertahanan tubuh	Media memudahkan siswa dalam memahami materi sistem pertahanan tubuh	Jika sangat mendukung 4. Jika sebagian besar mendukung 3. Jika sebagian mendukung 2. Jika sebagian kecil mendukung 1. Jika sama sekali tidak mendukung
3	Penggunaan media kembali	Media dapat digunakan kembali pada pembelajaran materi sistem pertahanan tubuh	

V. ASPEK PENGOPERASIAN/PENGGUNAAN

No	Butir Penilaian	Deskripsi	Rubrik
1	Kejelasan petunjuk penggunaan	Petunjuk permainan memberikan kejelasan pada siswa dalam setiap langkah yang harus dilakukan	5. jika sangat mudah ∰jika sebagian besar mudah 3. jika sebagian mudah 2. jika sebagian kecil mudah 1. jika sama sekali tidak mudah
2	Kesesuaian lembar kerja	Lembar kerja sesuai dengan materi dan media yang digunakan dalam pembelajaran	V. jika sangat sesuai 4. jika sebagian besar sesuai 3. jika sebagian sesuai 2. jika sebagian kecil sesuai 1. jika sama sekali tidak sesuai
3	Soal pada lembar kerja	Soal-soal yang diberikan dalam lembar kerja dapat melatih kemampuan memahami konsep isi materi pada media	5. jika sangat mendukung y/jika sebagian besar mendukung 3. jika sebagian mendukung 2. jika sebagian kecil mendukung 1. jika sama sekali tidak mendukung

Komentar/Saran

Ada beberapa warna media yang kurang jelas Silahkan diretak ulang agar kalimas bisa dibaeg Secara utuh.

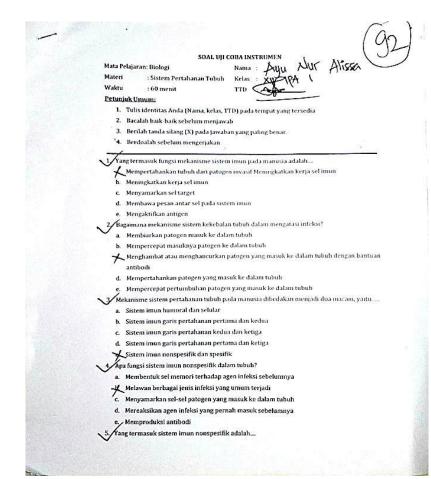
(Instrumen diadaptasi dari BNSP (2006) dan dimodifikasi dari penulis)

Kesimpulan

Media ini dinyatakan :

- Sangat layak digunakan dengan persentase ≥ 80%
- 2. Layak digunakan tanpa revisi dengan persentase 60-79%
- 3. Layak digunakan dengan revisi sesuai saran dengan persentase 50-59%
- 4. Tidak layak digunakan dengan persentase ≤ 50%

(Mohon diberi tanda lingkaran pada nomor yang sesuai dengan kesimpulan Bapak/Ibu)


Semarang 16 Oktober 2017

Ahli Media

Saifullah Hidayat, M.Sc

Lampiran 32A

CONTOH HASIL JAWABAN SOAL UJI COBA INSTRUMEN

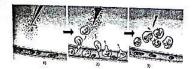
- a. Fagositosit, inflamasi, sel B
- b. Sel T, Sel B, protein komplemen
- c. Interferon, sel B, sel T
- d. Komplemen, sel T dan sel B
- Protein antimikroba, fagositosit, inflamasi
- Di bawah ini termasuk ciri respons imun nonspesifik, kecuali...
- a. Bereaksi sama terhadap semua agen infeksi
 - b. Tidak membentuk sel memori terhadap agen infeksi
 - c. Memiliki memori terhadap infeksi sebelumnya
- Tingkat reaksi sama pada tiap agen infeksi yang berusaha menyerang
- e. Menghambat masuknya patogen ke dalam tubuh.
- ang termasuk garis pertahanan pertama dalam sistem imun nonspesifik adalah.....
- Kulit, membran mukosa, sekresi kulit dan membran mukosa b. Sel fagosit, inflamasi, interferon, komplemen
- c. Sel B, sel T, kulit
- d. Membran mukosa, sel T, inflamasi
- e. Kulit, antibodi dan sel T
- Kulit melakukan pertahanan terhadap mikroba dengan cara....
- a. Mengeluarkan antibodi
- Menghalangi masuknya mikroba ke dalam tubuh c. Menelan dan mencerna mikroba
- d. Mengenali antigen
- e. Mengenali antibodi
- 🖟 Air mata dapat melenyapkan bibit penyakit yang potensial. Hal ini terjadi karena air mata mengandung suatu enzim yang dapat menguraikan dinding sel bakteri yang disebut.....
 - a. Lisozim
 - b. Pirogen
 - c. Antibodi
 - Basofil
 - c. Neutrofil
- 10 Membran mukosa tidak dapat ditembus oleh bakteri atau virus karena.....
 - a. Antara satu membran dengan membran yang lain renggang
 - b. Antara satu membran dengan membran yang lain berhubungan
 - c. Antara satu membran dengan membran yang lain kencang
 - d. Antara satu membran dengan membran yang lain kuat

Antara satu membran dengan membran yang lain sangat rapat Membran mukosa menghasilkan mukus yang merupakan cairan kental yang berfungsi untuk mengikat dan menggumpalkan bakteri b. memproduksi bakteri c. mempercepat pertumbuhan bakteri d. menguraikan dinding sel bakteri e. menelan bakteri 12. Yang termasuk garis pertahanan kedua pada sistem imun nonspesifik adalah.... Komplemen, sekresi membran mukosa, fagositosit b. Kulit, interferon, makrofag 🔀 Sel fagosit, inflamasi, protein antimikroba d. Protein antimikroba, membran mukosa, sel B e. Inflamasi, kulit, protein antimikroba Fagosit yang berperan dalam pertahanan tubuh melawan cacing parasit adalah.... a. Basofil Neutrofil c. Makrofag d. Antibodi e, Eosinofil

berikut ini fungsi protein komplemen dalam membantu pertahanan lapis kedua, kecuali...

Bereaksi terhadap sel-sel yang belum terinfeksi agar lebih kebal terhadap partikel virus

c. Menempel pada mikroba sehingga lebih mudah dikenali sel fagosit


Merangsang fagosit untuk lebih aktif
 Membuat sel target lebih kebal terhadap infeksi
 Memicu fagosit menuju lokasi infeksi

15 Interferon bekerja dengan cara.... a. Menyamarkan sel target

Perhatikan gambar di bawah ini.

d. Menghancurkan membran mikroba yang menyerang
 e./ Berperan dalam kekebalan yang diperoleh

Membawa pesan antar sel pada sistem imun
 Mengenali patogen yang masuk ke dalam tubuh

Gambar di atas menunjukan bahwa sescorang telah mengalami.....

- a. Autoimunitas
- Alergi
 - c. Lupus
- d. Imunodefisiensi
- e. Inflamasi

17 Makrofag berasal dari sel darah putih jenis...

- a. Limfosit
- b. Basofil
- c. Neutrofil
- X Monosit
- e. Fagosit

B. Yang termasuk sistem imun spesifik adalah....

- a. Fagositosit, protein komplemen, interferon
- b. Protein komplemen, interferon, sel B
- c. Interferon, inflamasi, sel T
- ⊀ Sel B, Sel T, sel B memori
- e. Membran mukosa, inflamasi, sel T

19 to bawah ini yang termasuk ciri respons imun spesifik adalah.....

- Mempunyai suatu komponen memori
- b. Tidak mempunyai komponen memori
- c. Bekerja tidak efektif apabila patogen masuk ke dalam tubuh
- d. Menghambat waktu tanggapan ketika patogen masuk ke dalam tubuh
- e. Mempercepat perkembangan patogen yang masuk ke dalam tubuh

20.5 mua zat asing yang memicu sistem kekebalan tubuh disebut....

- a. Infeksi
- *Antigen
- c. Antibodi
- d. Alergi
- e. Inflamasi

21. Sistem kekebalan tubuh bercaksi terhadap antigen tertentu dengan mengaktifkan sel limfosit dan memproduksi protein khusus yang disebut........

- a. Antigen
- b. Fagositosit
- c. Interferon

Antibodi e. Komplemen

22. Antibodi disekresikan oleh...

a. Limfosit T

★ Limfosit B

- c. Sel mast
- d. Sumsum tulang belakang
- e. Kelenjar limfa

23. Perhatikan gambar di bawah ini!

Gambar di atas menunjukan cara antibodi menghacurkan patogen. Cara yang dilakukan adalah......

- 🙏 Netralisasi, penggumpalan, pengendapan, pengaktifan sistem komplemen
- Penggumpalan, pengendapan, pengaktifan sistem komplemen, netralisasi
- c. Pengendapan, netralisasi, pengaktifan sistem komplemen, penggumpalan
- d. Netralisasi, pengendapan, penggumpalan, pengaktifan sistem komplemen
- e. Netralisasi, pengaktifan sistem komplemen, pengendapan, penggumpalan 24. Limfosit yang berperan dalam imunitas humoral adalah....
 - a. Limfosit T
 - b. Limfosit T memori
 - Limfosit B
 - d. Limfosit Thelper
 - e. Limfosit T suppressor
- 25 Limfosit yang berperan dalam imunitas selular adalah...
 - a. Sel B

- c. Sel mast
- d. Sel A
- e. Sel B dan sel T
- 26 Tugas utama imunitas selular adalah.....
 - Menghancurkan sel tubuh yang telah terinfeksi patogen
 - b. Menghambat sel tubuh dalam menghancurkan patogen
 - c. Memberi jalan masuk patogen untuk menghancurkan sel tubuh
 - d. Mempercepat pertumbuhan sel patogen yang masuk ke dalam tubuh
 - e. Menghancurkan patogen yang masuk ke dalam tubuh 27. Debawah ini termasuk jenis sel T. kecuali....
 - a. SelT penolong
 - b. SelT suppressor
 - c. Sel T memori
 - d. Sel T toksik
 - X Sel T sitotoksik
- 28. Fungsi dari sel T sitotoksik adalah...
 - a. Sekresi antibodi
 - b. Menyajikan antigen
 - Melisis sel T memori
 - d. Melisis sel terinfeksi
 - e. Melisis sel T penolong
- 29 bi bawah ini termasuk kelainan pada sistem imun, kecuali....
 - a. Defisiensi sistem imun
 - b. Alergi
 - c. Autoimun
 - Penolakan transplantasi
 - e. Transplantasi
- 30 HW telah merenggut banyak sekali korban, mulai yang tua, muda atau bahkan anak-anak.

 Sistem imunitas tubuh dilemahkan oleh virus HIV yang menyebabkan berbagai macam
 penyakit mudah masuk dan ganas. Hal tersebut menyebabkan kematian yang umum dialami
 oleh orang yang terserang HIV, karena terjadi kerusakan pada.....
 - a. Eritrosit
 - b. Monosit
 - c. Trombosit
 - Limfosit

e. Neutrofil

31. Zat yang dilepaskan saat terjadinya alergi adalah...

- a. Antitoksin
- b. Presipitin

Histamin

- d. Gammaglobulin
- e. Globulin

2 Autoimun terjadi karena....

Antibodi tidak mengenali jaringan tubuh dan menganggapnya sebagai antigen

- b. Antibodi menghancurkan jaringan tubuh yang rusak
- c. Antibodi mengenali adanya antigen
- d. Antibodi membiarkan antigen masuk ke dalam tubuh
- e. Antibodi menyerang antigen yang datang dari dalam tubuh

32. Defisiensi sitem imun adalah.....

- Kemampuan sistem imun dalam membedakan dan mengenali antara sel tubuh dengan materi asing mengalami kegagalan
- Keadaan sistem pertahanan tubuh yang sangat peka terhadap antigen tertentu
- Kegagalan pewarisan suatu gen individu kepada generasi berikutnya sehingga dihasilkan makrofag yang tidak mampu mencerna dan menghancurkan organisme penyerbu
- d. penyakit yang menyerang sel dalam sistem imunitas yang menyebabkan berkurangnya jumlah sel T
- e. Penyakit pada sistem imun yang menganggap sel tubuh adalah materi asing

Alergi adalah....

- Kemampuan sistem inun dalam membedakan dan mengenali antara sel tubuh dengan materi asing mengalami kegagalan
- 🔏 Keadaan sistem pertahanan tubuh yang sangat peka terhadap antigen tertentu
- c. Kegagalan pewarisan suatu gen individu kepada generasi berikutnya sehingga dihasilkan makrofag yang tidak mampu mencerna dan menghancurkan organisme penyerbu
- d. Penyakit pada sistem imun yang menganggap sel tubuh adalah materi asing
- e. Penyakit yang menyerang sel dalam sistem imunitas yang menyebabkan berkurangnya / jumlah sel T

35 Antibodi yang terlibat dalam reaksi alergi adalah....

- a. Ig A
- b. IgB
- c. Ig M

e IBE

6. Penolakan transplantasi adalah....

Sistem kekebalan mengenali dan menyerang organ atau jaringan yang dicangkokkan dari tubuh orang lain

- b. Penyakit pada sistem imun yang menganggap sel tubuh adalah materi asing
- c. Keadaan sistem pertahanan tubuh yang sangat peka terhadap antigen tertentu
- d. Penyakit yang menyerang sel dalam sistem imunitas yang menyebabkan berkurangnya jumlah sel T
- e. Penolakan Kemampuan sistem imun dalam membedakan dan mengenali antara sel Aubuh dengan materi asing mengalami keragalan

37/enolakan transplantasi dapat dibagi menjadi tiga kategori, yaitu....

Penolakan hiperakut, akut, kronis

- b. Penolakan lembut, kasar, halus
- c. Penolakan langsung, lambat, akut
- d. Penolakan secara cepat, sadar dan tidak sadar

38. Jenolakan transplantasi hiperakut adalah.....

- a. Penolakan yang terjadi terjadi beberapa hari setelah transplantasi dilakukan
- Penolakan yang terjadi terjadi segera begitu transplantasi dilakukan
- c. Penolakan yang terjadi secara lambat
- d. Penolakan yang terjadi secara tidak sadar
- e. Penolakan yang terjadi terjadi karena adanya pembekuan darah pada pembuluh dalam organ

39. Penolakan transplantasi akut adalah....

🙏 Penolakan yang terjadi terjadi beberapa hari setelah transplantasi dilakukan

- b. Penolakan yang terjadi secara sadar
- c. Penolakan yang terjadi terjadi segera begitu transplantasi dilakukan
- d. Penolakan yang terjadi sangat cepat
- e. Penolakan yang terjadi terjadi karena adanya pembekuan darah pada pembuluh dalam organ

40 Penolakan transplantasi kronis adalah...

- a. Penolakan yang terjadi terjadi beberapa hari setelah transplantasi dilakukan
- b. Penolakan yang terjadi terjadi segera begitu transplantasi dilakukan
- c. Penolakan yang terjadi sangat cepat

Penolakan yang terjadi terjadi karena adanya pembekuan darah pada pembuluh dalam organ e. Penolakan yang terjadi secara tidak sadar

1 Imunisasi adalah....

Pemberian perlindungan pada tubuh dari serangan penyakit dengan memberikan vaksin

- . Memberikan perlindungan pada virus
- c. Menyembuhkan penyakit pada tubuh manusia
- d. Mempercepat pertumbuhan virus pada tubuh manusia
- e. Menyembuhkan infeksi

42 Waksin adalah....

- a. Virus yang dikuatkan
- b. Virus yang diproduksi untuk dimasukkan ke dalam tubuh manusia

★ Bibit penyakit yang telah mati atau dilemahkan dan dapat merangsang produksi antibodi
di dalam tubuh

- d. Bibit penyakit yang berkembang biak
- e. Virus atau bakteri yang dapat melemahkan sistem pertahanan tubuh manusaia

43 Kekebalan alami adalah...

- a. Kekebalan karena dibuat
- Kekebalan yang muncul karena respon dari adanya infeksi dan dapat sembuh
- c. Kekebalan yang muncul karena respon dari adanya infeksi dan tidak dapat sembuh
- d. Kekebalan yang tidak diharapkan
- e. Kekebalan yang diharapkan

44 Kekebalan buatan adalah...

⊀ Kekebalan karena dibuat

- b. Kekebalan yang muncul karena respon dari adanya infeksi dan dapat sembuh
- c. Kekebalan yang tidak diharapkan
- d. Kekebalan yang muncul dengan sendirinya
- e. /Kekebalan yang diharapkan

45 Kekebalan aktif adalah....

- a. Kekebalan yang tidak diharapkan
- Kekebalan yang terjadi apabila tubuh memperoleh sistem imun secara aktif dan menghasilkan respons imun utama
- c. Kekebalan yang muncul karena respon dari adanya infeksi dan dapat sembuh
- d. Kekebalan yang timbul karena dibuat
- e. Kekebalan yang didapat dari pemindahan antibodi dari suatu individu ke individu | lainnya

46/Kekebalan pasif adalah...

- a. Kekebalan yang terjadi apabila tubuh memperoleh sistem imun secara aktif dan menghasilkan respons imun utama
- b. Kekebalan yang muncul karena respon dari adanya infeksi dan dapat sembuh
- Kekebalan yang didapat dari pemindahan antibodi dari suatu individu ke individu
- d. Kekebalan yang diharapkan
- e. Kekebalan yang timbul karena dibuat
- 47. Kekebalan aktif secara buatan dapat diperoleh melalui.....

a. Pengalaman sakit

b. Pemberian antibodi lewat plasenta

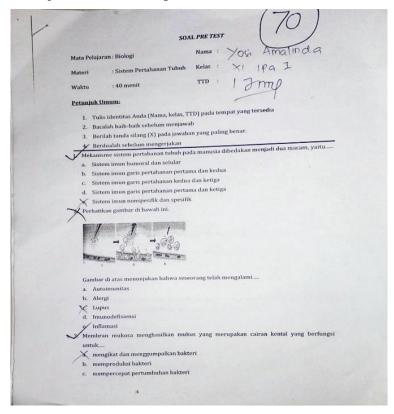
≪ Vaksinasi

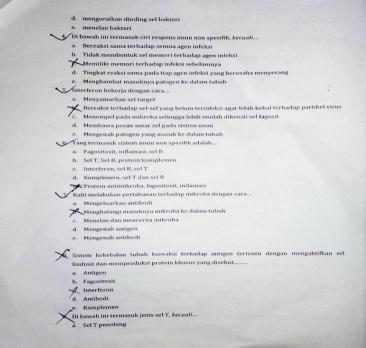
d. ASI

e. Pengobatan

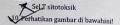
48. Kekebalan pasif secara buatan dapat diperoleh melalui...

Penyuntikkan antibodi dari manusia atau hewan yang telah kebal terhadap suatu penyakit


- b. ASI
- c. Pengalaman sakit
- d. Vaksinasi
- e. Pengobatan
- 49 lika seseorang menerima injeksi immunoglobulin (antibodi), misalnya hepatitis B, maka orang tersebut memperoleh kekebalan...
 - a. Kekebalan aktif
 - Kekebalan pasif
 - c. Kekebalan aktif buatan
 - Kekebalan pasif buatan
 - e. Kekebalan alami
- 50. Di bawah ini termasuk contoh kekebalan aktif:
 - 1) Vaksin polio yang diberikan pada anak agar anak tersebut kebal terhadap virus polio
 - 2) Vaksin cacar yang diberikan pada anak agar anak tersebut kebal terhadap virus cacar
 - Kuman penyakit yang masuk ke dalam tubuh kemudian merangsang tubuh menghasilkan antibodi untuk melawan penyakit


Yang termasuk dalam kekebalan aktif buatan adalah....

- a. 1 dan 3
- 1 dan 2
- c. 1
- d. 3
- e. Semua jawaban benar


CONTOH HASIL PRE TEST

1. Hasil pre test kelas eksperimen

- b. Sel T suppressor
- c. Sel T memori
- d Sel T toksik

Gambar di atas menunjukan cara anti bodi menghacurkan patogen. Cara yang dilakukan adalah......

Netralisasi, penggumpalan, pengendapan, pengaktifan sistem komplemen

- b. Penggumpalan, pengendapan, pengaktifan sistem komplemen, netralisasi
- c. Pengendapan, netralisasi, pengaktifan sistem komplemen, penggumpalan
- d. Netralisasi, pengendapan, penggumpalan, pengaktifan sistem komplemen
- e. Netralisasi, pengaktifan sistem komplemen, pengendapan, penggumpalan 11. Yang termasuk sistem imun spesifik adalah....
 - a. Fagositosit, protein komplemen, interferon
 - b. Protein komplemen, interferon, sel B
 - c. Interferon, inflamasi, sel T

Sel B, Sel T, sel B memori

e Membran mukosa, inflamasi, sel T

Semua zat asing yang memicu sistem kekebalan tubuh disebut....

- a. Infeksi
- Antigen
- c. Antibodi
- d. Alergi
- e. /nflamasi
- 13 Defisiensi sitem imun adalah.....
 - a. Kemampuan sistem imun dalam membedakan dan mengenali antara sel tubuh dengan materi asing mengalami kegagalan
 - b. Keadaan sistem pertahanan tubuh yang sangat peka terhadap antigen tertentu

Kegagalan pewarisan suatu gen individu kepada generasi berikutnya sehingga dihasilkan makrofag yang tidak mampu mencerna dan menghancurkan organisme penyerbu

- d. penyakit yang menyerang sel dalam sistem imunitas yang menyebabkan berkurangnya jumlah sel T
- e. Penyakit pada sistem imun yang menganggap sel tubuh adalah materi asing
- 4. Penolakan transplantasi hiperakut adalah....
 - a. Penolakan yang terjadi terjadi beberapa hari setelah transplantasi dilakukan
 - 🖟 Penolakan yang terjadi terjadi segera begitu transplantasi dilakukan
 - c. Penolakan yang terjadi secara lambat
 - d. Penolakan yang terjadi secara tidak sadar
 - e. Penolakan yang terjadi terjadi karena adanya pembekuan darah pada pembuluh dalam organ

Penolakan transplantasi dapat dibagi menjadi tiga kategori, yaitu....

Penolakan hiperakut, akut, kronis

- b. Penolakan lembut, kasar, halus
- c. Penolakan langsung, lambat, akut
- d. Penolakan secara cepat, sadar dan tidak sadar

Penolakan kronis, lambat, akut

10 HN telah merenggut banyak sekali korban, mulai yang tua, muda atau bahkan anak-anak.
Sistem imun itas tubuh dilemahkan oleh virus HIV yang menyebabkan berbagai macam
penyakit mudah masuk dan ganas. Hal tersebut menyebabkan kematian yang umum dialami
oleh orang yang terserang HIV, karena terjadi kerusakanpada....

- a. Eritrosit
- b. Monosit

Trombosit

- d. Limfosit
- e. Neutrofil

Autoimun terjadi karena....

a. Antibodi tidak mengenali jaringan tubuh dan menganggapnya sebagai antigen

Antibodi menghancurkan jaringan tubuh yang rusak

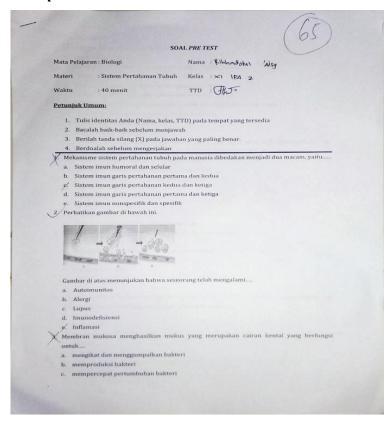
- c. Antibodi mengenali adanya antigen
- d. Antibodi membiarkan antigen masuk ke dalam tubuh
- e. Intibodi menyerang antigen yang datang dari dalam tubuh

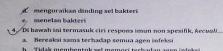
18 Kekebalan pasif secara buatan dapat diperoleh melalui...

Penyuntikkan antibodi dari manusia atau hewan yang telah kebal terhadap suatu penyakit

- b. ASI
- c. Pengalaman sakit
- d. Vaksinasi
- e. Pengobatan

19. Kekebalan aktif adalah....

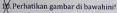

- a. Kekebalan yang tidak diharapkan
- Kekebalan yang terjadi apabila tubuh memperoleh sistem imun secara aktif dan menghasilkan respons imun utama
- c. Kekebalan yang muncul karena respon dari adanya infeksi dan dapat sembuh
- d. Kekebalan yang timbul karena dibuat
- e. Kekebalan yang didapat dari pemindahan antibodi dari suatu individu ke individu


Nekebalan aktif secara buatan dapat diperoleh melalui.....

- a. Pengalaman sakit
- b. Pemberian antibodi lewat plasenta
- c. Vaksinasi

ASI e. Pengobatan

2. Hasil pre test kelas kontrol



- b. Tidak membentuk sel memori terhadap agen infeksi
- ç/ Memiliki memori terhadap infeksi sebelumnya
- d. Tingkat reaksi sama pada tiap agen infeksi yang berusaha menyerang
- e. Menghambat masuknya patogen ke dalam tubuh
- \ 5 Interferon bekerja dengan cara....
 - a. Menyamarkan sel target
 - ył. Bereaksi terhadap sel-sel yang belum terinfeksi agar lebih kebal terhadap partikel virus
 - c. Menempel pada mikroba sehingga lebih mudah dikenali sel fagosit
 - d. Membawa pesan antar sel pada sistem imun
 - e. Mengenali patogen yang masuk ke dalam tubuh
- 6 Yang termasuk sistem imun non spesifik adalah....
 - a. Fagositosit, inflamasi, sel B
 - b. Sel T, Sel B, protein komplemen
 - c. Interferon, sel B, sel T
 - d. Komplemen, sel T dan sel B
- Protein antimikroba, fagositosit, inflamasi
- Kulit melakukan pertahanan terhadap mikroba dengan cara....
 - A. Mengeluarkan antibodi b. Menghalangi masuknya mikroba ke dalam tubuh
 - c. Menelan dan mencerna mikroba
 - d. Mengenali antigen
 - e. Mengenali antibodi
- 8 Sistem kekebalan tubuh bereaksi terhadap antigen tertentu dengan mengaktifkan sel limfosit dan memproduksi protein khusus yang disebut...
 - a. Antigen
 - b. Fagositosit
 - c. Interferon
 - d. Antibodi
 - e. Komplemen
 - Di bawah ini termasuk jenis sel T, kecuali....
 - a. Sel T penolong

- b. Sel T suppressor
- c. Sel T memori
- d. Sel T toksik

Gambar di atas menunjukan cara anti bodi menghacurkan patogen. Cara yang dilakukan adalah......

- a. Netralisasi, penggumpalan, pengendapan, pengaktifan sistem komplemen
- b. Penggumpalan, pengendapan, pengaktifan sistem komplemen, netralisasi
- gf. Pengendapan, netralisasi, pengaktifan sistem komplemen, penggumpalan
- d. Netralisasi, pengendapan, penggumpalan, pengaktifan sistem komplemen
- e. Netralisasi, pengaktifan sistem komplemen, pengendapan, penggumpalan
- 11. Yang termasuk sistem imun spesifik adalah....
 - a. Fagositosit, protein komplemen, interferon
 - b. Protein komplemen, interferon, sel B
 - c. Interferon, inflamasi, sel T
 - d. Sel B, Sel T, sel B memori
 - e., Membran mukosa, inflamasi, sel T
- \12. Semua zat asing yang memicu sistem kekebalan tubuh disebut....
 - a. Infeksi
 - b. Antigen
 - c. Antibodi
 - d. Alergi
 - e. Inflamasi

13. Defisiensi sitem imun adalah.....

- Kemampuan sistem imun dalam membedakan dan mengenali antara sel tubuh dengan materi asing mengalami kegagalan
- b. Keadaan sistem pertahanan tubuh yang sangat peka terhadap antigen tertentu

Kegagalan pewarisan suatu gen individu kepada generasi berikutnya sehingga dihasilkan makrofag yang tidak mampu mencerna dan menghancurkan organisme penyerbu

- d. penyakit yang menyerang sel dalam sistem imunitas yang menyebabkan berkurangnya iumlah sel T
- e. Penyakit pada sistem imun yang menganggap sel tubuh adalah materi asing

4. Penolakan transplantasi hiperakut adalah.....

- Penolakan yang terjadi terjadi beberapa hari setelah transplantasi dilakukan
- b. Penolakan yang terjadi terjadi segera begitu transplantasi dilakukan
- c. Penolakan yang terjadi secara lambat
- d. Penolakan yang terjadi secara tidak sadar
- e. Penolakan yang terjadi terjadi karena adanya pembekuan darah pada pembuluh dalam organ
- \15/Penolakan transplantasi dapat dibagi menjadi tiga kategori, yaitu....

A Penolakan hiperakut, akut, kronis

- b. Penolakan lembut, kasar, halus
- c. Penolakan langsung, lambat, akut
- d. Penolakan secara cepat, sadar dan tidak sadar
- e. Penolakan kronis, lambat, akut

16./HIV telah merenggut banyak sekali korban, mulai yang tua, muda atau bahkan anak-anak. Sistem imun itas tubuh dilemahkan oleh virus HIV yang menyebabkan berbagai macam penyakit mudah masuk dan ganas. Hal tersebut menyebabkan kematian yang umum dialami oleh orang yang terserang HIV, karena terjadi kerusakanpada.....

- a. Eritrosit
- b. Monosit
- c. Trombosit
- d. Limfosit
- e. Neutrofil

Autoimun terjadi karena....

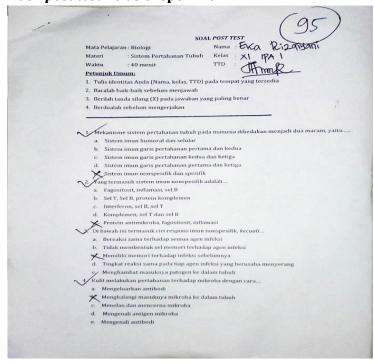
- a. Antibodi tidak mengenali jaringan tubuh dan menganggapnya sebagai antigen
- b. Antibodi menghancurkan jaringan tubuh yang rusak
- c. Antibodi mengenali adanya antigen
- d. Antibodi membiarkan antigen masuk ke dalam tubuh
- e. Antibodi menyerang antigen yang datang dari dalam tubuh

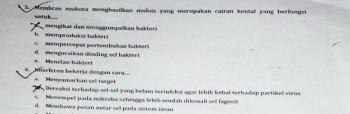
18 Kekebalan pasif secara buatan dapat diperoleh melalui...

A Penyuntikkan antibodi dari manusia atau hewan yang telah kebal terhadap suatu penyakit

- b. ASI
- c. Pengalaman sakit
- d. Vaksinasi
- e. Pengobatan

\19. Kekebalan aktif adalah...


- a. Kekebalan yang tidak diharapkan
- K. Kekebalan yang terjadi apabila tubuh memperoleh sistem imun secara aktif dan menghasilkan respons imun utama
- c. Kekebalan yang muncul karena respon dari adanya infeksi dan dapat sembuh
- d. Kekebalan yang timbul karena dibuat
- e. Kekebalan yang didapat dari pemindahan antibodi dari suatu individu ke individu / lainnya


20: Kekebalan aktif secara buatan dapat diperoleh melalui....

- a. Pengalaman sakit
- b. Pemberian antibodi lewat plasenta
- 9. Vaksinasi
- d. ASI
- e. Pengobatan

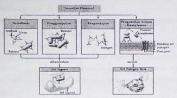
CONTOH HASIL POST TEST

1. Hasil post test kelas eksperimen

e. Mengenali patogen yang masuk ke dalam tubuh Perhatikan gambar di bawah ini.

Gambar di atas menunjukan bahwa seseorang telah mengalami....

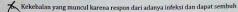
- a. Autoimunitas
- b. Alergi
- c. Inflamasi
- d. Lupus


Jang termasuk sistem imun spesifik adalah...

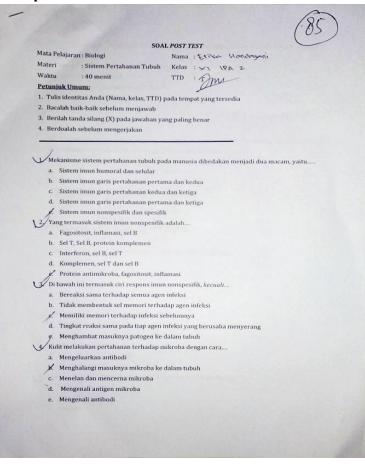
- a. Fagositosit, protein komplemen, interferon
- b. Protein komplemen, interferon, sel B
- c. Interferon, inflamasi, sel T
- Sel B, Sel T, sel B memori
- e. Membran mukosa, inflamasi, sel T

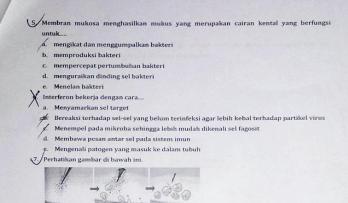
Semua zat asing yang memicu sistem kekebalan tubuh disebut....

- a. Infeksi
- X Antigen
- c. Antibodi


- d. Inflamasi
- e. Inflamasi
- 100 sistem kekebalan tubuh bereaksi terhadap antigen tertentu dengan mengaktifkan sel limfosit dan memproduksi protein khusus yang disebut.......
 - a. Antigen
 - b. Fagositosit
 - c. Interferon
 - Antibodi
- e. Komplemen 11 Perhatikan gambar di bawah ini!

Gambar di atas menunjukan cara antibodi menghacurkan patogen. Cara yang dilakukan adalah......


- X Netralisasi, penggumpalan, pengendapan, pengaktifan sistem komplemen
- b. Penggumpalan, pengendapan, pengaktifan sistem komplemen, netralisasi
- c. Pengendapan, netralisasi, pengaktifan sistem komplemen, penggumpalan
- d. Netralisasi, pengaktifan sistem komplemen, pengendapan, penggumpalan
- e. / Netralisasi, pengaktifan sistem komplemen, pengendapan, penggumpalan / Di bawah ini termasuk jenis sel T, *kecuali...*
- a. Sel T penolong
- b. Sel T suppressor
- c. Sel T memori
- X Sel T toksik
- e. 8el T sitotoksik
- 13/HIV telah merenggut banyak sekali korban, mulai yang tua, muda atau bahkan anak-anak.
 Sistem imunitas tubuh dilemahkan oleh virus HIV yang menyebabkan berbagai macam
 penyakit mudah masuk dan ganas. Hal tersebut menyebabkan kematian yang umum dialami
 oleh orang yang terserang HIV, karena terjadi kerusakan pada.....
 - a. Eritrosit


- b. Monosit
- c. Trombosit
- Limfosit
- e. Neutrofil
- 4 Autoimun terjadi karena....
 - 🔀 Antigen tidak mengenali jaringan tubuh dan menganggapnya sebagai antigen
 - b. Antibodi menghancurkan jaringan tubuh yang rusak
 - c. Antibodi mengenali adanya antigen
 - d. Antibodi menyerang antigen yang datang dari dalam tubuh
 - e. Antibodi menyerang antigen yang datang dari dalam tubuh
- 15 Defisiensi sitem imun adalah.....
 - a. Kemampuan sistem imun dalam membedakan dan mengenali antara sel tubuh dengan materi asing mengalami kegagalan
 - b. Keadaan sistem pertahanan tubuh yang sangat peka terhadap antigen tertentu
 - Kegagalan pewarisan suatu gen individu kepada generasi berikutnya sehingga dihasilkan makrofag yang tidak mampu mencerna dan menghancurkan organisme penyerbu
 - d. penyakit yang menyerang sel dalam sistem imunitas yang menyebabkan berkurangnya jumlah sel T
 - e. Penyakit pada sistem imun yang menganggap sel tubuh adalah materi asing
- 16 Penolakan transplantasi dapat dibagi menjadi tiga kategori, yaitu....
 - Penolakan hiperakut, akut, kronis
 - b. Penolakan lembut, kasar, halus
 - c. Penolakan langsung, lambat, akut
 - d. Penolakan kronis, lambat, akut
- e. Penolakan kronis, lambat, akut
- 17 enolakan transplantasi hiperakut adalah.... a. Penolakan yang terjadi terjadi beberapa hari setelah transplantasi dilakukan
 - K Penolakan yang terjadi terjadi segera begitu transplantasi dilakukan
 - c. Penolakan yang terjadi secara lambat
 - d. Penolakan yang terjadi terjadi karena adanya pembekuan darah pada pembuluh dalam organ
 - e. Penolakan yang terjadi terjadi karena adanya pembekuan darah pada pembuluh dalam / organ
- 18. Kekebalan aktif adalah....
 - a. Kekebalan yang terjadi apabila tubuh memperoleh sistem imun secara aktif dan menghasilkan respons imun utama

- c. Kekebalan yang timbul karena dibuat
- d. Kekebalan yang didapat dari pemindahan antibodi dari suatu individu ke individu
- e. Kekebalan yang didapat dari pemindahan antibodi dari suatu individu ke individu dainnya
- 19. Kekebalan aktif secara buatan dapat diperoleh melalui....
 - a. Pengalaman sakit
 - b. Pemberian antibodi lewat plasenta
 - X Vaksinasi
 - d. ASI
- e. Pengobatan 20. Mecbalan pasif secara buatan dapat diperoleh melalui...
 - a. Penyuntikkan antibodi dari manusia atau hewan yang telah kebal terhadap suatu penyakit
 - b. ASI
 - c. Pengalaman sakit
 - d. Vaksinasi
 - Pengobatan

2. Hasil post test kelas kontrol

Gambar di atas menunjukan bahwa seseorang telah mengalami....

- a. Autoimunitas
- b. Alergi
- c. Inflamasi
- d. Lupus
- . Inflamasi

- Yang termasuk sistem imun spesifik adalah....
 - a. Fagositosit, protein komplemen, interferon
 - b. Protein komplemen, interferon, sel B
 - c. Interferon, inflamasi, sel T
 - ✓ Sel B, Sel T, sel B memori
 - e. Membran mukosa, inflamasi, sel T

Semua zat asing yang memicu sistem kekebalan tubuh disebut...

- a. Infeksi
- b. Antigen
- c. Antibodi

- d. Inflamasi
- e./ Inflamasi

10 sistem kekebalan tubuh bereaksi terhadap antigen tertentu dengan mengaktifkan sel limfosit dan memproduksi protein khusus yang disebut.......

- a. Antigen
- b. Fagositosit
- c. Interferon
- d. Antibodi
- e. Komplemen

Perhatikan gambar di bawah ini!

Gambar di atas menunjukan cara antibodi menghacurkan patogen. Cara yang dilakukan adalah......

- a. Netralisasi, penggumpalan, pengendapan, pengaktifan sistem komplemen
- b. Penggumpalan, pengendapan, pengaktifan sistem komplemen, netralisasi
- Pengendapan, netralisasi, pengaktifan sistem komplemen, penggumpalan
- d. Netralisasi, pengaktifan sistem komplemen, pengendapan, penggumpalan
- e. Netralisasi, pengaktifan sistem komplemen, pengendapan, penggumpalan 112/0i bawah ini termasuk jenis sel T, kecuali....
 - a. Sel T penolong
 - b. Sel T suppressor
 - c. Sel T memori
 - d. Sel T toksik
 - e/ Sel T sitotoksik

13/HIV telah merenggut banyak sekali korban, mulai yang tua, muda atau bahkan anak-anak.
Sistem imunitas tubuh dilemahkan oleh virus HIV yang menyebabkan berbagai macam
penyakit mudah masuk dan ganas. Hal tersebut menyebabkan kematian yang umum dialami
oleh orang yang terserang HIV, karena terjadi kerusakan pada.....

a. Eritrosit

- d. Inflamasi
- e./ Inflamasi

tiosistem kekebalan tubuh bereaksi terhadap antigen tertentu dengan mengaktifkan sel limfosit dan memproduksi protein khusus yang disebut.......

- a. Antigen
- b. Fagositosit
- c. Interferon
- d. Antibodi e. Komplemen

Perhatikan gambar di bawah ini!

Gambar di atas menunjukan cara antibodi menghacurkan patogen. Cara yang dilakukan adalah......

- a. Netralisasi, penggumpalan, pengendapan, pengaktifan sistem komplemen
- b. Penggumpalan, pengendapan, pengaktifan sistem komplemen, netralisasi
- Pengendapan, netralisasi, pengaktifan sistem komplemen, penggumpalan
- d. Netralisasi, pengaktifan sistem komplemen, pengendapan, penggumpalan
- e. Netralisasi, pengaktifan sistem komplemen, pengendapan, penggumpalan
- 120 bawah ini termasuk jenis sel T, kecuali....
 - a. Sel T penolong
 - b. Sel T suppressor
 - c. Sel T memori
 - & Sel T toksik
 - e, Sel T sitotoksik
- 13/HIV telah merenggut banyak sekali korban, mulai yang tua, muda atau bahkan anak-anak. Sistem imunitas tubuh dilemahkan oleh virus HIV yang menyebabkan berbagai macam penyakit mudah masuk dan ganas. Hal tersebut menyebabkan kematian yang umum dialami oleh orang yang terserang HIV, karena terjadi kerusakan pada.....
 - a. Eritrosit

- b. Kekebalan yang muncul karena respon dari adanya infeksi dan dapat sembuh
- of Kekebalan yang timbul karena dibuat
- d. Kekebalan yang didapat dari pemindahan antibodi dari suatu individu ke individu
- e. Kekebalan yang didapat dari pemindahan antibodi dari suatu individu ke individu lainnya
- 19 Kekebalan aktif secara buatan dapat diperoleh melalui....
 - a. Pengalaman sakit
 - b. Pemberian antibodi lewat plasenta
 - c. Vaksinasi
 - d. ASI
 - e./ Pengobatan
- 20 Kekebalan pasif secara buatan dapat diperoleh melalui...
 - Penyuntikkan antibodi dari manusia atau hewan yang telah kebal terhadap suatu penyakit

 - b. ASI
 - c. Pengalaman sakit
 - d. Vaksinasi
 - e. Pengobatan

Lampiran 32D

CONTOH HASIL KUIS KELAS EKSPERIMEN

(100	
Soal Kuis I	/
Nama : EKO Rizoliyani	
Mata Pelajaran : Biologí	
Kelas/Semester : XI IPA I / 1	
Waktu : lo Mariil	
Soal Tes Essay Singkat	
Jawablah pertanyaan berikut dengan benar !	
Kulik, Membran Mukosa, dan sekresi Kulit do	in membran
Mukosa Kulit terdiri atas <u>epidermis</u> yang tersusun atas sel-sel epite rapat, sehingga menyulitkan mikroorganisme unruk masuk ke dalam tubuh.	l yang sangat
Kulit terdiri atas <u>epidermis</u> yang tersusun atas sel-sel epite	
Kulit terdiri atas Pridermis yang tersusun atas sel-sel epite rapat, sehingga menyulitkan mikroorganisme unruk masuk ke dalam tubuh. Membran mukosa tidak dapat ditembus oleh karena antara Gau membran dengan membran yang (ain sebutkan 3 sistem imun non spesifik garis pertahar sel fagosit, Peradangan atau inflamasi da	bakteri an kedua!
Xulit terdiri atas Pridermis yang tersusun atas sel-sel epite rapat, sehingga menyulitkan mikroorganisme unruk masuk ke dalam tubuh. Membran mukosa tidak dapat ditembus oleh karena Antara Satu membran dengan membran yang (ain sangat rapat. Sebutkan 3 sistem imun non spesifik garis pertahar Sel fogosit, Peradangan atau inflamasi da Protein antimik toka. Protein antimikroba yang paling penting adalah (Nterferon	bakteri han kedua!
Kulit terdiri atas Pridermis yang tersusun atas sel-sel epiter rapat, sehingga menyulitkan mikroorganisme unruk masuk ke dalam tubuh. Membran mukosa tidak dapat ditembus oleh karena antata datu membran dengan membran yang fain. Sebutkan 3 sistem imun non spesifik garis pertahar sel fagosit, Peradangan atau inflamasi da. Protein antimik roba. Protein antimikroba yang paling penting adalah interferon	bakteri han kedua!
Xulit terdiri atas Pridermis yang tersusun atas sel-sel epite rapat, sehingga menyulitkan mikroorganisme unruk masuk ke dalam tubuh. Membran mukosa tidak dapat ditembus oleh karena Antara Satu membran dengan membran yang (ain sangat rapat. Sebutkan 3 sistem imun non spesifik garis pertahar Sel fogosit, Peradangan atau inflamasi da Protein antimik toka. Protein antimikroba yang paling penting adalah (Nterferon	bakteri han kedua!
Xulit terdiri atas Pridermis yang tersusun atas sel-sel epite rapat, sehingga menyulitkan mikroorganisme unruk masuk ke dalam tubuh. Membran mukosa tidak dapat ditembus oleh karena Antara Satu membran dengan membran yang (ain sangat rapat. Sebutkan 3 sistem imun non spesifik garis pertahar Sel fogosit, Peradangan atau inflamasi da Protein antimik toka. Protein antimikroba yang paling penting adalah (Nterferon	bakteri han kedua!

Nama Mata Pelajaran Kelas/Semester	Soal Kuls II : Intain Fortingwah : Biologi : XI IPA 1 Satu
Waktu	: 10 Memf.
sistem imun sistem	spesifik merupakan garis pertahanan ke
bereaksi deng semua zat asii	dibentuk sebagai respon terhadap suatu antigen dan secara spesifik akar an antigen disebut

Soal Kuis III

: Aslamiyah Nama : Biologi

Mata Pelajaran

: 10 menit Waktu

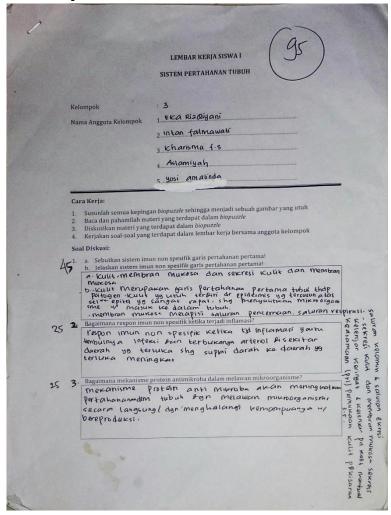
Kelas/Semester : XI IPA I/I

Soal Tes Essay Singkat

Jawablah pertanyaan berikut dengan benar!

keadaan sistem pertahanan tubuh yang sangat peka terhadap antigen tertentu disebut perdangan

sebutkan 3 kategori penolakan trasplantasi!


pemberian perlindungan pada tubuh dari serangan penyakit dengan memberi vaksin disebut Vaksingsi

bibit penyakit yang telah mati atau dilemahlan & dapat memasang produksi antibodi di dalam tubuh disebut. VOKSIN

kekebalan dapat dibagi menjadi 2 macam yaitu kekebalan CLLIF.......... dan

CONTOH HASIL LEMBAR KERJA SISWA

1. Kelas eksperimen

LEMBAR KERJA SISWA II

SISTEM PERTAHANAN TUBUH

2 Intan fatmawati					
3 charisma f.s					
4 Aslamiyah					
5 Yosí amalinda					

- Kerjakan soal-soal yang terdapat dalam lembar kerja bersama anggota kelompok

Soal Diskusi:

Kelompok

- 15 1. Jelaskan perbedaan antara imunitas humoral dan imunitas selular!

 [munitas humoral menghas ilhan pembentukan antiboa! to disekresikan oleh sellimposit B Imunitas seluler limfosit T alau sel T berperan pada sistem Imun spesifik seluler.
- 2. Jelaskan pengertian istilah di bawah ini! a. Antigen: 2at 48 merangsang respon Imunitas, terutama dim menghasikan antibodi b. Antibodi: Protein Larut 40 dihasilkan oleh sistem Imunitas sog respon that koberadaan suatu antigan Panakan bereaksi Panakantiber tsb.
- 3. Bagaimana imunitas humoral dalam melawan patogen yang masuk ke dalam tubuh? netrausasi -> penggumpalan -> pengendapan -> pengautifan sistem komplemen sel patogen sel fagosit

LEMBAR KERJA SISWA III

SISTEM PERTAHANAN TUBUH

: 3

Nama Anggota Kelompok	1 EKA KIZOGANI
	2 Intan fatmawati
	3 Kharisma f. s
	4 Aslamiyah
	5 Yosi amalinda
Cara Kerja:	
1. Susunlah semua keping	an biopuzzle sehingga menjadi sebuah gambar yang utuh
2. Baca dan pahamilah ma	iteri yang terdapat dalam <i>biopuzzle</i> terdapat dalam <i>biopuzzle</i>
Diskusikan materi yang	terdapat dalam lembar kerja bersama anggota kelompok
 Kerjakan soal-soal yang 	terdapat dalam lembar kerja bersama anggota kelompon
Soal Diskusi:	

Kelompok

- lelaskan kelainan pada sistem pertananan tubun di bawan ini.

 a. Penolakan transplantasi: 515tem Kekebal an Apt Mengenuli Ran Molyarang apapun 30 secara normal berbola dari 30 ada didim tubuh seseorang steeri bigan kan jamban 30 picangkokan bahadilim kemanpuan sistem inun alim membedakan Ran mengenaui Antara sel tubuh Pgn matori asirg lapat mengalami kegapalan c. Delisiensi sitem imun: mencerminkan kegagaian pewansan suatu gen mawil bu ked a negasi aber kentingan sua bingsi ken makrof a gen mengapa dang yan mencerma abbrikan nuga sua bingsi ken makrof a ya takan kengapa dang yan menderita ADS mudah terserang penyalut suara kecabatan tubuk sasanan kengapa terserang penyalut suaran kecabatan tubuk sasanan kengapa terserang penyalut suaran kecabatan tubuk sasanan kengapa terserang penyalut suaran kengapa tubuk sasanan kengapa terserang penyalut suaran kengapa terserang penyalut suaran kengapa terserang penyalut suaran kengapatan kengap Karena Kekebalan tubuh menurun dun penyakit ini diselahkan oleh Virus Hir. Virus in menyering sel dim sistem (munitar yg manyebab-Ican berkurang nya jumlah sel T. sel T, ruriah 79 bertugas mengak. Inflean Limforty mempakan lcomponer casar Imunitis.
- 3. Jelaskan pengertian istilah di bawah ini! a. Valsin: bibit pergarit og teleh matt/Bilana Luca son dpt nerångseng paduksi antibudi dlm tubuk b. Kekebalan aktif. Kekebalan og begjadi apania tubuh memperoleh Sistem Iman secara aktif san inogha ilkan irnun utoma c. Kekebalan pasif: Kekebalan yadidapat dari Pemindahan antibodi dari suatu Individu ke Individu Lainya.

2. Kelas kontrol

	LEMBAR KERJA SISWA I SISTEM PERTAHANAN TUBUH
Kelompok Nama Anggota Kelompok	1 Illa Nur Rohmah 2 Coimatun 3 Septia Lahvahtipa 4 Sinta Nur Liana 5 Sigit Ahmad Fathrein
Cara Kerja:	
Pahamilah materi ya Diskusikan dengan k	ang terdiri dari 5-6 orang ang disampaikan oleh guru elompok masing-masing ang terdapat dalam lembar kerja bersama anggota kelompok
Soal Diskusi:	
b. Jelaskan sistem i	imun non spesifik garis pertahanan pertama! mun non spesifik garis pertahanan pertama! סיסאיז (אינועלע) אינואל לעניי (אינועל לעניי אינואל לעניי אינואל אינואל לעניי אינואל לעניי אינואל לעניי אינואל לעניי
1. ELMAN STANDARD 1. STANDARD	wandang benkaran lagia dan merendakan puminik.
2 Ragaimana mekanisa	me protein antimikroba dalam melawan mikroorganisme? Si & ETWOUL La babteri flora norwal Mity Specifib 49 didupat.

LEMBAR KERJA SISWA II

SISTEM PERTAHANAN TUBUH

	Kelompok Nama Anggota Kelompok	1 Ma Nur Rohmah 2 Koimatun 3 Sephia Zuhrakulifa 4 Sinta Nur Lana 5 Sigil Ahmand Fauran
	Cara Kerja:	Twi Eur
	Buatlah kelompok yang Pahamilah materi yang Diskusikan dengan keloi Kerjakan soal-soal yang Soal Diskusikan	terdiri dari 5-6 orang disampaikan oleh guru mpok masing-masing terdapat dalam lembar kerja bersama anggota kelompok
5	1. Jelaskan perbedaan ant	ara imunitas humoral dan imunitas sak k
0	of Schlastian out	I menghasillan pembenhekan anti waki ga h sel limfosil B. Carlein imun spesielih seluser est t sim sautu cel T pemalang sel T suppressor dan sel T memori alah di bawah init za 1 asing 30 memiljan sistem kecebalan Tubuh
	b. Antibodi: Protein an hgen terrebu	37 dibentuk sebagai cerpon Techadap suatu Laan secara sperifik akan beraugi dan ahaan
	3. Bagaimana imunitas hu 1. Metralisani — Di dihancur	moral dalam melawan patogen yang masuk ke dalam tubuh? Tenggum palan — D Tengen apan — D Tengen biyan SBTem Kompleme

25

(75)

LEMBAR KERJA SISWA III

SISTEM PERTAHANAN TUBUH

Kelompok

Nama Anggota Kelompok

1 [112 Mur Rohmah 2 Kormatun 3 Sephia Zahrofifa 4 Sinta Nur Uana 5 Sigit Ahmad Fauzan

Cara Kerja:

- 1. Buatlah kelompok yang terdiri dari 5-6 orang
- 2. Pahamilah materi yang disampaikan oleh guru
- 3. Diskusikan dengan kelompok masing-masing
- 4. Kerjakan soal-soal yang terdapat dalam lembar kerja bersama anggota kelompok

Soal Diskusi:

1. Jelaskan kelainan pada sistem pertahanan tubuh di bawah ini!

a. Pepolakan transplantasi, egal selelah sam di amerikkan tetapi mumbin jan haju tamenk bergapa mumban bergapa tulum selegit niman bergapa mumban bergapa tulum selegit niman selegit niman bergapa niman selegit niman s

larena Urus HN menyebabkan lekebalan tubuh menurun hal tersebut yang menggakubatkan pensenia musah terserang penyawit

3. Jelaskan pengertian istilah di bawah ini!

a. Vaksin: aPahah suam bakan yang dipakai untuk menstmulus abau merangsang.
Pembenhukan antibuhah bosi yang bira simosukkan ke tubah manusin lewas muluk / puntu b. Kekebalan aktis: pandung dan penyawi sebagai akubat dan paparan sebelumnya.
Sengan agen ponyebat penyawit menuar atau bagian san agen inteksi (antiq en ...

c. Kekebalan pasif: 284 Memberikan permbungain Sementann Bori penyawat Melalui pemberian anti boti ya Sihasilban Secara ousogen.

Lampiran 33

KEMENTERIAN AGAMA REPUBLIK INDONESIA

UNIVERSITAS ISLAM NEGERI WALISONGO SEMARANG
FAKULTAS SAINS DAN TEKNOLOGI

Alamat: Jl.Prof. Dr. Hamka Km. 1 Semarang Telp. 024 76433366 Semarang 50185

Nomor Lamp : B.2709/Un.10.8/D1/TL.00/09/2017 : Proposal Skripsi 27 September 2017

Lamp Hal

: Permohonan Izin Riset.

Kepada Yth.

Kepala MA NU 03 Sunan Katong

di Kendal

Assalamu'alaikum Wr. Wb.

Diberitahukan dengan hormat, dalam rangka penyelesaian tugas akhir

kuliah, mahasiswa yang tercantum dibwah ini:

Nama

: Devi Atiek Afiyani : 133811007

NIM

Fakultas/Jurusan : Sains dan Teknologi / Pendidikan Biologi

Judul Skripsi

: "EFEKTIVITAS MEDIA PEMBELAJARAN BIOPUZZLE DALAM PEMBELAJARAN COOPERATIVE LEARNING TIPE STAD TERHADAP HASIL BELAJAR SISWA MATERI POKOK SISTEM PERTAHANAN TUBUH

POKOK SISTEM PERTAHANAN TUBUH KELAS XI MA NU 03 SUNAN KATONG"

Pembimbing

: 1. Siti Mukhlishoh Setyawati, M.Si.

2. Bunga Ihda Norra, M.Pd.

Mahasiswa tersebut membutuhkan data-data dengan tema/judul skripsi yang sedang disusun, oleh karena itu kami mohon mahasiswa tersebut di ijinkan melaksanakan riset selama 1 bulan, mulai tanggal 05 Oktober sampai dengan 05 November 2017.

Demikian atas perhatian dan kerjasamanya disampaikan terima kasih.

Wassalamu'alaikum Wr. Wb.

a.n. Dekan

Wakil Dekan Bidang Akademik

h, M.Pd. 90313 198103 2 007 🞝

Tembusan Yth.

Dekan Fakultas Sains dan Teknologi UIN Walisongo (sebagai laporan)

Lampiran 34

LEMBAGA PENDIDIKAN MA'ARIF NU MA NU 03 SUNAN KATONG KALIWUNGU

STATUS: TERAKREDITASI "A" Nomor: 138/BAP-SM/X/2014

Alamat : Jalan Sawahjati Plantaran Kaliwungu Selatan 51372 Telp. (0294) 3686880

SURAT KETERANGAN PENELITIAN

Nomor: E.IV/k/MA/B.1554/NU.03/117/E.23/XI/17

Yang bertanda tangan di bawah ini Kepala Madrasah Aliyah NU 03 Sunan Katong Kaliwungu menerangkan bahwa :

Nama

: DEVI ATIEK AFIYANI

NIM

: 133811007

Mahasiswa Fakultas / Jurusan : Universitas Islam Negeri Semarang: Sains dan Teknologi / Pendidikan Biologi

Keterangan Pokok

: Nama tersebut telah melaksanakan penelitian di MA NU 03 Sunan Katong selama 1 bulan terhitung mulai tanggal 5 Oktober 2017 s.d. 5 November 2017 untuk penyusunan skripsi dengan judul "EFFEKTIVITAS MEDIA PEMBELAJARAN BIOPUZZLE DALAM PEMBELAJARAN COOPERATIVE LEARNING TIPE STAD TERHADAP HASIL BELAJAR SISWA MATERI POKOK SISTEM PERTAHANAN TUBUH KELAS

XI MA NU 03 SUNAN KATONG".

Demikian surat keterangan ini dibuat untuk menjadikan periksa adanya.

Kaliwungu, 7 November 2017

Kepala Madrasah

NUR HADI, S.Pd.I.

LABORATORIUM MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UIN WALISONGO SEMARANG

Jln. Prof. Dr. Hamka Kampus 2 (Gdg. Lab. MIPA Terpudu 113) 🕿 7601295 Fax. 7615387 Semarang 50182

PENELITI : Devi Atiek Afiyani NIM : 133811007

: Pendidikan Biologi JURUSAN

JUDUL

: EFEKTIVITAS MEDIA PEMBELAJARAN *BIOPUZZLE* DALAM PEMBELAJARAN *COOPERATIVE LEARNING* TIPE STAD TERHADAP HASIL BELAJAR SISWA MATERI SISTEM PERTAHANAN TUBUH KELAS XI MA NU 03 SUNAN KATONG

HIPOTESIS:

a. Hipotesis Varians:

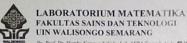
Ho : Varians rata-rata hasil belajar siswa kelas eksperimen dan kontrol adalah

H₁: Varians rata-rata hasil belajar siswa kelas eksperimen dan kontrol adalah

tidak identik.

b. Hipotesis Rata-rata:

 H_0 : Rata-rata hasil belajar siswa kelas eksperimen \leq kontrol.


H₁: Rata-rata hasil belajar siswa kelas eksperimen > kontrol.

DASAR PENGAMBILAN KEPUTUSAN:

H₀ DITERIMA, jika nilai hitung ≤ t_tabel Ho DITOLAK, jika nilai t hitung > t tabel

HASIL DAN ANALISIS DATA:

Julipile	kelas	N	Mean	Std. Deviation	Std. Error Mean
nilai awal	eksp	34	50 4412	12 14606	2.08303
	kontr	31	49.1935	9.40716	1.68958
nilaia akhir	eksp	34	80 7353	8.53978	1.46456
	kontr	31	73 2258	8.51943	1.53013

Jln. Prof. Dr. Hamka Kampus 2 (Gdg. Lab. MIPA Terpsala (1.3) # 7601295 Fax. 7615387 Semarang 50182

Independent Samples Test

		Levene's Equali Variar	ty of	t-lest for Equality of Means						
			Sig.	t	df	Sig. (2-tailec)		Std. Error Difference	Interv	onfidence al of the rence
		F							Lower	Upper
nilai awal	Equal variances assumed	2.951	.091	460	63	647	1 24763	2.71374	4.17535	6.67060
	Equal variances not assumed			465	61.448	643	1.24763	2 68210	4.11478	6.61004
nilaia akhir	Equal variances assumed	.012	914	3 545	63	.001	7.50949	2.11831	3.27638	11.74260
	Equal variances not assumed			3 545	62.477	001	7 50949	2.11808	3.27616	11.74282

- Pada kolom Levenes Test for Equality of Variances, diperoleh nilai sig. = 0,914.
 Karena sig. = 0,914 ≥ 0,05, kontrol H₀ DITERIMA, artinya kedua varians rata-rata hasil belajar siswa kelas eksperimen dan kontrol adalah identik.
- Karena identiknya varians rata-rata hasil belajar siswa kelas eksperimen dan kontrol, maka untuk membandingkan rata-rata hasil belajar siswa kelas eksperimen dan kontrol dengan menggunakan t-test adalah menggunakan dasar nilai t_hitung pada baris pertama (Equal variances assumed), yaitu t_hitung = 3,545.
- Nilai t_tabel (63;0,05) = 1,670 (one tail). Berarti nilai t_hitung = 3,545 > t_tabel = 1,670 hal ini berarti H₀ DITOLAK, artinya Rata-rata hasil belajar siswa kelas eksperimen lebih baik dari rata-rata hasil belajar siswa kelas kontrol.

Subject Charles and American Pend. Matematika,

madiastri

RIWAYAT HIDUP

A. Identitas Diri

1. Nama Lengkap : Devi Atiek Afiyani

2. Tempat & Tgl Lahir: Pemalang, 01 Juli 1996

3. Alamat Rumah : Walangsanga Krajan RT 17 RW 04,

Kecamatan Moga, Kabupaten Pemalang

4. HP : 085741467963

5. Email : deviafiyani6@gmail.com

B. Riwayat Pendidikan

1. Pendidikan Formal:

a. RA Rahmatul Ummat Walangsanga

b. MI Rahmatul Ummat Walangsanga

c. MTs Annur Walangsanga

d. SMA Negeri 1 Moga

2. Pendidikan Non-Formal:

a. TPQ Al-Qirthos

b. Madrasah Diniyyah Awaliyah dan Wustho Miftahul Hidayah

Semarang, 08 Januari 2018

NIM. 133811007