CHAPTER IV

RESEARCH FINDING AND ANALYSIS

A. Description of Research Findings

To find out the difference between the students who were taught by using Joepardy game and the students who were not taught by using Joepardy game on Simple Past Tense, especially in MANPemalang the writer did an analysis of quantitative data. The data was obtained by giving test to the experimental class and control class after giving a different learning both classes.

The subjects of this research were divided into two classes. They are experimental class (X.10), control class (X. 9). Before items were given to the students, the writer gave a try out test to analyze validity, reliability, difficulty level and also the discrimination power of each item. The writer prepared 20 items as the instrument of the test. Test was given before and after the students followed the learning process that was provided by the writer.

Before the activities were conducted, the writer determined the materials and lesson plan of learning. Learning in the experimental class used Joepardy game, while the control class without used Joepardy game.

After the data were collected, the writer analyzed it. The first analysis data is from the beginning of control class and
experimental class that is taken from the pre test value. It is the normality test and homogeneity test. It is used to know that two groups are normal and have same variant. Another analysis data is from the ending of control class and experimental class. It is used to prove the truth of hypothesis that has been planned.

B. Data Analysis And Hypothesis Test

1. The Data Analysis

a. The data analysis of try out finding

This discussion covers validity, reliability, level of difficulty and discriminating power.

1) Validity of Instrument

As mentioned in chapter III, validity refers to the precise measurement of the test. In this study, item validity is used to know the index validity of the test. To know the validity of instrument, the writer used the Pearson product moment formula to analyze each item.

The following is the example of item validity computation for item number 1 and for the other items would use the same formula.

$$
\begin{array}{ll}
\mathrm{N}=21 & \sum Y=1375 \\
\left.\sum X\right)^{2}=4225 \\
\sum X Y=4850 & \sum X^{2}=325
\end{array}
$$

$$
\begin{aligned}
& \sum X=65 \quad \sum Y^{2}=103475 \\
& r_{x y}=\frac{N \sum X Y-\sum(X) \sum(Y)}{\sqrt{\left.\left\{N \sum X^{2}-\left(\sum X\right)^{2}\right\} N \sum Y^{2}-\left(\sum Y\right)^{2}\right\}}} \\
& r_{x y}=\frac{21(4850)-65(1375)}{\sqrt{\{21(325)-(4225)\}\{21(103475)-(1890625)\}}} \\
& r_{x y}=\frac{101850-89375}{\sqrt{(2600)(282350)}} \\
& r_{x y}=\frac{101850-89375}{\sqrt{73411000} 0} \\
& r_{x y}=\frac{12475}{27094,464} \\
& r_{x y}=0,428
\end{aligned}
$$

From the computation above, the result of computing validity of the item number 1 is 0,428 . After that, the writer consulted the result to the table of r Product Moment with the number of subject (N) $=21$ and significance level 5% it is 0,433 . Since the result of the computation is higher than r in table, the index of validity of the item number 1 is considered to be valid.
2) Reliability of Instrument

A good test must be valid and reliable. Besides the index of validity, the writer calculated the reliability of the test using Alpha formula.
$r_{11}=\left|\frac{k}{k-1}\right|\left|1-\frac{\sum \sigma_{i}^{2}}{\sigma_{t}{ }^{2}}\right|$
In which:
$r_{11} \quad=$ The reliability coefficient of items
$\sum \sigma_{i}{ }^{2}=$ Total ofvarians each score items
$\sigma_{t}^{2} \quad=$ Total of varians
$k \quad=$ The number of item in the test

With formula varian item in the test below:
$\sigma_{i}^{2}=\left|\frac{\sum X^{2}-\frac{\left(\sum X\right)^{2}}{N}}{N}\right|$
Criteria:
If $r_{11}>r_{\text {table }}$ is reliable.
The following is the example of item varians computation for item number 1 and for the other items would use the same formula.

$$
\begin{aligned}
& \mathrm{var}=\left|\frac{325-\frac{4225}{21}}{21}\right| \\
& \mathrm{var}=\left|\frac{325-201,19}{21}\right| \\
& \mathrm{var}=\left|\frac{123,81}{21}\right| \\
& \mathrm{Var}=5,896 \\
& \sigma_{i}^{2}= 5,896+5,556+5,8956+5,896+5,556+5,896+ \\
& 5,896+6,236+5,102+5,102+4,535+5,102+ \\
& 4,535+6,122+5,896+4,535+5,102+6,112+ \\
& \sigma_{i}^{2}=\left|\frac{\sum Y^{2}-\frac{\left(\sum Y\right)^{2}}{N}}{N}\right| \\
& \sigma_{i}^{2}=\left|\frac{102+4,535=108,617}{2}\right| \\
& \sigma_{i}^{2}=\left|\frac{103475-90029,761}{21}\right| \\
& \sigma_{i}^{2}=\left|\frac{13445,239}{21}\right| \\
& \sigma_{i}^{2}=640,249 \\
& r_{11}=\left|\frac{k}{k-1}\right|\left|1-\frac{\sum \sigma_{i}^{2}}{\sigma_{t}^{2}}\right|
\end{aligned}
$$

$$
\begin{aligned}
& r_{11}=\left|\frac{21}{21-1}\right|\left|1-\frac{108,617}{640,249}\right| \\
& r_{11}=(1,05)(1-0,169) \\
& r_{11}=(1,05)(0,831) \\
& r_{11}=0,872
\end{aligned}
$$

From the computation above, it is found out that r_{11} (the total of reliability test) is 0,872 , whereas the number of subjects is 21 and the critical value for r-table with significance level 5% is 0,433 . Thus, the value resulted from the computation is higher than its critical value. It could be concluded that the instrument used in this research is reliable.
3) Degree of the Test Difficulty

The following computation of the level difficulty for the item number 1 and for the other items would use the same formula.

Degree of the Test Difficulty
Mean
maksimum score that decided

In which,

Mean $=\frac{\text { the number of score test student in each certain item }}{\text { the number of test student }}$
Method to interpret degree of the test difficulty below:

Table4

The Interpretation of Degree of the Test Difficulty

Bigness of DD	Interpretation
Less of 0,30	Very difficult
$0,30-0,70$	Medium
More than 0,70	Easy

The following is the example of item degree of the test difficulty computation for item number 1 and for the other items used the same way.

Table 5
Table of Degree of the Test Difficulty Computation for Item Number 1:

No	Code	\mathbf{X}
1	TO-16	5
2	TO-15	5
3	TO-12	0
4	TO-18	5
5	TO-14	5
6	TO-4	5
7	TO-5	5
8	TO-17	5
9	TO-7	0
10	TO-6	5
11	TO-20	5
12	TO-9	0

13	TO-10	0
14	TO-1	5
15	TO-19	5
16	TO-8	0
17	TO-2	5
18	TO-11	0
19	TO-3	5
20	TO-21	0
21	TO-13	0
Sum	$\mathbf{2 1}$	$\mathbf{6 5}$

Mean $=\frac{\text { the number of score test student in each certain item }}{\text { the number of test student }}$

Mean $=\frac{65}{21}$
Mean $=3,09$
$D=\frac{\text { Mean }}{\text { Maximun Score }}$
$\mathrm{D}=\frac{3,09}{5}$

$$
=0,618
$$

From the computation above, the question number 1 can be said as the easy category, because the calculation result of the item number 1 is in the interval $0,618<\mathrm{D} \leq 1$
4) Discriminating Power

The formula that used in discriminating power computation as follow:

$$
D P=\frac{M A-M B}{\text { Maximum Score }}
$$

In which:

$$
M A=\frac{\sum X_{A}}{N_{A}} \operatorname{and} M B=\frac{\sum X_{B}}{N_{B}}
$$

In which:
$D P$: Discriminating Power
$M A \quad$: The average from upper group
$M B \quad$: The average from low group
$N_{A} \quad:$ The number of student in upper
group
$N_{B} \quad:$ The number of student in low group
The way to interpret discriminating power according to Anas Sudjiono as follow:

Table6
Interpretation of Discriminating Power

Bigness of DP	Classification
Less of 0,20	Poor
$0,20-0,40$	Satisfactory
$0,40-0,70$	Good
$0,70-1,00$	Excellent
Negatif sign	Thrown item

The following is the computation of the discriminating power for item number 1 , and for other items would use the same way.

Before computed using the formula, the data divided into 2 (group). They were upper group and low group.

Table 7

The Table of the Gathered Score of Item Number 1

Upper Group			Low Group											
No	Code	Score	No	Code	Score									
1	TO-20	5	11	TO-7	5									
2	TO-8	5	12	TO-15	0									
3	TO-19	0	13	TO-18	0									
4	TO-2	5	14	TO-21	5									
5	TO-3	5	15	TO-14	5									
6	TO-12	5	16	TO-13	0									
7	TO-16	5	17	TO-10	5									
8	TO-17	5	18	TO-6	0									
9	TO-1	0	19	TO-11	5									
10	TO-4	5	20	TO-5	0									
													TO-9	0
Sum	10	40	Sum	11	25									

$$
\begin{gathered}
M A=\frac{\sum X_{A}}{N_{A}} \quad M A=\frac{40}{10} M A=4 \\
M B=\frac{\sum X_{B}}{N_{B}} M B=\frac{25}{11} M B=2,27 \\
D P=\frac{M A-M B}{\text { Maximum Score }}
\end{gathered}
$$

$$
\begin{gathered}
D P=\frac{4-2,27}{5} \\
D P=0,346
\end{gathered}
$$

So, the discriminating power for item number 1 is Satisfactory.

b. The data analysis of pre test value of the experimental class and the control class

Table 8
The list of Pre-test Value of the Experimental and Control Class

No	Experimental Class				Control Class			
	Code of the Students	x_{i}	$\left(x_{i}-\bar{x}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$	Code of the Students	x_{i}	$\left(x_{i}-\bar{x}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$
1	E-16	85	24,52	601,417	C-6	85	25,24	636,961
2	E-17	85	19,52	601,417	C-16	75	15,24	232,200
3	E-9	80	14,52	381,179	C-10	75	15,24	232,200
4	E-15	70	9,52	90,703	C-5	75	15,24	232,200
5	E-4	70	9,52	90,703	C-15	70	10,24	104,819
6	E-10	70	9,52	90,703	C-11	70	10,24	104,819
7	E-19	70	9,52	90,703	C-1	70	10,24	104,819
8	E-7	65	4,52	20,465	C-13	70	10,24	104,819
9	E-18	60	$-0,48$	0,227	C-17	65	5,24	27,438
10	E-14	60	$-0,48$	0,227	C-7	60	0,24	0,057
11	E-8	60	$-0,48$	0,227	C-9	60	0,24	0,057
12	E-5	60	$-0,48$	0,227	C-20	60	0,24	0,057

13	E-1	60	$-0,48$	0,227	C-18	55	$-4,76$	22,676
14	E-3	60	$-0,48$	0,227	C-21	55	$-4,76$	22,676
15	E-6	55	$-5,48$	29,989	C-19	55	$-4,76$	22,676
16	E-12	50	$-10,48$	109,751	C-2	50	$-9,76$	95,295
17	E-11	50	$-10,48$	109,751	C-14	50	$-9,76$	95,295
18	E-21	45	$-15,48$	239,512	C-8	45	$-14,76$	217,914
19	E-20	40	$-20,48$	419,274	C-12	45	$-14,76$	217,914
20	E-2	40	$-20,48$	419,274	C-3	35	$-24,76$	613,152
21	E-13	35	$-25,48$	649,036	C-4	30	$-29,76$	885,771
	\sum	1270	0.00	4142,499	\sum	1255	0.00	4172,501
	\bar{x}	60,48			\bar{x}	59,76		

1) The Normality Pre-test of the Experimental Class

The normality test is used to know whether the data obtained is normally distributed or not. Based on the table above, the normality test:

Hypothesis:

Ho: The distribution list is normal.
Ha: The distribution list is not normal

Test of hypothesis:

The formula is used:

$$
X^{2}=\sum_{i=1}^{k} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

The computation of normality test:

$$
\begin{array}{ll}
\mathrm{N}=21 & \text { Length of the class }=9 \\
\text { Maximum score } & =85 \quad \sum x=1270
\end{array}
$$

Minimum score $=35 \quad \bar{x} \quad=60,48$
K / Number of class $=7 \quad$ Range $=50$
Table 9
Frequency Distribution

Class	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{X}_{\mathbf{i}}$	$\boldsymbol{X}_{\mathbf{i}}^{\mathbf{2}}$	$\boldsymbol{f}_{\boldsymbol{i}} \cdot \boldsymbol{X}_{\mathbf{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \cdot \boldsymbol{X}_{\mathbf{i}}^{\mathbf{2}}$
$30-38$	1	34	1156	34	1156
$39-47$	3	43	1849	129	5547
$48-56$	3	52	2704	156	8112
$57-65$	7	61	3721	427	26047
$66-74$	4	70	4900	280	19600
$75-83$	1	79	6241	79	6241
$84-92$	2	88	7744	176	15488
\sum	21			1281	82191

$$
\begin{aligned}
& \bar{X}=\frac{\sum f i x i}{\sum f i}=\frac{1281}{21}=61 \\
& \mathrm{~s}^{2}=\frac{n \sum f i . x i^{2}-\left(\sum f i x i\right)^{2}}{n(n-1)}=\frac{21 * 82191-(1281)^{2}}{21(21-1)}
\end{aligned}
$$

$$
s^{2}=202,5
$$

$$
\mathrm{s}=14,23
$$

Table 10
Normality Pre test of the Experimental Class

No	Kelas	Bk	Z_{1}	$\mathrm{P}\left(\mathrm{Z}_{\mathrm{i}}\right)$	Luas daerah	O_{i}	E_{i}	$\left(\mathrm{O}_{\mathrm{i}}-\right.$ $\left.\mathrm{E}_{\mathrm{i}}\right)^{2} / \mathrm{E}_{\mathrm{i}}$
		29,5	$-2,37$	0,4066				
1	$30-38$				0,1043	1	2,503	0,903
		38,5	$-1,68$	0,3023				
2	$39-47$				0,1580	3	3,792	0,165

		47,5	$-0,99$	0,1443				
3	$48-56$				0,1841	3	4,418	0,455
		56,5	$-0,30$	0,0398				
4	$57-65$				0,1759	7	4,222	1,829
		65,5	0,38	0,2157				
5	$66-74$				0,1374	4	3,298	0,150
		74,5	1,07	0,3531				
6	$75-83$				0,0826	1	1,982	0,487
		83,5	1,76	0,4357				
7	$84-92$				0,0415	2	0,996	1,012
		92,5	2,45	0,4772				
		X^{2}						

With $\alpha=5 \%$ and $\mathrm{dk}=7-3=3$, from the chisquare distribution table, obtained $X_{\text {table }}^{2}=9.488$.

Because $X^{2}{ }_{\text {count }}$ is lower than $X_{\text {table }}^{2}(1,134<9.488)$.
So, the distribution list is normal.
2) The Normality Pre-test of the Control Class

Hypothesis:

Ho: The distribution list is normal.
Ha: The distribution list is not normal

Test of hypothesis:

The formula is used:

$$
X^{2}=\sum_{i=1}^{k} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

The computation of normality test:
Maximum score $=85$
$\mathrm{N}=21$

$$
\begin{array}{ll}
\text { Minimum score }=30 & \text { Range }=55 \\
\text { K } / \text { Number of class }=7 & \bar{x}
\end{array}=59,76
$$

Table 11
Frequency Distribution

Class	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{X}_{\mathbf{i}}$	$\boldsymbol{X}_{\mathbf{i}}^{\mathbf{2}}$	$\boldsymbol{f}_{\boldsymbol{i} \cdot} \boldsymbol{X}_{\mathbf{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \cdot \boldsymbol{X}_{\mathbf{i}}^{\mathbf{2}}$
$30-38$	2	34	1156	68	2312
$39-47$	2	43	1849	86	3698
$48-56$	5	52	2704	260	13520
$57-65$	4	61	3721	244	14884
$66-74$	4	70	4900	280	19600
$75-83$	3	79	6241	237	18723
$84-92$	1	88	7744	88	7744
\sum	21			1263	80481

$$
\begin{gathered}
\bar{X}=\frac{\sum f i x i}{\sum f i}=\frac{1263}{21}=60,14 \\
\mathrm{~s}^{2}=\frac{n \sum f i \cdot x i^{2}-\left(\sum f i x i\right)^{2}}{n(n-1)}=\frac{21 * 80481-(1263)^{2}}{21(21-1)} \\
\mathrm{s}^{2} \quad=226,02 \quad \mathrm{~s} \quad=15,03
\end{gathered}
$$

Table 12
Normality Pre test of the Control Class

No	Kelas	Bk	Z_{1}	$\mathrm{P}\left(\mathrm{Z}_{\mathrm{i}}\right)$	Luas daerah	O_{i}	E_{i}	$\left(\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}\right)^{2} / \mathrm{E}_{\mathrm{i}}$
		29,5	$-2,33$	0,4066				
1	$30-38$				0,1043	2	2,503	0,101
		38,5	$-1,64$	0,3023				

2	$39-47$				0,1580	2	3,792	0,847
		47,5	$-0,95$	0,1443				
3	$48-56$				0,1841	5	4,418	0,077
		56,5	$-0,25$	0,0398				
4	$57-65$				0,1759	4	4,222	0,012
		65,5	0,44	0,2157				
5	$66-74$				0,1374	4	3,298	0,150
		74,5	1,14	0,3531				
6	$75-83$				0,0826	3	1,982	0,522
		83,5	1,83	0,4357				
7	$84-92$				0,0415	1	0,996	0,000
		92,5	2,52	0,4772				
			X^{2}					

With $\alpha=5 \%$ and $\mathrm{dk}=7-3=4$, from the chisquare distribution table, obtained $X_{\text {table }}=9.488$. Because $\quad X^{2}$ count is lower than $X_{\text {table }}^{2}$ ($1,325<9.488$). So, the distribution list is normal.
3) The Homogeneity Pre-Test of the Experimental Class

Hypothesis:

$$
\begin{aligned}
& H_{o}: \sigma_{1}^{2}=\sigma_{2}^{2} \\
& H_{A}: \sigma_{1}^{2} \neq \sigma_{2}^{2}
\end{aligned}
$$

Test of hypothesis:

The formula is used:

$$
F=\frac{\text { Biggest var iant }}{\text { smallest var iant }}
$$

The Data of the research:

$$
\begin{array}{ll}
\sum\left(x_{i}-\bar{x}\right)_{1}^{2}=4142,499 & \mathrm{n}_{1}=21 \\
\sum\left(x_{i}-\bar{x}\right)_{2}^{2}=4172,501 & \mathrm{n}_{2}=21 \\
\sigma_{1}^{2}=S_{1}^{2}=\frac{\sum(x-\bar{x})^{2}}{n_{1}-1}=\frac{4142,499}{21}=197,261 \\
\sigma_{2}^{2}=S_{2}^{2}=\frac{\sum(x-\bar{x})^{2}}{n_{2}-1}=\frac{4172,501}{21}=198,690
\end{array}
$$

Biggest variant $(\mathrm{Bv})=198,690$
Smallest variant $(\mathrm{Sv})=197,476$
Based on the formula, it is obtained:

$$
F=\frac{198,690}{197,261}=1,007
$$

With $\alpha=5 \%$ and $\mathrm{dk}=(21-1=20):(21-1=$ 20), obtained $F_{\text {table }}=2.02$. Because $F_{\text {count }}$ is lower than $F_{\text {table }}(1.007<2.02)$. So, Ho is accepted and the two groups have same variant / homogeneous.
4) The average similarity Test ofPre-Test of Experimental and Control Classes Hypothesis:

$$
\text { Ho }=\mu_{1} \leq \mu_{2}
$$

$$
\mathrm{Ha} \quad=\mu 1>\mu 2
$$

Test of hypothesis:

Based on the computation of the homogeneity test, the experimental class and control class have same variant. So, the t-test formula:

$$
t=\frac{\overline{x_{1}}-\overline{x_{2}}}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} S=\sqrt{\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}}
$$

The data of the research:

$$
\begin{array}{lll}
\overline{x_{1}}=60,48 & \overline{x_{2}} & =59,76 \\
\mathrm{~S}_{1}^{2}=197,261 & \mathrm{~S}_{1}^{2} & =198,690 \\
\mathrm{n}_{1}=21 & n_{2} & =21
\end{array}
$$

$$
\begin{aligned}
& S=\sqrt{\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}} \\
& S=\sqrt{\frac{(21-1) 197,261+(21-1) 198,690}{21+21-2}}=\sqrt{\frac{7919,02}{40}}=14,07
\end{aligned}
$$

So, the computation t -test:

$$
t=\frac{\overline{x_{1}}-\overline{x_{2}}}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}
$$

$$
=\frac{60,48-59,76}{14,07 \sqrt{\frac{1}{21}}+\frac{1}{21}}=\frac{0,72}{4,34}=0,164
$$

With $\alpha=5 \%$ and $\mathrm{dk}=21+21-2=40$, obtained $t_{\text {table }}=1.68$ Because $t_{\text {count }}$ is lower than $t_{\text {table }}$ ($0.164<1.68$). So, Ho is accepted and there is no difference of the pre test average value from both groups.

c. The Data Analysis of Post-test Scores in Experimental Class and Control Class.

Table 13
The Value of the Post Test of the Experimental and Control Class

No	Experimental Class				Control Class			
	Code of the Students	x_{i}	$\left(x_{i}-\bar{x}\right)$	Code of the $\left(x_{i}-\bar{x}\right)^{2}$ Students	x_{i}	$\left(x_{i}-\bar{x}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$	
1	E-16	100	16,19	104,395	C-6	95	22,38	500,907
2	E-15	100	16,19	27,221	C-10	90	17,38	302,098
3	E-17	95	11,19	27,221	C-5	85	12,38	153,288
4	E-12	95	11,19	27,221	C-8	85	12,38	153,288
5	E-7	95	11,19	27,221	C-15	85	12,38	153,288
6	E-9	90	6,19	27,221	C-7	85	12,38	153,288
7	E-18	90	6,19	27,221	C-9	80	7,38	54,478
8	E-8	90	6,19	27,221	C-20	75	2,38	5,669
9	E-10	90	6,19	27,221	C-16	75	2,38	5,669

10	E-2	85	1,19	27,221	C-1	70	$-2,62$	6,859
11	E-20	85	1,19	0,047	C-2	70	$-2,62$	6,859
12	E-14	85	1,19	0,047	C-11	70	$-2,62$	6,859
13	E-19	85	1,19	0,047	C-17	70	$-2,62$	6,859
14	E-1	80	$-3,81$	0,047	C-3	65	$-7,62$	58,050
15	E-4	80	$-3,81$	0,047	C-12	65	$-7,62$	58,050
16	E-3	75	$-8,81$	0,047	C-13	65	$-7,62$	58,050
17	E-6	70	$-13,81$	0,047	C-18	65	$-7,62$	58,050
18	E-21	70	$-13,81$	22,873	C-4	60	$-12,62$	159,240
19	E-5	70	$-13,81$	22,873	C-21	60	$-12,62$	159,240
20	E-11	65	$-18,81$	22,873	C-14	55	$-17,62$	310,431
21	E-13	65	$-18,81$	95,699	C-19	55	$-17,62$	310,431
	\sum	1760	0.00	2567,499	\sum	1525	0.00	2814,999
	$-\bar{x}$	83,81			\bar{x}	72,62		

1) The Normality Post-Test of the Experimental Class

Based on the table above, the normality test:

Hypothesis :

Ho : The distribution list is normal.
Ha : The distribution list is not normal.
Test of hypothesis:
The formula is used:
$\chi^{2}=\sum_{i=1}^{k} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
The computation of normality test:
Maximum score $=100 \quad \mathrm{~N}=21$
Minimum score $=65 \quad$ Range $=35$

K / Number of class $=6 \quad \bar{x}=83,81$
Length of the class $=6 \quad \sum x=1760$
Table 14
Frequency Distribution

Class	$\mathbf{f}_{\mathbf{i}}$	$\boldsymbol{X}_{\mathbf{i}}$	$\boldsymbol{X}_{\mathbf{i}}^{\mathbf{2}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{X}_{\mathbf{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \cdot \boldsymbol{X}_{\mathbf{i}}^{\mathbf{2}}$
$65-70$	5	67,5	4556,25	337,5	22781,25
$71-76$	1	73,5	5402,25	73,5	5402,25
$77-82$	2	79,5	6320,25	159	12640,5
$83-88$	4	85,5	7310,25	342	29241
$89-94$	4	91,5	8372,25	366	33489
$95-100$	5	97,5	9506,25	487,5	47531,25
Sum	21			1765,5	151085,25

$$
\begin{aligned}
& \bar{X}=\frac{\sum f i x i}{\sum f i}=\frac{1765,5}{21}=84,071 \\
& \mathrm{~s}^{2}=\frac{n \sum f i . x i^{2}-\left(\sum f i x i\right)^{2}}{n(n-1)}=\frac{21 * 151085,25-(1765,5)^{2}}{21(21-1)} \\
& \mathrm{s}^{2}=132,857 \quad \mathrm{~s}=11,526
\end{aligned}
$$

Table 15
Normality Post test of the Experimental Class

No	Kelas	Bk	Z_{1}	$\mathrm{P}\left(\mathrm{Z}_{\mathrm{i}}\right)$	Luas daerah	O_{i}	E_{i}	$\left(\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}\right)^{2} / \mathrm{E}_{\mathrm{i}}$
		64,5	1,83	0,4998				
1	$65-70$				0,0033	5	0,076	319,457
		70,5	1,26	0,4965				
2	$71-76$				0,0279	1	0,642	0,200

		76,5	0,69	0,4686				
3	$77-82$				0,1225	2	2,818	0,237
		82,5	0,12	0,3461				
4	$83-88$				0,2747	4	6,318	0,851
		88,5	0,44	0,0714				
5	$89-94$				0,3168	4	7,286	1,482
		94,5	1,01	0,2454				
6	$95-$ 100				0,1878	5	4,319	0,107
		100,5	1,58	0,4332				

With $\alpha=5 \%$ and $\mathrm{dk}=6-3=3$, from the chisquare distribution table, obtained $X_{\text {table }}^{2}=7.815$. Because X^{2} count is lower than X^{2} table
(7,075<7.815). So, the distribution list is normal
2) The Normality Post-Test of the Control Class

Hypothesis:

Ho : The distribution list is normal
Ha : The distribution list is not normal

Test of hypothesis:

The formula is used:
$\chi^{2}=\sum_{i=1}^{k} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
The computation of normality test:
Maximum score $=95 \quad x \quad=72,62$

Minimum score $=55 \quad \sum x=1525$
K / Number of class $=7$ Length of the class $=6$
$\mathrm{N}=21 \quad$ Range $=40$
Table 16

Frequency Distribution

Class	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{X}_{\mathbf{i}}$	$\boldsymbol{X}_{\mathbf{i}}^{\mathbf{2}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{X}_{\mathbf{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \cdot \boldsymbol{X}_{\mathbf{i}}{ }^{\mathbf{2}}$
$55-60$	4	57,5	3306,25	230	13225
$61-66$	4	63,5	4032,25	254	16129
$67-72$	4	69,5	4830,25	278	19321
$73-78$	2	75,5	5700,25	151	11400,5
$79-84$	1	81,5	6642,25	81,5	6642,25
$85-90$	5	87,5	7656,25	437,5	38281,25
$91-96$	1	93,5	8742,25	93,5	8742,25
Sum	21			1525,5	113741,25

$$
\bar{X}=\frac{\sum f i x i}{\sum f i}=\frac{1525,5}{21}=72,642
$$

$$
\begin{gathered}
\mathrm{s}^{2}=\frac{n \sum f i \cdot x i^{2}-\left(\sum f i x i\right)^{2}}{n(n-1)}=\frac{21 * 113741,25-(1525,5)^{2}}{21(21-1)} \\
\mathrm{s}^{2}=146,228
\end{gathered}
$$

Table 17
Normality Post test of the Control Class

No	Kelas	Bk	Z_{1}	$\mathrm{P}\left(\mathrm{Z}_{\mathrm{i}}\right)$	Luas daerah	O_{i}	E_{i}	$\left(\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}\right)^{2} / \mathrm{E}_{\mathrm{i}}$
		54,5	$-1,68$	0,4940				
1	$55-60$				0,0202	4	0,485	25,488
		60,5	$-1,12$	0,4738				
2	$61-66$				0,0591	4	1,418	4,699

		66,5	$-0,57$	0,4147				
3	$67-72$				0,1237	4	2,969	0,358
		72,5	$-0,01$	0,2910				
4	$73-78$				0,1962	2	4,709	1,558
		78,5	0,55	0,0948				
5	$79-84$				0,2241	1	5,378	3,564
		84,5	1,10	0,1293				
6	$85-90$				0,184	5	4,416	0,077
		90,5	1,66	0,3133				
7	$91-96$				0,1146	1	2,750	1,114
		96,5	2,21	0,4279				
\boldsymbol{x}^{2}								

With $\alpha=5 \%$ and $\mathrm{dk}=7-3=4$, from the chi-
square distribution table, obtained $X_{\text {table }}^{2}=9.488$.
Because X^{2} count is lower than X^{2} table
($5,793<9.488$). So, the distribution list is normal.
3) The Homogeneity Post-Test of the Experimental Class

Hypothesis :

$H_{o}: \sigma_{1}^{2}=\sigma_{2}^{2}$
$H_{A}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$

Test of hypothesis:

The formula is used:

$$
F=\frac{\text { Biggest var iant }}{\text { smallest var iant }}
$$

The data of the research:

$$
\begin{array}{ll}
\sum\left(x_{i}-\bar{x}\right)_{1}^{2}=2567,499 & \mathrm{n}_{1}=21 \\
\sum\left(x_{i}-\bar{x}\right)_{2}^{2}=2814,999 & \mathrm{n}_{2}=21 \\
S_{1}^{2}=\frac{\sum(x-\bar{x})^{2}}{n_{1}-1}=\frac{2567,499}{21}=122,261 \\
S_{2}^{2}=\frac{\sum(x-\bar{x})^{2}}{n_{2}-1}=\frac{2814,999}{21}=134,047
\end{array}
$$

Biggest variant $(\mathrm{Bv})=127,337$
Smallest variant $(\mathrm{Sv})=116,439$
Based on the formula, it is obtained:

$$
F=\frac{134,047}{122,261}=1,09
$$

$$
\text { With } \alpha=5 \% \text { and } \mathrm{dk}=(21-1=20) \text { : }
$$ $1=20$), obtained $F_{\text {table }}=2.02$. Because $F_{\text {count }}$ is lower than $F_{\text {table }}(1.09<2.02)$. So, Ho is accepted and the two groups have same variant/ homogeneous.

2. The Hypothesis Test

The hypotheses in this research is there is a significant difference in Simple Past Tense achievement score between students taught using Snowball Throwing Method and those taught without using Snowball Throwing Method.

In this research, because $\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$ (has same variant), the t-test formula is as follows:

$$
t=\frac{\bar{X}_{1}-\overline{X_{2}}}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \quad S=\sqrt{\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}}
$$

The data of the research:

$$
\begin{aligned}
& \overline{x_{1}} \quad=83,81 \quad \overline{x_{2}}=72,86 \\
& \mathrm{~S}_{1}^{2} \quad=122,261 \quad \mathrm{~S}_{1}^{2} \quad=134,047 \\
& \mathrm{n}_{1} \quad=21 \quad \mathrm{n}_{1} \quad=21 \\
& S=\sqrt{\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}} \\
& S=\sqrt{\frac{(21-1) 122,261+(21-1) 134,047}{21+21-2}}=\sqrt{\frac{5126,16}{40}}=11,32 \\
& t=\frac{\frac{\bar{x}-\overline{x_{2}}}{S}}{\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \\
& t=\frac{83,81-72,62}{11,32 \sqrt{\frac{1}{21}+\frac{1}{21}}}=3,203
\end{aligned}
$$

From the computation above, the t-table is 1.68 by 5% alpha level of significance and $\mathrm{dk}=21+21-2=40$. T value was 3,203 . So, the t-value was higher than the critical value on the table $(3,203>1.68)$.

From the result, it can be concluded that there is a significant difference in Jeopardy Game Methodachievement between students were taught by using Jeopardy Game Methodand those were not taught by using Jeopardy Game Method.The hypothesis is accepted.

C. Discussion of The Research Findings

1. The score of Pre test

Based on the calculations of normality and homogeneity test from class X. 10 as the experimental class and class X. 9 as the control class is normal distribution and homogeneous.
2. The score of post test

The result of the research shows that the experimental class (the students who were taught using Jeopardy Game Method) has the mean value 83,81 . Meanwhile, the control class (the students who were taught without using Jeopardy Game Method) has the mean value 72,62 . It can be said that the Simple Past Tense achievement of experimental class is higher than the control class.

On the other hand, the test of hypothesis using t-test formula shows the value of the t -test is higher than the critical value, $t_{\text {count }}>t_{\text {table }}\left(t_{\text {count }}\right.$ higher than $\left.t_{\text {table }}\right)$. The value of t -test
is 3,203, while the critical value on $t_{s 0,05}$ is 1.68 .It means that there is a significant difference of the Simple Past Tense achievement between students weretaught using Jeopardy Game Method and those were taught without Jeopardy Game Method. In this case, the use of Snowball Throwing Methodis necessary needed in teaching Simple Past Tense.

D. Limitation of The Research

The writer realizes that this research had not been done optimally. There were constraints and obstacles faced during the research process. Some limitations of this research are:

1. The research is limited at MAN Pemalang. If the population which is involved is more, the result will be more general.
2. The use of instrument in questionaire or test to know the students' response is invalid because there was no theoretical based in composing the instruments. This instrument results in invalid conclution of students' response.

Considering all those limitations, there is a need to do more research about teaching Simple Past Tense using Snowball Throwing Method. So that, the more optimal result will be gained.

