EFEKTIVITAS MODEL PEMBELAJARAN INKUIRI TERBIMBING BERBANTUAN PHET SIMULATION UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR KRITIS DAN PEMAHAMAN KONSEP SISWA

SKRIPSI

Diajukan untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Pendidikan Dalam Ilmu Pendidikan Kimia

Oleh: ARINI KUSUMA DEWI

NIM: 1908076001

FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI WALISONGO SEMARANG

2023

PERNYATAAN KEASLIAAN

Yang bertandatangan di bawah ini:

Nama : Arini Kusuma Dewi

NIM : 1908076001

Jurusan : Pendidikan Kimia

Menyatakan bahwa skripsi yang berjudul:

EFEKTIVITAS MODEL PEMBELAJARAN INKUIRI TERBIMBING BERBANTUAN *PHET SIMULATION* UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR KRITIS DAN PEMAHAMAN KONSEP SISWA

Secara keseluruhan adalah hasil penelitian/karya saya sendiri, kecuali bagian tertentu yang dirujuk sumbernya.

Semarang, 14 April 2023

Pembuat Pernyataan,

Arini Kusuma Dewi

NIM: 1908076001

KEMENTERIAN AGAMA UNIVERSITAS ISLAM NEGERI WALISONGO FAKULTAS SAINS DAN TEKNOLOGI

Jl. Prof. Dr. Hamka Ngaliyan Semarang Telp.024-7601295 Fax.7615387

PENGESAHAN

Naskah skripsi berikut ini:

ludul : Efektivitas Model Pembelajaran Inkuiri Terbimbing

Berbantuan *PhET Simulation* untuk Meningkatkan Kemampuan Berpikir Kritis dan Pemahaman Konsep

Siswa

Penulis : Arini Kusuma Dewi

NIM : 1908076001

Iurusan : Pendidikan Kimia

Telah diujikan dalam sidang munaqosah oleh Dewan Penguji Fakultas Sains dan Teknologi UIN Walisongo dan dapat diterima sebagai salah satu syarat memperoleh gelar sarjana dalam ilmu Pendidikan Kimia.

Semarang, 19 Juni 2023

DEWAN PENGUJI

Ketua Sidang

Sekretaris Sidang

Sri Mulyanti, M.Pd

Apriliana Drastisian (1947) NIP.19850429201 03/2013

98702102019032012

Penguji Utania

Penguji Utama II

Atik Rahmawati, S.Pd. M. Baik I

eni Ebit Nugroho, S.Si, M.Pd NIP.198507202019031007

NIP.197505162006042002

Pembimbing I

Apriliana Drastisianti, M. Pd NIP.198504292019032013

NOTA DINAS

Semarang, 14 April 2023

Yth. Ketua Prodi Pendidikan Kimia Fakultas Sains dan Teknologi UIN Walisongo Semarang

Assalamu'alaikum, Wr. Wb

Dengan ini diberitahukan bahwa saya telah melakukan bimbingan, arahan dan koreksi naskah skripsi dengan

Iudul

: Efektivitas Model Pembelajaran

Terbimbing Berbantuan PhET Simulation untuk Meningkatkan Kemampuan Berpikir Kritis dan

Pemahaman Konsep Siswa

Nama

Arini Kusuma Dewi

NIM

: 1908076001

Jurusan: Pendidikan Kimia

Saya memandang bahwa naskah skripsi tersebut sudah dapat diajukan kepada Fakultas Sains dan Teknologi UIN Walisongo untuk diujikan dalam Sidang Munagosyah.

Wassalamu'alaikum, Wr. Wh

Pembimbing I,

Apriliana Drastisianti, M.Pd NIP. 19850429 201903 2 013

ABSTRAK

Penelitian ini bertujuan untuk mengetahui efektivitas model pembelajaran inkuiri terbimbing berbantuan PhET simulation untuk meningkatkan kemampuan berpikir kritis dan pemahaman konsep siswa. Jenis penelitian digunakan adalah eksperimen dengan menggunakan metode quasi-experimental atau eksperimen semu. Desain penelitian yang digunakan adalah nonequivalent control group design. Pengambilan sampel dilakukan dengan teknik *cluster random* sampling. Instrumen yang digunakan berupa soal pretest dan posttest untuk mengukur kemampuan berpikir kritis dan pemahaman konsep. Berdasarkan uji-t diperoleh data untuk kemampuan berpikir kritis siswa dengan t_{hitung} 2,240 > t_{tabel} 1,666, sehingga dapat dikatakan bahwa kemampuan berpikir kritis siswa dengan model inkuiri berbantuan PhET simulation lebih baik dibandingkan dengan model discovery learning. Pemahaman konsep siswa dengan t_{hitung} 3,064 > t_{tabel} 1,666, sehingga dapat dikatakan bahwa pemahaman konsep siswa dengan model inkuiri terbimbing berbantuan PhET simulation lebih baik dibandingkan dengan model discovery learning. Data di atas dapat disimpulkan bahwa kemampuan berpikir kritis dan pemahaman konsep siswa dapat ditingkatkan dengan menggunakan model inkuiri terbimbing berbantuan PhET simulation.

Kata Kunci : Inkuiri Terbimbing berbantuan PhET, Kemampuan Berpikir Kritis, Pemahaman Konsep

KATA PENGANTAR

Alhamdulillahirobbil'alamin, segala puji bagi Allah SWT yang telah melimpahkan rahmat, taufik dan hidayah-Nya sehingga pada kesempatan ini, penulis dapat menyelesaikan penyusunan skripsi ini. Shalawat serta salam senantiasa tercurahkan kepada junjungan Nabi Agung Muhammad SAW yang selalu kita nantikan syafaatnya di dunia hingga di hari akhir kelak.

Skripsi yang berjudul "Efektivitas Model Pembelajaran Inkuiri Terbimbing Berbantuan *PhET Simulation* Untuk Meningkatkan Kemampuan Berpikir Kritis dan Pemahaman Konsep Siswa" ini, disusun untuk memenuhi salah satu syarat guna memperoleh gelar sarjana (S1) Ilmu Pendidikan Kimia, Fakultas Sains dan Teknologi, Universitas Islam Negeri Walisongo Semarang.

Dalam penyusunan skripsi ini, penulis mendapat bimbingan dan saran-saran dari berbagai pihak sehingga penyusunan skripsi ini dapat terealisasikan. Untuk itu, penulis menyampaikan rasa terima kasih kepada:

- Prof. Dr. H. Imam Taufiq, M.Ag., selaku Rektor UIN Walisongo Semarang.
- Dr. Ismail, M.Ag., selaku Dekan Fakultas Sains dan Teknologi UIN Walisongo Semarang.

- Atik Rahmawati, S.Pd, M.Si dan Wirda Udaibah, M.Si selaku Ketua Jurusan dan Sekretaris Jurusan Pendidikan Kimia Fakultas Sains dan Teknologi UIN Walisongo Semarang.
- 4. Mar'attus Solihah, M.Pd, selaku Dosen Wali yang telah memberikan bimbingan dan petunjuk selama masa studi.
- 5. Apriliana Drastisianti, M.Pd. selaku Dosen Pembimbing yang telah bersedia meluangkan waktu, tenaga dan pikiran untuk memberikan bimbingan, motivasi, petunjuk dan pengarahan dalam penyusunan skripsi ini.
- Segenap Dosen Fakultas Sains dan Teknologi yang telah membekali ilmu pengetahuan selama belajar di UIN Walisongo Semarang.
- 7. Nurhadi, S.Pd selaku Kepala Sekolah SMA Negeri 1 Pegandon Kendal yang telah memberikan izin untuk melakukan penelitian di SMA Negeri 1 Pegandon.
- 8. Sri Haryati, S.Pd selaku guru pengampu mata pelajaran kimia di SMA Negeri 1 Pegandon yang telah memberikan arahan, motivasi dan informasi selama proses penelitian.
- Seluruh siswa kelas XI-1 dan XI-5 SMA Negeri 1 Pegandon yang telah berkenan menjadi sampel penelitian selama penelitian berlangsung
- Kedua orang tuaku (Bapak Warsina dan Ibu Idah Purwari)
 dan saudara-saudariku Mas Indra, Mas Inu, Mbak Puput

yang senantiasa mendoakan, dan memberikan semangat dari awal hingga akhir penelitian.

- 11. Teman seperjuangan (Pendidikan Kimia A angkatan 2019) yang telah memberikan warna-warni yang indah selama masa perkuliahan dan semoga persahabatan yang telah kita bina tetap selalu ada.
- 12. Teman-teman PPL SMA Negeri 6 Semarang dan temanteman KKN Desa Dersansari terimakasih atas kebersamaan, kerjasama, motivasi dan pengalaman berharganya.
- 13. Semua pihak yang telah membantu dalam menyelesaikan skripsi ini baik secara langsung maupun tidak langsung, yang tidak mungkin penulis sebutkan satu persatu.

Pada akhirnya penulis menyadari bahwa penulisan skripsi ini belum mencapai kesempurnaan dalam makna yang sesungguhnya, akan tetapi penulis berharap semoga skripsi ini dapat memberikan manfaat, baik bagi penulis maupun bagi pembaca pada umumnya.

Semarang, 14 April 2023

Penulis

Arini Kusuma Dewi

NIM.190806001

DAFTAR ISI

HALAMAN JUDUL PERNYATAAN KEASLIAAN

PENGI	ESAHAN	i	
NOTA	DINAS	ii	
ABSTI	RAK	iii	
KATA	PENGANTAR	iv	
DAFT	AR ISI	vii	
DAFT	AR TABEL	ix	
DAFT	AR GAMBAR	x	
DATA	R LAMPIRAN	xi	
BAB I	PENDAHULUAN	1	
A.	Latar Belakang Masalah	1	
B.	Identifikasi Masalah	6	
C.	Batasan Masalah	6	
D.	Rumusan Masalah	7	
E.	Tujuan Penelitian	7	
F.	Manfaat Penelitian7		
BAB II	LANDASAN PUSTAKA	9	
A.	Kajian Teori	9	
	1. Model Inkuiri Terbimbing	9	
	2. Kajian Media PhET Simulation	15	
	3. Kemampuan Berpikir Kritis	18	
	4. Pemahaman Konsep	22	

		5. Materi Pembelajaran Kimia	24
	B.	Kajian Penelitian Yang Relevan	33
	C.	Kerangka Berpikir	37
	D.	Hipotesis Penelitian	39
BAI	B II	I METODE PENELITIAN	40
	A.	Jenis Penelitian	40
	B.	Tempat dan Waktu Penelitian	40
	C.	Populasi dan Sampel Penelitian	41
	D.	Definisi Operasional Variabel	41
	E.	Teknik dan Instrumen Pengumpulan Data	42
	F.	Teknik Analisis Data	44
BAI	B IV	/ HASIL PENELITIAN DAN PEMBAHASAN	55
	A.	Deskripsi Hasil Penelitian	55
	B.	Hasil Uji Hipotesis	68
	C.	Pembahasan	70
	D.	Keterbatasan Penelitian	89
BAI	B V	PENUTUP	90
	A.	Kesimpulan	90
	B.	Saran	91
DA	FTA	AR PUSTAKA	92
LAN	ИΡΙ	RAN	102
RIV	VAN	AT HIDIIP	318

DAFTAR TABEL

Tabel	Judul	Halaman
Tabel 2.1	Indikator Kemampuan Berpikir Kritis	20
Tabel 2.2	Indikator Kemampuan Berpikir Kritis	21
Tabel 3.1	Desain Penelitian	40
Tabel 3.2	Kriteria Reliabel	48
Tabel 3.3	Interpretasi Tingkat Kesukaran Butir	49
	Tes	
Tabel 3.4	Interpretasi Indeks Daya Beda Butir	50
Tabel 3.5	Kriteria Berpikir Kritis	51
Tabel 3.6	Kriteria Pemahaman Konsep	51
Tabel 3.7	abel 3.7 Kriteria N-gain	
Tabel 4.1	Fabel 4.1 Hasil Uji Normalitas Populasi	
Tabel 4.2	2 Hasil Validasi Soal	
Tabel 4.3	Hasil Tingkat Kesukaran Soal	
Tabel 4.4	Hasil Daya Beda	59
Tabel 4.5	.5 Data Hasil Pretest dan Posttest	
Tabel 4.6	4.6 Data Hasil Pretest dan Posttest	
Tabel 4.7	Hasil Analisis Indikator Berpikir Kritis	61
Tabel 4.8	Hasil Analisis Indikator Pemahaman	62
	Konsep	
Tabel 4.9	Hasil Uji-t Berpikir Kritis	68
Tabel 4.10	Hasil Uji-t Pemahaman Konsep	68

DAFTAR GAMBAR

Gambar	Judul	Halaman
Gambar 2.1	Grafik Reaksi Orde Nol	26
Gambar 2.2	Grafik Reaksi Orde Satu	27
Gambar 2.3	Grafik Reaksi Orde Dua	28
Gambar 2.4	Reaksi Endoterm	29
Gambar 2.5	Reaksi Eksoterm	30
Gambar 2.6	Kerangka Berpikir	38
Gambar 4.1	Grafik N-Gain Berpikir Kritis	63
Gambar 4.2	Grafik N-gain Indikator Berpikir Kritis	64
Gambar 4.3	Grafik N-Gain Pemahaman Konsep	65
Gambar 4.4	Grafik N-Gain Indikator Pemahaman Konsep	66
Gambar 4.5	Jawaban Siswa Materi Orde Reaksi	71
Gambar 4.6	Jawaban Siswa Menggunakan Media PhET	73

DAFTAR LAMPIRAN

Lampiran	Judul	Halaman
Lampiran 1	Responden Kelas Eksperimen dan	88
	Kelas Kontrol	
Lampiran 2	Analisis Data Uji Normalitas Populasi	91
Lampiran 3	Analisis Data Uji Homogenitas	97
	Populasi	
Lampiran 4	Analisis Data Uji Validitas Butir Soal	100
Lampiran 5	Analisis Data Uji Reliabilitas Butir	102
	Soal	
Lampiran 6	Analisis Data Uji Tingkat Kesukaran	104
	Soal	
Lampiran 7	Analisis Data Uji Daya Beda Soal	106
Lampiran 8	Hasil Pretest Berpikir Kritis Kelas	107
	Eksperimen	
Lampiran 9	Hasil Posttest Berpikir Kritis Kelas	109
	Eksperimen	
Lampiran 10	Hasil Pretest Berpikir Kritis Kelas	111
	Kontrol	
Lampiran 11	Hasil Posttest Berpikir Kritis Kelas	113
	Kontrol	
Lampiran 12	Hasil Pretest Pemahaman Konsep	115
	Kelas Eksperimen	
Lampiran 13	Hasil Posttest Pemahaman Konsep	117
	Kelas Eksperimen	
Lampiran 14	Hasil Pretest Pemahaman Konsep	119
	Kelas Kontrol	
Lampiran 15	Hasil Posttest Pemahaman Konsep	121
	Kelas Kontrol	

Lampiran 16	Hasil Pretest dan Posttest Indikator	123	
	Berpikir Kritis Kelas Eksperimen		
Lampiran 17	Hasil Pretest dan Posttest Indikator	133	
	Berpikir Kritis Kelas Kontrol		
Lampiran 18	Hasil Pretest dan Posttest Indikator	143	
	Pemahaman Konsep Kelas		
	Eksperimen		
Lampiran 19	Hasil Pretest dan Posttest Indikator	157	
	Pemahaman Konsep Kelas Kontrol		
Lampiran 20	Analisis N-Gain Berpikir Kritis Kelas	171	
	Eksperimen		
Lampiran 21	Analisis N-Gain Berpikir Kritis Kelas	172	
	Kontrol		
Lampiran 22	Analisis N-Gain Pemahaman Konsep	174	
	Kelas Eksperimen		
Lampiran 23	Analisis N-Gain Pemahaman Konsep	175	
	Kelas Kontrol		
Lampiran 24	N-Gain Indikator Berpikir Kritis	177	
	Kelas Eksperimen		
Lampiran 25	N-Gain Indikator Berpikir Kritis	184	
	Kelas Kontrol		
Lampiran 26	N-Gain Indikator Pemahaman	191	
	Konsep Kelas Eksperimen		
Lampiran 27	N-Gain Indikator Pemahaman	200	
	Konsep Kelas Kontrol		
Lampiran 28	Uji-t Berpikir Kritis	209	
Lampiran 29	Uji-t Pemahaman Konsep		
Lampiran 30	Modul Ajar		
Lampiran 31	Kisi-Kisi Soal Pretest dan Posttest		
Lampiran 32	Rubrik Penilaian Berpikir Kritis		
Lampiran 33	Rubrik Penilaian Pemahaman	270	
	Konsep		

Lampiran 34	Soal Pretest dan Posttest	273
Lampiran 35	Lembar Validasi Soal	293
Lampiran 36	Surat Permohonan Izin Riset	299
Lampiran 37	Surat Keterangan Selesai Penelitian	301
Lampiran 38	Dokumentasi Kegiatan Penelitian	302

BAB I

PENDAHULUAN

A. Latar Belakang Masalah

Kurikulum merdeka belajar adalah suatu konsep kurikulum yang menuntut kemandirian bagi siswa. Kurikulum merdeka belajar dikembangkan agar dapat membentuk generasi yang mampu dengan cepat menyerap materi dan ilmu yang diberikan oleh guru, tidak hanya cepat mengingat pembelajaran dari guru tetapi juga harus memanfaatkan teknologi dalam proses pembelajarannya (Indarta, et al., 2022). Risdianto (2019) berpendapat bahwa kehadiran kurikulum merdeka bertujuan untuk menjawab tantangan pendidikan di era revolusi industri 4.0 yang dalam implementasinya harus mendukung kemampuan berpikir kritis dan memecahkan masalah, kreatif dan inovatif, serta terampil dalam berkomunikasi dan berkolaborasi bagi siswa.

Berpikir kritis merupakan salah satu atribut yang harus dikembangkan dalam pembelajaran karena dengan berpikir kritis seseorang dapat menganalisis, menjelaskan dan menyimpulkan informasi yang diterima sehingga dapat memahami inti pembelajaran (Lewier dan Kelly, 2020). Berpikir kritis adalah berpikir logis, rasional yang berfokus

pada pengambilan keputusan tentang apa yang harus dipercaya dan apa yang harus dilakukan. Proses pembelajaran memerlukan kemampuan berpikir kritis untuk menganalisis gejala dan fenomena yang muncul (Sastrika, Sadia & Muderawan, 2013).

Berdasarkan hasil *Programme for International Student Assessment* (PISA) yang menilai keterampilan dan kemampuan siswa, peringkat Indonesia berada di bawah skor rata-rata ketuntasan PISA (Sa'adah, Suryaningsih & Muslim, 2020). Hasil penilaian kemampuan siswa yang dilakukan PISA tahun 2018, Indonesia masih berada di peringkat 70 dari 78 negara yang ikut berpartisipasi. Hal ini menunjukkan bahwa siswa Indonesia kurang memahami konsep dan proses sains serta belum dapat menerapkan pengetahuan sains yang dipelajarinya dalam kehidupan sehari-hari (Sutrisna, 2021).

Rendahnya keterampilan siswa di Indonesia dalam PISA disebabkan oleh beberapa faktor, salah satunya adalah rendahnya kemampuan pemecahan masalah soal tingkat tinggi (Kertayasa, 2012). Soal yang digunakan dalam PISA merupakan soal yang terdiri dari masalah kontekstual dalam kehidupan sehari-hari untuk mengukur kemampuan berpikir kritis. Oleh karena itu, siswa perlu meningkatkan kemampuan berpikir kritis dalam proses pembelajaran.

Selain menekankan kemampuan berpikir kritis, pemahaman konsep memiliki peran penting dalam pembelajaran karena akan berujung pada hasil belajar. Hasil belajar siswa diorientasikan sebagai refleksi untuk mengetahui tingkat ketuntasan belajar dan penguasaan siswa terhadap suatu materi (Sastrika, Sadia & Muderawan, 2013). Salah satu materi yang membutuhkan kemampuan berpikir kritis dan pemahaman konsep yaitu materi kimia.

Materi kimia memuat konsep-konsep dasar yang abstrak dan mikroskopik. Selama ini proses pembelajaran kimia belum dapat mencapai tujuan pembelajaran secara optimal. Siswa masih kesulitan memahami materi pembelajaran kimia yang diberikan oleh guru (Putri dan Muhtadi, 2018). Salah satunya materi laju reaksi yaitu materi yang mempelajari tentang hal mikroskopik, contohnya pada sub pokok bahasan teori tumbukan serta faktor-faktor yang mempengaruhi laju reaksi. Hal ini menyebabkan siswa kurang mengerti serta kurang memahami materi hanya dengan menghafalkan teori-teori yang sudah ada (Sinaga dan Roza, 2022).

Berdasarkan hasil wawancara dengan guru kimia di SMA Negeri 1 Pegandon sebagian siswa kurang berperan aktif dalam pembelajaran, guru kesusahan dalam menyesuaikan gaya belajar siswa, serta penggunaan teknologi yang belum optimal digunakan. Pada proses pembelajaran guru sudah menerapkan model *kooperatif learning* dan tanya jawab yang bertujuan untuk mengasah daya pikir agar siswa dapat memiliki kemampuan berpikir kritis dan pemahaman konsep, namun hal tersebut masih belum dapat berjalan secara maksimal. Proses belajar mengajar yang dilakukan oleh guru belum mampu menumbuhkan kemampuan berpikir kritis maupun pemahaman konsep siswa. Masalah tersebut dapat diatasi dengan menggunakan model yang tepat agar siswa lebih terlibat dalam proses pembelajaran.

Salah satu model pembelajaran yang mampu mengatasi permasalahan tersebut yaitu pembelajaran model inkuiri terbimbing berbantuan PhET simulation. PhET simulation baik digunakan dengan menggunakan model pembelajaran inkuiri terbimbing (Trisviati dan Lutfi, 2022; Rizaldi, et al., 2020; Nurdini, et al., 2022). Model pembelajaran inkuiri memberikan kesempatan kepada siswa untuk berpartisipasi secara penuh dalam kegiatan pembelajaran. Model inkuiri dapat mengajarkan konsep (Rais, Hakim & Sulistiawati, 2020) serta mengembangkan berpikir kritis melalui pertanyaan berlandaskan keingintahuan, memfasilitasi sikap rasa ingin tahu karena model ini menekankan keaktifan siswa dalam kegiatan pembelajaran (Falentina, Saptasari & Indriwati, 2020).

Model inkuiri terbimbing mengutamakan pada perkembangan potensi siswa baik dari pengetahuan, karakter, dan keterampilan khususnya kemandirian siswa. Model pembelajaran inkuiri ini sesuai jika diterapkan dengan media PhET simulation (Mardhatilla, 2021) karena siswa dapat mengenali ide dan konsep utama dengan lebih baik, membantu menghafal dalam proses pembelajaran, memberi dorongan kepada siswa untuk berpikir kritis, dan proses pembelajaran lebih menarik (Trisviati dan Lutfi, 2022). Pengguna PhET simulation dapat melakukan simulasi kapan saja, dimana saja dengan menggunakan komputer atau ponsel sebab dapat terkoneksi melalui internet atau tanpa jaringan internet, sehingga siswa yang simulation menggunakan PhETselama proses pembelajaran akan lebih nyaman, tidak jenuh dan dapat menerapkan teknologi sesuai tuntutan kurikulum (Arifin dan Harijanto, 2022).

Berdasarkan penjelasan yang diberikan, peneliti tertarik untuk melakukan penelitian tentang "Efektivitas Model Pembelajaran Inkuiri Terbimbing Berbantuan PhET Simulation Untuk Meningkatkan Kemampuan Berpikir Kritis dan Pemahaman Konsep Siswa"

B. Identifikasi Masalah

- Kemampuan berpikir kritis dan pemahaman konsep siswa masih rendah sehingga perlu ditingkatkan lagi.
- 2. Kimia merupakan mata pelajaran yang menyertakan reaksi, perhitungan, menyertakan konsep yang bersifat abstrak dan mikroskopik sehingga memerlukan kemampuan berpikir kritis dan pemahaman konsep.
- 3. Kegiatan pembelajaran yang digunakan belum mampu menumbuhkan kemampuan berpikir kritis dan pemahaman konsep siswa sehingga diperlukan model dan media pembelajaran yang tepat.
- 4. Pemanfaatan teknologi belum optimal dalam proses pembelajaran.

C. Batasan Masalah

Berdasarkan identifikasi masalah di atas, batasan masalah penelitian ini adalah:

- 1. Model pembelajaran yang diaplikasikan yaitu model inkuiri terbimbing berbantuan *PhET simulation*.
- 2. Materi yang digunakan yaitu materi laju reaksi.

D. Rumusan Masalah

- 1. Apakah model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* efektif untuk meningkatkan kemampuan berpikir kritis siswa ?
- 2. Apakah model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* efektif untuk meningkatkan pemahaman konsep siswa ?

E. Tujuan Penelitian

- 1. Untuk mengetahui keefektifan model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* dalam meningkatkan kemampuan berpikir kritis siswa.
- 2. Untuk mengetahui keefektifan model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* dalam meningkatkan pemahaman konsep siswa.

F. Manfaat Penelitian

Berdasarkan tujuan penelitian yang ingin dicapai, penelitian ini diharapkan dapat membawa manfaat langsung maupun tidak langsung bagi dunia pendidikan.

a Manfaat Teoritis

 Penelitian ini diharapkan dapat memberikan manfaat berupa gambaran penggunaan media pembelajaran yang baik dan cocok untuk

- meningkatkan kemampuan berpikir kritis dan pemahaman konsep siswa.
- 2) Penelitian ini diharapkan dapat menjadi acuan dan pertimbangan untuk penelitian selanjutnya.

b. Manfaat Praktis

- Bagi peneliti, dapat menambah pengalaman, wawasan serta memanfaatkan perkembangan teknologi pendidikan dalam penerapan model pembelajaran pada proses belajar yang baik.
- 2) Bagi siswa, dapat mendorong dalam penggunaan internet untuk meningkatkan fleksibilitas belajar dan mendukung kegiatan belajar.
- 3) Bagi guru, dapat menggunakannya sebagai acuan model pembelajaran yang menekankan pada pembelajaran aktif sebagai hasil dari penerapan kurikulum merdeka dan juga guru harus mampu mengadaptasi teknologi digital sebagai bagian dari profesionalismenya.
- 4) Bagi sekolah, dapat dijadikan acuan untuk memperbaiki proses pembelajaran yang tepat dan lebih baik untuk mencapai kualitas pembelajaran yang sesuai dengan harapan kurikulum, khususnya pada mata pelajaran kimia.

BAB II LANDASAN PUSTAKA

A. Kajian Teori

1. Model Inkuiri Terbimbing

a. Pengertian Model Inkuiri Terbimbing

Model pembelajaran adalah rencana yang menggambarkan kondisi alami bagi siswa untuk mengasosiasikan, mengubah dan mencipta. Model ini pada dasarnya adalah bentuk pembelajaran yang ditampilkan oleh khusus secara para Pembelajaran adalah suatu persiapan dimana siswa mengembangkan potensinya berdasarkan pemahaman awal. Para ahli dapat membuat model pembelajaran vang sesuai dengan standar pembelajaran, teori psikologi, kajian sistem atau teori pendukung lainnya (Hasriadi, 2022).

Inkuiri berasal dari kata *to inquire* yang mengandung arti ikut atau diikutsertakan dalam bertanya, mencari data, dan melakukan penyelidikan. Pembelajaran inkuiri berorientasi pada kegiatan proses dan menekankan keikutsertaan siswa secara aktif baik fisik maupun metal dalam mengatasi suatu masalah. Pembelajaran inkuiri dapat menjadi

pegangan di mana siswa berpikir secara sistematis yang berpusat pada proses pencarian dan penemuan (Pertiwi, et al., 2018). Inkuiri terbimbing adalah model pembelajaran yang memungkinkan siswa merancang dan menemukan konsep sendiri, mempertahankan materi yang tersimpan lebih lama dalam ingatan siswa, dan membimbing siswa pada hal yang benar untuk meningkatkan hasil belajarnya (Sarumaha dan Harefa, 2022).

Berdasarkan pengertian model pembelajaran yang telah terurai di atas maka model pembelajaran inkuiri adalah model pembelajaran yang dapat meningkatkan pemahaman konsep siswa dan berpikir kritis untuk mencari dan menemukan jawaban dari suatu masalah yang dipertanyakan.

b. Strategi Inkuiri Terbimbing

Strategi inkuiri terbimbing memperkuat pemahaman siswa tentang konsep yang memungkinkan siswa untuk menemukan jawaban sendiri dan mampu membangun pemahaman diri lebih dalam dan mandiri (Suprianti, et al., 2020). Strategi inkuiri terdiri dari 4 tingkatan yaitu:

- Tingkatan inkuiri ke 0, semua perangkat mulai dari masalah, stategi dan cara penyelesaiannya diberikan oleh guru, siswa hanya perlu menjalankannya.
- 2. Tingkatan inkuiri ke 1, masalah dan strategi diberikan oleh guru, siswa diminta untuk menginterpretasikan data yang di dapat.
- 3. Tingkatan inkuiri ke 2, hanya masalah yang diberikan pada siswa, sedangkan cara menyelesaikan dan interpretasi data diserahkan pada siswa.
- Tingkatan inkuiri ke 3, guru hanya memberikan fenomena saja, siswa diminta untuk menemukan masalah dan menyelesaikannya secara mandiri (Fitriyati dan Munzil, 2016).

Pada penelitian ini menggunakan strategi inkuiri level 3 karena lebih melibatkan siswa dalam proses pembelajaran dan menjadi acuan dalam sintaks yang diterapkan pada model inkuiri terbimbing.

c. Sintaks Inkuiri Terbimbing

Sintaks model pembelajaran inkuiri terbimbing yaitu:

- Orientasi, khususnya dalam persiapan pembelajaran siswa dibimbing oleh guru untuk memahami masalah.
- Merumuskan masalah, yaitu siswa merumuskan suatu masalah berkenaan dengan peristiwa yang telah ditampilkan oleh guru dengan konsepkonsep yang telah dimilikinya.
- 3. Membuat hipotesis, yaitu siswa mampu menjawab atas permasalahan yang dibuat dari konsep yang telah dipelajari.
- Mengumpulkan data, siswa bereksperimen untuk menguji hipotesis yang dibuat sebelumnya.
- 5. Menguji hipotesis, siswa menelaah hipotesis yang telah dibuat dengan hasil pengujian yang telah dilakukan.
- Kesimpulan, yaitu berdasarkan penemuan data dan uji hipotesis maka siswa mampu menjelaskan hasil yang di dapat diperkuat dengan uji literatur secara akurat (Indawati, et al., 2021).

Sintaks model inkuiri terbimbing ini disesuaikan dengan strategi inkuiri level 3 dan menjadi acuan untuk pembuatan modul ajar kelas eksperimen saat penelitian.

d. Kelebihan dan Kekurangan Inkuiri Terbimbing

Model pembelajaran inkuiri terbimbing memiliki kelebihan sebagai berikut:

- a. Siswa aktif membuat dugaan, melakukan penelitian, mengumpulkan data untuk membuktikan dugaan dan mengkomunikasikan bukti dari teman sebaya dan guru untuk menarik kesimpulan yang jelas dan ringkas.
- b. Kesempatan bagi siswa untuk mengungkapkan ide dan gagasannya dalam memecahkan masalah yang dituangkan dalam kegiatan pembelajaran yang menggunakan model pembelajaran inkuiri terbimbing penting untuk memastikan bahwa siswa merasa dilibatkan dan dihargai dalam proses pembelajaran.
- Pembelajaran yang menekankan perkembangan aspek kognitif, emosional, dan psikomotorik secara seimbang.

 d. Menyediakan ruang di mana siswa dapat belajar sesuai dengan gaya belajar siswa (Prasetiyo dan Brillian, 2021).

Kekurangan pembelajaran inkuiri terbimbing adalah:

- a. Perlunya perubahan kebiasaan siswa yang hanya menerima informasi dari guru saja.
- b. Guru dituntut untuk mengubah kebiasaan mendidik yang pada umunya sebagai pemberi informasi menjadi fasilitator, motivator, dan pembimbing siswa dalam belajar.
- Model pembelajaran dilakukan secara kelompok, memungkinkan terdapat anggota yang kurang aktif.
- d. Cara belajar siswa dalam strategi ini menuntut bimbingan guru yang lebih baik.
- e. Pembelajaran kurang efektif ketika guru tidak menguasai kelas (Inayati, et al., 2020).

Kelebihan model inkuiri terbimbing ini dapat menjadikan siswa lebih aktif dalam pembelajaran sehingga siswa bebas untuk mengungkapkan ide atau gagasannya. Kelemahan inkuiri terbimbing dapat diatasi dengan aktifnya peran guru dalam membimbing siswa saat kegiatan pembelajaran agar siswa merasa terlibatkan dalam proses pembelajaran.

2. Kajian Media PhET Simulation

a. Sejarah PhET Simulation

Physics Education and Technology (PhET) adalah media simulasi yang dibuat oleh Katherin Perkins dari Universitas Colorado Amerika Serikat. PhET simulation disusun dalam bentuk Java atau Flash sehingga dapat dijalankan langsung dari situs web menggunakan browser standar. Pengguna dapat mengunduh dan menginstal seluruh situs web untuk penggunaan offline. PhET simulation ini berjalan paling baik di PC (Personal Komputer). Media *PhET simulation* dapat diperoleh secara gratis baik oleh melalui atau siswa guru http://PhET.colorado.edu/en/get-PhET/full-instal (Rizaldi, Jufri & Jamal, 2020).

Media *PhET simulation* ini dibuat untuk membantu siswa dalam memahami konsep dan menekankan hubungan antara fenomena kehidupan nyata dengan ilmu yang mendasari, memberikan umpan balik, mendukung pendekatan interaktif dan konstruktivis, serta memberikan lingkungan kerja

yang kreatif (Rasyidah, et al., 2018). Simulasi ini lebih efektif bila diterapkan dengan pendekatan pembelajaran inkuiri sebab berdampak pada pemahaman konsep siswa (Rais, et al., 2020).

Berdasarkan penjelasan di atas maka *PhET* simulation dapat dimanfaatkan oleh siswa untuk membantu menemukan atau menjelaskan konsep yang sedang dikaji melalui pendekatan pembelajaran inkuiri (Rizaldi, et al., 2020).

b. Kelebihan dan Kekurangan PhET Simulation

Beberapa kelebihan *PhET simulation* yang tidak terdapat pada media pembelajaran lainnya, yaitu:

- 1) Simulasi ini dapat dimanfaatkan di ruang kelas.
- 2) Sangat mudah untuk mengubah variabel dalam menanggapi pertanyaan siswa yang sulit.
- Siswa dapat melihat hal-hal yang tidak jelas dan secara eksplisit menghubungkan banyak representasi.
- 4) Siswa dapat menjalankan *PhET simulation* di rumah untuk mengulang atau memperpanjang eksperimen dari pelajaran untuk memperjelas dan memperkuat pemahaman siswa.

5) Dapat membuat tampilan yang tak terlihat dan memberikan banyak representasi (makroskopik, mikroskopik, grafik).

Media pembelajaran tidak hanya memiliki kelebihan saja, setiap media tentu memiliki kekurangan masing-masing, begitu pula dengan media *PhET simulation*. Kekurangan media pembelajaran ini adalah:

- Setiap kegiatan eksperimen guru atau siswa harus menyediakan komputer yang sudah memiliki aplikasi *PhET*, jika aplikasi ini belum tersedia maka eksperimen tidak dapat dilakukan.
- 2) Eksperimen yang dilakukan harus sesuai dengan apa yang telah dimodifikasi dalam aplikasi *PhET*.
- Siswa harus dapat bekerja mandiri untuk mengikuti pembelajaran yang diberikan oleh guru.
- Siswa akan merasa jenuh jika tidak mengerti cara menggunakan *PhET simulation* (Muzana, et al., 2021)

Kelebihan *PhET simulation* tersebut maka siswa dapat memahami materi lebih mudah dan akan tersimpan lebih lama dalam ingatan karena siswa bisa belajar sekaligus bermain dengan simulasi yang disajikan. Kelemahan *PhET simulation* ini dapat diatasi dengan mengajarkan terlebih dahulu kepada siswa cara penggunaan simulasi ini agar siswa tidak jenuh bila tidak memahami cara menggunakan *PhET simulation*.

3. Kemampuan Berpikir Kritis

a. Pengertian Berpikir Kritis

Kata kritis berasal dari *criticos* yang artinya membedakan. Kata kritis diambil dari Bahasa Yunani Kuno *krities* artinya seseorang yang suka memberikan pendapat, beralasan dengan analisis atau dengan pengamatan. Berpikir kritis secara etimologi mengandung makna suatu kegiatan mental yang dilakukan seseorang untuk dapat memberi pertimbangan dengan menggunakan ukuran atau standar tertentu (Zubaidah, Corebima & Mistianah, 2015).

Berpikir kritis adalah penilaian yang terarah dan terukur yang menghasilkan interpretasi, analisis, evaluasi, dan kesimpulan (Facione, 1996). Berpikir kritis juga dapat diartikan sebagai proses dan keterampilan yang digunakan untuk memahami

konsep, menerapkan, mensintesis, dan mengevaluasi informasi yang diterima atau dihasilkan. Berpikir kritis adalah proses berpikir reflektif yang membutuhkan kecermatan dalam mengambil keputusan melalui serangkaian prosedural untuk menganalisis, menguji, dan mengevaluasi bukti serta dilakukan secara sadar (Rositawati, 2018).

Berdasarkan pengertian di atas, dapat disimpulkan bahwa berpikir kritis merupakan keterampilan yang perlu dimiliki siswa untuk memberikan tanggapan berbasis bukti yang reflektif, produktif dan evaluatif terhadap suatu peristiwa.

b. Indikator Berpikir Kritis

Robert Ennis (1995) menemukan bahwa mengidentifikasi kemampuan berpikir kritis terbagi dalam 12 indikator yang dikelompokkan menjadi 5 kegiatan utama.

Tabel 2.1 Indikator Kemampuan Berpikir Kritis

	Kemampuan	- 11		
No	Berpikir Kritis	Indikator		
1	Memberikan	1. Memfokuskan pertanyaan		
	Penjelasan	Menganalisis argumen		
	Sederhana	3. Bertanya dan menjawab		
		pertanyaan klarifikasi		
2	Membangun	4. Menyelesaikan dengan		
	keterampilan	sumber		
	Dasar	5. Mengobservasi dan		
		mempertimbangkan hasil		
•	3.6	observasi		
3	Menyimpulkan	6. Membuat dedukasi dan		
		mempertimbangkan hasil		
		dedukasi		
		7. Membuat induksi dan		
		mempertimbangkan hasil		
		induksi		
		8. Membuat dan		
		mempertimbangkan nilai		
4	M l+	keputusan		
4	Membuat	9. Mengidentifikasi Istilah		
	Penjelasan	dan mempertimbangkan		
	Lanjut	definisi		
5	Ctratagi dar	10. Mengidentifikasi Asumsi 11. Menentukan tindakan		
5	Strategi dan taktik			
	taktik	12. Berinteraksi dengan orang		
		lain		

(Ennis, 1995)

Menurut Facione (2015) indikator berpikir kritis dapat dijabarkan dalam Tabel 2.2.

Tabel 2.2 Indikator Kemampuan Berpikir Kritis

1000		
NO	Indikator	Sub <i>Skill</i>
1	Interpretasi	Dapat menuliskan apa yang
		ditanyakan soal dengan jelas
		dan tepat
2	Analisis	Dapat menuliskan apa yang
		harus dilakukan dalam
		menyelesaikan soal
3	Evaluasi	Dapat menuliskan tentang
		penyelesaian soal
4	Inferensi	Dapat menarik kesimpulan
		dari apa yang ditanyakan
		secara logis
5	Eksplanasi	a. Dapat menulis hasil akhir
		b. Dapat memberikan alasan
		tentang kesimpulan yang
		diambil
6	Regulasi Diri	Dapat mereview ulang
		jawaban yang diberikan atau
		dituliskan
_		

(Facione, 2015)

Penelitian ini menggunakan indikator berpikir kritis menurut Facione karena indikator dan sub *skill* nya dapat diterapkan lebih jelas dalam proses pembelajaran.

4. Pemahaman Konsep

a. Pengertian Pemahaman Konsep

Pemahaman konsep terdiri dari dua kata yaitu pemahaman dan konsep. Pemahaman adalah kemampuan seseorang untuk memahami sesuatu setelah mengetahui dan menghafalnya. Konsep adalah buah pemikiran individu atau kelompok orang yang ditentukan dalam definisi, tetapi menghasilkan produk pengetahuan yang mencakup prinsip, hukum, dan teori. Konsep juga dapat disebut gagasan atau ide yang bermakna (Sopiansyah, et al., 2022)

Pemahaman konsep merupakan keterampilan seorang siswa dalam memahami suatu konsep dan mendemostrasikannya dengan prosedur yang akurat, efisien, dan tepat (Herimanto, et al., 2018). Pemahaman suatu konsep adalah pemahaman yang benar terhadap suatu desain atau ide abstrak. Ada juga yang mengatakan bahwa memahami suatu konsep adalah proses memahami apa artinya menggambarkan suatu objek atau peristiwa nyata (Annafi, et al., 2021).

Berdasarkan definisi yang diberikan, dapat disimpulkan bahwa pemahaman konsep adalah

kemampuan untuk membangun konsep yang ada dengan kata-kata sendiri berdasarkan pengetahuan dasar dan menghubungkan dengan pengetahuan baru.

b. Indikator Pemahaman Konsep

Berikut adalah beberapa indikator untuk memahami konsep yang diteliti:

- Kemampuan mengulang konsep yang dipelajari.
- 2) Kemampuan mengklasifikasikan objek-objek berdasarkan dipenuhi atau tidaknya persyaratan yang membentuk konsep tersebut.
- 3) Kemampuan menerapkan konsep secara algoritma.
- 4) Mampu memberikan contoh konsep yang dipelajari.
- 5) Menyajikan konsep dalam berbagai bentuk representasi kimia.
- 6) Kemampuan mengaitkan berbagai konsep.
- Kemampuan mengembangkan syarat perlu dan syarat cukup suatu konsep (Kilpatrick dan Findel, 2001).

Ketujuh indikator tersebut diimplementasikan dalam pembuatan soal tes yang diujikan ke siswa.

5. Materi Pembelajaran Kimia

a. Pengertian Laju Reaksi

Reaksi kimia ada yang berlangsung cepat dan ada yang lambat. Ledakan bom berlangsung cepat dan karat besi berlangsung lambat. Kecepatan terjadinya reaksi kimia disebut juga laju reaksi. Laju reaksi dinyatakan sebagai perubahan konsentrasi zat yang terlibat dalam reaksi per satuan waktu. Konsentrasi reaktan dalam reaksi kimia menurun dari waktu ke waktu, tetapi hasil reaksi meningkat dari waktu ke waktu. Oleh karena itu, laju reaksi dapat dinyatakan sebagai penurunan konsentrasi reaktan per satuan waktu atau sebagai peningkatan konsentrasi produk reaksi per satuan waktu (Sutresna, et al., 2016).

Laju reaksi (r) =
$$\frac{Perubahan Konsentrasi}{Perubahan Waktu} = \frac{\Delta [M]}{\Delta t}$$

b. Persamaan Laju Reaksi dan Orde Reaksi

Persamaan yang menghubungkan reaksi dan konsentrasi reaktan dengan konstanta laju dapat ditulis dalam bentuk persamaan reaksi atau persamaan laju reaksi. Persamaan laju reaksi dapat ditulis sebagai konsentrasi awal setiap zat yang dipangkatkan dengan orde reaksi.

$$pA + qB \rightarrow rC + sD$$

Reaksinya dapat dituliskan sebagai berikut

$$r = k [A]^x [B]^y$$

Keterangan:

r = Laju reaksi (M/s)

[A] = Konsentrasi zat A (M)

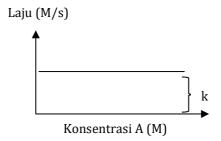
[B] = Konsentrasi zat B (M)

k = Konstanta laju reaksi

x = Orde reaksi terhadap zat A

y = Orde reaksi terhadap zat B

x+y = Orde reaksi total


Orde reaksi menunjukkan seberapa besar konsentrasi reaktan mempengaruhi laju reaksi. Nilai orde reaksi belum tentu sama dengan koefisien reaksi zat yang bersangkutan. Orde reaksi adalah jumlah orde masing-masing reaktan. Ada 4 jenis orde reaksi beserta rumus laju reaksi (Sutresna, et al., 2016).

1) Reaksi Orde Nol

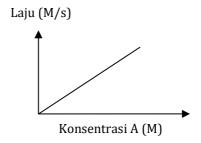
Ketika laju reaksi tidak dipengaruhi oleh konsentrasi reaktan, maka reaksi kimia tersebut dinyatakan memiliki orde nol.

$$2NH_3(g) \rightarrow N_2(g) + 3H_2(g)$$

Persamaan laju reaksi dapat dinyatakan sebagai $r = k[NH_3]^0$. Ini berarti bahwa laju reaksi tidak bergantung pada konsentrasi NH_3 . Hal ini dapat diilustrasikan dengan Gambar 2.1 reaksi orde nol.

Gambar 2.1 Grafik Reaksi Orde Nol

2) Reaksi Orde Satu


Suatu reaksi dikatakan berorde satu jika laju reaksi berbanding lurus dengan konsentrasi pereaksi.

$$2CO_2(g) \rightarrow 2CO(g) + O_2(g)$$

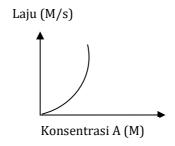
Persamaan laju reaksi dapat dinyatakan sebagai berikut:

$$r = k[CO_2]$$

Artinya ketika konsentrasi pereaksi CO_2 dinaikkan dua kali dari konsentrasi semula maka laju reaksi akan meningkat dua kali semula. Hal ini dapat diilustrasikan dengan Gambar 2.2 reaksi orde satu.

Gambar 2.2 Grafik Reaksi Orde Satu

3) Reaksi Orde Dua


Reaksi kimia dikatakan memiliki orde dua jika laju reaksi merupakan pangkat dua dari peningkatan konsentrasi reaktan.

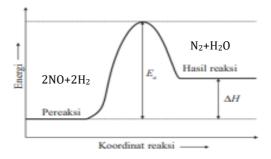
$$2HI(g) \rightarrow H_2(g) + I_2(g)$$

Persamaan laju reaksi dapat dinyatakan sebagai berikut

$$r = k[HI]^2$$

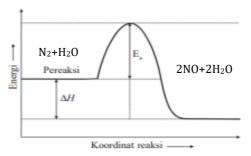
Artinya jika konsentrasi pereaksi HI dinaikkan dua kali semula maka laju reaksi akan meningkat empat kali semula. Hal ini dapat diilustrasikan dengan Gambar 2.3 reaksi orde dua.

Gambar 2.3 Grafik Reaksi Orde Dua


c. Teori Tumbukan

Dasar teori tumbukan menjelaskan bahwa laju reaksi berbanding lurus dengan kecepatan tumbukan efektif partikel per detik. Laju tumbukan efektif adalah proses tumbukan yang menyebabkan terjadinya reaksi kimia. Segala sesuatu yang meningkatkan laju tumbukan efektif akan meningkatkan kecepatan laju reaksi.

Salah satu faktor yang mempengaruhi laju tumbukan efektif adalah suhu. Peningkatan suhu, menyebabkan partikel bergerak lebih kuat, sehingga meningkatkan jumlah tumbukan efektif dan laju reaksi. Tidak semua tumbukan terjadi reaksi kimia walaupun orientasi molekulnya tepat. Setiap partikel harus memiliki energi kinetik


minimum agar reaksi kimia dapat terjadi. Energi ini digunakan untuk memutuskan ikatan lama sehingga ikatan baru dapat terbentuk. Energi kinetik minimum yang diperlukan partikel pereaksi untuk membentuk kompleks teraktivasi disebut energi aktivasi (Ea).

Contohnya reaksi antara gas hidrogen (H_2) dan gas nitrogen monoksida (N0) menghasilkan gas nitrogen (N_2) dan dua molekul air. Ketika reaksi berlangsung, kompleks aktif terbentuk. Kompleks yang teraktivasi berada pada puncak energinya. Jika reaksi berhasil, zat kompleks yang teraktivasi akan terurai menjadi produk reaksi. Terdapat hubungan antara produk reaksi dan energi yang diserap atau dilepaskan selama reaksi. Energi pengaktifan untuk reaksi $2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(l)$ memiliki bentuk grafik seperti pada Gambar 2.4

Gambar 2.4 Reaksi Endoterm

Nilai ΔH untuk reaksi tersebut adalah positif karena energi hasil reaksi lebih tinggi dari pereaksi. Dengan kata lain reaksi bersifat endoterm. Sebaliknya, jika arah reaksi dibalikkan menjadi $2H_2O(l) + N_2(g) \rightarrow 2H_2(g)$ 2NO(g) maka bentuk grafiknya ditunjukkan dengan Gambar 2.5

Gambar 2.5 Reaksi Eksoterm

Nilai ΔH untuk reaksi adalah negatif karena energi produk reaksi lebih kecil daripada energi reaktan. Dengan kata lain, reaksinya eksotermis (Sutresna, et al., 2016).

d. Faktor-Faktor yang Mempengaruhi Laju Reaksi

1) Konsentrasi

Larutan yang pekat memiliki konsentrasi yang besar dan molekul dalam larutan pekat lebih banyak dan padat, sehingga mereka lebih sering bertumbukan. Pada larutan encer yang memiliki konsentrasi kecil, letak antar molekul lebih longgar sehingga tumbukan antar molekul tidak semudah pada larutan pekat. Selain itu, karena lebih sedikit molekul dalam larutan encer maka lebih sedikit molekul yang akan bertumbukan.

2) Luas Permukaan

Zat bereaksi ketika dicampur dan bertumbukan dengan campuran reaktan yang terdiri dari dua fase atau lebih. Tumbukan terjadi di permukaan. Padatan berbentuk serbuk halus memiliki luas permukaan bidang sentuh yang lebih besar daripada padatan berbentuk lempeng atau butiran. Semakin besar luas permukaan partikel, semakin tinggi frekuensi tumbukan dan semakin cepat reaksinya.

3) Suhu

Suhu dapat meningkatkan laju reaksi. Ketika suatu zat dipanaskan, partikel zat tersebut menyerap energi panas. Saat suhu meningkat, molekul bergerak lebih cepat, sehingga meningkatkan energi kinetiknya. Ketika energi kinetik molekul meningkat, lebih banyak tumbukan terjadi yang mengarah ke kompleks

teraktivasi. Artinya, proporsi tumbukan yang menimbulkan reaksi meningkat. Secara umum, untuk setiap kenaikan suhu 10 °C, laju reaksi meningkat dua hingga tiga kali lipat dari laju reaksi semula.

4) Katalis

Menambahkan katalis dapat mengubah laju reaksi. Katalis mempercepat reaksi dengan mencari mekanisme yang energi aktivasi lebih rendah, sehingga lebih mudah membentuk kompleks teraktivasi. Suatu zat yang kehadirannya dapat memperlambat laju reaksi disebut inhibitor (Utami, et al., 2009).

B. Kajian Penelitian Yang Relevan

1) Mardiyanti dan Jatmiko (2022) dengan judul "Keefektifan Pembelajaran Fisika Dengan Model Inkuiri Terbimbing Berbantuan *PhET Interactive Simulations* untuk Meningkatkan Kemampuan Berpikir Kritis Siswa SMA" menyatakan bahwa model inkuiri terbimbing berbantuan *PhET Interactive Simulations* efektif meningkatkan kemampuan berpikir kritis siswa.

Persamaan penelitian ini dengan penelitian tersebut yaitu sama-sama menggunakan model inkuiri terbimbing berbantuan *PhET simulation*, variabel terikatnya menggunakan kemampuan berpikir kritis. Perbedaan terletak pada lokasi penelitian, materi yang digunakan, penambahan variabel terikat pemahaman konsep siswa, jenis penelitian dan desain dalam penelitian penelitian. Dimana tersebut menggunakan pre-eksperimental dengan desain one group pretest posttest design, sedangkan dalam penelitian ini menggunakan *quasi experimental* dengan desain non equivalent control group design.

2) Nuraida (2021) di dalam penelitian yang berjudul "Using PhET Simulation to learning the concept of acid-base" menyatakan bahwa pembelajaran kimia dengan menggunakan PhET simulation dapat meningkatkan kemampuan siswa dalam menganalisis dan menghubungkan fenomena makroskopis dengan visualisasi sub-mikroskopik.

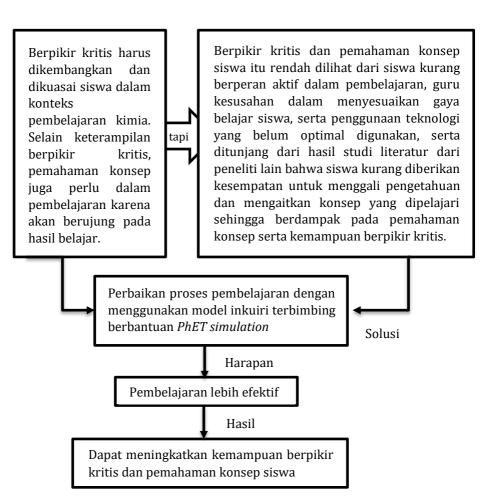
penelitian ini dengan penelitian Persamaan tersebut adalah sama-sama menggunakan variabel terikat pemahaman konsep. Sedangkan perbedaannya yaitu terletak pada materi yang digunakan, lokasi penelitian, variabel terikatnya dimana dalam penelitian ini menambahkan satu variabel terikat lagi yaitu kemampuan berpikir kritis siswa. Perbedaannya lagi terletak pada jenis penelitian dan desain penelitian. Penelitian ini menggunakan quasi experimental dengan desain nonequivalent control group design. Sedangkan dalam penelitian tersebut menggunakan eksperimental dengan desain one group pretest posttest design.

3) Alifiyanti dan Ishafit (2018) dengan judul "Penerapan Model Pembelajaran Inkuiri Terbimbing Berbantuan *PhET Simulation* untuk Meningkatkan Kemampuan Berpikir Kritis Siswa Pada Pokok Bahasan Teori Kinetik Gas" menunjukkan bahwa siklus I diperoleh rata-rata kemampuan berpikir kritis siswa 78% dan nilai rata-rata tes 71. Siklus II diperoleh rata-rata kemampuan berpikir kritis siswa 84% dan nilai rata-rata tes 80. Artinya

pembelajaran inkuiri terbimbing berbantu *PhET* simulation dapat meningkatkan kemampuan berpikir kritis siswa.

penelitian ini dengan penelitian Persamaan tersebut yaitu sama-sama menggunakan pembelajaran inkuiri terbimbing berbantuan PhET simulation. variabel terikatnya menggunakan kemampuan berpikir kritis siswa. Perbedaan penelitian ini dengan penelitian tersebut yaitu dalam penelitian ini ditambah dengan satu variabel lagi yaitu pemahaman konsep, materi yang digunakan berbeda, lokasi penelitian berbeda, serta metode penelitian juga herheda dimana dalam penelitian tersebut menggunakan metode PTK (penelitian tindakan kelas) sedangkan dalam penelitian ini menggunakan metode eksperimen.

4) Agustina, Sahidu & Gunada (2020) dengan judul "Pengaruh Model Pembelajaran Inkuiri Terbimbing Berbantuan Media PhET Terhadap Kemampuan Pemecahan Masalah dan Berpikir Kritis Fisika Peserta Didik SMA" menyatakan bahwa terdapat pengaruh perlakuan model inkuiri terbimbing berbantuan media PhET terhadap kemampuan pemecahan masalah fisika dan berpikir kritis siswa SMA. Hal ini dapat dilihat dari


uji manova dengan taraf signifikansi 5% berbantuan IBM SPSS 23 dan hasil uji hipotesis menunjukkan signifikansi 0,028 maka Ha diterima karena sig. < 0,05.

Persamaan penelitian ini dengan penelitian tersebut yaitu sama-sama menggunakan model pembelajaran inkuiri berbantuan media PhET, dan satu variabel terikat yang sama yaitu berpikir kritis. Perbedaannya terletak dari materi, lokasi penelitian, desain penelitian, uji hipotesis, serta satu variabel terikat yang berbeda yaitu kemampuan pemecahan masalah, dalam penelitian ini menggunakan pemahaman konsep dan berpikir kritis.

C. Kerangka Berpikir

Kemampuan berpikir kritis siswa sangat penting menjamin keberhasilan pembelajaran. Selain dalam keterampilan berpikir kritis, pemahaman konsep juga perlu dalam pembelajaran karena akan berujung pada hasil belajar siswa. Hasil wawancara di SMA Negeri 1 Pegandon sebagian siswa kurang berperan aktif dalam pembelajaran, guru kesusahan dalam menyesuaikan gaya belajar siswa, serta penggunaan teknologi yang belum optimal digunakan. Pada proses pembelajaran guru sudah menerapkan model kooperatif learning dan tanya jawab sebagai upaya untuk mengasah daya pikir tetapi hal tersebut masih belum dapat berlangsung secara maksimal, proses belajar mengajar yang dilakukan oleh guru belum dapat menumbuhkan keterampilan berpikir kritis maupun pemahaman konsep siswa.

Berdasarkan permasalahan tersebut maka dibutuhkan model dan media agar pembelajaran dapat optimal. Penelitian ini menggunakan model inkuiri terbimbing berbantuan *PhET simulation*. Harapannya dapat membantu siswa dalam memahami konsep dan mampu meningkatkan kemampuan berpikir kritis dalam pembelajaran. Kerangka berpikir dapat lihat pada Gambar 2.6 berikut.

Gambar 2.6 Kerangka Berpikir

D. Hipotesis Penelitian

Hipotesis adalah jawaban sementara untuk pertanyaan penelitian. Berdasarkan latar belakang dan kajian teoritis yang diuraikan, hipotesis yang diajukan untuk menjawab rumusan masalah yaitu model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* efektif untuk meningkatkan kemampuan berpikir kritis dan pemahaman konsep siswa.

BAB III

METODE PENELITIAN

A. Jenis Penelitian

Jenis penelitian yang digunakan adalah eksperimen dengan menggunakan metode *quasi-experimental* atau eksperimen semu. Desain penelitian yang digunakan adalah *nonequivalent control group design* (Sugiono, 2013). Desain penelitian ditunjukkan pada tabel 3.1.

Tabel 3.1 Desain Penelitian

Kelompok	Pretest	Perlakuan	Posttest
Eksperimen	O_1	X	O_2
Kontrol	O_3	-	O_4

Keterangan:

O₁ = Hasil pretest kelompok eksperimen
 O₂ = Hasil posttest kelompok eksperimen
 O₃ = Hasil pretest kelompok kontrol
 O₄ = Hasil posttest kelompok kontrol
 X = Perlakuan kepada kelompok eksperimen

B. Tempat dan Waktu Penelitian

Penelitian ini dilakukan di SMA Negeri 1 Pegandon Kendal. Waktu penelitian 20 Februari – 17 Maret 2023 di kelas XI-1 dan XI-5.

C. Populasi dan Sampel Penelitian

Populasi adalah suatu kumpulan objek atau unit analisis yang diteliti, memiliki karakteristik tertentu, jelas, dan lengkap. Populasi dalam penelitian ini adalah siswa kelas XI SMA Negeri 1 Pegandon yang berjumlah sekitar 106 siswa yang terdiri dari 3 kelas yaitu kelas XI-1 berjumlah 36 siswa, XI-3 berjumlah 34 siswa, XI-5 berjumlah 36 siswa.

Sampel adalah sebagian dari populasi yang dipilih dengan cara tertentu yang mewakili beberapa karakteristik tertentu, jelas dan lengkap yang dianggap mewakili populasi (Supardi, 1993). Sampel dikatakan baik ketika memenuhi dua syarat yaitu representatif dan memadai. Suatu sampel dikatakan representatif jika karakteristik sampel yang berkaitan dengan tujuan penelitian sama atau mendekati karakteristik populasinya. Sampel dalam penelitian ini diambil menggunakan teknik *cluster random sampling* (Sugiono, 2013).

D. Definisi Operasional Variabel

Definisi variabel dapat dipahami sebagai variasi dari sesuatu yang menjadi gejala penelitian. Gejala penelitian dimaksudkan adalah sesuatu yang menjadi tujuan penelitian. Ringkasnya variabel adalah sasaran-sasaran penelitian yang mempunyai variasi nilai. Variabel memiliki 2 jenis yaitu variabel bebas dan variabel terikat. Variabel

bebas (*independent*) adalah variabel yang berperan memberi pengaruh kepada variabel lain. Variabel terikat (*dependent*) adalah variabel yang dijadikan sebagai faktor yang dipengaruhi oleh sebuah atau sejumlah variabel lain (Nasution, 2017). Dalam penelitian ini terdapat 2 variabel penelitian yaitu:

Variabel bebas (independen) :Model pembelajaran

inkuiri terbimbing

berbantuan PhET

simulation.

Variabel terikat (dependen) :Kemampuan berpikir

kritis dan pemahaman

konsep.

E. Teknik dan Instrumen Pengumpulan Data

Teknik pengumpulan data adalah metode yang digunakan untuk mengumpulkan data guna mencapai tujuan penelitian. Teknik pengumpulan data yang digunakan dalam penelitian ini adalah sebagai berikut:

1. Observasi

Observasi adalah cara atau metode pengumpulan informasi yang dilakukan dengan cara mengamati dan mencatat secara sistematis fenomena-fenomena yang menjadi sasaran pengamatan (Mania, 2008). Observasi

penelitian ini dimaksudkan untuk mengamati secara langsung proses pembelajaran yang dilakukan, termasuk sistem dan metode pembelajaran yang digunakan berkaitan dengan kemampuan kognitif siswa pada saat penelitian berlangsung.

2. Metode Tes

Tes merupakan salah satu bentuk alat penilaian untuk mengukur ketercapaian tujuan pendidikan. Tes ini digunakan untuk mengumpulkan data pemahaman konsep dan kemampuan berpikir kritis siswa. Tes yang baik harus memenuhi beberapa syarat yaitu efektif, normatif, objektif, valid dan reliabel (Kadir, 2015). Tes yang digunakan dalam penelitian ini adalah:

- a. Pretest dilakukan untuk mengetahui kemampuan awal siswa pada kemampuan berpikir kritis dan pemahaman konsep.
- b. *Posttest* untuk menilai kemampuan kognitif siswa setelah menggunakan model inkuiri terbimbing berbantuan *PhET simulation* pada kelas eksperimen dan model *discovery learning* pada kelas kontrol. Hasil tes ini digunakan sebagai nilai *posttest*. Soal yang diberikan adalah soal yang sama pada saat dilaksanakannya *pretest*.

3. Dokumentasi

Dokumentasi dalam penelitian ini untuk memastikan bahwa proses berjalan seefisien mungkin. Tujuan dokumentasi adalah untuk memberikan bukti proses kerja yang dilakukan saat penelitian di kelas XI SMA Negeri 1 Pegandon.

F. Teknik Analisis Data

Teknik analisis data diuji normalitas dan homogenitas sebagai prayarat, kemudian dilakukan pengujian hipotesis menggunakan statistik parametrik dengan uji-t untuk menunjukkan bahwa model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* efektif untuk meningkatkan kemampuan berpikir kritis dan pemahaman konsep siswa.

1. Analisis Pendahuluan

Analisis data tahap awal digunakan untuk menentukan keadaan awal populasi yang selanjutnya akan digunakan untuk menentukan sampel. Analisis tahap awal yang dilakukan meliputi uji normalitas dan uji homogenitas.

a. Uji normalitas

Uji normalitas digunakan untuk mengetahui data penelitian terdistribusi normal atau tidak. Rumus yang digunakan adalah chi kuadrat χ^2 (Nugraheni, 2006)

$$\chi^2 = \sum_{(=)}^k \frac{(f_o - f_h)^2}{f_h}$$

Keterangan:

 f_o = Frekuensi yang diobservasi

 f_h = Frekuensi yang diharapkan

k = Banyaknya kelas interval

Jika $\chi^2_{\text{hitung}} < \chi^2_{\text{tabel}}$, maka populasi berdistribusi normal, dengan taraf signifikansi 5% dan dk = k-1.

b. Uji Homogenitas

Uji homogenitas digunakan untuk mengetahui apakah varian sampel yang diteliti seragam atau tidak dari populasi yang sama. Sebelum mengambil sampel, harus dipastikan populasinya normal dan homogen. Uji ini dilakukan dengan menggunakan uji Bartlett karena terdapat lebih dari dua kelompok dalam populasi. Langkah-langkah uji bartlett sebagai berikut (Sianturi, 2022).

1. Rumusan Hipotesis

$$H_0 = \sigma_1^2 = \sigma_2^2 = \sigma_3^2$$

H_a = Tidak semua varians sama

- 2. Tetapkan tingkat signifikansi
- 3. Tetapkan uji statistik
 - a. Tentukan varians masing-masing kelompok yaitu S_1^2 , S_2^2 , ..., S_k^2 dengan

$$S_i^2 = \frac{\sum x^2 - \frac{(\sum x)^2}{n}}{(n-1)}$$

- b. Tentukan tabel perhitungan uji bartlett
- c. Tentukan varians gabungan

$$S^{2} = \frac{\sum (n_{i} - 1) Si^{2}}{\sum (n_{i} - 1)}$$

d. Menghitung harga satuan Bartlett:

$$B = (\text{Log } S^2) \sum (n_i - 1)$$

e. Menghitung harga Chi Kuadrat (χ^2)

$$\chi^2 = \text{Ln}10\{\text{B-}\sum (n_i - 1)\log S_i^2\}$$

4. Kriteria pengujian

 H_0 diterima jika $\chi^2_{\text{hitung}} < \chi^2_{\text{tabel}}$, dan sebaliknya ditolak.

2. Analisis Uji Coba Instrumen Tes

Tes yang diberikan kepada siswa berupa soal esai pada materi laju reaksi. Tes berupa *pretest* dan *posttest*. Penyusunan instrumen tes esai diawali dengan membuat kisi-kisi tes yang mencangkup aspek kemampuan berpikir kritis dan pemahaman konsep, indikator soal serta banyaknya butir tes. Setelah itu

dilanjutkan dengan menyusun tes beserta kunci jawaban untuk masing-masing butir soal.

Sebelum instrumen digunakan, harus dilakukan pengujian untuk mengetahui kelayakan instrumen tersebut. Uji kelayakan instrumen dilakukan dengan cara berikut:

a. Uji Validitas

Suatu instrumen dikatakan valid ketika menunjukkan bahwa instrumen tersebut dapat mengukur apa yang seharusnya diukur. Rumus product moment dapat digunakan untuk menguji kevalidan soal esai.

$$r_{xy} = \frac{N \sum xy - \sum x \sum y}{\sqrt{(N \sum x^2 - (\sum x)^2)(N \sum y^2 - (\sum y)^2)}}$$

Keterangan:

 r_{xy} = Koefisien korelasi butir soal dengan skor total

N = Jumlah responden

 Σ_x = Jumlah skor butir soal

 Σ_v = Jumlah skor total soal

 Σ_{x^2} = Jumlah skor kuadrat butir soal

 Σ_{v^2} = Jumlah skor total kuadrat butir soal

Nilai r_{hitung} dicocokan dengan r_{tabel} product moment pada taraf signifikan 5%. Jika $r_{hitung} > r_{tabel}$ maka butir soal tersebut valid (Dewi, 2018).

b. Uji Reliabilitas

Reliabilitas menggambarkan keyakinan, kehandalan, daya tahan, stabilitas dan konsistensi instrumen. Untuk instrumen dengan lebih dari benar. reliabilitas iawaban satu menggunakan uji Alfa Cronbach (Adamson dan Prion, 2013). Instrumen tersebut seperti kuesioner, angket atau esai (Yusup, 2018).

$$r_i = \frac{k}{(k-1)} \left\{ 1 - \frac{\sum s_i^2}{s_t^2} \right\}$$

Keterangan:

= koefisien reliabilitas Alfa Cronbach

= jumlah item soal dalam instrumen

 $\sum s_i^2$ = jumlah varians skor tiap item

 s_t^2 = varians total

Tabel 3.2 Kriteria Reliabel

Koefisien reliabilitas (r ₁₁)	Kriteria
$0.80 < r_i \le 1.00$	Sangat tinggi
$0.60 < r_i \le 0.80$	Tinggi
$0.40 < r_i \le 0.60$	Cukup
$0.20 < r_i \le 0.40$	Rendah
$0.00 < r_i \le 0.20$	Sangat rendah
	(Yusun, 2018)

(rusup, 2018)

c. Uji Tingkat Kesukaran

Tingkat kesukaran menunjukkan seberapa mudah atau sulit soal tersebut bagi siswa, ditunjukkan dengan indeks kesukaran. Semakin besar indeks, semakin mudah butir soal tersebut karena sebagian besar siswa dapat menjawabnya dengan benar.Instrumen soal yang baik adalah soal yang tidak terlalu mudah dan terlalu sukar. Rumus yang digunakan untuk menentukan tingkat kesukaran dari tiap butir soal yaitu:

$$I = \frac{B}{I}$$

Keterangan:

= Tingkat kesukaran

B = Banyaknya peserta tes yang menjawab benar

= Jumlah peserta tes

Kriteria berikut digunakan ini untuk menginterpretasikan tingkat kesukaran butir tes (Magdalena, et al., 2021).

Tabel 3.3 Interpretasi Tingkat Kesukaran Butir Tes

Interval	Interprestasi
0,00 - 0,30	Soal Sukar
0,31 - 0,70	Soal Sedang
0,71 - 1,00	Soal Mudah
	(Sudiiono, 2011)

(Suaijono, 2011)

d. Daya Beda Soal

Daya pembeda butir soal mempunyai keunggulan untuk meningkatkan kualitas setiap butir dengan menggunakan data empirik dan mengetahui sejauh mana setiap butir dapat membedakan kemampuan siswa, yaitu siswa yang paham atau tidak paham dengan materi yang diajarkan oleh guru. Rumus berikut digunakan untuk menghitung daya beda soal.

$$D = P_A - P_B$$

Dimana,
$$P_A = \frac{BA}{JA}$$
 dan $P_A = \frac{BB}{JB}$

Keterangan:

D =Indeks diskriminasi item soal

 P_A =Proporsi kelompok teratas yang dapat menjawab soal dengan benar

 P_B =Proporsi kelompok terbawah yang dapat menjawab dengan benar soal yang diajukan

 B_A =Jumlah kelompok teratas yang dapat menjawab soal dengan benar

 B_B =Jumlah kelompok terbawah yang dapat menjawab soal dengan benar

 J_A =Jumlah kelompok teratas

 J_B = Jumlah kelompok terbawah.

Berdasarkan hasil perhitungan daya beda, dapat diklasifikasikan berdasarkan Tabel 3.4 di bawah ini (Magdalena, et al., 2021).

Tabel 3.4 Interpretasi Indeks Daya Beda Butir

<u>-</u>	_	
Daya Beda	Intrepretasi	
0,70 - 1,00	Baik Sekali	
0,40 - 0,69	Baik	
0,20 - 0,39	Cukup	
0,00 – 0,19	Kurang Baik	
Bertanda Negatif	Bertanda Negatif Jelek Sekali	
	(1 1) 0010)	

(Arikunto, 2013)

3. Analisis Data Akhir

a. Perhitungan nilai pretest dan posttest

Teknik penskoran nilai *pretest* dan *posttest* kemampuan berpikir kritis dan pemahaman konsep siswa menggunakan rumus sebagai berikut:

$$S = \frac{R}{N} \times 100$$

Keterangan:

S = Nilai yang dicari

R = Jumlah skor yang dijawab benar

N = Jumlah skor maksimum dari tes

Kriteria berpikir kritis siswa menurut Karim (2015) disajikan pada Tabel 3.5, selanjutnya kriteria pemahaman konsep siswa menurut Arikunto (2013) disajikan pada Tabel 3.6.

Tabel 3.5 Kriteria Berpikir Kritis

3	
Skala perolehan kategori	Kriteria
81,25 < x ≤ 100	Sangat Tinggi
$71,50 < x \le 81,25$	Tinggi
$62,50 < x \le 71,50$	Sedang
$43,75 < x \le 62,50$	Rendah
$0 < x \le 43,75$	Sangat Rendah
	(Karim, 2015)

Tabel 3.6 Kriteria Pemahaman Konsep

Skala perolehan kategori	Kriteria
81-100	Sangat Tinggi
61-80,99	Tinggi
41-60,99	Sedang
21-40,99	Rendah
0-20,99	Sangat Rendah
	(Arikunto, 2013)

b. Uji N-gain

Uji N-gain digunakan untuk mengetahui seberapa besar peningkatan kemampuan berpikir kritis dan pemahaman konsep setelah diberi perlakuan. Adapun rumus yang digunakan adalah:

$$N-gain = \frac{skor\ posttest - skor\ pretest}{skor\ ideal - skor\ pretest}$$

Kriteria N-gain dapat dituliskan dengan tingkat pencapaian pada Tabel 3.7.

Tabel 3.7 Kriteria N-gain

N-gain	Kriteria
N-gain ≤ 0,3	Rendah
$0.7 \ge \text{N-gain} > 0.3$	Sedang
N-gain > 0,7	Tinggi
	(Hake, 2002)

c. Uji Hipotesis

Hipotesis yang diuji dalam penelitian ini adalah:

Hipotesis 1

$$H_{01} = \mu_1 \le \mu_2$$

Model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* tidak efektif untuk meningkatkan kemampuan berpikir kritis siswa.

$$H_{a1} = \mu_1 > \mu_2$$

Model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* efektif untuk meningkatkan kemampuan berpikir kritis siswa.

Hipotesis 2

$$H_{02} = \mu_1 \le \mu_2$$

Model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* tidak efektif untuk meningkatkan pemahaman konsep siswa.

$$H_{a2} = \mu_1 > \mu_2$$

Model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* efektif untuk meningkatkan pemahaman konsep siswa.

Hipotesis yang diajukan kemudian dengan menggunakan analisis Uji-t. Jika varian sampel homogen, rumus uji-t yang digunakan:

$$t = \frac{x1 - \bar{x}2}{\sqrt{\frac{(n_1 - 1) S1^2 + (n_1 - 1) S2^2}{n_1 + n_2 - 2}} (\frac{1}{n_1} - \frac{1}{n_2})}$$

Jika kedua sampel memiliki variansi yang tidak homogen, rumus yang digunakan:

$$t = \frac{xI - \bar{x}2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

Keterangan:

 $x_{\rm I}~:$ skor rata-rata dari kelompok eksperimen

 \bar{x}_2 : skor rata-rata dari kelompok kontrol

n₁: jumlah subjek dalam kelompok eksperimen

n2 : jumlah subjek dalam kelompok kontrol

S₁²: variansi kelompok eksperimen

S₂²: variansi kelompok kontrol

Kriteria pengujian hipotesis adalah jika t_{hitung} < t_{tabel} , maka H_o diterima dan H_a ditolak. Jika t_{hitung} > t_{tabel} , maka H_o ditolak dan H_a diterima (Sugiono, 2013).

BAR IV

HASIL PENELITIAN DAN PEMBAHASAN

A. Deskripsi Hasil Penelitian

Tujuan penelitian ini adalah mengetahui keefektifan model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* untuk meningkatkan kemampuan berpikir kritis dan pemahaman konsep siswa. Populasi penelitian ini siswa kelas XI SMA Negeri 1 Pegandon sebanyak 106 siswa. Pemilihan sampel penelitian menggunakan teknik *cluster random sampling* sehingga terpilih kelas XI-1 sebagai kelas eksperimen dan kelas XI-5 sebagai kelas kontrol.

Pada tahap awal penelitian terdapat analisis pendahuluan yang berfungsi menentukan keadaan awal populasi yang nantinya untuk menentukan sampel. Tahapan ini meliputi uji normalitas dan uji homogenitas berdasarkan nilai ulangan harian siswa. Tahap kedua adalah uji instrumen tes berupa soal esai untuk mengukur kemampuan berpikir kritis dan pemahaman konsep siswa.

Pengambilan data diperoleh dengan cara *pretest* terlebih dahulu sebelum diberi perlakuan untuk mengetahui sejauh mana pengetahuan awal siswa. Perlakuan yang diberikan yaitu menerapkan model inkuiri terbimbing berbantaun *PhET simulation* untuk kelas

eksperimen dan penerapan model *discovery learning* untuk kelas kontrol. Pada akhir pertemuan diberikan *posttest* untuk kelas eksperimen dan kontrol. Hasil analisis disajikan dalam urajan data berikut.

1. Analisis Pendahuluan

Analisis pendahuluan bertujuan untuk mengetahui keadaan awal populasi yang digunakan dalam penentuan sampel. Analisis pendahuluan yang dilakukan meliputi uji normalitas dan uji homogenitas.

a. Uji Normalitas Populasi

Data populasi harus dipastikan terdistribusi normal sebelum pengambilan sampel secara cluster random sampling. Berdasarkan hasil perhitungan uji normalitas populasi yang disajikan pada Lampiran 2 diperoleh hasil sebagaimana pada Tabel 4.1.

Tabel 4.1 Hasil Uji Normalitas Populasi

Kelas	χ^2 hitung	χ^2 tabel	Kesimpulan
XI-1	7,38	11,07	Normal
XI-3	9,25	11,07	Normal
XI-5	7,57	11,07	Normal

Pada taraf signifikansi 5 % dan dk = 5 diperoleh χ^2 tabel = 11,07. Ketiga kelas tersebut menghasilkan nilai χ^2 _{hitung} < χ^2 _{tabel}. Maka dapat disimpulkan bahwa populasi terdistribusi normal.

b. Uji Homogenitas Populasi

Selain terdistribusi normal, populasi juga harus dipastikan homogen sebelum dilakukan pengambilan sampel. Analisis homogenitas menggunakan uji Bartlett dengan ketentuan Ho diterima jika $\chi^2_{\text{hitung}} < \chi^2_{\text{tabel}}$, maka populasi memiliki kriteria homogen. Berdasarkan perhitungan pada Lampiran 3 diperoleh hasil χ^2_{hitung} = 1,88 pada taraf signifikansi 5% dk = 2 dan diperoleh χ^2_{tabel} = 5,99. Hasil ini menunjukkan bahwa χ^2_{hitung} < χ^2_{tabel} , sehingga populasi dinyatakan homogen.

Hasil analisis normalitas dan homogenitas di atas menghasilkan data yang normal dan homogen, sehingga memenuhi syarat penarikan sampel secara *cluster random sampling*. Sampel yang digunakan dalam penelitian ini adalah kelas XI-1 sebagai kelas eksperimen dan XI-5 sebagai kelas kontrol.

2. Analisis Uji Coba Instrumen Tes

Sebelum instrumen tes digunakan, terlebih dahulu harus dilakukan pengujian untuk mengetahui kelayakan instrumen tersebut.

a. Uji Validitas

Uji validitas digunakan untuk mengetahui apakah soal yang digunakan valid atau tidak. Uji validitas soal dilakukan dengan menguji 12 soal esai. Uji coba soal dilakukan kepada siswa kelas XII MIPA 4 yang berjumlah 20 siswa, dengan taraf signifikansi 5% maka diperoleh $r_{tabel} = 0,05$. Butir soal dinyatakan valid jika $r_{hitung} > r_{tabel}$. Berdasarkan hasil perhitungan validitas Lampiran 4 dapat dilihat sebagai berikut:

Tabel 4.2 Hasil Validasi Soal

Kriteria	Nomor Soal	Jumlah
Valid	3,4,5,6,7,8,9,10,11,12	10
Tidak Valid	1,2	2

Berdasarkan Tabel 4.2 dapat disimpulkan bahwa dari 12 soal yang diujikan, terdapat 10 soal valid dan 2 soal tidak valid sehingga tidak dapat digunakan.

b. Uji Reliabilitas

Suatu soal dapat dikatakan reliabel apabila soal tersebut dicoba kembali maka diperoleh hasil yang sama. Untuk instrumen lebih dari satu jawaban benar, reliabilitas dinilai menggunakan uji Alfa Cronbach (Adamson dan Prion, 2013). Berdasarkan hasil analisis uji reliabilitas yang telah

dilakukan pada Lampiran 5 diperoleh hasil perhitungan r_i = 0,62 maka butir soal dinyatakan reliabel dengan kriteria tinggi.

c. Uji Tingkat Kesukaran Soal

Soal yang baik adalah soal yang telah dipersiapkan dengan memperhatiakan tingkat kesulitan mudah, sedang, dan sukar. Dari 10 soal valid yang diujikan, semua soal disusun berdasarkan jumlah soal mudah, sedang, dan sukar seperti terlihat pada Tabel 4.3.

Tabel 4.3 Hasil Tingkat Kesukaran Soal

NO	Kriteria	Nomor Soal	Jumlah
1	Sukar	12,10	2
2	Sedang	1,2,3,5,6,7,9,11	8
3	Mudah	4,8	2

d. Uji Daya Beda

Uji daya beda soal ditunjukkan untuk mengetahui kemampuan siswa, artinya sebagian besar siswa mampu menyelesaikan soal-soal sederhana, sedangkan soal yang sulit hanya dapat diselesaikan oleh beberapa siswa yang memang menguasai materi yang diberikan. Berdasarkan perhitungan daya beda soal pada Lampiran 7 diperoleh hasil pada Tabel 4.4.

Tabel 4. 4 Hasil Daya Beda

NO	Kategori	Jumlah
1	Jelek Sekali	1
2	Kurang Baik	1
3	Cukup	1
4	Baik	4
5	Baik Sekali	5

Soal-soal yang digunakan untuk *pretest* dan *posttest* memiliki kriteria valid, reliabel, memiliki rentang kesukaran dari mudah ke sukar dan memiliki daya beda soal dari cukup ke baik. Berdasarkan hasil uji coba tes yang dilakukan, dapat disimpulkan bahwa terdapat 10 soal esai yang cukup memadai dan memenuhi kriteria untuk dijadikan soal *pretest* dan *posttest*.

3. Analisis Data Akhir

a. Perolehan hasil *pretest* dan *posttest*

Data perolehan hasil *pretest* dan *posttest* kemampuan berpikir kritis dan pemahaman konsep dimaksudkan untuk menggambarkan data yang diperoleh. Hasil data kemampuan berpikir kritis dapat dilihat pada Tabel 4.5. Berdasarkan Tabel 4.5 nilai maksimal yang diperoleh kelas eksperimen ketika *pretest* lebih tinggi dibanding kelas kontrol, namun untuk nilai maksimal ketika

posttest kelas kontrol lebih tinggi dibanding kelas eksperimen. Nilai minimal yang diperoleh kelas eksperimen ketika pretest dan posttest lebih tinggi dibanding dengan kelas kontrol. Maka dari data di atas nilai rata-rata hasil pretest dan posttest berpikir kritis kelas eksperimen lebih tinggi dibanding kelas kontrol.

Tabel 4.5 Data Hasil Pretest dan Posttest

Data	Eksperimen		Kontrol		
Statistika	Pretest	Posttest	Pretest	Posttest	
Rata-rata	27,54	77,24	27,51	70,44	
Nilai maksimal	38,10	88,10	36,90	91,67	
Nilai minimal	21,43	52,38	16,67	22,62	

Adapun rata-rata nilai kemampuan berpikir kritis setiap indikator dapat dilihat pada Tabel 4.6.

Tabel 4.6 Hasil Analisis Indikator Berpikir Kritis

Indikator	Eksperimen		Kon	itrol
Berpikir kritis	Pretest Posttest		Pretest	Posttest
Interpretasi	1,04	90,28	1,04	63,88
Analisis	35,07	86,29	31,25	75,17
Evaluasi	3,47	80,79	5,32	62,26
Inferensi	53,70	81,37	57,52	82,17
Eksplanasi	15,04	63,19	13,42	61,92

Berdasarkan Tabel 4.6 menunjukkan bahwa nilai rata-rata setiap indikator berpikir kritis kelas

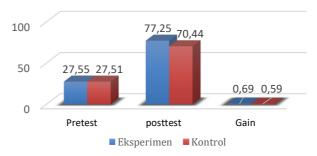
eksperimen lebih tinggi dibanding dengan kelas kontrol. Terdapat indikator satu yang menunjukkan bahwa nilai rata-rata kelas kontrol lebih tinggi dibanding kelas eksperimen yaitu indikator inferensi dengan sub skill dapat menarik kesimpulan dari apa yang ditanyakan secara logis. Hal ini karena dalam sintaks discovery learning vang digunakan kelas kontrol terdapat tahap generalisasi yaitu menarik kesimpulan. pembelajaran Penguasaan perlu ditekankan setelah siswa menarik kesimpulan sehingga kemampuan siswa kelas kontrol dengan indikator inferensi lebih baik dibanding kelas eksperimen. Hasil perhitungan data pemahaman konsep pada Lampiran 12 diperoleh hasil seperti pada Tabel 4.7

Tabel 4.7 Data Hasil Pretest dan Posttest.

Data	Ekspe	rimen	Kontrol		
Statistika	Pretest	Posttest	Pretest	Posttest	
Rata-rata	30,52	79,99	27,79	69,95	
Nilai maksimal	38,63	92,05	35,22	89,77	
Nilai minimal	23,86	45,45	14,77	28,40	

Berdasarkan Tabel 4.7 menunjukkan bahwa nilai maksimal dan nilai minimal yang diperoleh kelas eksperimen ketika *pretest* dan *posttest* lebih tinggi dibanding dengan kelas kontrol. Maka dari data di atas nilai rata-rata hasil *pretest* dan *posttest* pemahaman konsep kelas eksperimen lebih tinggi dibanding kelas kontrol.

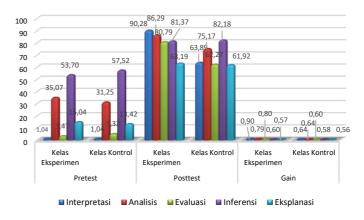
Nilai pemahaman konsep berdasarkan setiap indikator dapat dilihat pada Tabel 4.8.


Tabel 4.8 Hasil Analisis Indikator Pemahaman Konsep

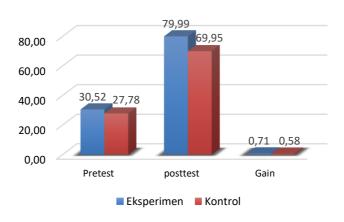
Indikator	Ekspe	rimen	Kor	itrol
pemahaman konsep	Pretest	Posttest	Pretest	Posttest
Menyatakan	33,79	83,21	32,98	76,15
ulang konsep				
Mengklasifikasi	30,55	73,95	28,12	78,47
kan objek				
Menerapkan	25,00	72,45	23,84	59,02
konsep				
algoritma				
Memberikan	57,63	70,13	38,88	65,97
contoh dari				
konsep				
Menyajikan	34,37	83,33	35,06	64,23
konsep bentuk				
representasi				
Mengaitkan	28,58	84,95	21,29	72,45
berbagai				
konsep	00=1		=	
Mengembangk	29,51	80,20	23,95	61,80
an syarat perlu				
dan cukup				

Berdasarkan Tabel 4.8 menunjukkan bahwa nilai rata-rata setiap indikator pemahaman konsep kelas eksperimen lebih tinggi dibanding dengan kelas kontrol. Terdapat satu indikator yang menunjukkan bahwa nilai rata-rata kelas kontrol lebih tinggi dibanding kelas eksperimen yaitu mengklasifikasikan objek menurut sifat-sifat tertentu sesuai dengan konsepnya. Hal ini dikarenakan model discovery learning merupakan model pembelajaran yang mengembangkan cara belajar siswa dengan menemukan sendiri dan menyelidiki sendiri maka hasil yang diperoleh akan tahan lama dalam ingatan.

b. Uji N-Gain

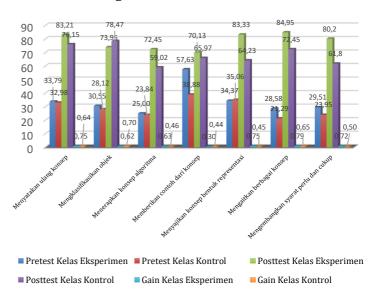

Uji N-gain dilakukan untuk mengetahui peningkatan kemampuan berpikir kritis dan pemahaman konsep siswa yang telah diberikan perlakuan. Data yang digunakan adalah nilai pretest dan posttest. Data disajikan dalam Gambar 4.1 sebagai berikut.

Gambar 4. 1 Grafik N-gain Berpikir Kritis 64


Berdasarkan Gambar 4.1 grafik N-gain berpikir kritis, nilai rata-rata pretest kelas eksperimen sebesar 27,55 dan *posttest* sebesar 77,25 sehingga N-gain vang diperoleh sebesar 0,69. Kelas kontrol untuk nilai rata-rata *pretest* memperoleh 27,51 dan posttest sebesar 70,44 maka perolehan N-gain sebesar 0,59. Peningkatan kemampuan berpikir kritis antara kelas eksperimen dengan kelas menunjukkan bahwa kontrol siswa yang model menggunakan inkuiri terbimbing berbantuan PhET simulation rata-rata nilai N-Gain lebih baik dibandingkan dengan kelas kontrol.

Rata-rata nilai kemampuan berpikir kritis siswa berdasarkan hasil *pretest* dan *posttest* setiap indikator dapat dilihat pada Gambar 4.2.

Gambar 4.2 Grafik N-Gain indikator berpikir kritis


Grafik N-gain setiap indikator berpikir kritis menunjukkan tersebut bahwa terdapat peningkatan kemampuan berpikir kritis siswa. Nilai N-gain setiap indikator menunjukkan bahwa kelas eksperimen lebih tinggi dibanding kelas kontrol. Maka kelas eksperimen yang menggunakan model inkuiri terbimbing berbantuan *PhET simulation* memiliki peningkatan berpikir kritis lebih baik dibanding kelas kontrol. Uji N-Gain pemahaman konsep dapat dilihat pada Gambar 4.3.

Gambar 4.3 Grafik N-Gain Pemahaman Konsep

Peningkatan pemahaman konsep antara kelas eksperimen dengan kelas kontrol yang disajikan pada Gambar 4.3 menunjukkan bahwa kelas eksperimen rata-rata nilai N-gain lebih baik dibandingkan dengan kelas kontrol. Hal ini dapat dilihat dari kelas eksperimen yang memperoleh nilai *pretest* sebesar 30,52 dan *posttest* sebesar 79,99 maka diperoleh N-gain sebesar 0,71. Kelas kontrol memperoleh nilai *pretest* sebesar 27,78 dan *posttest* sebesar 69,95 maka N-gain yang diperoleh sebesar 0,58.

Rata-rata skor pemahaman konsep siswa berdasarkan hasil *pretest* dan *posttest* setiap indikator sebagai berikut.

Gambar 4.4 Grafik N-Gain indikator pemahaman Konsep

Grafik N-gain indikator pemahaman konsep tersebut menunjukkan bahwa terdapat peningkatan pemahaman konsep siswa. Nilai N-gain setiap indikator menunjukkan bahwa kelas eksperimen lebih tinggi dibanding kelas kontrol. Maka kelas eksperimen yang menggunakan model inkuiri terbimbing berbantuan *PhET simulation* memiliki peningkatan pemahaman konsep lebih baik dibanding kelas kontrol.

B. Hasil Uji Hipotesis

Uji hipotesis dalam penelitian ini menggunakan uji-t. Uji-t dipakai untuk menjawab rumusan masalah "Apakah model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* efektif untuk meningkatkan kemampuan berpikir kritis siswa" dan rumusan masalah kedua "Apakah model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* efektif untuk meningkatkan pemahaman konsep siswa". Berdasarkan perhitungan uji-t pada Lampiran 28 dan 29 hasilnya sebagai berikut.

Tabel 4.9 Hasil Analisis Uji-t Berpikir Kritis

	Hipotesis 1	
	Eksperimen	Kontrol
Jumlah (Σ)	2780,89	2535,71
Banyak subjek(N)	36	36
Skor rata-rata (\bar{X})	77,24	70,43
Standar deviasi (S)	11,31	14,41
Varians (S^2)	127,99	207,93
t_{tabel}		1,66
thitung		2,24

Berdasarkan uji-t pada hipotesis 1 menyebutkan bahwa $t_{\rm hitung} > t_{\rm tabel}$ dengan taraf signifikan 5% dan dk=70. Artinya Ho yang menyatakan "Model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* tidak efektif untuk meningkatkan kemampuan berpikir kritis siswa" ditolak. Jadi hipotesis penelitian yang menyatakan "Model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* efektif untuk meningkatkan kemampuan berpikir kritis siswa" diterima.

Tabel 4.10 Hasil Analisis Uji-t Pemahaman Konsep

	Hipotesis 2	
	Eksperimen	Kontrol
Jumlah (Σ)	2879,54	2517,75
Banyak subjek(N)	36	36
Skor rata-rata (\bar{X})	79,98	69,93
Standar deviasi (S)	12,50	15,32
Varians (S^2)	156,33	234,78
t_{tabel}		1,66
thitung		3,06

Berdasarkan uji-t pada hipotesis 2 menyebutkan bahwa t_{hitung} > t_{tabel} dengan taraf signifikan 5% dan dk=70. Artinya Ho yang menyatakan "Model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* tidak efektif untuk meningkatkan pemahaman konsep siswa" ditolak. Jadi hipotesis penelitian yang menyatakan "Model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* efektif untuk meningkatkan pemahaman konsep siswa" diterima.

C. Pembahasan

Berdasarkan hasil pengujian hipotesis yang telah diuraikan di atas dapat dikemukakan pembahasan sebagai berikut.

 Model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* efektif untuk meningkatkan kemampuan berpikir kritis siswa

Penelitian ini dilakukan di SMA Negeri 1 Pegandon Kendal, dengan sampel dua kelas yaitu XI-1 sebagai kelas eksperimen dan XI-5 sebagai kelas kontrol. Materi yang diajarkan yaitu laju reaksi dan dilakukan sebanyak enam kali pertemuan. Setiap pertemuan diberi durasi waktu 2 x 45 menit.

pada pertemuan pertama diberikan *pretest* guna mengetahui kemampuan awal siswa. Hasil rata-rata nilai kelas eksperimen adalah 27,54 dan pada kelas kontrol adalah 27,51. Pertemuan kedua dilakukan pembelajaran menggunakan model inkuiri terbimbing untuk kelas eksperimen dan model discovery learning untuk kelas kontrol. Proses pembelajaran berjalan dengan lancar. siswa sangat antusias dalam pembelajaran. Selama pembelajaran proses menggunakan inkuiri, siswa lebih aktif dalam merumuskan masalah, merumuskan hipotesis, mengambil data, menguji hipotesis, serta merumuskan kesimpulan.

Inkuiri terbimbing dapat mendukung proses berpikir kritis siswa. Inkuiri terbimbing merupakan aplikasi dari teori pembelajaran konstruktivisme yang didasarkan pada pemeriksaan dan penyelidikan secara ilmiah sehingga model ini cocok digunakan untuk pembelajaran IPA dimana siswa terlibat secara aktif dalam proses kegiatan pembelajaran (Fairuzabadi, Prihandono & Putra, 2017). Model inkuiri terbimbing memberikan siswa kesempatan bekerjasama secara kelompok. Model ini bisa meningkatkan kemampuan siswa dalam menemukan sendiri jawaban dari suatu masalah yang dipertanyakan, serta menjadikan siswa

mempunyai pengalaman belajar yang lebih baik seperti pada Gambar 4.5.

Diket
$$\cdot F_{2}[g] + 2(PO_{2}tg) \rightarrow 2FCPO_{2}[g]$$

Percobaan 1 $F_{2} = 0.1 \text{ M}$ $CPO_{2} \cdot 0.01$ $V = 1.2 \times 10^{-3} \text{ M/daik}$

Percobaan 2 $F_{3} \cdot 0.1 \text{ M}$ $CPO_{2} \cdot 0.01$ $V = 4.8 \times 10^{-3} \text{ M/daik}$

Percobaan 3 $F_{3} \cdot 0.2 \text{ M}$ $CPO_{2} \cdot 0.01$ $V \cdot 2.4 \times 10^{-3} \text{ M/daik}$

Dianya $\cdot 2$ Orde reaks ; P_{2}
 $\cdot 0$ Orde reaks ; P_{3}
 $\cdot 0$ Orde reaks ; P_{4}
 $\cdot 0$ $\text{ Note of the constants}$

Dijatush $\cdot 0$ $\text{ Orde } F_{2} \rightarrow 1 \text{ 2.5}$
 $\cdot 0$ $\text{ Note of the constants}$

Dijatush $\cdot 0$ $\text{ Orde } F_{2} \rightarrow 1 \text{ 2.5}$
 $\cdot 0$ $\text{ Note of the constants}$
 $\cdot 0$ $\text{ Note of the$

Gambar 4.5 Jawaban siswa materi orde reaksi

Berbeda halnya dengan kelas kontrol yang menggunakan model *discovery learning*. Siswa kurang antusias dalam pembelajaran karena model yang digunakan hanya berkelompok dan tidak menggunakan media pembelajaran yang bervariasi.

Hal ini menjadikan kemampuan berpikir kritis siswa tidak maksimal dan kurang berkembang.

Pertemuan ketiga, untuk kelas eksperimen dan kelas kontrol melakukan presentasi dari hasil diskusi kelompok yang sudah dilakukan pada pertemuan kedua. Materi yang dipresentasikan yaitu materi terkait orde reaksi yang ada di LKS. Semua kelompok mempersiapkan diri untuk presentasi, kelompok yang terpilih harus mempresentasikan dan menjelaskan terkait soal yang sudah dikerjakan sedangkan kelompok yang lain mendengarkan dan menanggapi jawaban ketika ada yang salah.

Pertemuan keempat, materi mengenai faktorfaktor yang mempengaruhi laju reaksi. Kelas eksperimen menggunakan media PhET simulation dalam menggerjakan soal yang ada di LKS. Siswa sangat antusias dalam proses pembelajaran, namun ketika kondisi pembelajaran kelas kurang kondusif dikarenakan siswa aktif bertanya sebab kurang mengerti menggunakan media tersebut. Hal itu dapat dengan cara memberikan pembelajaran diatasi terlebih dahulu bagaimana cara menggunakan media PhET simulaton sehingga siswa tidak kebingungan

ketika mengerjakan soal di LKS yang sudah disediakan seperti pada Gambar 4.6.

C. RUMUSAN MASALAH

- Semakin tinggi suhunya maka akan samakin apat
 Semakin tinggi konsentrasi maka akan samakin cepat

E. DATA PENGAMATAN

1. Pengaruh suhu terhadap laju reaksi

Sistem	Suhu	Jumlah satu saj			
		0	1	2	3
Α	Dingin	0	0	0	D
В	Sedang	0	2	3	2
С	Panas	0	9	2	2

Pengaruh konsentrasi terhadap laju reaksi

Sistem	Jumlah molekul		lah molel h satu sa pada me	ja AB	atau C
	reaktan	0	1	2	3
Α	2A + 2BC	0	1	1	0
В	4A + 4BC	0	2	- (1
C	6A + 6BC	0	202	3	3

F. ANALISIS DATA

- 1. Berdasarkan percobaan pengaruh suhu terhadap laju reaksi, pada sistem manakah yang proses pembentukan produknya paling cepat? Jelaskan alasan Anda! Jawab: sistem C. karena semakin tinggi suhunya
- maka laju reaksinya semakin cepat 2. Berdasarkan percobaan pengaruh suhu terhadap laju reaksi, pada sistem manakah yang proses
- pembentukan produknya paling lambat? Jelaskan alasan Anda! Jawab: Sistem A. Karena semakin rendah suhunya
- maka laju reaksinya semakin lambat 3. Berdasarkan percobaan pengaruh konsentrasi terhadap laju reaksi, pada sistem manakah yang proses pembentukan produknya paling cepat? Jelaskan alasan Anda!

Jawab: Sistem C. Karena semakin banyak reaktannya

- seemaka y laju reaksinya semakin Cepat 4. Berdasarkan percobaan pengaruh konsentrasi terhadap laju reaksi, pada sistem manakah yang proses pembentukan produknya paling lambat? Jelaskan alasan Anda!
 - Jawab: sistem A. Karena cematin sedikit jumlah reaktannya maka laju reaksinya semakin lambat

- 1. Semakin tinggi suhunya maka laju reaksinya lebih Cepat
- Semakin banyak jumlah reaktannya maka laju reaksinya amakin cepat

Gambar 4.6 Jawaban siswa menggunakan media PhET

Pertemuan kelima, untuk kelas eksperimen dan kelas kontrol melakukan presentasi dari hasil diskusi kelompok yang sudah dilakukan pada pertemuan keempat. Materi yang dipresentasikan yaitu materi terkait faktor-faktor yang mempengaruhi laju reaksi. kelompok mempersiapkan Semua diri untuk kelompok terpilih harus presentasi, yang mempresentasikan dan menjelaskan terkait soal yang sudah dikerjakan sedangkan kelompok yang lain mendengarkan dan menanggapi jawaban ketika ada yang salah.

Pertemuan keenam, kedua kelas diberikan posttest guna mengetahui kemampuan siswa ketika sudah diberi perlakuan. Hasil rata-rata nilai kelas eksperimen adalah 77,24 dan pada kelas kontrol adalah 70,44. Hal ini menunjukkan bahwa nilai rata-rata berpikir kritis kelas eksperimen lebih tinggi dibanding kelas kontrol.

Uji N-gain di setiap kelas mengalami peningkatan. Hasil rata-rata uji N-gain kemampuan berpikir kritis kelas eksperimen sebesar 0,69 dan kelas kontrol sebesar 0,59. Keduanya termasuk dalam kategori sedang, meskipun demikian skor kelas eksperimen lebih tinggi dibandingkan dengan kelas

kontrol. Agar dapat melihat seberapa besar pengaruh peningkatan kemampuan berpikir kritis terhadap pembelajaran, maka perlu untuk menganalisis setiap indikator berpikir kritis yang diajukan. Berikut merupakan hasil analisis indikator berpikir kritis menurut Facione (2015).

a. Indikator Interpretasi

Indikator interpretasi merupakan indikator yang menjelaskan tentang kemampuan siswa dalam menuliskan apa yang ditanyakan soal dengan jelas dan tepat. Nilai rata-rata pretest dan posttest pada kelas eksperimen yaitu 1,04 dan 90,28 sehingga mengalami peningkatan sebesar 89,24 dengan kategori berpikir kritis "sangat tinggi". Sedangkan hasil rata-rata nilai *pretest* dan *posttest* pada kelas sebesar 1.04 kontrol dan 63.88 sehingga mengalami peningkatan sebesar 62,84 dengan kategori "sedang". Tingginya nilai rata-rata yang diperoleh kelas eksperimen disebabkan karena model inkuiri dapat membuat siswa menemukan cara untuk menangani masalah yang ada di soal, mengumpulkan dan menyusun informasi yang diperlukan serta memahami dan menggunakan bahasa yang tepat dan jelas.

b. Indikator Analisis

Indikator Analisis merupakan indikator dengan sub *skill* dapat menuliskan apa yang harus dilakukan dalam menyelesaikan soal. Kelas eksperimen memperoleh nilai rata-rata *pretest* dan posttest sebesar 35.07 dan 86.29 sehingga mengalami peningkatan sebesar 51,22 dengan kategori "rendah". Sedangkan kelas kontrol mendapatkan rata-rata nilai pretest dan posttest sebesar 31,25 dan 75,17 sehingga mengalami peningkatan sebesar 43.92 dengan kategori "rendah". Perbedaan nilai rata-rata tersebut disebabkan karena siswa yang menggunakan model inkuiri memiliki kemampuan berpikir secara teratur sehingga dapat memikirkan tentang sebuah sumber dengan mempertimbangkan kualitas dari sumber yang didapat yang menyebabkan siswa mampu menuliskan apa yang harus dilakukan dalam menyelesaikan soal.

c. Indikator Evaluasi

Indikator evaluasi merupakan indikator dengan sub *skill* dapat menuliskan tentang penyelesaian soal. Nilai rata-rata *pretest* dan *posttest* yang diperoleh kelas eksperimen sebesar 3,47 dan 80,79

sehingga mengalami peningkatan sebesar 77,32 dengan kriteria "tinggi". Sedangkan untuk nilai rata-rata pretest dan posttest kelas kontrol memperoleh 5,32 dan 62,26 sehingga mengalami peningkatan sebesar 56,94 dengan "rendah". Tingginya nilai rata-rata yang diperoleh kelas eksperimen disebabkan karena siswa dapat menggali informasi dengan memahami kejadian yang berkaitan dengan apa yang sedang dialami dan menghubungkan dengan sumber yang di dapatkan dan mengantisipasi suatu informasi dengan menggunakan cara berpikir serta memaksimalkan pengamatan secara langsung kemudian memikirkan hasil pengamatan untuk dapat menyelesaikan soal.

d. Indikator Inferensi

Indikator inferensi merupakan indikator yang menjelaskan tentang kemampuan siswa dalam menarik kesimpulan dari apa yang ditanyakan soal dengan logis. Pada indikator inferensi nilai ratarata *pretest* dan *posttest* kelas eksperimen yaitu 53,70 dan 81,37 sehingga mengalami peningkatan sebesar 27,67 dengan kriteria "sangat rendah". Sedangkan nilai rata-rata *pretest* dan *posttest* pada

kelas kontrol yaitu 57,52 dan 82,17 sehingga mengalami peningkatan sebesar 24,65 dengan kriteria "sangat rendah". Rendahnya peningkatan nilai rata-rata yang diperoleh kedua kelas menunjukkan bahwa kelas tersebut sudah memiliki kemampuan baik dalam menarik kesimpulan.

e. Indikator Eksplanasi

Indikator eksplanasi merupakan indikator dengan sub *skill* dapat menulis hasil akhir dan memberikan alasan tentang kesimpulan yang diambil. Kelas eksperimen memperoleh nilai rata-rata *pretest* dan *posttest* sebesar 15,04 dan 63,19 sehingga mengalami peningkatan sebesar 48,15 dengan kriteria "rendah". Sedangkan kelas kontrol memperoleh nilai rata-rata *pretest* dan *posttest* sebesar 13,42 dan 61,92 sehingga mengalami peningkatan sebesar 48,5 dengan kriteria "rendah". Artinya indikator eksplanasi kelas eksperimen lebih tinggi dibandingkan kelas kontrol.

Kelima indikator berpikir kritis yang sudah dijelaskan, maka diperoleh bahwa model inkuiri terbimbing berbantuan *PhET simulation* berpengaruh terhadap peningkatan indikator interpretasi dan evaluasi.

Sejalan dengan penelitian Arif dan Asikhin (2022) yang mengungkapkan bahwa model pembelajaran inkuiri terbimbing efektif dalam meningkatkan kemampuan berpikir kritis siswa pada indikator interpretasi, karena siswa dapat memahami masalah yang diberikan dengan menulis yang mereka ketahui maupun yang ditanyakan pada soal dengan tepat. Begitu juga dengan Indikator evaluasi yang menunjukkan bahwa siswa mampu menentukan langkah-langkah yang tepat untuk memecahkan persoalan sehingga dapat menyelesaikan persoalan dan memberikan solusi dengan tepat dan benar.

Berdasarkan uji statistik dengan uji-t pada Tabel 10 terbukti bahwa model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* efektif untuk meningkatkan kemampuan berpikir kritis siswa. Terdapat perbedaan kemampuan berpikir kritis siswa pada kelas yang diajar menggunakan model inkuiri terbimbing berbantuan *PhET simulation* dengan kelas yang diajar menggunakan *discovery learning*. Hal ini dilihat dari nilai rata-rata hasil *posttest* siswa pada kelas eksperimen dari 36 siswa hanya 9 siswa yang tidak mencapai standar Kriteria Ketuntasan Minimum

(KKM) yaitu 75 sedangkan pada kelas kontrol dari 36 siswa ada 17 siswa yang nilainya di bawah KKM.

2. Model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* efektif untuk meningkatkan pemahaman konsep siswa

Sama halnya dengan kemampuan berpikir kritis siswa, untuk mengukur peningkatan pemahaman konsep dilakukan dengan cara *pretest* terlebih dahulu. Hasil rata-rata yang diperoleh kelas eksperimen adalah 30,52 dan pada kelas kontrol adalah 27,79. Kemudian untuk pertemuan selanjutnya langsung dilakukan pembelajaran model inkuiri terbimbing berbantuan *PhET simulation* untuk kelas eksperimen dan *discovery learning* untuk kelas kontrol.

Kedua kelas diberi *posttest* guna mengetahui kemampuan siswa setelah diberi perlakuan. Hasil ratarata nilai kelas eksperimen adalah 79,99 dan pada kelas kontrol adalah 69,95. Hal ini menunjukkan bahwa nilai rata-rata pemahaman konsep kelas eksperimen lebih tinggi dibanding kelas kontrol.

Uji N-gain di setiap kelas yang diberi perlakuan meningkat. Hasil rata-rata uji N-gain pemahaman konsep kelas eksperimen sebesar 0,71 dan kelas kontrol sebesar 0,58. Peningkatan pemahaman konsep kelas eksperimen termasuk dalam kategori tinggi dan kelas kontrol dalam kategori sedang. Agar dapat melihat seberapa besar pengaruh peningkatan pemahaman konsep siswa terhadap pembelajaran, maka perlu untuk menganalisis setiap indikator pemahaman konsep yang diajukan. Berikut merupakan hasil analisis indikator pemahaman konsep menurut Kilpatrick dan Findel (2001).

a. Menyatakan ulang konsep

Indikator menyatakan ulang konsep merupakan indikator yang mengukur kemampuan siswa dalam menyatakan ulang sebuah konsep bahasanya sendiri. Kelas eksperimen memperoleh nilai rata-rata pretest dan posttest sebesar 33,79 dan 83,21 sehingga mendapatkan peningkatan sebesar 49,42 dengan kriteria "sedang". Sedangkan kelas kontrol memperoleh nilai rata-rata pretest dan posttest sebesar 32,98 dan 76,15 sehingga mengalami peningkatan sebesar 43,17 dengan kategori "sedang". Perbedaan nilai rata-rata tersebut membuktikan bahwa kelas eksperimen lebih unggul dibanding kelas kontrol. Hal ini disebabkan karena siswa kelas kontrol belum bisa menjawab soal secara tepat, siswa dapat mengerjakan soal tetapi ada beberapa kekurangan dalam menyatakan ulang konsep yang dimilikinya.

b. Mengklasifikasikan objek

Indikator tersebut menuntut siswa agar dapat mengklasifikasikan atau menyebutkan sifat-sifat sesuai dengan konsepnya. Nilai rata-rata pretest dan posttest yang diperoleh kelas eksperimen sebesar 30,55 dan 73,97 sehingga mengalami peningkatan sebesar 43,42 dengan "sedang". Sedangkan kelas kontrol memperoleh nilai rata-rata pretest dan posttest sebesar 28,12 dan 78,47 dengan peningkatan sebesar 50,35 dengan kategori "cukup". Perbedaan nilai rata-rata tersebut menunjukkan bahwa kelas kontrol lebih baik dalam mengklasifikasikan objek dibanding kelas eksperimen. Hal ini disebabkan karena model yang digunakan kelas kontrol merupakan model pembelajaran yang mengembangkan cara belajar siswa dengan menemukan sendiri dan menyelidiki sendiri maka dalam ingatan siswa mengklasifikasikan objek lebih baik.

c. Menerapkan konsep algoritma

Indikator menerapkan konsep secara algoritma merupakan indikator yang mengukur kemampuan siswa dalam menyelesaikan masalah dengan memilih dan memanfaatkan prosedur yang ditetapkan. Nilai rata-rata pretest dan posttest yang diperoleh kelas eksperimen sebesar 25,00 dan 72,45 sehingga mendapatkan peningkatan sebesar 47,45 dengan kriteria "sedang". Sedangkan nilai rata-rata pretest dan posttest kelas kontrol memperoleh 23,84 dan 59,02 maka mengalami peningkatan sebesar 35,18 dengan kriteria "rendah". Perbedaan nilai rata-rata yang diperoleh kelas eksperimen disebabkan karena model inkuiri terbimbing lebih menekankan pada siswa untuk menyelidikan dan menemukan permasalahan yang ada disoal, sehingga selain siswa dituntut untuk memahami konsep siswa juga dapat memilih prosedur yang tepat untuk menjawab soal tersebut.

d. Memberikan contoh dari konsep

Indikator memberikan contoh dari konsep yang dipelajari adalah indikator yang mengukur kemampuan siswa dalam memberikan contoh pengaplikasian laju reaksi dalam kehidupan seharihari. Nilai rata-rata *pretest* dan *posttest* yang diperoleh kelas eksperimen pada indikator tersebut sebesar 57,63 dan 70,13 sehingga mengalami peningkatan sebesar 12,50 dengan kriteria "sangat rendah". Sedangkan kelas kontrol memperoleh nilai rata-rata *pretest* dan *posttest* sebesar 38,88 dan 65,97 sehingga mengalami peningkatan sebesar 27,09 dengan kriteria "rendah". Perbedaan nilai rata-rata tersebut disebabkan karena siswa kelas eksperimen dapat memberikan contoh pengaplikasian laju reaksi dengan tepat.

e. Menyajikan konsep bentuk representasi kimia Indikator menyajikan konsep dalam berbagai bentuk representasi kimia merupakan indikator vang mengukur kemampuan siswa dalam menyajikan konsep laju reaksi kedalam bentuk gambar, simbol, persamaan dan struktur molekul. Kelas eksperimen memperoleh nilai rata-rata pretest dan posttest sebesar 34,37 dan 83.33 sehingga mengalami peningkatan sebesar 48,96 dengan kriteria "sedang". Sedangkan kelas kontrol memperoleh nilai rata-rata pretest dan posttest sebesar 35,06 dan 64,23 dengan peningkatan

sebesar 29,17 kategori "rendah" . Perbedaan nilai rata-rata yang diperoleh kelas eksperimen tersebut disebabkan karena siswa melakukan percobaan secara langsung dan siswa sudah terbiasa mengidentifikasi apa yang diketahui dan apa yang ditanyakan pada permasalahan yang diberikan.

f. Mengaitkan berbagai konsep

Indikator mengaitkan berbagai konsep merupakan indikator yang mengukur kemampuan siswa dalam mengaplikasikan suatu konsep dalam pemecahan masalah berdasarkan langkah-langkah yang benar. Nilai rata-rata pretest dan posttest yang diperoleh kelas eksperimen sebesar 28,58 dan 84,95 sehingga mengalami peningkatan sebesar 56,37 kategori "sedang". Sedangkan kelas kontrol nilai rata-rata pretest dan posttest memperoleh 21,29 dan 72,45 dengan peningkatan sebesar 51,15 kategori "sedang". Perbedaan nilai rata-rata tersebut disebabkan karena model discovery learning lebih mudah untuk mengingat konsep, namun belum dapat mengaplikasikan konsep dalam pemecahan masalah yang ada di soal.

Mengembangkan syarat perlu dan cukup Indikator mengembangkan syarat perlu dan syarat cukup suatu konsep merupakan indikator yang kemampuan dalam mengukur siswa menyelesaikan masalah sesuai dengan prosedur berdasarkan syarat cukup yang telah diketahui. Nilai rata-rata pretest dan posttest yang diperoleh kelas eksperimen sebesar 29,51 dan 80,20 sehingga mengalami peningkatan sebesar 50,69 dengan kriteria "sedang" sedangkan kelas kontrol memperoleh nilai rata-rata pretest dan posttest sebesar 23,95 dan 61,80 dengan peningkatan sebesar 37,85 kategori "rendah". Perbedaan nilai rata-rata tersebut disebabkan karena siswa kelas kontrol belum paham betul akan konsep dan sifat dasarnya sehingga berdampak pada penggunaan prosedur atau operasi tertentu dalam penyelesaian sebuah masalah.

Ketujuh indikator pemahaman konsep yang sudah dijelaskan, maka diperoleh bahwa model inkuiri terbimbing berbantuan *PhET simulation* paling berpengaruh terhadap peningkatan indikator mengaitkan berbagai konsep. Sejalan dengan penelitian Hokeng, *et.al* (2022) yang mengungkapkan

bahwa tingkat kemampuan pemahaman konsep siswa di kelas eksperimen dari indikator mengaitkan berbagai konsep tergolong dalam kategori tinggi. Hal ini dikarenakan pembelajaran di kelas eksperimen menggunakan model pembelajaran inkuiri terbimbing, dimana pada pembelajaran ini siswa dibimbing untuk banyak beraktivitas dalam kegiatan pembelajaran, sehingga dapat memicu siswa dalam mengaitkan terhadap konsep pembelajaran.

Berdasarkan uji statistik dengan uji-t pada Tabel 11 terbukti bahwa model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* efektif untuk meningkatkan pemahaman konsep siswa. Terdapat perbedaan pemahaman konsep siswa pada kelas eksperimen dan kontrol. Hal ini dilihat dari nilai ratarata hasil *posttest* siswa pada kelas eksperimen yang menggunakan model inkuiri dari 36 siswa hanya 8 siswa yang tidak mencapai standar Kriteria Ketuntasan Minimum (KKM) yaitu 75. Kelas kontrol yang menggunakan model *discovery learning* dari 36 siswa ada 17 siswa yang nilainya di bawah KKM.

D. Keterbatasan Penelitian

Penelitian ini masih memiliki kekurangan dan keterbatasan. Keterbatasan penelitian meliputi.

1. Keterbatasan waktu penelitian

Penelitian ini dilakukan dalam waktu terbatas, namun ketersediaan waktu yang ada tetap dimaksimalkan agar tidak mempengaruhi data hasil penelitian yang diperlukan.

2. Keterbatasan pelaksanaan penelitian

Terdapat keterbatasan dalam memantau maupun membimbing siswa dalam tiap kelompok saat penelitian.

3. Keterbatasan materi

Materi yang digunakan dalam penelitian ini adalah laju reaksi, sehingga memungkinkan terdapat perbedaan hasil penelitian jika model inkuiri terbimbing berbantuan *PhET simulation* diterapkan di materi lainnya.

BAB V PENUTUP

A. Kesimpulan

Berdasarkan data analisis penelitian tentang efektivitas model pembelajaran inkuiri terbimbing berbantuan PhETSimulation untuk meningkatkan kemampuan berpikir kritis dan pemahaman konsep siswa, dapat disimpulkan sebagai berikut.

- 1. Model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* terbukti efektif untuk meningkatkan kemampuan berpikir kritis siswa dimana nilai ratarata kemampuan berpikir kritis kelas eksperimen yang menggunakan model inkuiri berbantuan *PhET simulation* lebih tinggi dibandingkan dengan kelas kontrol yang menggunakan model *discovery learning*.
- 2. Model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* terbukti efektif untuk meningkatkan pemahaman konsep siswa dimana nilai rata-rata pemahaman konsep kelas eksperimen yang menggunakan model inkuiri berbantuan *PhET simulation* lebih tinggi dibandingkan dengan kelas kontrol yang menggunakan model *discovery learning*.

B. Saran

Saran yang dapat diberikan dalam penelitian ini yaitu:

- 1. Penggunaan model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* perlu disesuaikan dengan kebutuhan siswa. Sebelum melakukan pembelajaran guru perlu menjelaskan dengan jelas langkah-langkah model inkuiri serta pembagian waktu yang disiapkan agar kegiatan menggunakan model ini berjalan lancar dan sesuai rencana.
- Model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* dapat diterapkan di SMA Negeri 1 Pegandon sebagai alternatif model pembelajaran untuk meningkatkan kemampuan berpikir kritis dan pemahaman konsep siswa.
- 3. Diperlukan penelitian lebih lanjut tentang penggunaan model inkuiri terbimbing berbantuan *PhET simulation* untuk meningkatkan kemampuan berpikir kritis dan pemahaman konsep siswa.

DAFTAR PUSTAKA

- Adamson, K. A. dan Prion, S. 2013. Reliability: measuring internal consistency using cronbach's α , *Clinical Simulation in Nursing*. 9. pp. 179-180
- Agustina, Sahidu & Gunada. 2020. Pengaruh Model Pembelajaran Inkuiri Terbimbing Berbantuan Media PhET Terhadap Kemampuan Pemecahan Masalah dan Berpikir Kritis Fisika Peserta Didik SMA. *Jurnal Pendidikan Fisika dan Teknologi (JPFT)*. 6(1). pp.17-24
- Alifiyanti dan Ishafit. 2018. Penerapan model pembelajaran inkuiri terbimbing berbantuan *PhET Simulation* untuk meningkatkan kemampuan berpikir kritis siswa pada pokok bahasan teori kinetik gas. *Seminar Nasional Quantum.* Pp. 2477-1511
- Annafi, N. et al., 2021. Pengaruh Model Pembelajaran Inquiry Terbimbing Terhadap Pemahaman Konsep Kimia Siswa Di Man 2 Kota Bima Tahun Pelajaran 2019/2020. Jurnal Redoks (Jurnal Pendidikan Kimia Dan Ilmu Kimia), 4(1), pp. 17-24.
- Arif, Syaiful dan Farah Nor Asikhin. 2022. Efektivitas Model Pembelaharan Guided Inkuiry Berbantuan Metode Pictorial Riddle Terhadap Kemampuan Berpikir Kritis Peserta Didik. *Jurnal Pendidikan MIPA*. 12 (3). pp. 937-944.
- Arifin, M. M., dan Harijanto, A., 2022. Efektivitas Penggunaan Simulasi PhET dalam Pembelajaran Online Terhadap Hasil Belajar Siswa. *Jurnal Pembelajaran Fisika*, 11(1), pp. 16-27.
- Arikunto, Suharsimi. 2013. *Dasar-Dasar Evaluasi Pendidikan*. Jakarta: Bumi Aksara.

- Arikunto, S. 2013. Manajemen Penelitian. Rineka Cipta, Jakarta
- Dewi, D. A., 2018. Modul Uji Validitas Dan Reliabilitas. *ResearchGate*, pp. 1-14.
- Ennis, R. 1995. Critical Thinking. New Jersey: Prentice Hall.
- Facione, P. A., 2015. Critical Thinking: What It Is and Why It Counts. *Insight Assessment*, pp. 1-29.
- Facione, P.A., 1996. Externalizing the Critical Thinking in Knowledge Development and Clinical Judgment. *Nursing Outlook*, pp 129-136.
- Fairuzabadi, A., Prihandono & Putra. 2017. Penerapan Model Pembelajaran Inkuiri Terbimbing Dengan Video Berbasis Kontekstual Dalam Pembelajaran IPA Pada Materi Suhu dan Pengukurannya di SMP. *Jurnal Pendidikan Fisika*. 6(1), PP 100-106.
- Falentina, A. R., Saptasari, M. & Indriwati, S. E., 2020. Keterampilan Berpikir Kritis melalui Penerapan Model Pembelajaran Inkuiri Terbimbing di Kelas XI IPA. *Jurnal Pendidikan Teori, Penelitian, dan Pengembangan*, 5(10), pp. 1397-1404.
- Fitriyati, I. dan Munzil, 2016. Penerapan Strategi Pembelajaran Inkuiri Terbimbing Berbantuan Media Untuk Meningkatkan Keterampilan Berpikir Ilmiah Siswa Pada Pembelajaran IPA SMP. *Jurnal Penelitian Pendidikan IPA*, 1(1), pp. 1-6.
- Hake, R. R. 2002. Relationship of individual student normalized learning gains in mechanics with gender, high-school physics, and pretest scores on Mathematics and Spatial Visualization. *Physics Education Research Conference*, 1–14.
- Hasriadi, 2022. *Strategi Pembelajaran.* Pertama ed. Bantul: Mata Kata Inspirasi.

- Herimanto, Murdani, E. & Kurniawan, Y., 2018. Penerapan Model Pembelajaran Inkuiri Terbimbing Untuk Meningkatkan Pemahaman Konsep Siswa Kelas VII Pada Materi Pengukuran. *Jurnal Pendidikan Fisika*, 3(2), pp. 44-46.
- Hokeng *et.al.* 2022. Pengaruh Model Pembelajaran Inkuiri Terbimbing Terhadap Pemahaman Konsep Peserta Didik Di SMA Negeri 1 Talibura. *Dalton : Jurnal Pendidikan Kimia dan Ilmu Kimia.* 5(2). pp. 86-93.
- Inayati, L., Nugraha, E. & Saefurohman, A., 2020. Pengaruh Model Pembelajaran Inkuiri Terbimbing Terhadap Hasil Belajar IPA Siswa Kelas IV Materi Bagian Tumbuhan. *Ibtidai Jurnal Kependidikan Dasar*, 7(1), pp. 59-72.
- Indarta, Y. et al., 2022. Relevansi Kurikulum Merdeka Belajar dengan Model Pembelajaran Abad 21 dalam Perkembangan Era Society 5.0. *Edukatif : Jurnal Ilmu Pendidikan,* 4(2), pp. 3011 3024.
- Indawati, H., Sarwanto & Sukarmin, 2021. Studi Literatur Pembelajaran Inkuiri Terbimbing Terhadap Kemampuan Berpikir Kritis IPA SMP. *Jurnal Gurua IPA*, 10(2), pp. 99-107.
- Juliyantika, T. dan Batubara, H. H., 2022. Tren Penelitian Keterampilan Berpikir Kritis pada Jurnal Pendidikan Dasar di Indonesia. *Jurnal Basicedu*, 6(3), pp. 4731-4744.
- Kadir, A., 2015. Menyusun dan Menganalisis Tes Hasil Belajar. *Jurnal Al-Ta'dib*, 8(2), pp. 70-81.
- Karim, A. 2015. Pengaruh Gaya Belajar dan Sikap Siswa Pada Pelajaran Matematika Terhadap Kemampuan Berpikir Kritis. *Formatif: Jurnal Ilmiah Pendidikan MIPA*, 4(3), 188-195.

- Kertayasa, I.K. 2012. Pengembangan Soal Model PISA Berbasis Online. Indonesia PISA Center
- Kilpatrick, S. J dan Findell (Eds). 2001. *Adding It Up: Helping Children Learn Mathematics*. Washington: National Academy Press.
- Lewier, Pebbriani Clarita dan Kelly. 2020. Kajian Kemampuan Berpikir Kritis Siswa Melalui Pendekatan Aktivitas Aesop's dalam Pembelajaran Kimia Materi Hidrokarbon. *Jurnal Pendidikan Kimia dan Ilmu Kimia*. 3 (2), pp. 35-44.
- Magdalena, I., Fauziah, S. N., Faziah, S. N. & Nupus, F. S., 2021.
 Analisis Validitas, Reliabilitas, Tingkat Kesulitan dan
 Daya Beda Butir Soal Ujian Akhir Semester Tema 7
 Kelas III SDN Karet 1 Sepatan. *BINTANG : Jurnal Pendidikan dan Sains*, 3(2), pp. 198-214.
- Mania, S., 2008. Observasi Sebagai Alat Evaluasi Dalam Dunia Pendidikan Dan Pengajaran. *Lentera Pendidikan : Jurnal Ilmu Tarbiyah dan Kependidikan,* 11(2), pp. 220-233.
- Mardhatilla, Z., 2021. PhET Simulation Sebagai Penunjang Pembelajaran IPA Secara Online Selama Pandemi Covid-19. Proceeding of Integrative Science Education Seminar (PISCES), Volume 1, pp. 441-448.
- Mardiyanti, N. E. A. dan Jatmiko, B., 2022. Keefektifan Pembelajaran Fisika dengan Model Inkuiri Terbimbing Berbantuan PhET Interactive Simulations untuk Meningkatkan Kemampuan Berfikir Kritis Siswa SMA. *Jurnal Ilmiah Pendidikan Fisika*, 6(2), pp. 327-336.
- Muzana, S. R., Lubis, S. P. W. & Wirda, 2021. Penggunaan Simulasi PhET terhadap Efektivitas Belajar IPA. *Jurnal Dedikasi Pendidikan*, 5(1), pp. 227-236.

- Nasution, S., 2017. Variabel Penelitian. *Jurnal Raudhah*, 5(2), pp. 1-9.
- Nugraheni, Y. A., 2006. Analisis Komparatif Dengan Pengujian Chi Kwadrat (Chi Square). *Jurnal Statistik Pendidikan*, pp. 1-25.
- Nuraida. 2021. Using PhET simulation to learning the concept of acid-base. *Journal of Physics: Conference Series*. pp.1-6.
- Nurdini, S. D., Husniyah, R., Chusni, M. M. & Mulyana, E., 2022. Penggunaan Physics Education Technology (PhET) dengan Model Inkuiri Terbimbing untuk Meningkatkan Hasil Belajar Siswa pada Materi Fluida Dinamis. *Jurnal Ilmiah Pendidikan Fisika*. 6(1), pp. 136-146.
- Pertiwi, M., Yuliati, L. & Qohar, A., 2018. Kemampuan Berpikir Kritis Siswa dengan Inkuiri Terbimbing dipadu Carousel Feedback pada Materi Sifat-sifat Cahaya di Sekolah Dasar. *Jurnal Pendidikan Teori, Penelitian dan Pengembangan,* 3(1), pp. 21-28.
- Pohan, R. F. dan Rambe, M. R., 2022. Penerapan Model Pembelajaran Problem Based Learning (PBL) dalam Kimia Teknik untuk Meningkatkan Kemampuan Berpikir Kritis Mahasiswa Prodi Teknik Sipil Fakultas Teknik UGN. *Jurnal Pendidikan Matemaika dan IPA*, 2(1), pp. 14-25.
- Prasetiyo, M. B. dan Brillian, R., 2021. Model Pembelajaran Inkuiri Sebagai Strategi Mengembangkan Kemampuan Berpikir Kritis Siswa. *Jurnal Pendidikan Administrasi Perkantoran (JPAP)*, 9(1), pp. 109-120.
- Putri, D.P., dan Muhtadi, A. 2018. Pengembangan Multimedia Pembelajaran Interaktif Kimia Berbasis Android Menggunakan Prinsip Mayer Pada Materi Laju Reaksi. *Jurnal Inovasi Teknologi Pendidikan*, 5(1): 38-47.

- Rais, A. A., Hakim, L. & Sulistiawati, 2020. Pemahaman Konsep Siswa melalui Model Inkuiri Terbimbing Berbantuan Simulasi PhET. *Physics Education Research Journal*, 2(1), pp. 1-8.
- Rasyidah, K., Supeno & Maryani, 2018. Pengaruh Guided Inquiry Berbantuan PhET Simulation Terhadap Hasil Belajar Siswa SMA Pada Pokok Bahasan Usaha dan Energi. *Jurnal Pembelajaran Fisika*, 7(2), pp. 129-134.
- Risdianto, Eko. 2019. *Analisis Pendidikan Indonesia di Era Revolusi Industri 4.0.* Bengkulu: Universitas Bengkulu.
- Rizaldi, D. R., Jufri, A. W. & Jamaluddin, 2020. PhET: Simulasi Interaktif Dalam Proses Pembelajaran Fisika. *Jurnal Ilmiah Profesi Pendidikan*, 5(1), pp. 10-14.
- Rositawati, Dwi Nugraheni. 2018. Kajian Berpikir Kritis Pada Metode Inkuiri. *Prosiding SNFA (Seminar Nasional Fisika dan Aplikasinya)*.
- Sa'adah, M., Suryaningsih, S. & Muslim, B., 2020. Pemanfaatan multimedia interaktif pada materi hidrokarbon untuk menumbuhkan keterampilan berpikir kritis siswa. *Jurnal Inovasi Pendidikan IPA*, 6(2), pp. 184-194.
- Sarumaha, M. dan Harefa, D., 2022. Model Pembelajaran Inquiry Terbimbing Terhadap Hasil Belajar IPA Terpadu Siswa. *Jurnal Pendidikan dan Humaniora*, 5(1), pp. 27-36.
- Sastrika, I. A. K., Sadia, I. W. & Muderawan, I. W., 2013.
 Pengaruh Model Pembelajaran Berbasis Proyek
 Terhadap Pemahaman Konsep Kimia dan
 Keterampilan Berpikir Kritis. e-Journal Program
 Pascasarjana Universitas Pendidikan Ganesha Program
 Studi IPA, 3(2).

- Sianturi, R., 2022. Uji homogenitas sebagai syarat pengujian analisis. *Jurnal pendidikan sains, sosial dan agama*, 8(1), pp. 386-397.
- Sinaga, A. S. dan Roza, D., 2022. Modifikasi Media Pembelajaran Berbasis Android Pada Materi Laju Reaksi Untuk Meningkatkan Hasil Belajar Siswa Kelas XI SMA. Educenter Jurnal Ilmiah Pendidikan, 1(2), pp. 105-113.
- Sopiansyah., et. al. 2022. Konsep dan Implementasi Kurikulum MBKM (Merdeka Belajar Kampus Merdeka). *Religion Education Social Laa Roiba Journal.* 4(1), pp. 34-41.
- Sudijono, Anas. 2011. *Pengantar Evaluasi Pendidikan*. Jakarta: Rajawali Pers.
- Sugiono, 2013. *Metode Penelitian Kuantitatif, Kualitatif, dan R&D.* Ke-19 ed. Bandung: Penerbit Alfabeta.
- Supardi, 1993. Populasi dan Sampel Penelitian. *Unisia*, 13(17), pp. 100-108.
- Suprayitno, T., 2019. *Pendidikan di Indonesia Belajar dari Hasil PISA 2018.* Jakarta: Pusat Penilaian Pendidikan Balitbang Kemendikbud.
- Suprianti, D., Munzil & Dasna, I. W., 2020. Pengaruh Strategi Inkuiri Terhadap Hasil Belajar Ditinjau Dari Perbedaan Motivasi Belajar IPA Kelas V SD. *Jurnal Pendidikan Teori, Penelitian dan Pengembangan,* 5(12), pp. 1717-1724.
- Sutresna, N., Sholehudin, D. & Herlina, T., 2016. *Aktif dan Kreatif Belajar Kimia Untuk SMA Kelas XI.* Edisi Revisi 2016 ed. Bandung: Grafindo Media Pratama.
- Sutrisna, N., 2021. Analisis Kemampuan Literasi Sains Peserta Didik SMA di Kota Sungai Penuh. *Jurnal Inovasi Penelitian*, 1(12), pp. 2683-2694.

- Trisviati, E. D. dan Lutfi, A., 2022. Development of Guided Inquiry Learning Tools Assisted by PhET Simulation to Improve Student's Learning Motivation in the Sub Material of Molecular Shapes. *Prisma Sains: Jurnal Pengkajian Ilmu Pembelajaran Matematika dan IPA IKIP Mataram*, 10(3), pp. 522-534.
- Usmadi, 2020. Pengujuan Prasyarat Analisis (Uji Homogenitas dan Uji Normalitas). *Inovasi Pendidikan,* 7(1), pp. 50-62.
- Utami, B. et al., 2009. *Kimia Untuk SMA dan MA Kelas XI Program Ilmu Alam.* Pertama ed. Jakarta: Pusat Perbukuan Departemen Pendidikan Nasional.
- Yusup, F., 2018. Uji Validitas Dan Reliabilitas Instrumen Penelitian Kuantitatif. *Jurnal Ilmiah Kependidikan*, 7(1), pp. 17-23.
- Zubaidah,S.,Corebima, A.D., & Mistianah. 2015. Asesmen Berpikir Kritis Terintegrasi Tes Essay. *Prosiding Simposium on Biology Education*, Jurusan Biologi FKIP Universitas Ahmad Dahlan Yogyakarta.

Lampiran 1 Responden Kelas Eksperimen dan Kelas Kontrol Responden Kelas Eksperimen

No	Nama
1	Ailul Novita Ayu Purnama Sari
2	Andre Septyawan Nugroho
3	Arifa Novi Hartanti
4	Arina Lutfiana
5	Citra Afidatuz Zain
6	Devina Ayu Mahardika
7	Dewi Ayu Setiawati
8	Dian Desilia Rahmadani
9	Dina Irayanti
10	Eka Ayu Wulandari
11	Falerian Dwi Prabandaru
12	Firman Ari Yuliyanto
13	Hasna Nabila
14	Heri Irawan
15	Jud Aulia Rokhmah
16	Krishnandya Naora Salsabila
17	Liyina Choirunnisak
18	M. Adey Bayu Bima Yudha
19	Muhammad Nur Fatoni
20	Muhammad Dida Nugroho
21	Muhammad Syafiq Adib Nugroho
22	Mustafridatun Nasihah
23	Mutiara Selvia Mariam
24	Naura Asmar Asari
25	Nevi Zahra Setyaningrum
26	Nur Khofifah Azmy

27	Sherly Agustina Aura Maharan
28	Shinta Sanggarwati Widodo
29	Sindi Rahma Wardani
30	Syfa Maulidya Qurrota Ainie
31	Tri Wahyuni
32	Urfi Akhila
33	Viviana Faticha Santi
34	Yuni Firda Latifa
35	Zabrina Salsa Azzahra
36	Zita Elysia

Responden Kelas Kontrol

No	Nama
1	Abdur Rahman Wakhid
2	Adam Ivo Mahadika
3	Afikunny Sa'adaty Azaliya
4	Ahmad Adi Roziful Khalid
5	Ahmad Arifin
6	Ari Hanggara
7	Audia Siti Solechah
8	Ayadi Akbar Barra Rakhimi
9	Candra Irwa Nadi
10	Dwi Septyaningrum
11	Elza Akila Alsa
12	Hana Citra Aintia Rifana
13	Karin Agustina
14	Maftuchatul Azizah
15	Marsha Chiliya Sa'adah
16	Marsheila Nur Rizki

17	Maya Agustina
18	Monica Nurul Nikmah
19	Muhammad Abdissalam
20	Muhammad Hertanto
21	Muhammad Reza Rakhman
22	Munawaroh
23	Naila Uli Ramadhani
24	Najwa Khuril In
25	Nanik Aqilatul Mustaqimah
26	Nevyana Putri Kirania
27	Nina Asty Suprihatin
28	Novi Fitri Auliyanti
29	Nurul Maulidah Asakinah
30	Resti Ameliana
31	Revalina
32	Rizki Puji Lestari
33	Rokhmatul Qotran Nada
34	Sarah Nabilah Syafitri
35	Uswatun Anisa
36	Vita Aulia Fitma

Lampiran 2 Analisis Data Uji Normalitas Populasi

Uji Normalitas Nilai Awal

Kelas XI-1

Hipotesis

H_o = data terdistribusi normal

H_a = data tidak terdistribusi normal

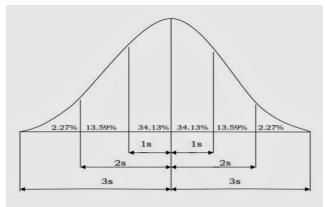
Rumus

$$\mathcal{X}^2 = \sum_{(=)}^k \frac{(Fo - fh)^2}{fh}$$

Kriteria yang digunakan

Jika \mathcal{X}^2 hitung < \mathcal{X}^2 tabel maka Normal

Pengujian Hipotesis


Nilai Maksimum = 100

Nilai Minimum = 35

$$P = \frac{Xmax - Xmin}{Banvak \, kelas} = \frac{100 - 35}{6} = 10,833$$

Banyaknya Kelas = 6

Panjang Kelas = $10,833 \approx 11$

Kurva Normal Baku

Tabel Distribusi Frekuensi

Interval	Fo	Fh	Fo-Fh	(Fo-Fh) ²	[(Fo-Fh) ²]/Fh
35-45	3	0,817	2,183	4,765	5,830
46-56	6	4,892	1,108	1,227	0,251
57-67	11	12,287	-1,287 1,656		0,135
68-78	9	12,287	-3,287	10,803	0,879
79-89	6	4,892	1,108	1,227	0,251
90-101	1	0,817	0,183	0,033	0,041
Jumlah	36				7,387

Chi kuadrat tabel, dk = 6 - 1 = 5, alfa = 5%. Dimana $\mathcal{X}^2_{\text{hitung}}$ = 7,387 dan $\mathcal{X}^2_{\text{tabel}}$ = 11,07049. Dari data di atas $\mathcal{X}^2_{\text{hitung}}$ < $\mathcal{X}^2_{\text{tabel}}$ maka data terdistribusi normal.

Uji Normalitas Nilai Awal

Kelas XI-3

Hipotesis

H_o = data terdistribusi normal

H_a = data tidak terdistribusi normal

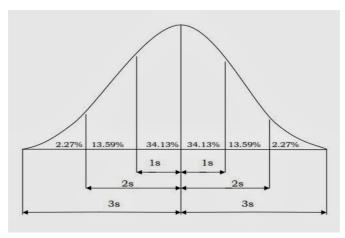
Rumus

$$\mathcal{X}^2 = \sum_{(=)}^k \frac{(Fo - fh)^2}{fh}$$

Kriteria yang digunakan

Jika $\mathcal{X}^2_{\text{hitung}} < \mathcal{X}^2_{\text{tabel}}$ maka Normal

Pengujian Hipotesis


Nilai Maksimum = 88

Nilai minimum = 34

$$P = \frac{Xmax - Xmin}{Banyak \ kelas} = \frac{88 - 34}{6} = 9$$

Banyaknya kelas = 6

Panjang Kelas = 9

Kurva Normal Baku

Tabel Distribusi Frekuensi

Interval	Fo	Fh	Fo-Fh	(Fo-Fh) ²	[(Fo-Fh) ²]/Fh
34-42	3	0,772	2,228	4,965	6,433
43-51	5	4,621	0,379	0,144	0,031
52-60	10	11,604	-1,604	-1,604 2,573 0,222	
61-69	9	11,604	-2,604	6,782	0,584
70-78	5	4,621	0,379	0,144	0,031
79-88	2	0,772	1,228	1,508	1,954
Jumlah	34				9,256

Chi kuadrat tabel, dk = 6 - 1 = 5, alfa = 5%. Dimana $\mathcal{X}^2_{\text{hitung}}$ = 9,256 dan $\mathcal{X}^2_{\text{tabel}}$ = 11,07049. Dari data di atas $\mathcal{X}^2_{\text{hitung}}$ < $\mathcal{X}^2_{\text{tabel}}$ maka data terdistribusi normal.

Uji Normalitas Nilai Awal

Kelas XI-5

Hipotesis

H_o = data terdistribusi normal

H_a = data tidak terdistribusi normal

Rumus

$$\mathcal{X}^2 = \sum_{(=)}^k \frac{(Fo - fh)^2}{fh}$$

Kriteria yang digunakan

Jika $\mathcal{X}^2_{\text{hitung}} < \mathcal{X}^2_{\text{tabel}}$ maka Normal

Pengujian Hipotesis


Nilai Maksimum = 95

Nilai minimum = 30

$$P = \frac{Xmax - Xmin}{Banyak \ kelas} = \frac{95 - 30}{6} = 10,833$$

Banyaknya kelas = 6

Panjang Kelas = $10,833 \approx 11$

Kurva Normal Baku

Tabel Distribusi Frekuensi

Interval	Fo	Fh	Fo-Fh	(Fo-Fh) ²	[(Fo-Fh) ²]/Fh
30-40	2	0,817	1,183	1,399	1,712
41-51	6	4,892	1,108	1,227	0,251
52-62	8	12,287	-4,287	18,377	1,496
63-73	10	12,287	-2,287	5,229	0,426
74-84	8	4,892	3,108	9,657	1,974
85-96	2	0,817	1,183	1,399	1,712
Jumlah	36				7,570

Chi kuadrat tabel, dk = 6 - 1 = 5, alfa = 5%. Dimana $\mathcal{X}^2_{\text{hitung}}$ = 7,570 dan $\mathcal{X}^2_{\text{tabel}}$ = 11,07049. Dari data di atas $\mathcal{X}^2_{\text{hitung}}$ < $\mathcal{X}^2_{\text{tabel}}$ maka data terdistribusi normal.

Lampiran 3 Analisis Data Uji Homogenitas Populasi

Uji Homogenitas Kelas XI-1, XI-3 dan XI-5

Kelas Al-1, Al-5 dan Al-3

Ho = Data homogen/populasi homogen

Ha = Data tidak homogen/populasi tidak homogen

No		Kelas	
No	XI-1	XI-3	XI-5
1	60	34	48
2	41	80	65
3	72	64	72
4	80	60	30
5	50	70	69
6	56	34	43
7	49	75	55
8	100	73	60
9	80	63	49
10	83	75	75
11	61	55	72
12	35	50	84
13	85	69	84
14	73	56	45
15	66	57	83
16	75	48	70
17	52	75	95
18	76	66	35
19	45	67	50
20	65	57	78

21	49	34	56
22	70	50	72
23	60	68	66
24	63	48	49
25	56	56	60
26	82	64	52
27	71	60	78
28	64	88	56
29	67	65	78
30	61	54	88
31	84	48	52
32	66	56	54
33	61	62	78
34	78	54	63
35	72		75
36	70		53
Jumlah	2378	2035	2292
Rata-Rata	66,06	59,85	63,67
S	13,84	12,61	15,52
S^2	191,43	159,10	240,86

No	Ni-1	S^2	$(Ni-1)S^2$	Log S ²	$(Ni-1)LogS^2$
1	35	191,43	6700,05	2,28	79,9
2	33	159,1	5250,3	2,20	72,7
3	35	240,86	8430,1	2,38	83,4
Jumlah	103		20380,45		235,9

Variansi Gabungan

$$S^2 = \frac{\sum (ni-1)s^2}{\sum (ni-1)} = \frac{20380,45}{103} = 197,86$$

Harga B satuan

$$B = (Log \, s^2)(\sum ni - 1) = \log 197,86 \, x \, 103 = 236,52$$

Uji Bartlett dengan statistik chi kuadrat

$$x^2$$
 hitung = ln 10. (B - Σ (ni – 1) log s²) = 2,30 (236,52 – 235,7) = 1,886

Uji signifikasi dengan cara membandingkan nilai

alfa = 0,05, db = 3-1 = 2,
$$x^2 tabel = 5,99148$$

 X^2 hitung $< x^2$ tabel, Ho diterima = populasi homogen

Lampiran 4 Analisis Data Uji Validitas Butir Soal

Siswa	Butir Item											Y	Y ²	
SiSWa	1	2	3	4	5	6	7	8	9	10	11	12	I	1-
ASI	3	2	2	2	2	3	2	3	3	1	1	0	24	576
AS	3	3	2	4	3	2	3	4	2	1	4	2	33	1089
AW	3	1	2	3	2	2	2	4	2	2	2	1	26	676
Е	3	1	3	2	2	3	3	4	3	1	2	1	28	784
НАН	3	2	2	4	2	3	3	3	3	1	2	0	28	784
НН	2	1	3	3	3	3	3	4	2	1	3	2	30	900
IIS	2	1	2	4	3	3	2	4	3	2	4	1	31	961
IP	1	1	3	2	4	3	2	3	3	1	4	0	27	729
IF	2	1	2	4	3	4	3	3	3	1	4	1	31	961
IFI	2	2	3	4	4	3	2	4	3	1	2	2	32	1024
IB	2	1	2	4	3	4	3	4	3	1	2	1	30	900
MM	1	2	3	2	2	2	2	3	2	2	2	2	25	625
MN	2	2	3	2	3	3	3	4	3	1	4	1	31	961
RS	2	2	2	3	3	2	2	3	4	1	2	2	28	784

RA	1	1	3	4	3	3	3	4	3	2	3	2	32	1024
RDP	1	1	2	4	4	3	2	3	3	1	1	0	25	625
SF	2	1	2	1	3	2	1	2	2	1	1	1	19	361
TSH	3	2	3	2	1	3	2	3	3	0	1	2	25	625
ZQ	2	2	2	1	2	2	3	4	2	1	2	1	24	576
ZHA	2	2	2	2	1	1	2	3	2	1	1	1	20	400
Σχ	42	31	48	57	53	54	48	69	54	23	47	23	549	15365
Σx^2	98	55	120	185	155	156	122	245	152	31	135	37		
Σχγ	1153	852	1328	1623	1486	1513	1346	1925	1498	638	1353	650		
r _{hitung}	0,001	0,02	0,27	0,71	0,47	0,55	0,63	0,68	0,36	0,18	0,73	0,33		
r _{tabel}	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05		
Keterangan	tidak valid	tidak valid	valid											

Rumus:

$$r_{xy} = \frac{N \Sigma xy - \Sigma x \Sigma y}{\sqrt{(N \Sigma x^2 - (\Sigma x)^2)} (N \Sigma y^2 - (\Sigma y)^2)}$$

Lampiran 5 Analisis Data Uji Reliabilitas Butir Soal

Ciarra						Butir	Item						Ilak
Siswa	1	2	3	4	5	6	7	8	9	10	11	12	Jumlah
ASI	3	2	2	2	2	3	2	3	3	1	1	0	24
AS	3	3	2	4	3	2	3	4	2	1	4	2	33
AW	3	1	2	3	2	2	2	4	2	2	2	1	26
Е	3	1	3	2	2	3	3	4	3	1	2	1	28
НАН	3	2	2	4	2	3	3	3	3	1	2	0	28
НН	2	1	3	3	3	3	3	4	2	1	3	2	30
IIS	2	1	2	4	3	3	2	4	3	2	4	1	31
IP	1	1	3	2	4	3	2	3	3	1	4	0	27
IF	2	1	2	4	3	4	3	3	3	1	4	1	31
IFI	2	2	3	4	4	3	2	4	3	1	2	2	32
IB	2	1	2	4	3	4	3	4	3	1	2	1	30
ММ	1	2	3	2	2	2	2	3	2	2	2	2	25
MN	2	2	3	2	3	3	3	4	3	1	4	1	31
RS	2	2	2	3	3	2	2	3	4	1	2	2	28

RA	1	1	3	4	3	3	3	4	3	2	3	2	32
RDP	1	1	2	4	4	3	2	3	3	1	1	0	25
SF	2	1	2	1	3	2	1	2	2	1	1	1	19
TSH	3	2	3	2	1	3	2	3	3	0	1	2	25
ZQ	2	2	2	1	2	2	3	4	2	1	2	1	24
ZHA	2	2	2	2	1	1	2	3	2	1	1	1	20
Varians	0,515	0,365	0,252	1,186	0,765	0,536	0,357	0,365	0,326	0,239	1,292	0,555	
Butir Soal										Sigma Va	rians	6,7605	Varians Total
	•												15,5236

K	12
K/K-1	1,0909
$\frac{\Sigma Si^2}{St^2}$	0,4354
$(1-\frac{\Sigma Si^2}{St^2})$	0,5645
Signifikasi	0,70
r_i	0,62
Status	Tinggi

$$r_i = \frac{k}{(k-1)} \left\{ 1 - \frac{\sum Si^2}{St^2} \right\}$$

Lampiran 6 Analisis Data Uji Tingkat Kesukaran Soal

C:-						Butir	Item						
Siswa	1	2	3	4	5	6	7	8	9	10	11	12	Jumlah
ASI	3	2	2	2	2	3	2	3	3	1	1	0	24
AS	3	3	2	4	3	2	3	4	2	1	4	2	33
AW	3	1	2	3	2	2	2	4	2	2	2	1	26
Е	3	1	3	2	2	3	3	4	3	1	2	1	28
НАН	3	2	2	4	2	3	3	3	3	1	2	0	28
НН	2	1	3	3	3	3	3	4	2	1	3	2	30
IIS	2	1	2	4	3	3	2	4	3	2	4	1	31
IP	1	1	3	2	4	3	2	3	3	1	4	0	27
IF	2	1	2	4	3	4	3	3	3	1	4	1	31
IFI	2	2	3	4	4	3	2	4	3	1	2	2	32
IB	2	1	2	4	3	4	3	4	3	1	2	1	30
MM	1	2	3	2	2	2	2	3	2	2	2	2	25
MN	2	2	3	2	3	3	3	4	3	1	4	1	31
RS	2	2	2	3	3	2	2	3	4	1	2	2	28

RA	1	1	3	4	3	3	3	4	3	2	3	2	32
RDP	1	1	2	4	4	3	2	3	3	1	1	0	25
SF	2	1	2	1	3	2	1	2	2	1	1	1	19
TSH	3	2	3	2	1	3	2	3	3	0	1	2	25
ZQ	2	2	2	1	2	2	3	4	2	1	2	1	24
ZHA	2	2	2	2	1	1	2	3	2	1	1	1	20
Rata-Rata Skor	2,1	1,55	2,4	2,85	2,65	2,7	2,4	3,45	2,7	1,15	2,35	1,15	
Skor Maks	4	4	4	4	4	4	4	4	4	4	4	4	
Tingkat Kesukaran	0,525	0,3875	0,6	0,7125	0,6625	0,675	0,6	0,8625	0,675	0,2875	0,5875	0,2875	
Kriteria	sedang	sedang	sedang	mudah	sedang	sedang	sedang	mudah	sedang	sukar	sedang	sukar	

Rumus:
$$I = \frac{B}{J}$$

Lampiran 7 Analisis Data Uji Daya Beda Soal

Siswa						But	ir Item						Jumlah
Siswa	1	2	3	4	5	6	7	8	9	10	11	12	Juilliali
AS	3	3	2	4	3	2	3	4	2	1	4	2	33
IFI	2	2	3	4	4	3	2	4	3	1	2	2	32
RA	1	1	3	4	3	3	3	4	3	2	3	2	32
IIS	2	1	2	4	3	3	2	4	3	2	4	1	31
MN	2	2	2	2	3	3	3	4	3	1	4	1	31
BA	10	9	12	18	16	14	13	19	14	7	17	8	
PA	2	1,8	2,4	3,6	3,2	2,8	2,6	3,8	2,8	1,4	3,4	1,6	

Siswa						Butir I	tem						Jumlah
SiSWa	1	2	3	4	5	6	7	8	9	10	11	12	Juliliali
TSH	3	2	3	2	1	3	2	3	3	0	1	2	25
ASI	3	2	2	3	3	3	2	3	3	1	1	0	24
ZQ	2	2	2	3	3	2	3	4	2	1	3	1	24
ZHA	2	2	2	2	2	1	2	3	2	1	3	1	20
SF	2	1	2	3	3	2	1	2	2	1	2	1	19
BB	12	9	11	13	12	11	10	15	12	4	12	5	
PB	2,4	1,8	2,2	2,6	2,4	2,2	2	3	2,4	0,8	2,4	1	
DP	-0,4	0	0,2	1	0,8	0,8	0,6	0,8	0,4	0,6	1	0,6	
Kriteria	Jelek sekali	Kurang Baik	cukup	Baik sekali	Baik sekali	Baik sekali	Baik	Baik sekali	Baik	Baik	Baik Sekali	Baik	

Lampiran 8 Hasil Pretest Berpikir Kritis Kelas Eksperimen

No	Siswa				Nomor	Soal dan	Skor Pe	rolehan				Jumlah	Nilai
NO	Siswa	1	2	3	4	5	6	7	8	9	10	Skor	Milai
1	ANA	4	3	2	2	1	2	1	1	3	1	20	23,81
2	ASN	4	4	2	1	2	1	3	2	3	2	24	28,57
3	ANH	5	4	1	1	3	1	2	3	2	1	23	27,38
4	AL	6	4	1	1	3	1	1	1	2	2	22	26,19
5	CAZ	4	4	2	1	3	1	2	2	3	2	24	28,57
6	DAM	3	5	2	1	3	1	2	2	2	1	22	26,19
7	DAS	5	2	3	2	4	3	0	3	2	4	28	33,33
8	DDR	5	5	1	1	3	1	2	1	2	8	29	34,52
9	DI	5	4	3	2	4	3	2	3	2	4	32	38,10
10	EAW	5	5	4	2	3	1	3	1	2	1	27	32,14
11	FDP	4	4	1	1	2	1	2	2	2	2	21	25,00
12	FAY	3	4	1	1	2	1	2	1	2	1	18	21,43
13	HN	4	5	2	1	3	1	2	1	2	1	22	26,19
14	HI	3	3	1	2	2	2	1	1	2	2	19	22,62
15	JAR	4	4	1	1	3	1	2	3	2	1	22	26,19
16	KNS	5	4	1	1	2	1	2	1	2	1	20	23,81
17	LC	4	4	2	2	3	2	1	2	2	2	24	28,57
18	MAB	3	4	1	1	2	1	3	1	2	1	19	22,62
19	MNF	3	4	1	1	2	2	2	1	2	2	20	23,81

20	MDN	4	4	2	2	3	1	5	3	2	1	27	32,14
21	MSA	3	3	1	1	2	1	2	3	2	1	19	22,62
22	MN	4	3	1	2	3	2	2	2	3	2	24	28,57
23	MSM	3	2	2	1	2	3	1	3	2	1	20	23,81
24	NAA	6	5	2	2	3	2	2	1	3	1	27	32,14
25	NZS	4	4	1	1	3	1	3	3	2	2	24	28,57
26	NKA	5	5	6	2	2	1	2	1	2	1	27	32,14
27	SA	6	5	2	2	2	2	2	1	3	2	27	32,14
28	SSW	4	5	1	1	3	1	2	1	2	1	21	25,00
29	SRW	2	4	1	1	2	3	2	3	2	2	22	26,19
30	SMQA	6	5	2	2	4	1	2	2	2	1	27	32,14
31	TW	4	4	1	2	3	2	2	3	2	2	25	29,76
32	UA	4	4	1	1	3	1	2	1	2	1	20	23,81
33	VFS	4	4	3	2	2	1	1	2	1	1	21	25,00
34	YFL	4	2	3	1	3	1	1	1	2	2	20	23,81
35	ZSA	4	4	1	1	3	1	2	2	3	2	23	27,38
36	ZE	4	4	1	2	4	1	1	2	2	2	23	27,38
Ju	ımlah	150	143	63	51	97	52	69	66	78	64		
Ra	ta-rata	4,167	3,972	1,750	1,417 2,694 1,444 1,917 1,833 2,167 1,778								
						Jumla	ıh						991,67
						Rata-R	ata						27,546

Lampiran 9 Hasil Posttest Berpikir Kritis Kelas Eksperimen

No	Cigrara				Nomo	r Soal d	lan Skor	Peroleha	an			Jumlah	Nilai
NO	Siswa	1	2	3	4	5	6	7	8	9	10	Skor	Milai
1	ANA	7	4	8	8	4	8	11	3	6	9	68	80,95
2	ASN	6	6	8	8	6	8	9	3	6	9	69	82,14
3	ANH	7	7	8	8	6	8	10	3	6	11	74	88,10
4	AL	6	4	7	5	4	5	6	2	4	4	47	55,95
5	CAZ	7	4	8	8	0	8	11	3	4	3	56	66,67
6	DAM	6	6	8	8	6	8	9	3	6	9	69	82,14
7	DAS	6	6	8	8	6	8	9	2	4	3	60	71,43
8	DDR	7	7	8	8	6	8	11	3	6	9	73	86,90
9	DI	7	6	8	8	6	8	11	3	6	10	73	86,90
10	EAW	7	7	8	8	6	8	11	2	6	9	72	85,71
11	FDP	7	1	8	8	6	8	11	3	6	9	67	79,76
12	FAY	7	5	8	7	6	8	11	3	2	9	66	78,57
13	HN	6	6	8	8	6	8	11	3	6	9	71	84,52
14	HI	6	7	8	2	6	8	11	2	6	9	65	77,38
15	JAR	6	7	8	7	6	8	11	2	6	9	70	83,33
16	KNS	7	7	8	7	6	8	10	2	6	9	70	83,33
17	LC	2	4	4	2	6	5	6	2	4	4	39	46,43
18	MAB	7	5	8	7	6	8	11	3	0	10	65	77,38
19	MNF	7	5	8	7	6	8	11	3	2	10	67	79,76

20	MDN	7	5	6	7	6	8	11	3	6	12	71	84,52
21	MSA	7	5	8	7	6	8	11	3	2	9	66	78,57
22	MN	7	7	8	7	6	5	11	3	6	9	69	82,14
23	MSM	7	6	8	8	4	8	11	2	6	9	69	82,14
24	NAA	5	6	6	6	4	5	6	2	4	4	48	57,14
25	NZS	7	4	8	8	4	8	11	3	6	10	69	82,14
26	NKA	7	7	8	8	4	8	11	3	6	9	71	84,52
27	SA	7	7	8	8	4	8	12	3	6	10	73	86,90
28	SSW	7	4	5	8	6	8	6	0	0	0	44	52,38
29	SRW	7	7	8	6	6	8	11	3	6	10	72	85,71
30	SMQA	5	4	8	8	4	8	11	2	2	4	56	66,67
31	TW	7	4	8	8	4	8	11	2	4	9	65	77,38
32	UA	8	6	8	8	6	8	11	3	6	9	73	86,90
33	VFS	7	7	8	8	6	8	11	3	6	10	74	88,10
34	YFL	7	4	4	8	4	8	11	1	6	6	59	70,24
35	ZSA	7	7	8	7	6	5	12	3	6	10	71	84,52
36	ZE	2	5	4	2	6	8	6	2	4	6	45	53,57
Jum	lah	232	199	268	254	190	273	365	91	174	290		
Rata	-rata	6,44	5,52	7,44	7,05	5,27	7,58	10,13	2,52	4,83	8,05		
						Ju	mlah						2780,95
						Rat	a-Rata						77,2487

Lampiran 10 Hasil Pretest Berpikir Kritis Kelas Kontrol

No	Siswa				Nomor	Soal dar	ı Skor Pe	rolehan				Jumlah	Nilai
No	Siswa	1	2	3	4	5	6	7	8	9	10	Skor	Milai
1	ARW	5	4	1	1	2	3	6	1	1	2	26	30,95
2	AIM	6	2	1	2	2	1	3	1	1	2	21	25
3	ASA	5	4	2	2	2	1	1	2	3	4	26	30,95
4	AAR	4	4	1	1	1	1	2	1	1	2	18	21,43
5	AA	5	5	1	1	1	1	3	1	3	3	24	28,57
6	AH	4	4	2	2	1	1	3	1	2	4	24	28,57
7	ASS	4	2	1	1	2	1	4	2	3	2	22	26,19
8	AAB	7	4	1	1	2	3	2	2	2	2	26	30,95
9	CIN	4	3	1	1	1	1	2	1	1	2	17	20,24
10	DS	2	2	2	2	3	1	1	2	0	0	15	17,86
11	EAA	5	4	2	2	4	1	2	3	3	5	31	36,90
12	HCA	5	2	1	1	4	2	3	2	3	4	27	32,14
13	KA	4	4	2	1	1	2	1	1	3	2	21	25
14	MA	5	5	1	1	2	1	3	1	2	3	24	28,57
15	MCS	5	3	1	2	2	2	2	1	2	2	22	26,19
16	MNR	5	5	2	2	3	2	3	1	2	2	27	32,14
17	MA	4	2	1	1	2	1	4	2	3	2	22	26,19
18	MNN	5	5	1	2	3	1	3	1	3	2	26	30,95
19	MA	5	4	1	1	2	2	2	1	1	2	21	25

20	MH	5	4	1	1	2	2	2	1	2	2	22	26,19
21	MRR	2	2	1	1	1	2	1	1	1	2	14	16,67
22	M	4	4	2	2	2	1	1	2	3	4	25	29,76
23	NUR	5	4	1	1	3	1	3	1	2	2	23	27,38
24	NKI	5	4	2	2	2	2	3	1	3	3	27	32,14
25	NAM	6	3	1	2	2	2	2	2	5	2	27	32,14
26	NPK	3	4	2	2	3	2	3	1	3	4	27	32,14
27	NAS	4	4	2	2	2	1	2	1	3	4	25	29,76
28	NFA	5	3	1	2	3	2	2	1	3	2	24	28,57
29	NMS	5	4	1	1	2	2	3	1	4	3	26	30,95
30	RA	5	3	1	2	2	2	2	2	2	4	25	29,76
31	R	5	4	2	1	2	1	1	2	3	4	25	29,76
32	RPL	4	4	1	1	2	1	1	2	0	0	16	19,05
33	RQN	5	4	2	2	2	2	3	1	3	5	29	34,52
34	SNS	2	2	2	2	2	3	1	1	1	1	17	20,24
35	UA	5	2	2	2	2	1	1	2	2	4	23	27,38
36	VAF	2	2	2	2	2	3	1	1	1	1	17	20,24
Ju	ımlah	161	125	51	55	76	58	82	50	80	94		
Rat	a-Rata	4,472	3,472	1,417	1,528	2,111	1,611	2,278	1,389	2,222	2,611		
		•	•			Jumla	ah	•	•				990,48
						Rata-R	ata						27,51

Lampiran 11 Hasil Posttest Berpikir Kritis Kelas Kontrol

Mo	Siswa				Nomo	r Soal da	n Skor P	erolehan	l			Jumlah	Nilai
No	Siswa	1	2	3	4	5	6	7	8	9	10	Skor	IVIIai
1	ARW	4	2	8	6	4	6	9	3	7	9	58	69,05
2	AIM	8	2	5	4	6	7	10	3	8	9	62	73,81
3	ASA	5	4	8	6	6	6	9	3	8	9	64	76,19
4	AAR	4	4	0	3	2	0	0	1	2	3	19	22,62
5	AA	7	3	2	2	6	5	6	2	6	8	47	55,95
6	AH	5	0	6	3	0	6	0	7	8	10	45	53,57
7	ASS	5	2	8	6	6	6	9	3	8	8	61	72,62
8	AAB	7	2	8	6	6	6	9	3	8	9	64	76,19
9	CIN	4	4	3	2	2	5	6	2	4	6	38	45,24
10	DS	6	7	8	6	6	6	9	3	8	9	68	80,95
11	EAA	7	7	6	6	6	6	6	2	8	10	64	76,19
12	HCA	7	8	2	0	6	7	11	3	8	8	60	71,43
13	KA	5	4	8	6	6	6	9	3	8	9	64	76,19
14	MA	8	7	8	7	6	8	11	3	8	10	76	90,48
15	MCS	5	4	8	5	6	6	9	3	8	8	62	73,81
16	MNR	8	7	8	5	6	8	9	1	8	8	68	80,95
17	MA	4	2	8	6	6	8	11	3	8	10	66	78,57
18	MNN	6	7	8	6	6	7	11	2	8	10	71	84,52
19	MA	6	2	2	2	6	4	6	1	6	8	43	51,19

20	MH	7	2	5	6	6	6	9	3	8	9	61	72,62
21	MRR	4	4	2	1	2	4	6	2	2	3	30	35,71
22	M	5	4	7	6	6	8	9	3	8	10	66	78,57
23	NUR	5	4	8	2	6	8	11	3	6	8	61	72,62
24	NKI	7	4	8	3	6	7	10	3	8	8	64	76,19
25	NAM	4	4	8	2	6	6	9	3	8	3	53	63,10
26	NPK	6	4	8	1	6	8	11	3	8	9	64	76,19
27	NAS	5	4	8	6	6	6	9	3	8	10	65	77,38
28	NFA	4	2	7	2	6	5	10	2	4	6	48	57,14
29	NMS	8	7	8	8	6	8	11	3	8	10	77	91,67
30	RA	5	7	8	3	6	8	11	3	8	6	65	77,38
31	R	6	4	3	4	4	6	9	3	7	8	54	64,29
32	RPL	5	7	8	6	6	8	9	3	8	9	69	82,14
33	RQN	6	4	8	6	6	6	10	3	8	10	67	79,76
34	SNS	4	4	8	6	6	6	9	3	8	10	64	76,19
35	UA	7	4	8	4	6	5	9	3	7	10	63	75
36	VAF	7	7	8	5	6	6	9	3	8	0	59	70,24
Ju	ımlah	206	154	234	158	194	224	311	100	259	290		
Rat	ta-Rata	5,722	4,278	6,5	4,389	5,389	6,222	8,639	2,778	7,194	8,056		
	_					Juml	ah						2535,71
	-					Rata-l	Rata					_	70,44

Lampiran 12 Hasil Pretest Pemahaman Konsep Kelas Eksperimen

No	Siswa				Nomor	Soal dan	Skor Pe	rolehan				Jumlah	Nilai
NO		1	2	3	4	5	6	7	8	9	10	Skor	Milai
1	ANA	2	3	2	3	1	3	2	3	2	3	24	27,273
2	ASN	4	3	2	3	2	2	2	3	5	3	29	32,955
3	ANH	4	2	2	3	3	2	2	5	3	2	28	31,818
4	AL	4	2	3	3	2	2	2	3	3	2	26	29,545
5	CAZ	4	2	3	3	3	2	2	4	3	4	30	34,091
6	DAM	2	3	2	3	1	3	2	5	2	2	25	28,409
7	DAS	3	2	2	5	3	3	0	3	3	5	29	32,955
8	DDR	4	3	2	3	2	2	2	3	3	7	31	35,227
9	DI	4	2	2	5	3	3	2	4	3	3	31	35,227
10	EAW	4	3	6	4	2	2	2	3	5	3	34	38,636
11	FDP	3	2	2	3	2	2	2	3	5	3	27	30,682
12	FAY	2	2	2	2	1	2	2	3	3	2	21	23,864
13	HN	4	3	2	3	2	2	2	3	5	3	29	32,955
14	HI	2	3	2	3	1	2	2	2	2	2	21	23,864
15	JAR	3	2	2	3	2	2	2	5	5	3	29	32,955
16	KNS	3	3	2	3	2	2	2	3	3	2	25	28,409
17	LC	3	2	2	5	3	3	2	5	5	2	32	36,364
18	MAB	2	2	2	2	1	2	2	3	3	2	21	23,864
19	MNF	2	2	2	2	1	2	2	3	3	2	21	23,864

20	MDN	4	2	2	3	1	2	6	5	3	2	30	34,091
21	MSA	2	1	2	2	2	2	2	5	3	2	23	26,136
22	MN	3	2	2	3	2	2	2	3	6	2	27	30,682
23	MSM	2	2	2	3	1	3	1	3	2	3	22	25,000
24	NAA	4	3	2	2	2	2	2	3	5	3	28	31,818
25	NZS	3	2	2	3	2	2	2	5	3	2	26	29,545
26	NKA	4	3	6	5	2	2	2	3	3	3	33	37,500
27	SA	4	3	2	3	2	2	2	3	5	3	29	32,955
28	SSW	3	2	2	3	2	2	2	3	3	2	24	27,273
29	SRW	2	2	2	3	1	2	2	5	3	2	24	27,273
30	SMQA	3	2	2	4	3	2	2	4	3	2	27	30,682
31	TW	3	2	2	3	2	2	2	5	3	2	26	29,545
32	UA	4	3	2	3	2	2	2	3	3	3	27	30,682
33	VFS	3	2	3	3	2	2	2	3	2	2	24	27,273
34	YFL	3	2	3	3	2	2	2	3	5	2	27	30,682
35	ZSA	3	2	2	3	2	2	2	4	5	2	27	30,682
36	ZE	3	2	2	5	3	3	2	5	3	2	30	34,091
Ju	mlah	112	83	84	115	70	79	73	131	126	94		
Rata	ta-Rata 3,111 2,306 2,333 3,194 1,944 2,194 2,028 3,639 3,500 2,611												
						Jumla	h					_	1098,864
						Rata-Ra	ıta						30,524

Lampiran 13 Hasil Posttest Pemahaman Konsep Kelas Eksperimen

No	Siswa			N	Iomor S	Soal dar	n Skor F	Peroleha	ın			Jumlah	Nilai
NO	SISWa	1	2	3	4	5	6	7	8	9	10	Skor	IVIIai
1	ANA	8	2	12	8	2	7	8	6	10	9	72	81,82
2	ASN	7	6	12	8	3	7	8	6	12	9	78	88,64
3	ANH	8	7	12	8	3	7	8	6	10	9	78	88,64
4	AL	7	2	9	6	2	4	4	6	6	5	51	57,95
5	CAZ	8	2	12	8	0	7	8	6	6	3	60	68,18
6	DAM	7	6	12	8	3	7	8	6	12	9	78	88,64
7	DAS	8	7	9	8	3	7	8	6	6	9	71	80,68
8	DDR	8	7	12	8	3	7	8	6	12	9	80	90,91
9	DI	8	5	12	8	3	7	8	6	10	9	76	86,36
10	EAW	8	2	12	8	3	7	8	4	12	9	73	82,95
11	FDP	8	6	12	8	3	7	8	6	12	9	79	89,77
12	FAY	8	4	12	7	3	7	8	6	6	9	70	79,55
13	HN	7	8	8	8	3	7	8	6	12	9	76	86,36
14	HI	8	7	12	4	3	7	8	6	12	9	76	86,36
15	JAR	8	7	12	7	3	7	8	6	12	9	79	89,77
16	KNS	8	7	12	7	3	7	8	6	12	9	79	89,77
17	LC	3	2	6	4	3	2	4	6	6	4	40	45,45
18	MAB	8	4	12	7	3	7	8	6	0	9	64	72,73
19	MNF	7	4	12	7	3	7	8	6	6	9	69	78,41

20	MDN	8	4	12	7	3	7	8	6	12	12	79	89,77
21	MSA	8	4	12	9	3	7	8	6	6	9	72	81,82
22	MN	8	6	12	7	3	4	8	6	12	9	75	85,23
23	MSM	7	7	9	7	3	4	8	6	10	9	70	79,55
24	NAA	8	7	12	8	2	7	8	6	10	9	77	87,50
25	NZS	8	2	12	8	2	7	8	6	10	9	72	81,82
26	NKA	8	7	12	8	2	7	8	6	12	9	79	89,77
27	SA	8	7	12	8	2	7	8	6	10	9	77	87,50
28	SSW	8	2	10	8	3	7	2	0	0	0	40	45,45
29	SRW	8	7	12	8	3	7	8	6	12	9	80	90,91
30	SMQA	7	2	12	8	2	7	8	4	3	4	57	64,77
31	TW	7	2	12	8	2	7	8	6	10	9	71	80,68
32	UA	8	8	12	8	3	7	8	6	12	9	81	92,05
33	VFS	8	8	8	8	3	7	8	6	10	9	75	85,23
34	YFL	8	2	9	8	2	7	8	2	10	7	63	71,59
35	ZSA	5	6	12	7	3	4	8	6	10	9	70	79,55
36	ZE	3	2	7	4	3	7	4	6	6	5	47	53,41
Jumlah 267 178 399 266 96 235 270 202 329 292													
Rat	a-Rata	7,42	4,94	11,08	7,39	2,67	6,53	7,5	5,61	9,14	8,11		
	•		•	•		Jum	ılah	•	•	•	•		2879,55
						Rata-	Rata						79,99

Lampiran 14 Hasil Pretest Pemahaman Konsep Kelas Kontrol

No	Siswa				Nom	or Soal da	an Skor P	erolehan	1			Jumlah	Nilai
NO	Siswa	1	2	3	4	5	6	7	8	9	10	Skor	Milai
1	ARW	3	2	3	2	2	2	6	2	3	2	27	30,682
2	AIM	3	2	3	3	1	2	2	2	3	2	23	26,136
3	ASA	2	2	4	3	2	2	2	5	3	2	27	30,682
4	AAR	2	2	3	2	1	2	2	2	3	2	21	23,864
5	AA	3	2	0	3	1	2	2	2	3	2	20	22,727
6	AH	2	2	3	4	2	2	2	2	3	2	24	27,273
7	ASS	2	2	3	2	2	2	2	5	3	4	27	30,682
8	AAB	4	2	3	2	1	2	2	2	3	2	23	26,136
9	CIN	3	2	3	1	1	2	2	2	3	2	21	23,864
10	DS	1	2	4	3	2	2	2	5	0	0	21	23,864
11	EAA	4	2	4	4	3	2	2	5	3	2	31	35,227
12	HCA	4	2	3	2	3	6	2	5	3	3	33	37,5
13	KA	2	2	4	2	3	1	2	3	5	2	26	29,545
14	MA	3	2	3	2	2	2	2	3	3	4	26	29,545
15	MCS	3	2	3	3	2	4	2	2	3	2	26	29,545
16	MNR	3	2	3	4	2	3	2	2	3	2	26	29,545
17	MA	2	2	3	2	2	2	2	5	3	4	27	30,682
18	MNN	3	2	3	2	2	3	2	3	3	2	25	28,409
19	MA	3	2	3	2	2	2	2	2	3	2	23	26,136

2	3	2	2	2	2	2	3	2	23	26,136
2	3	2	1	2	2	2	3	2	21	23,864
2	4	4	1	2	2	5	6	2	30	34,091
2	3	2	3	2	2	2	3	2	24	27,273
2	3	4	2	2	2	2	3	2	25	28,409
2	3	3	1	2	2	3	6	2	28	31,818
2	3	4	2	2	2	2	3	2	24	27,273
2	3	4	1	2	2	2	4	2	24	27,273
2	3	3	2	3	4	2	3	2	27	30,682
2	3	2	1	4	2	2	3	4	26	29,545
2	3	3	2	2	2	3	2	2	24	27,273
2	4	4	1	2	2	5	3	2	28	31,818
2	3	3	2	2	2	5	0	0	22	25
2	3	4	1	2	2	2	3	2	24	27,273
2	2	2	1	1	1	2	0	0	13	14,773
2	4	3	1	2	2	5	3	2	27	30,682
2	2	2	1	1	1	2	0	0	13	14,773
72	110	99	61	80	76	107	104	73		
2	3,056	2,75	1,694	2,222	2,111	2,972	2,889	2,028		
			Jum	ılah						1000,000
	-		Rata-	Rata	-		-	-	-	27,778
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3 2 4 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	2 3 2 2 4 4 2 3 2 2 3 4 2 3 4 2 3 4 2 3 3 2 3 2 2 3 3 2 3 3 2 4 4 2 3 3 2 4 4 2 3 4 2 2 2 2 4 3 2 2 2 72 110 99	2 3 2 1 2 4 4 1 2 3 2 3 2 3 4 2 2 3 4 2 2 3 4 1 2 3 4 1 2 3 3 2 2 3 3 2 2 3 3 2 2 4 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 2 2 1 2 2 2 1 72 110 99 61 2 3,056 2,75 1,694 Jum	2 3 2 1 2 2 4 4 1 2 2 3 2 3 2 2 3 4 2 2 2 3 4 2 2 2 3 4 1 2 2 3 4 1 2 2 3 3 2 3 2 3 3 2 2 2 4 4 1 2 2 3 3 2 2 2 4 4 1 2 2 3 4 1 2 2 3 4 1 2 2 3 4 1 2 2 3 4 1 2 2 2 1 1 1 2 2 2 1 1 7 110 99 61 80	2 3 2 1 2 2 2 4 4 1 2 2 2 3 2 3 2 2 2 3 4 2 2 2 2 3 4 2 2 2 2 3 4 1 2 2 2 3 3 2 3 4 2 3 3 2 3 4 2 3 3 2 2 2 2 4 4 1 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 4 1 2 2 2 3 3 2 2 2 2 3 4 1 2 2 2 3 4 1 2 2 2 3 4 1 2 2 2 3 4 1 2 2 2 2 2 1 1 1 1 1 1 <td>2 3 2 1 2 2 2 2 4 4 1 2 2 5 2 3 2 3 2 2 2 2 3 4 2 2 2 2 2 3 4 1 2 2 2 2 3 4 1 2 2 2 2 3 3 2 3 4 2 2 3 3 2 3 4 2 2 3 3 2 2 2 3 2 4 4 1 2 2 2 3 2 3 3 2 2 2 2 5 2 3 4 1 2 2 2 5 2 3 4 1 2 2 2 5 2 3 4 1 2 2 2 2 2 3 4 1 2 2 2 2 2 3 4 1 2 2 2 2 2<td>2 3 2 1 2 2 2 3 2 4 4 1 2 2 5 6 2 3 2 3 2 2 2 2 3 2 3 4 2 2 2 2 3 6 2 3 4 2 2 2 2 2 3 2 3 4 1 2 2 2 2 4 2 3 4 1 2 2 2 4 2 3 3 2 3 4 2 3 2 3 3 2 3 4 2 2 3 2 3 3 2 2 2 3 2 2 4 4 1 2 2 5 3 2 3 4 1 2 2 5 3 2 3 4 1 2 2 2 3 2 3 4 1 2 2 2 3 2 3 4 1 2<td>2 3 2 1 2 2 2 3 2 2 4 4 1 2 2 5 6 2 2 3 2 3 2 2 2 3 2 2 3 4 2 2 2 2 3 2 2 3 4 2 2 2 2 3 2 2 3 4 1 2 2 2 4 2 2 3 3 2 3 4 2 3 2 2 3 3 2 3 4 2 3 2 2 3 3 2 2 2 3 4 2 2 3 3 2 2 2 3 3 2 2 2 4 4 1 2 2 5 3 2 2 3 3 2 2 2 5<td>2 3 2 1 2 2 2 3 2 21 2 4 4 1 2 2 5 6 2 30 2 3 2 3 2 2 2 3 2 24 2 3 4 2 2 2 2 3 2 25 2 3 3 1 2 2 2 3 6 2 28 2 3 4 2 2 2 2 3 2 24 2 3 4 1 2 2 2 2 4 2 24 2 3 3 2 3 4 2 3 2 27 2 3 3 2 3 4 2 3 4 26 2 3 3 2 2 2 3 4 26 2 3 3 2 2 2 3 3 2 2 2 4 4 1 2 2 5 3 2 24 2 3</td></td></td></td>	2 3 2 1 2 2 2 2 4 4 1 2 2 5 2 3 2 3 2 2 2 2 3 4 2 2 2 2 2 3 4 1 2 2 2 2 3 4 1 2 2 2 2 3 3 2 3 4 2 2 3 3 2 3 4 2 2 3 3 2 2 2 3 2 4 4 1 2 2 2 3 2 3 3 2 2 2 2 5 2 3 4 1 2 2 2 5 2 3 4 1 2 2 2 5 2 3 4 1 2 2 2 2 2 3 4 1 2 2 2 2 2 3 4 1 2 2 2 2 2 <td>2 3 2 1 2 2 2 3 2 4 4 1 2 2 5 6 2 3 2 3 2 2 2 2 3 2 3 4 2 2 2 2 3 6 2 3 4 2 2 2 2 2 3 2 3 4 1 2 2 2 2 4 2 3 4 1 2 2 2 4 2 3 3 2 3 4 2 3 2 3 3 2 3 4 2 2 3 2 3 3 2 2 2 3 2 2 4 4 1 2 2 5 3 2 3 4 1 2 2 5 3 2 3 4 1 2 2 2 3 2 3 4 1 2 2 2 3 2 3 4 1 2<td>2 3 2 1 2 2 2 3 2 2 4 4 1 2 2 5 6 2 2 3 2 3 2 2 2 3 2 2 3 4 2 2 2 2 3 2 2 3 4 2 2 2 2 3 2 2 3 4 1 2 2 2 4 2 2 3 3 2 3 4 2 3 2 2 3 3 2 3 4 2 3 2 2 3 3 2 2 2 3 4 2 2 3 3 2 2 2 3 3 2 2 2 4 4 1 2 2 5 3 2 2 3 3 2 2 2 5<td>2 3 2 1 2 2 2 3 2 21 2 4 4 1 2 2 5 6 2 30 2 3 2 3 2 2 2 3 2 24 2 3 4 2 2 2 2 3 2 25 2 3 3 1 2 2 2 3 6 2 28 2 3 4 2 2 2 2 3 2 24 2 3 4 1 2 2 2 2 4 2 24 2 3 3 2 3 4 2 3 2 27 2 3 3 2 3 4 2 3 4 26 2 3 3 2 2 2 3 4 26 2 3 3 2 2 2 3 3 2 2 2 4 4 1 2 2 5 3 2 24 2 3</td></td></td>	2 3 2 1 2 2 2 3 2 4 4 1 2 2 5 6 2 3 2 3 2 2 2 2 3 2 3 4 2 2 2 2 3 6 2 3 4 2 2 2 2 2 3 2 3 4 1 2 2 2 2 4 2 3 4 1 2 2 2 4 2 3 3 2 3 4 2 3 2 3 3 2 3 4 2 2 3 2 3 3 2 2 2 3 2 2 4 4 1 2 2 5 3 2 3 4 1 2 2 5 3 2 3 4 1 2 2 2 3 2 3 4 1 2 2 2 3 2 3 4 1 2 <td>2 3 2 1 2 2 2 3 2 2 4 4 1 2 2 5 6 2 2 3 2 3 2 2 2 3 2 2 3 4 2 2 2 2 3 2 2 3 4 2 2 2 2 3 2 2 3 4 1 2 2 2 4 2 2 3 3 2 3 4 2 3 2 2 3 3 2 3 4 2 3 2 2 3 3 2 2 2 3 4 2 2 3 3 2 2 2 3 3 2 2 2 4 4 1 2 2 5 3 2 2 3 3 2 2 2 5<td>2 3 2 1 2 2 2 3 2 21 2 4 4 1 2 2 5 6 2 30 2 3 2 3 2 2 2 3 2 24 2 3 4 2 2 2 2 3 2 25 2 3 3 1 2 2 2 3 6 2 28 2 3 4 2 2 2 2 3 2 24 2 3 4 1 2 2 2 2 4 2 24 2 3 3 2 3 4 2 3 2 27 2 3 3 2 3 4 2 3 4 26 2 3 3 2 2 2 3 4 26 2 3 3 2 2 2 3 3 2 2 2 4 4 1 2 2 5 3 2 24 2 3</td></td>	2 3 2 1 2 2 2 3 2 2 4 4 1 2 2 5 6 2 2 3 2 3 2 2 2 3 2 2 3 4 2 2 2 2 3 2 2 3 4 2 2 2 2 3 2 2 3 4 1 2 2 2 4 2 2 3 3 2 3 4 2 3 2 2 3 3 2 3 4 2 3 2 2 3 3 2 2 2 3 4 2 2 3 3 2 2 2 3 3 2 2 2 4 4 1 2 2 5 3 2 2 3 3 2 2 2 5 <td>2 3 2 1 2 2 2 3 2 21 2 4 4 1 2 2 5 6 2 30 2 3 2 3 2 2 2 3 2 24 2 3 4 2 2 2 2 3 2 25 2 3 3 1 2 2 2 3 6 2 28 2 3 4 2 2 2 2 3 2 24 2 3 4 1 2 2 2 2 4 2 24 2 3 3 2 3 4 2 3 2 27 2 3 3 2 3 4 2 3 4 26 2 3 3 2 2 2 3 4 26 2 3 3 2 2 2 3 3 2 2 2 4 4 1 2 2 5 3 2 24 2 3</td>	2 3 2 1 2 2 2 3 2 21 2 4 4 1 2 2 5 6 2 30 2 3 2 3 2 2 2 3 2 24 2 3 4 2 2 2 2 3 2 25 2 3 3 1 2 2 2 3 6 2 28 2 3 4 2 2 2 2 3 2 24 2 3 4 1 2 2 2 2 4 2 24 2 3 3 2 3 4 2 3 2 27 2 3 3 2 3 4 2 3 4 26 2 3 3 2 2 2 3 4 26 2 3 3 2 2 2 3 3 2 2 2 4 4 1 2 2 5 3 2 24 2 3

Lampiran 15 Hasil Posttest Pemahaman Konsep Kelas Kontrol

No	Siswa			No	mor So	al dan S	kor Per	olehan				Jumlah	Nilai
NO	SISWa	1	2	3	4	5	6	7	8	9	10	Skor	IVIIai
1	ARW	3	2	12	6	3	6	7	6	9	10	64	72,727
2	AIM	8	2	10	6	3	6	7	6	12	10	70	79,545
3	ASA	5	2	12	6	3	6	6	6	12	10	68	77,273
4	AAR	5	2	0	0	3	4	4	1	3	3	25	28,409
5	AA	8	2	3	3	3	4	4	4	6	7	44	50
6	AH	6	0	12	3	3	5	0	4	12	11	56	63,636
7	ASS	6	2	12	6	3	6	6	6	12	6	65	73,864
8	AAB	8	2	12	6	3	6	6	6	12	10	71	80,682
9	CIN	2	2	6	3	2	4	4	4	3	5	35	39,773
10	DS	5	7	12	6	3	6	6	6	12	10	73	82,955
11	EAA	7	7	9	6	3	6	4	4	12	11	69	78,409
12	HCA	7	2	3	0	3	6	6	6	12	3	48	54,545
13	KA	6	2	12	6	3	6	7	6	12	10	70	79,545
14	MA	8	7	12	8	3	6	6	6	12	11	79	89,773
15	MCS	5	2	9	5	3	6	5	6	12	5	58	65,909
16	MNR	8	6	12	4	3	8	6	4	12	5	68	77,273
17	MA	6	2	12	6	2	6	6	6	12	11	69	78,409
18	MNN	7	7	12	6	3	8	6	4	12	11	76	86,364
19	MA	7	2	3	3	3	4	4	4	6	5	41	46,591

20	МН	7	2	10	6	3	6	8	6	12	10	70	79,545
21	MRR	2	2	3	3	1	4	4	4	3	3	29	32,955
22	M	6	2	12	6	3	6	7	6	12	11	71	80,682
23	NUR	6	2	12	3	3	6	6	6	6	5	55	62,5
24	NKI	7	2	12	2	3	6	6	6	12	5	61	69,3182
25	NAM	2	2	12	3	3	6	6	6	12	3	55	62,5
26	NPK	5	2	12	0	3	6	6	6	12	10	62	70,455
27	NAS	6	2	12	6	3	6	7	6	12	11	71	80,682
28	NFA	4	2	11	3	2	4	4	4	6	5	45	51,136
29	NMS	8	7	12	3	3	6	7	6	12	11	75	85,227
30	RA	6	8	12	3	3	8	7	6	12	5	70	79,545
31	R	7	2	9	4	2	6	7	6	9	5	57	64,773
32	RPL	6	6	12	6	3	6	6	6	12	10	73	82,955
33	RQN	7	2	12	6	3	6	6	6	12	11	71	80,682
34	SNS	5	2	12	6	3	6	6	6	12	10	68	77,273
35	UA	7	2	12	4	3	5	8	6	12	11	70	79,545
36	VAF	7	6	12	6	3	6	6	6	12	0	64	72,727
Ju	mlah	215	159	102	208	207	193	375	280				
Rat	a-Rata	5,97	3,13	10,11	4,41	2,83	5,77	5,75	5,36	10,41	7,77		
						Jumlah	1						2518,182
					F	Rata-Ra	ta						69,949

Lampiran 16 Hasil Pretest dan Posttest Berpikir Kritis Kelas Eksperimen

Indikator 1 Interpretasi dengan sub skill dapat menuliskan apa yang ditanyakan soal dengan jelas dan tepat

No	Ciarra	Pret	est	Jumlah	M:la:	Post	ttest	Jumlah	N:lo:
No	Siswa	6	7	Skor	Nilai	6	7	skor	Nilai
1	ANA	0	0	0	0	4	4	8	100
2	ASN	0	0	0	0	4	2	6	75
3	ANH	0	0	0	0	4	4	8	100
4	AL	0	0	0	0	2	2	4	50
5	CAZ	0	0	0	0	4	4	8	100
6	DAM	0	0	0	0	4	2	6	75
7	DAS	0	0	0	0	4	2	6	75
8	DDR	0	0	0	0	4	4	8	100
9	DI	1	0	1	12,5	4	4	8	100
10	EAW	1	0	1	12,5	4	4	8	100
11	FDP	0	0	0	0	4	4	8	100
12	FAY	0	0	0	0	4	4	8	100
13	HN	0	0	0	0	4	4	8	100
14	HI	0	0	0	0	4	4	8	100
15	JAR	0	0	0	0	4	4	8	100
16	KNS	0	0	0	0	4	4	8	100

17	LC	0	0	0	0	2	2	4	50
18	MAB	0	0	0	0	4	4	8	100
19	MNF	0	0	0	0	4	4	8	100
20	MDN	0	0	0	0	4	4	8	100
21	MSA	0	0	0	0	4	4	8	100
22	MN	0	0	0	0	2	4	6	75
23	MSM	1	0	1	12,5	4	2	6	75
24	NAA	0	0	0	0	4	4	8	100
25	NZS	0	0	0	0	4	4	8	100
26	NKA	0	0	0	0	4	4	8	100
27	SA	0	0	0	0	4	4	8	100
28	SSW	0	0	0	0	4	2	6	75
29	SRW	0	0	0	0	4	4	8	100
30	SMQA	0	0	0	0	4	2	6	75
31	TW	0	0	0	0	4	4	8	100
32	UA	0	0	0	0	4	4	8	100
33	VFS	0	0	0	0	4	4	8	100
34	YFL	0	0	0	0	4	2	6	75
35	ZSA	0	0	0	0	2	4	6	75
36	ZE	0	0	0	0	4	2	6	75
J	umlah	3	0	3	37,5	136	124	260	3250
Ra	ata-Rata	0,083	0	0,083	1,042	3,778	3,444	7,222	90,278

Indikator 2 Analisis dengan sub skill dapat menuliskan apa yang harus dilakukan dalam menyelesaikan soal

Ma	Ciarra		Pret	est		Jumlah	M:la:		Pos	ttest		Jumlah	Nilai
No	Siswa	3	4	6	8	Skor	Nilai	3	4	6	8	Skor	Nilai
1	ANA	1	2	1	1	5	31,25	4	4	4	3	15	93,75
2	ASN	1	1	1	2	5	31,25	4	4	4	3	15	93,75
3	ANH	1	1	1	3	6	37,5	4	4	4	3	15	93,75
4	AL	1	1	1	1	4	25	4	3	3	2	12	75
5	CAZ	1	1	1	2	5	31,25	4	4	4	3	15	93,75
6	DAM	1	2	1	2	6	37,5	4	4	4	3	15	93,75
7	DAS	2	2	3	3	10	62,5	4	4	3	2	13	81,25
8	DDR	1	1	1	1	4	25	4	4	4	3	15	93,75
9	DI	2	2	3	3	10	62,5	4	4	4	3	15	93,75
10	EAW	2	2	1	1	6	37,5	4	4	4	2	14	87,5
11	FDP	1	1	1	2	5	31,25	4	4	4	3	15	93,75
12	FAY	1	1	1	1	4	25	4	4	4	3	15	93,75
13	HN	1	1	1	1	4	25	4	4	4	3	15	93,75
14	HI	1	1	2	2	6	37,5	4	1	4	2	11	68,75
15	JAR	1	1	1	3	6	37,5	4	4	4	2	14	87,5
16	KNS	1	1	1	1	4	25	4	4	4	2	14	87,5
17	LC	1	2	2	2	7	43,75	2	1	3	2	8	50

													1
18	MAB	1	1	1	1	4	25	4	4	4	3	15	93,75
19	MNF	1	1	1	1	4	25	4	4	4	3	15	93,75
20	MDN	1	1	1	3	6	37,5	3	4	4	3	14	87,5
21	MSA	1	1	1	3	6	37,5	4	4	4	3	15	93,75
22	MN	1	1	2	2	6	37,5	4	4	3	3	14	87,5
23	MSM	1	2	1	1	5	31,25	3	4	3	3	13	81,25
24	NAA	1	2	1	1	5	31,25	4	4	4	2	14	87,5
25	NZS	1	1	1	3	6	37,5	4	4	4	3	15	93,75
26	NKA	3	2	1	1	7	43,75	4	4	4	3	15	93,75
27	SA	1	2	1	1	5	31,25	4	4	4	3	15	93,75
28	SSW	1	1	1	1	4	25	3	4	4	0	11	68,75
29	SRW	1	1	3	3	8	50	4	4	4	3	15	93,75
30	SMQ	1	2	3	1	7	43,75	4	4	4	2	14	87,5
31	TW	1	1	2	3	7	43,75	4	4	4	2	14	87,5
32	UA	1	1	1	1	4	25	4	4	4	3	15	93,75
33	VFS	2	1	1	1	5	31,25	4	4	4	3	15	93,75
34	YFL	2	1	1	1	5	31,25	2	4	2	1	9	56,25
35	ZSA	1	1	1	2	5	31,25	4	4	3	3	14	87,5
36	ZE	1	2	1	2	6	37,5	2	1	4	2	9	56,25
Ju	mlah	43	48	48	63	202	1262,5	135	134	136	92	497	3106,25
Rat	a-Rata	1,19	1,33	1,33	1,75	5,61	35,07	3,75	3,722	3,778	2,556	13,806	86,285

Indikator 3 Evaluasi dengan sub skill menuliskan tentang penyelesaian soal

No	Siswa		Pretest		Jumlah	Nilai		Posttest		Jumlah	Nilai
NO	Siswa	3	4	10	Skor	INIIai	3	4	10	Skor	Milai
1	ANA	0	0	0	0	0	4	4	3	11	91,67
2	ASN	1	0	0	1	8,3	4	4	3	11	91,67
3	ANH	0	0	0	0	0	4	4	3	11	91,67
4	AL	0	0	0	0	0	3	2	1	6	50,00
5	CAZ	1	0	0	1	8,3	4	4	1	9	75,00
6	DAM	0	0	0	0	0	4	4	3	11	91,67
7	DAS	1	0	0	1	8,3	4	2	3	9	75,00
8	DDR	0	0	2	2	16,7	4	4	3	11	91,67
9	DI	1	0	0	1	8,3	4	4	3	11	91,67
10	EAW	2	0	0	2	16,7	4	4	3	11	91,67
11	FDP	0	0	0	0	0	4	4	3	11	91,67
12	FAY	0	0	0	0	0	4	3	3	10	83,33
13	HN	0	0	0	0	0	4	4	3	11	91,67
14	HI	0	0	0	0	0	4	1	3	8	66,67
15	JAR	0	0	0	0	0	4	3	3	10	83,33
16	KNS	0	0	0	0	0	4	3	3	10	83,33
17	LC	0	0	0	0	0	2	1	1	4	33,33
18	MAB	0	0	0	0	0	4	3	3	10	83,33

											1
19	MNF	0	0	0	0	0	4	3	3	10	83,33
20	MDN	0	0	0	0	0	3	3	4	10	83,33
21	MSA	0	0	0	0	0	4	3	3	10	83,33
22	MN	0	0	0	0	0	4	3	3	10	83,33
23	MSM	0	0	0	0	0	4	3	3	10	83,33
24	NAA	0	0	0	0	0	4	4	3	11	91,67
25	NZS	0	0	0	0	0	4	4	3	11	91,67
26	NKA	3	0	0	3	25	4	4	3	11	91,67
27	SA	1	0	0	1	8,3	4	4	3	11	91,67
28	SSW	0	0	0	0	0	2	4	0	6	50,00
29	SRW	0	0	0	0	0	4	4	3	11	91,67
30	SMQA	1	0	0	1	8,3	4	4	1	9	75,00
31	TW	0	0	0	0	0	4	4	3	11	91,67
32	UA	0	0	0	0	0	4	4	3	11	91,67
33	VFS	1	0	0	1	8,3	4	4	3	11	91,67
34	YFL	1	0	0	1	8,3	2	4	1	7	58,33
35	ZSA	0	0	0	0	0	4	3	3	10	83,33
36	ZE	0	0	0	0	0	2	1	1	4	33,33
J	umlah	13	0	2	15	125	134	121	94	349	2908,333
Ra	ıta-Rata	0,361	0	0,056	0,417	3,472	3,72	3,36	2,61	9,69	80,787

Indikator 4 Inferensi dengan sub skill dapat menarik kesimpulan dari apa yang ditanyakan secara logis

No	Siswa			Pre	test			Jumlah	Nilai			Post	test			Jumlah	Nilai
NO	Siswa	1	2	5	7	9	10	Skor	INIIai	1	2	5	7	9	10	Skor	Milai
1	ANA	2	3	1	2	1	1	10	41,7	4	4	2	4	3	3	20	83,33
2	ASN	3	3	1	2	2	1	12	50	3	3	3	4	3	3	19	79,17
3	ANH	3	3	2	1	2	1	12	50	4	4	3	3	3	4	21	87,50
4	AL	4	4	2	1	2	2	15	62,5	4	4	2	2	2	2	16	66,67
5	CAZ	3	3	2	1	1	1	11	45,8	4	4	0	4	2	1	15	62,50
6	DAM	3	2	2	1	2	1	11	45,8	3	3	3	4	3	3	19	79,17
7	DAS	4	2	2	0	1	4	13	54,2	3	3	3	4	3	3	19	79,17
8	DDR	4	4	2	1	2	4	17	70,8	4	4	3	4	3	3	21	87,50
9	DI	4	4	2	1	2	4	17	70,8	4	4	3	4	3	4	22	91,67
10	EAW	4	4	2	1	2	1	14	58,3	4	4	3	4	3	3	21	87,50
11	FDP	4	4	1	1	2	1	13	54,2	4	0	3	4	3	3	17	70,83
12	FAY	2	3	1	1	2	1	10	41,7	4	4	3	4	1	3	19	79,17
13	HN	3	4	2	1	2	1	13	54,2	3	3	3	4	3	3	19	79,17
14	HI	2	3	1	2	3	1	12	50	4	4	3	4	3	3	21	87,50
15	JAR	3	3	1	1	2	1	11	45,8	4	4	3	4	3	3	21	87,50
16	KNS	4	3	1	1	2	1	12	50	4	4	3	3	3	3	20	83,33
17	LC	4	4	2	1	2	2	15	62,5	2	4	3	2	2	2	15	62,50
18	MAB	2	3	1	1	2	1	10	41,7	4	4	3	4	0	4	19	79,17
19	MNF	2	3	1	1	2	1	10	41,7	4	4	3	4	1	4	20	83,33
20	MDN	3	3	1	3	2	1	13	54,2	4	4	3	4	3	4	22	91,67
21	MSA	2	3	1	1	2	1	10	41,7	4	4	3	4	1	3	19	79,17

22	MN	4	3	2	1	2	2	14	58,3	4	4	3	4	3	3	21	87,50
23	MSM	3	2	1	2	1	3	12	50	3	4	3	4	3	3	20	83,33
24	NAA	4	4	2	1	2	1	14	58,3	4	3	2	4	3	3	19	79,17
25	NZS	4	4	2	1	2	2	15	62,5	4	4	2	4	3	4	21	87,50
26	NKA	4	4	1	1	2	1	13	54,2	4	4	2	4	3	3	20	83,33
27	SA	4	4	1	1	2	1	13	54,2	4	4	2	4	3	4	21	87,50
28	SSW	4	4	1	1	2	1	13	54,2	4	4	3	3	0	0	14	58,33
29	SRW	2	4	1	1	2	2	12	50	4	4	3	4	3	4	22	91,67
30	SMQA	4	4	2	1	2	1	14	58,3	4	4	2	4	1	2	17	70,83
31	TW	4	4	2	1	2	2	15	62,5	4	4	2	4	2	3	19	79,17
32	UA	3	3	2	1	2	1	12	50	4	3	3	4	3	3	20	83,33
33	VFS	4	4	1	1	2	1	13	54,2	4	4	3	4	3	4	22	91,67
34	YFL	4	2	2	1	2	2	13	54,2	4	4	4	4	3	4	23	95,83
35	ZSA	4	4	2	1	2	2	15	62,5	4	4	3	4	3	4	22	91,67
36	ZE	4	4	2	1	2	2	15	62,5	2	4	3	2	2	4	17	70,83
Ju	ımlah	121	122	55	41	69	56	464	1933,33	135	134	98	135	89	112	703	2929,16
Rat	ta-Rata	3,36	3,38	1,52	1,13	1,91	1,55	12,8	53,7	3,75	3,72	2,72	3,75	2,47	3,11	19,53	81,366

Indikator 5 Eksplanasi dengan sub skill dapat menulis hasil akhir dan memberikan alasan tentang kesimpulan yang diambil

Ma	Nama			Pre	test			Jumlah	Nilai			Pos	ttest			Jumlah	Nilai
No	Nama	1	2	5	7	9	10	Skor	Milai	1	2	5	7	9	10	Skor	Milai
1	ANA	0	1	1	1	0	0	3	12,5	3	0	2	3	3	3	14	58,33
2	ASN	1	1	1	1	1	0	5	20,8	3	3	3	3	3	3	18	75
3	ANH	2	1	1	1	0	0	5	20,8	3	3	3	3	3	3	18	75
4	AL	2	0	1	0	0	0	3	12,5	2	0	2	2	2	1	9	37,5
5	CAZ	1	1	1	1	1	1	6	25,0	3	0	0	3	2	1	9	37,5
6	DAM	0	1	1	1	0	0	3	12,5	3	3	3	3	3	3	18	75
7	DAS	1	0	2	0	0	0	3	12,5	3	3	3	3	2	3	17	70,83
8	DDR	1	1	1	1	0	2	6	25,0	3	3	3	3	3	3	18	75
9	DI	1	0	2	1	0	0	4	16,7	3	2	3	3	3	3	17	70,83
10	EAW	1	1	1	1	0	0	4	16,7	3	3	3	3	3	3	18	75
11	FDP	0	0	1	1	0	0	2	8,3	3	1	3	3	3	3	16	66,67
12	FAY	1	1	1	1	0	0	4	16,7	3	1	3	3	1	3	14	58,33
13	HN	1	1	1	1	0	0	4	16,7	3	3	3	3	3	3	18	75
14	HI	0	1	1	1	1	0	4	16,7	2	3	3	3	3	3	17	70,83
15	JAR	1	1	1	1	0	0	4	16,7	2	3	3	3	3	3	17	70,83
16	KNS	1	1	1	1	0	0	4	16,7	3	3	3	3	3	3	18	75
17	LC	0	0	1	0	0	0	1	4,2	0	0	3	2	2	1	8	33,33
18	MAB	1	1	1	1	0	0	4	16,7	3	1	3	3	0	3	13	54,17
19	MNF	1	1	1	1	0	0	4	16,7	3	1	3	3	1	3	14	58,33
20	MDN	1	1	1	2	0	0	5	20,8	3	1	3	3	3	4	17	70,83
21	MSA	1	0	1	1	0	0	3	12,5	3	1	3	3	1	3	14	58,33
22	MN	0	0	1	1	1	0	3	12,5	3	3	3	3	3	3	18	75

23	MSM	0	1	1	0	1	1	4	16,7	3	3	2	2	3	3	16	66,67
24	NAA	2	1	1	1	1	0	6	25,0	3	3	2	3	3	3	17	70,83
25	NZS	0	0	1	1	0	0	2	8,3	3	0	2	3	3	3	14	58,33
26	NKA	1	1	1	1	0	0	4	16,7	3	3	2	3	3	3	17	70,83
27	SA	2	1	1	1	1	0	6	25,0	3	3	2	4	3	3	18	75
28	SSW	0	1	1	1	0	0	3	12,5	3	0	3	1	0	0	7	29,17
29	SRW	0	0	1	1	0	0	2	8,3	3	3	3	3	3	3	18	75
30	SMQA	2	1	2	1	0	0	6	25,0	2	0	2	3	1	1	9	37,5
31	TW	0	0	1	1	0	0	2	8,3	3	0	2	3	2	3	13	54,17
32	UA	1	1	1	1	0	0	4	16,7	4	3	3	3	3	3	19	79,17
33	VFS	0	0	1	0	0	0	1	4,2	3	3	3	3	3	3	18	75
34	YFL	0	0	1	0	0	0	1	4,2	3	0	2	3	3	1	12	50
35	ZSA	0	0	1	1	1	0	3	12,5	3	3	3	4	3	3	19	79,17
36	ZE	0	0	2	0	0	0	2	8,3	0	1	3	2	2	1	9	37,5
Ju	ımlah	26	22	40	30	8	4	130	541,67	99	66	95	104	88	94	546	2275
Rat	ta-Rata	0,72	0,61	1,11	0,83	0,22	0,11	3,61	15,04	2,75	1,83	2,64	2,89	2,44	2,61	15,17	63,194

Lampiran 17 Hasil Pretest dan Posttest Berpikir Kritis Kelas Kontrol

Indikator 1 Interpretasi dengan sub skill dapat menuliskan apa yang ditanyakan soal dengan jelas dan tepat

No	Siswa	Prete	est	Jumlah	Nilai	Postt	est	Jumlah	Nilai
NO	Siswa	6	7	Skor	Iviiai	6	7	skor	Iviiai
1	ARW	1	0	1	12,5	2	2	4	50
2	AIM	0	0	0	0	3	3	6	75
3	ASA	0	0	0	0	2	2	4	50
4	AAR	0	0	0	0	2	2	4	50
5	AA	0	0	0	0	2	2	4	50
6	AH	0	0	0	0	2	0	2	25
7	ASS	0	0	0	0	2	2	4	50
8	AAB	1	0	1	12,5	2	2	4	50
9	CIN	0	0	0	0	2	2	4	50
10	DS	0	0	0	0	2	2	4	50
11	EAA	0	0	0	0	2	2	4	50
12	HCA	0	0	0	0	4	4	8	100
13	KA	0	0	0	0	2	2	4	50
14	MA	0	0	0	0	4	4	8	100
15	MCS	0	0	0	0	2	2	4	50

16	MNR	0	0	0	0	4	2	6	75
17	MA	0	0	0	0	4	4	8	100
18	MNN	0	0	0	0	4	4	8	100
19	MA	0	0	0	0	2	2	4	50
20	MH	0	0	0	0	2	2	4	50
21	MRR	0	0	0	0	2	2	4	50
22	M	0	0	0	0	4	2	6	75
23	NUR	0	0	0	0	4	4	8	100
24	NKI	0	0	0	0	3	3	6	75
25	NAM	0	0	0	0	2	2	4	50
26	NPK	0	0	0	0	4	4	8	100
27	NAS	0	0	0	0	2	2	4	50
28	NFA	0	0	0	0	2	3	5	62,5
29	NMS	0	0	0	0	4	4	8	100
30	RA	1	0	1	12,5	4	4	8	100
31	R	0	0	0	0	2	2	4	50
32	RPL	0	0	0	0	2	2	4	50
33	RQN	0	0	0	0	2	3	5	62,5
34	SNS	0	0	0	0	2	2	4	50
35	UA	0	0	0	0	2	2	4	50
36	VAF	0	0	0	0	2	2	4	50
	Jumlah	3	0	3	37,5	94	90	184	2300
F	Rata-Rata	0,083	0	0,083	1,042	2,611	2,5	5,111	63,889

Indikator 2 Analisis dengan sub skill dapat menuliskan apa yang harus dilakukan dalam menyelesaikan soal

NI -	C:		Pre	etest		Jumlah	M:1-:		Post	test		Jumlah	M:1-:
No	Siswa	3	4	6	8	Skor	Nilai	3	4	6	8	Skor	Nilai
1	ARW	1	1	2	1	5	31,25	4	3	4	3	14	87,5
2	AIM	1	1	1	1	4	25	3	2	4	3	12	75
3	ASA	1	2	1	2	6	37,5	4	3	4	3	14	87,5
4	AAR	1	1	1	1	4	25	0	0	3	1	4	25
5	AA	1	1	1	1	4	25	1	2	3	2	8	50
6	AH	1	1	1	1	4	25	3	2	4	0	9	56,25
7	ASS	1	1	1	2	5	31,25	4	3	4	3	14	87,5
8	AAB	1	1	2	2	6	37,5	4	3	4	3	14	87,5
9	CIN	1	1	1	1	4	25	2	2	3	2	9	56,25
10	DS	1	2	1	2	6	37,5	4	3	4	3	14	87,5
11	EAA	1	1	1	2	5	31,25	3	3	4	2	12	75
12	HCA	1	1	2	2	6	37,5	1	0	3	3	7	43,75
13	KA	1	1	1	1	4	25	4	3	4	3	14	87,5
14	MA	1	1	1	1	4	25	4	3	4	3	14	87,5
15	MCS	1	1	2	1	5	31,25	4	2	4	3	13	81,25
16	MNR	1	1	2	1	5	31,25	4	3	4	2	13	81,25
17	MA	1	1	1	2	5	31,25	4	3	4	3	14	87,5

18	MNN	1	1	1	1	4	25	4	3	3	2	12	75
19	MA	1	1	2	1	5	31,25	1	2	2	1	6	37,5
20	MH	1	1	2	1	5	31,25	3	3	4	3	13	81,25
21	MRR	1	1	2	1	5	31,25	1	1	2	2	6	37,5
22	M	1	2	1	2	6	37,5	4	3	4	3	14	87,5
23	NUR	1	1	1	1	4	25	4	2	4	3	13	81,25
24	NKI	1	2	2	1	6	37,5	4	1	4	3	12	75
25	NAM	1	1	2	2	6	37,5	4	2	4	3	13	81,25
26	NPK	1	2	2	1	6	37,5	4	0	4	3	11	68,75
27	NAS	1	2	1	1	5	31,25	4	3	4	3	14	87,5
28	NFA	1	1	2	1	5	31,25	4	2	3	2	11	68,75
29	NMS	1	1	2	1	5	31,25	4	4	4	3	15	93,75
30	RA	1	1	2	2	6	37,5	4	2	4	3	13	81,25
31	R	1	1	1	2	5	31,25	2	3	4	3	12	75
32	RPL	1	1	1	2	5	31,25	4	3	4	3	14	87,5
33	RQN	1	2	2	1	6	37,5	4	3	4	3	14	87,5
34	SNS	1	1	1	1	4	25	4	3	4	3	14	87,5
35	UA	1	2	1	2	6	37,5	4	3	3	3	13	81,25
36	VAF	1	1	1	1	4	25	4	3	4	3	14	87,5
Ju	ımlah	36	44	51	49	180	1125	120	86	133	94	433	2706,25
Rat	ta-Rata	1	1,222	1,417	1,361	5	31,25	3,333	2,389	3,694	2,611	12,028	75,174

Indikator 3 Evaluasi dengan sub skill menuliskan tentang penyelesaian soal

Ma	Ciarra		Pretets		Jumlah	M:la:		Posttest		Jumlah	Nilai
No	Siswa	3	4	10	Skor	Nilai	3	4	10	Skor	Nilai
1	ARW	0	0	0	0	0	4	3	3	10	83,33
2	AIM	0	1	0	1	8,33	2	2	3	7	58,33
3	ASA	1	0	0	1	8,33	4	3	3	10	83,33
4	AAR	0	0	0	0	0	0	0	1	1	8,33
5	AA	0	0	0	0	0	1	0	2	3	25
6	AH	1	0	0	1	8,333	3	1	3	7	58,3
7	ASS	0	0	0	0	0	4	3	2	9	75
8	AAB	0	0	0	0	0	4	3	3	10	83,33
9	CIN	0	0	0	0	0	1	0	2	3	25
10	DS	1	0	0	1	8,33	4	3	3	10	83,33
11	EAA	1	1	0	2	16,67	3	3	3	9	75
12	HCA	0	0	1	1	8,33	1	0	2	3	25
13	KA	1	0	0	1	8,33	4	3	3	10	83,33
14	MA	0	0	1	1	8,33	4	4	3	11	91,67
15	MCS	0	1	0	1	8,33	4	3	2	9	75
16	MNR	1	1	0	2	16,67	4	2	2	8	66,67
17	MA	0	0	0	0	0	4	3	3	10	83,33
18	MNN	0	0	0	0	0	4	3	3	10	83,33

19	MA	0	0	0	0	0	1	0	2	3	25
20	MH	0	0	0	0	0	2	3	3	8	66,67
21	MRR	0	0	0	0	0	1	0	1	2	16,67
22	M	1	0	0	1	8,33	3	3	3	9	75
23	NUR	0	0	0	0	0	4	0	2	6	50
24	NKI	1	0	0	1	8,33	4	2	2	8	66,67
25	NAM	0	1	0	1	8,33	4	0	1	5	41,67
26	NPK	1	0	0	1	8,33	4	0	3	7	58,33
27	NAS	1	0	0	1	8,33	4	3	3	10	83,33
28	NFA	0	1	0	1	8,33	3	0	2	5	41,67
29	NMS	0	0	1	1	8,33	4	4	3	11	91,67
30	RA	0	1	0	1	8,33	4	1	2	7	58,33
31	R	1	0	0	1	8,33	1	1	2	4	33,33
32	RPL	0	0	0	0	0	4	3	3	10	83,33
33	RQN	1	0	0	1	8,33	4	3	3	10	83,33
34	SNS	0	0	0	0	0	4	3	3	10	83,33
35	UA	1	0	0	1	8,33	4	1	3	8	66,67
36	VAF	0	0	0	0	0	4	2	0	6	50
J	umlah	13	7	3	23	191,67	114	68	87	269	2241,667
Ra	ata-Rata	0,36	0,19	0,08	0,64	5,324	3,167	1,889	2,417	7,472	62,269

Indikator 4 Inferensi dengan sub skill dapat menarik kesimpulan dari apa yang ditanyakan secara logis

Na	Siswa			Pr	etest			Jumlah	Nilai			Post	ttest			Jumlah	Nilai
No	Siswa	1	2	5	7	9	10	Skor	Milai	1	2	5	7	9	10	Skor	Milai
1	ARW	4	4	1	3	1	2	15	62,5	1	2	2	4	4	3	16	66,67
2	AIM	4	2	1	2	1	2	12	50	4	2	3	4	4	3	20	83,33
3	ASA	4	4	1	1	3	4	17	70,83	3	2	3	4	4	3	19	79,17
4	AAR	3	4	1	1	1	2	12	50,00	4	4	2	2	1	1	14	58,33
5	AA	4	4	1	2	2	3	16	66,67	4	2	3	2	3	4	18	75
6	AH	4	4	1	2	2	4	17	70,83	3	0	3	2	4	4	16	66,67
7	ASS	3	2	1	2	2	2	12	50,00	3	2	2	4	4	3	18	75
8	AAB	4	4	1	2	2	2	15	62,5	4	2	3	4	4	3	20	83,3
9	CIN	4	3	1	1	1	2	12	50	2	2	1	2	2	2	11	45,8
10	DS	2	2	2	1	0	0	7	29,17	4	4	2	4	4	3	21	87,5
11	EAA	4	4	2	1	3	4	18	75	4	4	3	2	4	4	21	87,5
12	HCA	3	2	2	2	2	2	13	54,17	4	4	3	4	4	4	23	95,83
13	KA	4	4	1	1	2	2	14	58,33	3	4	3	4	4	3	21	87,5
14	MA	3	4	1	2	2	2	14	58,33	4	4	3	4	4	4	23	95,83
15	MCS	4	2	1	1	1	2	11	45,83	3	4	3	4	4	4	22	91,67
16	MNR	4	4	2	2	2	2	16	66,67	4	4	3	4	4	4	23	95,83
17	MA	3	2	1	2	2	2	12	50,00	4	2	3	4	4	4	21	87,5
18	MNN	4	4	2	2	1	2	15	62,5	4	4	3	4	4	4	23	95,83
19	MA	4	4	1	1	1	2	13	54,17	4	2	3	2	3	4	18	75
20	MH	3	4	1	1	1	2	12	50,00	4	2	3	4	4	3	20	83,33
21	MRR	2	2	1	1	1	2	9	37,5	2	2	1	2	1	1	9	37,5
22	M	4	4	1	1	2	4	16	66,67	3	4	3	4	4	4	22	91,67

23	NUR	4	4	2.	2.	2.	2.	16	66,67	3	4	3	4	3	4	21	87,5
24	NKI	3	4	1	2	3	2	15	62,50	4	4	3	4	4	4	23	95,83
25	NAM	4	2	2	1	3	2	14	58,33	2	4	3	4	4	1	18	75
26	NPK	3	4	2	2	3	4	18	75	4	4	3	4	4	3	22	91,67
27	NAS	4	4	2	2	3	4	19	79,17	3	4	3	4	4	4	22	91,67
28	NFA	4	2	2	1	2	2	13	54,17	2	2	3	4	2	2	15	62,5
29	NMS	3	4	1	2	2	2	14	58,33	4	4	3	4	4	4	23	95,83
30	RA	4	4	1	2	2	2	15	62,5	3	4	3	4	4	2	20	83,33
31	R	4	4	1	1	3	4	17	70,83	4	2	2	4	4	4	20	83,33
32	RPL	3	4	2	1	0	0	10	41,67	3	4	3	4	4	3	21	87,5
33	RQN	4	4	1	2	3	4	18	75	4	4	3	4	4	4	23	95,83
34	SNS	2	2	2	2	0	0	8	33,33	4	4	3	4	4	4	23	95,83
35	UA	4	2	1	1	2	4	14	58,33	4	4	3	4	4	4	23	95,83
36	VAF	2	2	2	2	0	0	8	33,33	4	4	3	2	4	0	17	70,83
Jı	umlah	126	119	49	57	63	83	497	2070,8	123	114	99	128	131	115	710	2958,3
Ra	ta-Rata	3,5	3,3	1,3	1,5	1,7	2,3	13,8	57,52	3,4	3,1	2,7	3,5	3,6	3,1	19,7	82,17

Indikator 5 Eksplanasi dengan sub skill dapat menulis hasil akhir dan memberikan alasan tentang kesimpulan yang diambil

No	Siswa			Pre	test			Jumlah	Nilai			Post	test			Jumlah	Nilai
NO	Siswa	1	2	5	7	9	10	Skor	Milai	1	2	5	7	9	10	Skor	Milai
1	ARW	1	0	1	3	0	0	5	20,833	3	0	2	3	3	3	14	58,33
2	AIM	2	0	1	1	0	0	4	16,667	4	0	3	3	4	3	17	70,83
3	ASA	1	0	1	0	0	0	2	8,333	2	2	3	3	4	3	17	70,83
4	AAR	0	0	0	1	0	0	1	4,167	0	0	0	2	1	1	4	16,67
5	AA	1	1	0	1	1	0	4	16,667	3	1	3	2	3	2	14	58,33
6	AH	0	0	0	1	0	0	1	4,167	2	0	3	2	4	3	14	58,33
7	ASS	0	0	1	2	1	0	4	16,667	2	0	3	3	4	3	15	62,50
8	AAB	3	0	1	2	0	0	6	25	3	0	3	3	4	3	16	66,67
9	CIN	0	0	0	1	0	0	1	4,167	2	2	1	2	2	2	11	45,83
10	DS	0	0	1	0	0	0	1	4,167	2	3	3	3	4	3	18	75,00
11	EAA	1	0	2	0	0	1	4	16,667	3	3	3	2	4	3	18	75,00
12	HCA	1	0	2	1	1	1	6	25	3	3	3	3	4	2	18	75,00
13	KA	0	0	1	0	1	0	2	8,33	2	0	3	0	4	3	12	50,00
14	MA	1	1	1	1	0	0	4	16,67	4	3	3	3	4	3	20	83,33
15	MCS	1	1	1	1	1	0	5	20,83	2	0	3	3	4	2	14	58,33
16	MNR	1	1	1	1	0	0	4	16,67	4	3	3	3	4	2	19	79,17
17	MA	0	0	1	2	1	0	4	16,67	0	0	3	3	4	3	13	54,17
18	MNN	1	1	1	1	1	0	5	20,83	2	3	3	3	4	3	18	75,00
19	MA	1	0	1	1	0	0	3	12,5	2	0	3	2	3	2	12	50,00
20	MH	1	0	1	1	1	0	4	16,67	3	0	3	3	4	3	16	66,67
21	MRR	0	0	0	0	0	0	0	0	2	2	1	2	1	1	9	37,50
22	M	0	0	1	0	1	0	2	8,33	2	0	3	3	4	3	15	62,50

23	NUR	1	0	1	1	0	0	3	12,5	2	0	3	3	3	2	13	54,17
24	NKI	1	0	1	1	0	1	4	16,67	3	0	3	3	4	2	15	62,50
25	NAM	2	1	1	1	2	0	7	29,17	2	0	3	3	4	1	13	54,17
26	NPK	0	0	1	1	0	0	2	8,33	2	0	3	3	4	3	15	62,50
27	NAS	0	0	1	1	0	0	2	8,33	2	0	3	3	4	3	15	62,50
28	NFA	1	1	1	1	1	0	5	20,83	2	0	3	3	2	2	12	50,00
29	NMS	1	0	1	1	2	0	5	20,83	4	3	3	3	4	3	20	83,33
30	RA	1	1	1	2	2	0	7	29,17	2	3	3	3	4	2	17	70,83
31	R	1	0	1	0	0	0	2	8,33	2	2	2	3	3	2	14	58,33
32	RPL	1	0	0	0	0	0	1	4,17	2	3	3	3	4	3	18	75,00
33	RQN	1	0	1	1	0	1	4	16,67	2	0	3	3	4	3	15	62,50
34	SNS	0	0	0	0	0	0	0	0	0	0	3	3	4	3	13	54,17
35	UA	1	0	1	0	0	0	2	8,33	3	0	3	3	3	3	15	62,50
36	VAF	0	0	0	0	0	0	0	0	3	3	3	3	4	0	16	66,67
Jı	umlah	27	8	30	31	16	4	116	483,3	83	39	99	98	128	88	535	2229,1
Ra	ta-Rata	0,75	0,22	0,83	0,86	0,44	0,11	3,22	13,4	2,30	1,083	2,75	2,722	3,55	2,44	14,86	61,92

Lampiran 18 Hasil Pretest dan Posttest Pemahaman Konsep Kelas Eksperimen

Indikator 1 Kemampuan menyatakan ulang konsep yang telah dipelajari

No	C:			Pre	test			Jumlah	NT:1 - 1			Pos	ttest			Jumlah	M:1-:
NO	Siswa	1	5	6	7	8	9	skor	Nilai	1	5	6	7	8	9	skor	Nilai
1	ANA	1	1	1	1	1	1	6	25	4	2	4	4	3	4	21	87,5
2	ASN	2	2	1	1	1	1	8	33,3	3	3	4	4	3	4	21	87,5
3	ANH	2	3	1	1	2	1	10	41,7	4	3	4	4	3	4	22	91,67
4	AL	2	2	1	1	1	1	8	33,3	4	2	2	2	3	2	15	62,5
5	CAZ	2	3	1	1	1	1	9	37,5	4	0	4	4	3	2	17	70,83
6	DAM	1	1	1	1	1	1	6	25	3	3	4	4	3	4	21	87,5
7	DAS	2	3	1	0	2	1	9	37,5	3	3	4	4	3	4	21	87,5
8	DDR	2	2	1	1	1	1	8	33,3	4	3	4	4	3	4	22	91,67
9	DI	2	3	1	1	2	1	10	41,7	4	3	4	4	3	4	22	91,67
10	EAW	2	2	1	1	1	1	8	33,3	4	3	4	4	2	4	21	87,5
11	FDP	2	2	1	1	1	1	8	33,3	4	3	4	4	3	4	22	91,67
12	FAY	1	1	1	1	1	1	6	25	4	3	4	4	3	2	20	83,33
13	HN	2	2	1	1	1	1	8	33,3	3	3	4	4	3	4	21	87,5
14	HI	1	1	1	1	1	1	6	25	4	3	4	4	3	4	22	91,67
15	JAR	2	2	1	1	2	1	9	37,5	4	3	4	4	3	4	22	91,67
16	KNS	2	2	1	1	1	1	8	33,3	4	3	4	4	3	4	22	91,67
17	LC	2	3	1	1	2	1	10	41,7	2	3	1	2	3	2	13	54,17
18	MAB	1	1	1	1	1	1	6	25	4	3	4	4	3	0	18	75
19	MNF	1	1	1	1	1	1	6	25	4	3	4	4	3	2	20	83,33
20	MDN	2	1	1	3	2	1	10	41,7	4	3	4	4	3	4	22	91,67
21	MSA	1	1	1	1	1	1	6	25	4	3	4	4	3	2	20	83,33
22	MN	2	2	1	1	1	2	9	37,5	4	3	2	4	3	4	20	83,33

23	MSM	1	2	1	1	2	1	8	33,3	4	2	4	4	3	4	21	87,5
24	NAA	2	2	1	1	1	1	8	33,3	4	2	4	4	3	4	21	87,5
25	NZS	2	2	1	1	2	1	9	37,5	4	2	4	4	3	4	21	87,5
26	NKA	2	2	1	1	1	1	8	33,3	4	2	4	4	3	4	21	87,5
27	SA	2	2	1	1	1	1	8	33,3	4	2	4	4	3	4	21	87,5
28	SSW	2	2	1	1	1	1	8	33,3	4	3	4	1	0	0	12	50
29	SRW	1	1	1	1	2	1	7	29,2	4	3	4	4	3	4	22	91,67
30	SMQA	2	3	1	1	2	1	10	41,7	4	2	4	2	2	1	15	62,5
31	TW	2	2	1	1	2	1	9	37,5	4	2	4	4	3	4	21	87,5
32	UA	2	2	1	1	1	1	8	33,3	4	3	4	4	3	4	22	91,67
33	VFS	2	2	1	1	1	1	8	33,3	4	3	4	4	3	4	22	91,67
34	YFL	2	2	1	1	1	1	8	33,3	4	2	4	4	1	4	19	79,17
35	ZSA	2	2	1	1	2	1	9	37,5	4	3	2	4	3	4	20	83,33
36	ZE	2	3	1	1	2	1	10	41,7	2	3	4	2	3	2	16	66,67
Ju	ımlah	63	70	36	37	49	37	292	1216,6	136	95	135	133	101	119	719	2995,8
Rat	ta-Rata	1,7	1,9	1	1,02	1,3	1,02	8,1	33,7	3,7	2,6	3,75	3,6	2,8	3,3	19,9	83,21

Indikator 2 Kemampuan mengklasifikasikan objek menurut sifat-sifat tertentu sesuai dengan konsepnya

No	Siswa	Pre	test	Jumlah	Nilai	Post	test	Jumlah	Nilai
NO	Siswa	6	9	Skor	Milai	6	9	skor	Milai
1	ANA	1	1	2	25	3	4	7	87,5
2	ASN	1	2	3	37,5	3	4	7	87,5
3	ANH	1	1	2	25	3	3	6	75
4	AL	1	1	2	25	2	2	4	50
5	CAZ	1	1	2	25	3	2	5	62,5
6	DAM	1	1	2	25	3	4	7	87,5
7	DAS	2	1	3	37,5	3	4	7	87,5
8	DDR	1	1	2	25	3	4	7	87,5
9	DI	2	1	3	37,5	3	3	6	75
10	EAW	1	2	3	37,5	3	4	7	87,5
11	FDP	1	2	3	37,5	3	4	7	87,5
12	FAY	1	1	2	25	3	2	5	62,5
13	HN	1	2	3	37,5	3	4	7	87,5
14	HI	1	1	2	25	3	4	7	87,5
15	JAR	1	2	3	37,5	3	4	7	87,5
16	KNS	1	1	2	25	3	4	7	87,5
17	LC	2	2	4	50	1	2	3	37,5
18	MAB	1	1	2	25	4	0	4	50
19	MNF	1	1	2	25	3	2	5	62,5

20	MDN	1	1	2	25	3	4	7	87,5
21	MSA	1	1	2	25	3	2	5	62,5
22	MN	2	2	4	50	2	4	6	75
23	MSM	1	1	2	25	3	3	6	75
24	NAA	1	2	3	37,5	3	3	6	75
25	NZS	1	1	2	25	3	3	6	75
26	NKA	1	1	2	25	3	4	7	87,5
27	SA	1	2	3	37,5	3	3	6	75
28	SSW	1	1	2	25	3	0	3	37,5
29	SRW	1	1	2	25	3	4	7	87,5
30	SMQA	1	1	2	25	3	1	4	50
31	TW	1	1	2	25	3	3	6	75
32	UA	1	1	2	25	3	4	7	87,5
33	VFS	1	1	2	25	3	3	6	75
34	YFL	1	2	3	37,5	3	3	6	75
35	ZSA	1	2	3	37,5	2	3	5	62,5
36	ZE	2	1	3	37,5	3	2	5	62,5
	Jumlah	41	47	88	1100	104	109	213	2662,5
F	Rata-Rata	1,139	1,306	2,444	30,556	2,889	3,028	5,917	73,958

Indikator 3 Kemampuan menerapkan konsep secara algoritma dalam pemecahan masalah

NI -	C:		Pretest		Jumlah	NI:1-:		Posttest		Jumlah	NI:1-:
No	Siswa	2	3	10	Skor	Nilai	2	3	10	Skor	Nilai
1	ANA	0	1	1	2	16,7	1	4	3	8	66,67
2	ASN	1	1	1	3	25	3	4	3	10	83,33
3	ANH	1	1	1	3	25	3	4	3	10	83,33
4	AL	1	1	1	3	25	1	3	1	5	41,67
5	CAZ	1	1	1	3	25	1	4	1	6	50
6	DAM	0	1	1	2	16,7	3	4	3	10	83,33
7	DAS	1	1	1	3	25	3	4	3	10	83,33
8	DDR	1	1	2	4	33	3	4	3	10	83,33
9	DI	1	1	1	3	25	2	4	3	9	75
10	EAW	1	3	1	5	41,7	1	4	3	8	66,67
11	FDP	1	1	1	3	25	3	4	3	10	83,33
12	FAY	1	1	1	3	25	2	4	3	9	75
13	HN	1	1	1	3	25	4	4	3	11	91,67
14	HI	0	1	1	2	16,7	3	4	3	10	83,33
15	JAR	1	1	1	3	25	3	4	3	10	83,33
16	KNS	1	1	1	3	25	3	4	3	10	83,33
17	LC	1	1	1	3	25	1	1	1	3	25
18	MAB	1	1	1	3	25	2	4	3	9	75
19	MNF	1	1	1	3	25	2	4	3	9	75
20	MDN	1	1	1	3	25	2	4	4	10	83,33
21	MSA	0	1	1	2	16,7	2	4	3	9	75

22	MN	1	1	1	3	25	3	4	3	10	83,33
23	MSM	0	1	1	2	16,7	3	4	3	10	83,33
24	NAA	1	1	1	3	25	3	4	3	10	83,33
25	NZS	1	1	1	3	25	1	4	3	8	66,67
26	NKA	1	3	1	5	41,7	3	4	3	10	83,33
27	SA	1	1	1	3	25	3	4	3	10	83,33
28	SSW	1	1	1	3	25	1	3	0	4	33,33
29	SRW	1	1	1	3	25	3	4	3	10	83,33
30	SMQA	1	1	1	3	25	1	4	1	6	50
31	TW	1	1	1	3	25	1	4	3	8	66,67
32	UA	1	1	1	3	25	4	4	3	11	91,67
33	VFS	1	1	1	3	25	4	4	3	11	91,67
34	YFL	1	1	1	3	25	1	3	1	5	41,67
35	ZSA	1	1	1	3	25	3	4	3	10	83,33
36	ZE	1	1	1	3	25	1	2	1	4	33,33
Jı	umlah	31	40	37	108	900	83	136	94	313	2608,333
Ra	ta-Rata	0,861	1,111	1,028	3	25	2,306	3,778	2,611	8,694	72,454

Indikator 4 Kemampuan memberikan contoh dari konsep yang dipelajari

No	Siswa	Pretets 8	Jumlah skor	Nilai	posttest 8	Jumlah skor	Nilai
1	ANA	2	2	50	3	3	75
2	ASN	2	2	50	3	3	75
3	ANH	3	3	75	3	3	75
4	AL	2	2	50	3	3	75
5	CAZ	3	3	75	3	3	75
6	DAM	2	2	50	3	3	75
7	DAS	3	3	75	3	3	75
8	DDR	2	2	50	3	3	75
9	DI	2	2	50	3	3	75
10	EAW	2	2	50	2	2	50
11	FDP	2	2	50	3	3	75
12	FAY	2	2	50	3	3	75
13	HN	2	2	50	3	3	75
14	HI	2	2	50	3	3	75
15	JAR	3	3	75	3	3	75
16	KNS	2	2	50	3	3	75
17	LC	3	3	75	3	3	75
18	MAB	2	2	50	3	3	75
19	MNF	2	2	50	3	3	75
20	MDN	3	3	75	3	3	75
21	MSA	3	3	75	3	3	75

22	MN	2	2	50	3	3	75
23	MSM	2	2	50	3	3	75
24	NAA	2	2	50	3	3	75
25	NZS	3	3	75	3	3	75
26	NKA	2	2	50	3	3	75
27	SA	2	2	50	3	3	75
28	SSW	2	2	50	0	0	0
29	SRW	3	3	75	3	3	75
30	SMQA	2	2	50	2	2	50
31	TW	3	3	75	3	3	75
32	UA	2	2	50	3	3	75
33	VFS	2	2	50	3	3	75
34	YFL	2	2	50	1	1	25
35	ZSA	2	2	50	3	3	75
36	ZE	3	3	75	3	3	75
	Jumlah	83	83	2075	101	101	2525
	Rata-Rata	2,306	2,306	57,639	2,806	2,806	70,139

Indikator 5 Menyajikan konsep dalam berbagai bentuk representasi kimia

No	Ciarra	Pre	test	Jumlah	Nilai	Post	test	Jumlah	Nilai
No	Siswa	4	10	Skor	Milai	4	10	skor	Milai
1	ANA	1	1	2	25	4	3	7	87,5
2	ASN	2	1	3	37,5	4	3	7	87,5
3	ANH	2	0	2	25	4	3	7	87,5
4	AL	2	0	2	25	3	2	5	62,5
5	CAZ	2	2	4	50	4	1	5	62,5
6	DAM	1	1	2	25	4	3	7	87,5
7	DAS	4	2	6	75	4	3	7	87,5
8	DDR	2	2	4	50	4	3	7	87,5
9	DI	4	0	4	50	4	3	7	87,5
10	EAW	3	1	4	50	4	3	7	87,5
11	FDP	2	1	3	37,5	4	3	7	87,5
12	FAY	1	0	1	12,5	4	3	7	87,5
13	HN	2	1	3	37,5	4	3	7	87,5
14	HI	1	1	2	25	3	3	6	75
15	JAR	2	1	3	37,5	4	3	7	87,5
16	KNS	2	1	3	37,5	4	3	7	87,5
17	LC	4	0	4	50	3	2	5	62,5
18	MAB	1	0	1	12,5	4	3	7	87,5
19	MNF	1	0	1	12,5	4	3	7	87,5
20	MDN	2	2	4	50	4	4	8	100
21	MSA	1	0	1	12,5	4	3	7	87,5

22	MN	2	0	2	25	4	3	7	87,5
23	MSM	1	1	2	25	4	3	7	87,5
24	NAA	2	1	3	37,5	4	3	7	87,5
25	NZS	2	0	2	25	4	3	7	87,5
26	NKA	4	1	5	62,5	4	3	7	87,5
27	SA	2	1	3	37,5	4	3	7	87,5
28	SSW	2	1	3	37,5	4	0	4	50
29	SRW	2	0	2	25	4	3	7	87,5
30	SMQA	3	0	3	37,5	4	2	6	75
31	TW	2	0	2	25	4	3	7	87,5
32	UA	2	1	3	37,5	4	3	7	87,5
33	VFS	2	0	2	25	4	3	7	87,5
34	YFL	2	0	2	25	4	3	7	87,5
35	ZSA	2	0	2	25	4	3	7	87,5
36	ZE	4	0	4	50	3	2	5	62,5
	Jumlah	76	23	99	1237,5	140	100	240	3000
	Rata-Rata	2,111	0,639	2,75	34,375	3,889	2,778	6,667	83,333

Indikator 6 Kemampuan mengaitkan berbagai konsep

Ma	Ciarra			P	retest			Jumlah	N:la:			Po	sttest			Jumlah	Nilai
No	Siswa	1	3	4	7	9	10	skor	Nilai	1	3	4	7	9	10	skor	Milai
1	ANA	1	1	1	1	1	0	5	20,8	4	4	4	4	3	3	22	91,67
2	ASN	2	1	1	1	2	1	8	33,3	4	4	4	4	4	3	23	95,83
3	ANH	2	1	1	1	1	1	7	29,2	4	4	4	4	3	3	22	91,67
4	AL	2	2	1	1	1	1	8	33,3	3	3	3	2	2	2	15	62,5
5	CAZ	2	2	1	1	1	1	8	33,3	4	4	4	4	2	1	19	79,17
6	DAM	1	1	1	1	1	0	5	20,8	4	4	4	4	4	3	23	95,83
7	DAS	1	1	1	0	1	2	6	25	4	4	4	4	4	3	23	95,83
8	DDR	2	1	1	1	1	3	9	37,5	4	4	4	4	4	3	23	95,83
9	DI	2	1	1	1	1	2	8	33,3	4	4	4	4	4	3	23	95,83
10	EAW	2	3	1	1	2	1	10	41,7	4	4	4	4	3	3	22	91,67
11	FDP	1	1	1	1	2	1	7	29,2	4	4	4	4	4	3	23	95,83
12	FAY	1	1	1	1	1	1	6	25	4	4	3	4	2	3	20	83,33
13	HN	2	1	1	1	2	1	8	33,3	4	4	4	4	4	3	23	95,83
14	HI	1	1	1	1	1	0	5	20,8	4	4	1	4	4	3	20	83,33
15	JAR	1	1	1	1	2	1	7	29,2	4	4	3	4	4	3	22	91,67
16	KNS	1	1	1	1	1	0	5	20,8	4	4	3	4	4	3	22	91,67
17	LC	1	1	1	1	2	1	7	29,2	1	3	1	2	2	1	10	41,67
18	MAB	1	1	1	1	1	1	6	25	4	4	3	4	0	3	18	75
19	MNF	1	1	1	1	1	1	6	25	3	4	3	4	2	3	19	79,17
20	MDN	2	1	1	3	1	1	9	37,5	4	4	3	4	4	4	23	95,83
21	MSA	1	1	1	1	1	1	6	25	4	4	3	4	2	3	20	83,33
22	MN	1	1	1	1	2	1	7	29,2	4	4	3	4	4	3	22	91,67
23	MSM	1	1	1	1	1	0	5	20,8	4	4	3	4	4	3	22	91,67
24	NAA	2	1	1	1	2	1	8	33,3	4	4	4	4	3	3	22	91,67

25	NZS	1	1	1	1	1	1	6	25	4	4	4	4	3	3	22	91,67
26	NKA	2	3	1	1	1	1	9	37,5	4	4	4	4	4	3	23	95,83
27	SA	2	1	1	1	2	1	8	33,3	4	4	4	4	3	3	22	91,67
28	SSW	1	1	1	1	1	0	5	20,8	4	3	4	1	0	0	12	50
29	SRW	1	1	1	1	1	1	6	25	4	4	4	4	4	3	23	95,83
30	SMQA	1	1	1	1	1	1	6	25	3	4	4	2	1	1	15	62,5
31	TW	1	1	1	1	1	1	6	25	3	4	4	4	3	3	21	87,5
32	UA	2	1	1	1	1	1	7	29,2	4	4	4	4	4	3	23	95,83
33	VFS	1	3	1	1	1	1	8	33,3	4	4	4	4	3	3	22	91,67
34	YFL	1	1	1	1	2	1	7	29,2	4	3	4	4	3	3	21	87,5
35	ZSA	1	1	1	1	2	1	7	29,2	1	4	3	4	3	3	18	75
36	ZE	1	1	1	1	1	1	6	25	1	3	1	2	2	2	11	45,83
Ju	mlah	49	44	36	37	47	34	247	1029,16	131	139	124	133	109	98	734	3058,3
Rat	a-Rata	1,3	1,2	1	1,02	1,30	0,94	6,8	28,58	3,6	3,8	3,4	3,6	3,02	2,72	20,3	84,94

Indikator 7 Kemampuan mengembangkan syarat perlu dan syarat cukup suatu konsep

Ma	Ciarra	Pr	etest	Jumlah	M:la:	Post	test	Jumlah	M:la:
No	Siswa	2	3	Skor	Nilai	2	3	skor	Nilai
1	ANA	1	1	2	25	1	4	5	62,5
2	ASN	2	1	3	37,5	3	4	7	87,5
3	ANH	1	1	2	25	4	4	8	100
4	AL	1	1	2	25	1	3	4	50
5	CAZ	1	1	2	25	1	4	5	62,5
6	DAM	1	1	2	25	3	4	7	87,5
7	DAS	1	1	2	25	3	4	7	87,5
8	DDR	2	1	3	37,5	4	4	8	100
9	DI	1	1	2	25	3	4	7	87,5
10	EAW	2	3	5	62,5	1	4	5	62,5
11	FDP	1	1	2	25	3	4	7	87,5
12	FAY	1	1	2	25	2	4	6	75
13	HN	1	1	2	25	4	4	8	100
14	HI	2	1	3	37,5	4	4	8	100
15	JAR	1	1	2	25	4	4	8	100
16	KNS	2	1	3	37,5	4	4	8	100
17	LC	1	1	2	25	1	2	3	37,5
18	MAB	1	1	2	25	2	4	6	75
19	MNF	1	1	2	25	2	4	6	75

20	MDN	1	1	2	25	2	4	6	75
21	MSA	1	1	2	25	2	4	6	75
22	MN	1	1	2	25	3	4	7	87,5
23	MSM	1	1	2	25	4	4	8	100
24	NAA	2	1	3	37,5	4	4	8	100
25	NZS	1	1	2	25	1	4	5	62,5
26	NKA	2	3	5	62,5	4	4	8	100
27	SA	2	1	3	37,5	4	4	8	100
28	SSW	1	1	2	25	1	3	4	50
29	SRW	1	1	2	25	4	4	8	100
30	SMQA	1	1	2	25	1	4	5	62,5
31	TW	1	1	2	25	1	4	5	62,5
32	UA	2	1	3	37,5	4	4	8	100
33	VFS	1	1	2	25	4	4	8	100
34	YFL	1	1	2	25	1	3	4	50
35	ZSA	1	1	2	25	3	4	7	87,5
36	ZE	1	1	2	25	1	2	3	37,5
	Jumlah	45	40	85	1062,5	94	137	231	2887,5
	Rata-Rata	1,25	1,111	2,361	29,514	2,611	3,806	6,417	80,208

Lampiran 19 Hasil Pretest dan Posttest Pemahaman Konsep Kelas Kontrol

Indikator 1 Kemampuan menyatakan ulang konsep yang telah dipelajari

N.	C:-			Pre	test		Jumlah Nilai			Post	test			Jumlah	M:L.:		
No	Siswa	1	5	6	7	8	9	skor	Nilai	1	5	6	7	8	9	skor	Nilai
1	ARW	2	2	1	3	1	1	10	41,67	1	3	3	4	3	3	17	70,83
2	AIM	2	1	1	1	1	1	7	29,17	4	3	3	4	3	4	21	87,5
3	ASA	2	2	1	1	2	1	9	37,5	4	3	3	3	3	4	20	83,33
4	AAR	2	1	1	1	1	1	7	29,17	4	2	2	2	1	1	12	50
5	AA	2	1	1	1	1	1	7	29,17	4	3	2	2	2	2	15	62,5
6	AH	2	2	1	1	1	1	8	33,33	3	3	3	2	0	4	15	62,5
7	ASS	2	2	1	1	2	1	9	37,5	3	3	3	3	3	4	19	79,17
8	AAB	2	1	1	1	1	1	7	29,17	4	3	3	3	3	4	20	83,33
9	CIN	2	1	1	1	1	1	7	29,17	1	2	2	2	2	1	10	41,67
10	DS	1	2	1	1	2	0	7	29,17	4	3	3	3	3	4	20	83,33
11	EAA	2	1	1	1	2	1	8	33,33	4	3	3	2	2	4	18	75
12	HCA	2	3	2	1	2	1	11	45,83	4	3	3	3	3	4	20	83,33
13	KA	2	1	1	1	1	2	8	33,33	3	3	3	4	3	4	20	83,33
14	MA	2	2	1	1	1	1	8	33,33	4	3	3	3	3	4	20	83,33
15	MCS	2	2	2	1	1	1	9	37,5	4	3	3	3	3	4	20	83,33
16	MNR	2	2	1	1	1	1	8	33,33	4	3	4	3	2	4	20	83,33
17	MA	2	2	1	1	2	1	9	37,5	3	2	3	3	3	4	18	75
18	MNN	2	1	1	1	1	1	7	29,17	4	3	4	3	2	4	20	83,33
19	MA	2	2	1	1	1	1	8	33,33	4	3	2	2	2	2	15	62,5
20	MH	2	2	1	1	1	1	8	33,33	4	3	3	4	3	4	21	87,5
21	MRR	1	1	1	1	1	1	6	25	1	1	2	2	2	1	9	37,5

22	M	2	1	1	1	2	2	9	37,5	3	3	3	4	3	4	20	83,33
23	NUR	2	3	1	1	1	1	9	37,5	3	3	3	3	3	2	17	70,83
24	NKI	2	2	1	1	1	1	8	33,33	4	3	3	3	3	4	20	83,33
25	NAM	2	1	1	1	1	2	8	33,33	1	3	3	3	3	4	17	70,83
26	NPK	2	2	1	1	1	1	8	33,33	4	3	4	3	3	4	21	87,5
27	NAS	2	1	1	1	1	1	7	29,17	3	3	3	4	3	4	20	83,33
28	NFA	2	2	1	2	1	1	9	37,5	2	2	2	2	2	2	12	50
29	NMS	2	1	2	1	1	1	8	33,33	4	3	3	4	3	4	21	87,5
30	RA	2	2	1	1	1	1	8	33,33	3	3	4	4	3	4	21	87,5
31	R	2	1	1	1	2	1	8	33,33	4	2	3	4	3	3	19	79,17
32	RPL	2	2	1	1	2	0	8	33,33	3	3	3	3	3	4	19	79,17
33	RQN	2	1	1	1	1	1	7	29,17	4	3	3	3	3	4	20	83,33
34	SNS	1	1	1	2	1	0	6	25	4	3	3	3	3	4	20	83,33
35	UA	2	1	1	1	2	1	8	33,33	4	3	3	4	3	4	21	87,5
36	VAF	1	1	1	2	1	0	6	25	4	3	3	3	3	4	20	83,33
Ju	mlah	68	56	39	41	46	35	285	1187,5	121	101	106	110	95	125	658	2741,66
Rat	a-Rata	1,8	1,5	1,08	1,13	1,27	0,9	7,9	32,9	3,3	2,8	2,9	3,05	2,63	3,47	18,27	76,15

Indikator 2 Kemampuan mengklasifikasikan objek menurut sifat-sifat tertentu sesuai dengan konsepnya

No	Siswa	Pre	test	Jumlah	Nilai	Post	test	Jumlah	Nilai
NO	Siswa	6	9	Skor	Milai	6	9	skor	Milai
1	ARW	1	1	2	25	3	3	6	75
2	AIM	1	1	2	25	3	4	7	87,5
3	ASA	1	1	2	25	3	4	7	87,5
4	AAR	1	1	2	25	2	1	3	37,5
5	AA	1	1	2	25	2	2	4	50
6	AH	1	1	2	25	3	4	7	87,5
7	ASS	1	1	2	25	3	4	7	87,5
8	AAB	1	1	2	25	3	4	7	87,5
9	CIN	1	1	2	25	2	1	3	37,5
10	DS	1	1	2	25	3	4	7	87,5
11	EAA	1	1	2	25	3	4	7	87,5
12	HCA	3	1	4	50	3	4	7	87,5
13	KA	2	2	4	50	3	4	7	87,5
14	MA	1	1	2	25	3	4	7	87,5
15	MCS	2	1	3	37,5	3	4	7	87,5
16	MNR	2	1	3	37,5	4	4	8	100
17	MA	1	1	2	25	3	4	7	87,5
18	MNN	2	1	3	37,5	4	4	8	100
19	MA	1	1	2	25	2	2	4	50

20	МН	1	1	2	25	3	4	7	87,5
								,	
21	MRR	1	1	2	25	2	1	3	37,5
22	M	1	2	3	37,5	3	4	7	87,5
23	NUR	1	1	2	25	3	2	5	62,5
24	NKI	1	1	2	25	1	3	4	50
25	NAM	1	2	3	37,5	3	4	7	87,5
26	NPK	1	1	2	25	3	4	7	87,5
27	NAS	1	2	3	37,5	3	4	7	87,5
28	NFA	2	1	3	37,5	2	2	4	50
29	NMS	2	1	3	37,5	3	4	7	87,5
30	RA	1	1	2	25	4	4	8	100
31	R	1	1	2	25	3	3	6	75
32	RPL	1	0	1	12,5	3	4	7	87,5
33	RQN	1	1	2	25	3	4	7	87,5
34	SNS	1	0	1	12,5	3	4	7	87,5
35	UA	1	1	2	25	2	4	6	75
36	VAF	1	0	1	12,5	3	4	7	87,5
	Jumlah	44	37	81	1012,5	102	124	226	2825
	Rata-Rata	1,222	1,028	2,250	28,125	2,833	3,444	6,278	78,472

Indikator 3 Kemampuan menerapkan konsep secara algoritma dalam pemecahan masalah

NI -	Ci		Pretest		Jumlah	NI:1-:		Posttes	t	Jumlah	NI:1-:
No	Siswa	2	3	10	Skor	Nilai	2	3	10	Skor	Nilai
1	ARW	1	1	1	3	25	1	4	3	8	66,67
2	AIM	1	1	1	3	25	1	3	3	7	58,33
3	ASA	1	1	1	3	25	1	4	3	8	66,67
4	AAR	1	1	1	3	25	1	0	1	2	16,67
5	AA	1	0	1	2	16,67	1	1	1	3	25
6	AH	1	1	1	3	25	0	4	3	7	58,33
7	ASS	1	1	1	3	25	1	4	2	7	58,33
8	AAB	1	1	1	3	25	1	4	3	8	66,67
9	CIN	1	1	1	3	25	1	2	1	4	33,33
10	DS	1	1	0	2	16,67	3	4	3	10	83,33
11	EAA	1	1	1	3	25	4	3	3	10	83,33
12	HCA	1	1	1	3	25	1	1	1	3	25
13	KA	1	1	1	3	25	1	4	3	8	66,67
14	MA	1	1	1	3	25	3	4	3	10	83,33
15	MCS	1	1	1	3	25	1	3	1	5	41,67
16	MNR	1	1	1	3	25	3	4	1	8	66,67
17	MA	1	1	1	3	25	1	4	3	8	66,67
18	MNN	1	1	1	3	25	3	4	3	10	83,33
19	MA	1	1	1	3	25	1	1	1	3	25
20	MH	1	1	1	3	25	1	3	3	7	58,33
21	MRR	1	1	1	3	25	1	1	1	3	25

22	M	1	1	1	3	25	1	4	3	8	66,67
23	NUR	1	1	1	3	25	1	4	1	6	50
24	NKI	1	1	1	3	25	1	4	1	6	50
25	NAM	1	1	1	3	25	1	4	1	6	50
26	NPK	1	1	1	3	25	1	4	3	8	66,67
27	NAS	1	1	1	3	25	1	4	3	8	66,67
28	NFA	1	1	1	3	25	1	3	1	5	41,67
29	NMS	1	1	1	3	25	4	4	3	11	91,67
30	RA	1	1	1	3	25	4	4	1	9	75
31	R	1	1	1	3	25	1	3	1	5	41,67
32	RPL	1	1	0	2	16,67	3	4	3	10	83,33
33	RQN	1	1	1	3	25	1	4	3	8	66,67
34	SNS	1	1	0	2	16,67	1	4	3	8	66,67
35	UA	1	1	1	3	25	1	4	3	8	66,67
36	VAF	1	1	0	2	16,67	3	4	3	10	83,33
J	Jumlah	36	35	32	103	858,3333	56	120	79	255	2125
Ra	ata-Rata	1,000	0,972	0,889	2,861	23,843	1,556	3,333	2,194	7,083	59,028

Indikator 4 Kemampuan memberikan contoh dari konsep yang dipelajari

No	Siswa	Pretets 8	Jumlah skor	Nilai	posttest 8	Jumlah skor	Nilai
1	ARW	1	1	25	3	3	75
2	AIM	1	1	25	3	3	75
3	ASA	1	1	25	3	3	75
4	AAR	1	1	25	1	1	25
5	AA	1	1	25	2	2	50
6	AH	1	1	25	0	0	0
7	ASS	3	3	75	3	3	75
8	AAB	1	1	25	3	3	75
9	CIN	1	1	25	2	2	50
10	DS	3	3	75	3	3	75
11	EAA	3	3	75	2	2	50
12	HCA	3	3	75	3	3	75
13	KA	2	2	50	3	3	75
14	MA	2	2	50	3	3	75
15	MCS	1	1	25	3	3	75
16	MNR	1	1	25	2	2	50
17	MA	3	3	75	3	3	75
18	MNN	2	2	50	2	2	50
19	MA	1	1	25	2	2	50
20	MH	1	1	25	3	3	75
21	MRR	1	1	25	2	2	50

22	M	3	3	75	3	3	75
23	NUR	1	1	25	3	3	75
24	NKI	1	1	25	3	3	75
25	NAM	2	2	50	3	3	75
26	NPK	1	1	25	3	3	75
27	NAS	1	1	25	3	3	75
28	NFA	1	1	25	2	2	50
29	NMS	1	1	25	3	3	75
30	RA	1	1	25	3	3	75
31	R	3	3	75	3	3	75
32	RPL	3	3	75	3	3	75
33	RQN	1	1	25	3	3	75
34	SNS	1	1	25	3	3	75
35	UA	1	1	25	3	3	75
36	VAF	1	1	25	3	3	75
	JUMLAH	56	56	1400	95	95	2375
	RATA-RATA	1,556	1,556	38,889	2,639	2,639	65,972

Indikator 5 Menyajikan konsep dalam berbagai bentuk representasi kimia

N.o.	Ciarre	Pre	test	Jumlah	M:la:	Post	test	Jumlah	N:la:
No	Siswa	4	10	Skor	Nilai	4	10	skor	Nilai
1	ARW	2	0	2	25	3	3	6	75
2	AIM	3	0	3	37,5	2	3	5	62,5
3	ASA	3	0	3	37,5	3	3	6	75
4	AAR	2	0	2	25	1	1	2	25
5	AA	3	0	3	37,5	2	3	5	62,5
6	AH	2	0	2	25	2	4	6	75
7	ASS	2	2	4	50	3	2	5	62,5
8	AAB	2	0	2	25	3	3	6	75
9	CIN	1	0	1	12,5	2	2	4	50
10	DS	3	0	3	37,5	3	3	6	75
11	EAA	3	0	3	37,5	3	4	7	87,5
12	HCA	2	1	3	37,5	0	1	1	12,5
13	KA	2	0	2	25	3	3	6	75
14	MA	2	2	4	50	4	4	8	100
15	MCS	2	0	2	25	2	2	4	50
16	MNR	3	0	3	37,5	2	2	4	50
17	MA	2	2	4	50	3	4	7	87,5
18	MNN	2	0	2	25	3	4	7	87,5
19	MA	2	0	2	25	2	2	4	50
20	MH	2	0	2	25	3	3	6	75
21	MRR	2	0	2	25	2	1	3	37,5

22	M	4	0	4	50	3	4	7	87,5
23	NUR	2	0	2	25	2	2	4	50
24	NKI	4	0	4	50	1	2	3	37,5
25	NAM	3	0	3	37,5	2	1	3	37,5
26	NPK	4	0	4	50	0	3	3	37,5
27	NAS	4	0	4	50	3	4	7	87,5
28	NFA	2	0	2	25	2	2	4	50
29	NMS	2	2	4	50	4	4	8	100
30	RA	2	0	2	25	2	2	4	50
31	R	4	0	4	50	3	2	5	62,5
32	RPL	3	0	3	37,5	3	3	6	75
33	RQN	4	0	4	50	3	4	7	87,5
34	SNS	2	0	2	25	3	3	6	75
35	UA	3	0	3	37,5	3	4	7	87,5
36	VAF	2	0	2	25	3	0	3	37,5
	Jumlah	92	9	101	1262,5	88	97	185	2312,5
	Rata-Rata	2,556	0,250	2,806	35,069	2,444	2,694	5,139	64,236

Indikator 6 Kemampuan mengaitkan berbagai konsep

No	Siswa			P	retest			Jumlah	Nilai			P	osttest			Jumlah	Nilai
NO	Siswa	1	3	4	7	9	10	skor	INIIai	1	3	4	7	9	10	skor	Milai
1	ARW	1	1	0	3	1	1	7	29,17	2	4	3	3	3	4	19	79,17
2	AIM	1	1	0	1	1	1	5	20,83	4	4	2	3	4	4	21	87,50
3	ASA	1	2	0	1	1	1	6	25	1	4	3	3	4	4	19	79,17
4	AAR	0	1	0	1	1	1	4	16,67	1	0	1	2	1	1	6	25,00
5	AA	1	0	0	1	1	1	4	16,67	4	1	1	2	2	3	13	54,17
6	AH	0	1	0	1	1	1	4	16,67	3	4	1	2	4	4	18	75,00
7	ASS	0	1	0	1	1	1	4	16,67	3	4	3	3	4	2	19	79,17
8	AAB	2	1	0	1	1	1	6	25	4	4	3	3	4	4	22	91,67
9	CIN	1	1	0	1	1	1	5	20,83	1	1	1	2	1	2	8	33,33
10	DS	0	2	0	1	0	0	3	12,5	1	4	3	3	4	4	19	79,17
11	EAA	2	2	1	1	1	1	8	33,33	3	3	3	2	4	4	19	79,17
12	HCA	2	1	0	1	1	1	6	25	3	1	0	3	4	1	12	50,00
13	KA	0	2	0	1	1	1	5	20,83	3	4	3	3	4	4	21	87,50
14	MA	1	1	0	1	1	1	5	20,83	4	4	4	3	4	4	23	95,83
15	MCS	1	1	1	1	1	1	6	25	1	3	3	2	4	2	15	62,50
16	MNR	1	1	1	1	1	1	6	25	4	4	2	3	4	2	19	79,17
17	MA	0	1	0	1	1	1	4	16,67	3	4	3	3	4	4	21	87,50
18	MNN	1	1	0	1	1	1	5	20,83	3	4	3	3	4	4	21	87,50
19	MA	1	1	0	1	1	1	5	20,83	3	1	1	2	2	2	11	45,83
20	MH	1	1	0	1	1	1	5	20,83	3	4	3	4	4	4	22	91,67
21	MRR	1	1	0	1	1	1	5	20,83	1	1	1	2	1	1	7	29,17
22	M	0	1	0	1	1	1	4	16,67	3	4	3	3	4	4	21	87,50
23	NUR	1	1	0	1	1	1	5	20,83	3	4	1	3	2	2	15	62,50
24	NKI	1	1	0	1	1	1	5	20,83	3	4	1	3	4	2	17	70,83

25	NAM	2	1	0	1	2	1	7	29,17	1	4	1	3	4	1	14	58,33
26	NPK	0	1	0	1	1	1	4	16,67	1	4	0	3	4	4	16	66,67
27	NAS	0	1	0	1	1	1	4	16,67	3	4	3	3	4	4	21	87,50
28	NFA	1	1	1	2	1	1	7	29,17	2	4	1	2	2	2	13	54,17
29	NMS	1	1	0	1	1	1	5	20,83	4	4	4	3	4	4	23	95,83
30	RA	1	1	1	1	1	1	6	25	3	4	1	3	4	3	18	75,00
31	R	1	2	0	1	1	1	6	25	3	3	1	3	3	2	15	62,50
32	RPL	1	1	0	1	0	0	3	12,5	3	4	3	3	4	4	21	87,50
33	RQN	1	1	0	1	1	1	5	20,83	3	4	3	3	4	4	21	87,50
34	SNS	1	1	0	1	0	0	3	12,5	1	4	3	3	4	4	19	79,17
35	UA	1	2	3	1	1	1	9	37,5	3	4	1	4	4	4	20	83,33
36	VAF	1	1	0	1	0	0	3	12,5	3	4	3	3	4	0	17	70,83
Ju	mlah	31	41	8	39	33	32	184	766,6	94	122	76	101	125	108	626	2608,333
Rat	a-Rata	0,8	1,13	0,2	1,08	0,91	0,88	5,11	21,29	2,6	3,3	2,11	2,81	3,47	3,00	17,39	72,45

Indikator 7 Kemampuan mengembangkan syarat perlu dan syarat cukup suatu konsep

NI -	C:	Pre	test	Jumlah	Mil-i	Post	ttest	Jumlah	Milei
No	Siswa	2	3	Skor	Nilai	2	3	skor	Nilai
1	ARW	1	1	2	25	1	4	5	62,5
2	AIM	1	1	2	25	1	3	4	50
3	ASA	1	1	2	25	1	4	5	62,5
4	AAR	1	1	2	25	1	0	1	12,5
5	AA	1	0	1	12,5	1	1	2	25
6	AH	1	1	2	25	0	4	4	50
7	ASS	1	1	2	25	1	4	5	62,5
8	AAB	1	1	2	25	1	4	5	62,5
9	CIN	1	1	2	25	1	2	3	37,5
10	DS	1	1	2	25	4	4	8	100
11	EAA	1	1	2	25	3	3	6	75
12	HCA	1	1	2	25	1	1	2	25
13	KA	1	1	2	25	1	4	5	62,5
14	MA	1	1	2	25	4	4	8	100
15	MCS	1	1	2	25	1	3	4	50
16	MNR	1	1	2	25	3	4	7	87,5
17	MA	1	1	2	25	1	4	5	62,5
18	MNN	1	1	2	25	4	4	8	100
19	MA	1	1	2	25	1	1	2	25
20	МН	1	1	2	25	1	3	4	50

21	MRR	1	1	2	25	1	1	2	25
22	M	1	1	2	25	1	4	5	62,5
23	NUR	1	1	2	25	1	4	5	62,5
24	NKI	1	1	2	25	1	4	5	62,5
25	NAM	1	1	2	25	1	4	5	62,5
26	NPK	1	1	2	25	1	4	5	62,5
27	NAS	1	1	2	25	1	4	5	62,5
28	NFA	1	1	2	25	1	4	5	62,5
29	NMS	1	1	2	25	3	4	7	87,5
30	RA	1	1	2	25	4	4	8	100
31	R	1	1	2	25	1	3	4	50
32	RPL	1	1	2	25	3	4	7	87,5
33	RQN	1	1	2	25	1	4	5	62,5
34	SNS	1	0	1	12,5	1	4	5	62,5
35	UA	1	1	2	25	1	4	5	62,5
36	VAF	1	0	1	12,5	3	4	7	87,5
	Jumlah	36	33	69	862,5	57	121	178	2225
I	Rata-Rata	1,000	0,917	1,917	23,958	1,583	3,361	4,944	61,806

Lampiran 20 Analisis N-Gain Berpikir Kritis Kelas Eksperimen

No	Ciarra	Ni	lai	N. Cain	Tinglest
No	Siswa	Pretest	Posttest	N-Gain	Tingkat
1	ANA	23,81	80,95	0,749967	Tinggi
2	ASN	28,57	82,14	0,749965	Tinggi
3	ANH	27,38	88,1	0,836133	Tinggi
4	AL	26,19	55,95	0,403197	Sedang
5	CAZ	28,57	66,67	0,533389	Sedang
6	DAM	26,19	82,14	0,758027	Tinggi
7	DAS	33,33	71,43	0,571471	Sedang
8	DDR	34,52	86,9	0,799939	Tinggi
9	DI	38,10	86,9	0,788368	Tinggi
10	EAW	32,14	85,71	0,789419	Tinggi
11	FDP	25,00	79,76	0,730133	Tinggi
12	FAY	21,43	78,57	0,72725	Tinggi
13	HN	26,19	84,52	0,790272	Tinggi
14	HI	22,62	77,38	0,707676	Tinggi
15	JAR	26,19	83,33	0,77415	Tinggi
16	KNS	23,81	83,33	0,781205	Tinggi
17	LC	28,57	46,43	0,250035	Rendah
18	MAB	22,62	77,38	0,707676	Tinggi
19	MNF	23,81	79,76	0,734348	Tinggi
20	MDN	32,14	84,52	0,771883	Tinggi
21	MSA	22,62	78,57	0,723055	Tinggi
22	MN	28,57	82,14	0,749965	Tinggi
23	MSM	23,81	82,14	0,765586	Tinggi
24	NAA	32,14	57,14	0,368406	Sedang
25	NZS	28,57	82,14	0,749965	Tinggi
26	NKA	32,14	84,52	0,771883	Tinggi
27	SA	32,14	86,9	0,806955	Tinggi

28	SSW	25,00	52,38	0,365067	Sedang
29	SRW	26,19	85,71	0,806395	Tinggi
30	SMQA	32,14	66,67	0,508842	Sedang
31	TW	29,76	77,38	0,677961	Sedang
32	UA	23,81	86,9	0,828061	Tinggi
33	VFS	25,00	88,1	0,841333	Tinggi
34	YFL	23,81	70,24	0,609398	Sedang
35	ZSA	27,38	84,52	0,786836	Tinggi
36	ZE	27,38	53,57	0,360644	Sedang
Ju	mlah	991,64	2780,89	24,67	
Rat	ta-rata	27,55	77,25	0,685	
N	-Gain	0,68597			
Kr	iteria	Sedang			

Lampiran 21 Analisis N-Gain Berpikir Kritis Kelas Kontrol

No	Siswa	Ni	lai	N-Gain	Tinglest
NO	Siswa	Pretest	Posttest	N-Gaill	Tingkat
1	ARW	30,95	69,05	0,551774	Sedang
2	AIM	25,00	73,81	0,6508	Sedang
3	ASA	30,95	76,19	0,655177	Sedang
4	AAR	21,43	22,62	0,015146	Rendah
5	AA	28,57	55,95	0,383312	Sedang
6	AH	28,57	53,57	0,349993	Sedang
7	ASS	26,19	72,62	0,629048	Sedang
8	AAB	30,95	76,19	0,655177	Sedang
9	CIN	20,24	45,24	0,31344	Sedang
10	DS	17,86	80,95	0,768079	Tinggi
11	EAA	36,90	76,19	0,622662	Sedang
12	HCA	32,14	71,43	0,578986	Sedang

13	KA	25,00	76,19	0,682533	Sedang
14	MA	28,57	90,48	0,866723	Tinggi
15	MCS	26,19	73,81	0,64517	Sedang
16	MNR	32,14	80,95	0,719275	Tinggi
17	MA	26,19	78,57	0,70966	Tinggi
18	MNN	30,95	84,52	0,775815	Tinggi
2	MA	25,00	51,19	0,3492	Sedang
20	MH	26,19	72,62	0,629048	Sedang
21	MRR	16,67	35,71	0,228489	Rendah
22	M	29,76	78,57	0,694903	Sedang
23	NUR	27,38	72,62	0,622969	Sedang
24	NKI	32,14	76,19	0,649131	Sedang
25	NAM	32,14	63,1	0,456233	Sedang
26	NPK	32,14	76,19	0,649131	Sedang
27	NAS	29,76	77,38	0,677961	Sedang
28	NFA	28,57	57,14	0,399972	Sedang
29	NMS	30,95	91,67	0,879363	Tinggi
30	RA	29,76	77,38	0,677961	Sedang
31	R	29,76	64,29	0,4916	Sedang
32	RPL	19,05	82,14	0,77937	Tinggi
33	RQN	34,52	79,76	0,690898	Sedang
34	SNS	20,24	76,19	0,701479	Tinggi
35	UA	27,38	75	0,655742	Sedang
36	VAF	20,24	70,24	0,626881	Sedang
Jumlah		990,44	2535,71	21,43	
Ra	ta-rata	27,51	70,44	0,595	
	-Gain	0,5922	,	,	
	riteria	Sedang			
I		<u> </u>	L		

Lampiran 22 Analisis N-Gain Pemahaman Konsep Kelas Eksperimen

No	Ciarra	Nil	ai	N Cain	Tip alsot
No	Siswa	Pretest	Posttest	N-Gain	Tingkat
1	ANA	27,27	81,82	0,750034	Tinggi
2	ASN	32,95	88,64	0,830574	Tinggi
3	ANH	31,81	88,64	0,833407	Tinggi
4	AL	29,54	57,95	0,403207	Sedang
5	CAZ	34,09	68,18	0,51722	Sedang
6	DAM	28,40	88,64	0,841341	Tinggi
7	DAS	32,95	80,68	0,711857	Tinggi
8	DDR	35,22	90,91	0,859679	Tinggi
9	DI	35,22	86,36	0,789441	Tinggi
10	EAW	38,63	82,95	0,722177	Tinggi
11	FDP	30,68	89,77	0,852424	Tinggi
12	FAY	23,86	79,55	0,731416	Tinggi
13	HN	32,95	86,36	0,79657	Tinggi
14	HI	23,86	86,36	0,820856	Tinggi
15	JAR	32,95	89,77	0,847427	Tinggi
16	KNS	28,40	89,77	0,857123	Tinggi
17	LC	36,36	45,45	0,142835	Rendah
18	MAB	23,86	72,73	0,641844	Sedang
19	MNF	23,86	78,41	0,716443	Tinggi
20	MDN	34,09	89,77	0,844788	Tinggi
21	MSA	26,13	81,82	0,753892	Tinggi
22	MN	30,68	85,23	0,78693	Tinggi
23	MSM	25,00	79,55	0,727333	Tinggi
24	NAA	31,81	87,5	0,816689	Tinggi
25	NZS	29,54	81,82	0,741981	Tinggi
26	NKA	37,50	89,77	0,83632	Tinggi
27	SA	32,95	87,5	0,813572	Tinggi

28	SSW	27,27	45,45	0,249966	Rendah
29	SRW	27,27	90,91	0,875017	Tinggi
30	SMQA	30,68	64,77	0,491777	Sedang
31	TW	29,54	80,68	0,725802	Tinggi
32	UA	30,68	92,05	0,885314	Tinggi
33	VFS	27,27	85,23	0,79692	Tinggi
34	YFL	30,68	71,59	0,590162	Sedang
35	ZSA	30,68	79,55	0,704991	Tinggi
36	ZE	34,09	53,41	0,293127	Rendah
J	umlah	1098,72	2879,54	25,60	
Ra	ata-rata	30,52	79,99	0,71	
1	N-Gain	0,71196			
K	Kriteria	Tinggi			

Lampiran 23 Analisis N-Gain Pemahaman Konsep Kelas Kontrol

No	Siswa	Ni	lai	N-Gain	Tip alsot
NO	Siswa	Pretest	Posttest	N-Gaill	Tingkat
1	ARW	30,68	72,72	0,606463	Sedang
2	AIM	26,13	79,54	0,723027	Tinggi
3	ASA	30,68	77,27	0,6721	Sedang
4	AAR	23,86	28,4	0,059627	Rendah
5	AA	22,72	50	0,353002	Sedang
6	AH	27,27	63,63	0,499931	Sedang
7	ASS	30,68	73,86	0,622908	Sedang
8	AAB	26,13	80,68	0,738459	Tinggi
9	CIN	23,86	39,77	0,208957	Rendah
10	DS	23,86	82,95	0,77607	Tinggi
11	EAA	35,22	78,4	0,666564	Sedang
12	HCA	37,50	54,54	0,27264	Rendah

13	KA	29,54	79,54	0,709622	Tinggi
14	MA	29,54	89,77	0,854811	Tinggi
15	MCS	29,54	65,9	0,516037	Sedang
16	MNR	29,54	77,27	0,677406	Sedang
17	MA	30,68	78,4	0,688402	Sedang
18	MNN	28,40	86,36	0,809497	Tinggi
2	MA	26,13	46,59	0,276973	Rendah
20	MH	26,13	79,54	0,723027	Tinggi
21	MRR	23,86	32,95	0,119385	Rendah
22	M	34,09	80,68	0,706873	Tinggi
23	NUR	27,27	62,5	0,484394	Sedang
24	NKI	28,40	69,31	0,571369	Sedang
25	NAM	31,81	62,5	0,450066	Sedang
26	NPK	27,27	70,45	0,593703	Sedang
27	NAS	27,27	80,68	0,73436	Tinggi
28	NFA	30,68	51,13	0,295009	Rendah
29	NMS	29,54	85,22	0,790236	Tinggi
30	RA	27,27	79,54	0,718686	Tinggi
31	R	31,81	64,77	0,483355	Sedang
32	RPL	25,00	82,68	0,769067	Tinggi
33	RQN	27,27	80,68	0,73436	Tinggi
34	SNS	14,77	77,27	0,73331	Tinggi
35	UA	30,68	79,54	0,704847	Tinggi
36	VAF	14,77	72,72	0,679925	Sedang
J	umlah	999,85	2517,75	21,02	
Ra	ata-rata	27,77	69,94	0,58	
	N-Gain				
		Sedang			
		0,58377 Sedang			

Lampiran 24 N-Gain Indikator Berpikir Kritis Kelas Eksperimen
Indikator 1 Interpretasi dengan sub skill dapat menuliskan
apa yang ditanyakan soal dengan jelas dan tepat

N	NT	Ni	lai	N.C.	m: 1 .
No	Nama	Pretest	Posttest	N-Gain	Tingkat
1	ANA	0	100	1	Tinggi
2	ASN	0	75	0,75	Tinggi
3	ANH	0	100	1	Tinggi
4	AL	0	50	0,5	Sedang
5	CAZ	0	100	1	Tinggi
6	DAM	0	75	0,75	Tinggi
7	DAS	0	75	0,75	Tinggi
8	DDR	0	100	1	Tinggi
9	DI	12,5	100	1	Tinggi
10	EAW	12,5	100	1	Tinggi
11	FDP	0	100	1	Tinggi
12	FAY	0	100	1	Tinggi
13	HN	0	100	1	Tinggi
14	HI	0	100	1	Tinggi
15	JAR	0	100	1	Tinggi
16	KNS	0	100	1	Tinggi
17	LC	0	50	0,5	Sedang
18	MAB	0	100	1	Tinggi
19	MNF	0	100	1	Tinggi
20	MDN	0	100	1	Tinggi
21	MSA	0	100	1	Tinggi
22	MN	0	75	0,75	Tinggi
23	MSM	12,5	75	0,71429	Tinggi
24	NAA	0	100	1	Tinggi
25	NZS	0	100	1	Tinggi
26	NKA	0	100	1	Tinggi
27	SA	0	100	1	Tinggi
28	SSW	0	75	0,75	Tinggi
29	SRW	0	100	1	Tinggi

30	SMQA	0	75	0,75	Tinggi
31	TW	0	100	1	Tinggi
32	UA	0	100	1	Tinggi
33	VFS	0	100	1	Tinggi
34	YFL	0	75	0,75	Tinggi
35	ZSA	0	75	0,75	Tinggi
36	ZE	0	75	0,75	Tinggi
	Jumlah	37,5	3250	32,4643	
R	ata-Rata	1,04167	90,2778	0,90179	
N-Gain		0,90175			
]	Kriteria	Tinggi			

Indikator 2 Analisis dengan sub skill dapat menuliskan apa yang harus dilakukan dalam menyelesaikan soal

NI -	N	Ni	Nilai		Tinglest	
No	Nama	Pretest	Posttest	N-Gain	Tingkat	
1	ANA	31,25	93,75	0,91	Tinggi	
2	ASN	31,25	93,75	0,91	Tinggi	
3	ANH	37,5	93,75	0,90	Tinggi	
4	AL	25	75	0,67	Sedang	
5	CAZ	31,25	93,75	0,91	Tinggi	
6	DAM	37,5	93,75	0,90	Tinggi	
7	DAS	62,5	81,25	0,50	Sedang	
8	DDR	25	93,75	0,92	Tinggi	
9	DI	62,5	93,75	0,83	Tinggi	
10	EAW	37,5	87,5	0,80	Tinggi	
11	FDP	31,25	93,75	0,91	Tinggi	
12	FAY	25	93,75	0,92	Tinggi	
13	HN	25	93,75	0,92	Tinggi	
14	HI	37,5	68,75	0,50	Sedang	
15	JAR	37,5	87,5	0,80	Tinggi	
16	KNS	25	87,5	0,83	Tinggi	
17	LC	43,75	50	0,11	Rendah	
18	MAB	25	93,75	0,92	Tinggi	

19	MNF	25	93,75	0,92	Tinggi
20	MDN	37,5	87,5	0,80	Tinggi
21	MSA	37,5	93,75	0,90	Tinggi
22	MN	37,5	87,5	0,80	Tinggi
23	MSM	31,25	81,25	0,73	Tinggi
24	NAA	31,25	87,5	0,82	Tinggi
25	NZS	37,5	93,75	0,90	Tinggi
26	NKA	43,75	93,75	0,89	Tinggi
27	SA	31,25	93,75	0,91	Tinggi
28	SSW	25	68,75	0,58	Sedang
29	SRW	50	93,75	0,88	Tinggi
30	SMQA	43,75	87,5	0,78	Tinggi
31	TW	43,75	87,5	0,78	Tinggi
32	UA	25	93,75	0,92	Tinggi
33	VFS	31,25	93,75	0,91	Tinggi
34	YFL	31,25	56,25	0,36	Sedang
35	ZSA	31,25	87,5	0,82	Tinggi
36	ZE	37,5	56,25	0,30	Sedang
Ju	ımlah	1262,5	3106,25	28,129	
Rat	ta-Rata	35,0694	86,2847	0,78136	
N	-Gain	0,78877			
Kı	riteria	Tinggi			

Indikator 3 Evaluasi dengan sub skill menuliskan tentang penyelesaian soal

No	Nama	Nilai		N-Gain	Tingkat
No	INdilla	Pretest	Posttest	N-Galli	Tiligkat
1	ANA	0	91,67	0,917	Tinggi
2	ASN	8,3	91,67	0,90916	Tinggi
3	ANH	0	91,67	0,9167	Tinggi
4	AL	0	50	0,5	Sedang
5	CAZ	8,3	75	0,72737	Tinggi
6	DAM	0	91,67	0,9167	Tinggi
7	DAS	8,3	75	0,72737	Tinggi
8	DDR	16,7	91,67	0,9	Tinggi

9	DI	8,3	91,67	0,90916	Tinggi
10			, 1,0.	-,	1111881
10	EAW	16,7	91,67	0,9	Tinggi
11	FDP	0	91,67	0,9167	Tinggi
12	FAY	0	83,33	0,8333	Tinggi
13	HN	0	91,67	0,9167	Tinggi
14	HI	0	66,67	0,6667	Sedang
15	JAR	0	83,33	0,8333	Tinggi
16	KNS	0	83,33	0,8333	Tinggi
17	LC	0	33,33	0,3333	Sedang
18	MAB	0	83,33	0,8333	Tinggi
19	MNF	0	83,33	0,8333	Tinggi
20	MDN	0	83,33	0,8333	Tinggi
21	MSA	0	83,33	0,8333	Tinggi
22	MN	0	83,33	0,8333	Tinggi
23	MSM	0	83,33	0,8333	Tinggi
24	NAA	0	91,67	0,9167	Tinggi
25	NZS	0	91,67	0,9167	Tinggi
26	NKA	25	91,67	0,88893	Tinggi
27	SA	8,3	91,67	0,90916	Tinggi
28	SSW	0	50	0,5	Sedang
29	SRW	0	91,67	0,9167	Tinggi
30	SMQA	8,3	75	0,72737	Tinggi
31	TW	0	91,67	0,9167	Tinggi
32	UA	0	91,67	0,9167	Tinggi
33	VFS	8,3	91,67	0,90916	Tinggi
34	YFL	8,3	58,33	0,54558	Sedang
35	ZSA	0	83,33	0,8333	Tinggi
36	ZE	0	33,33	0,3333	Sedang
Ju	mlah	124,8	2908,35	28,8866	
Rat	a-Rata	3,46667	80,7875	0,8024	
N-	-Gain	0,80098			
Kr	iteria	Tinggi			

Indikator 4 Inferensi dengan sub skill dapat menarik kesimpulan dari apa yang ditanyakan secara logis

NI -	NI	Ni	lai	N. Cain	Т:
No	Nama	Pretest	Posttest	N-Gain	Tingkat
1	ANA	41,7	83,33	0,714	Tinggi
2	ASN	50	79,17	0,583	Sedang
3	ANH	50	87,5	0,750	Tinggi
4	AL	62,5	66,67	0,111	Rendah
5	CAZ	45,8	62,5	0,308	Sedang
6	DAM	45,8	79,17	0,616	Sedang
7	DAS	54,2	79,17	0,545	Sedang
8	DDR	70,8	87,5	0,572	Sedang
9	DI	70,8	91,67	0,715	Tinggi
10	EAW	58,3	87,5	0,700	Tinggi
11	FDP	54,2	70,83	0,363	Sedang
12	FAY	41,7	79,17	0,643	Sedang
13	HN	54,2	79,17	0,545	Sedang
14	HI	50	87,5	0,750	Tinggi
15	JAR	45,8	87,5	0,769	Tinggi
16	KNS	50	83,33	0,667	Sedang
17	LC	62,5	62,5	0,000	Rendah
18	MAB	41,7	79,17	0,643	Sedang
19	MNF	41,7	83,33	0,714	Tinggi
20	MDN	54,2	91,67	0,818	Tinggi
21	MSA	41,7	79,17	0,643	Sedang
22	MN	58,3	87,5	0,700	Tinggi
23	MSM	50	83,33	0,667	Sedang
24	NAA	58,3	79,17	0,500	Sedang
25	NZS	62,5	87,5	0,667	Sedang
26	NKA	54,2	83,33	0,636	Sedang
27	SA	54,2	87,5	0,727	Tinggi
28	SSW	54,2	58,33	0,090	Rendah
29	SRW	50	91,67	0,833	Tinggi
30	SMQA	58,3	70,83	0,300	Sedang
31	TW	62,5	79,17	0,445	Sedang

32	UA	50	83,33	0,667	Sedang
33	VFS	54,2	91,67	0,818	Tinggi
34	YFL	54,2	95,83	0,909	Tinggi
35	ZSA	62,5	91,67	0,778	Tinggi
36	ZE	62,5	70,83	0,222	Rendah
Ju	ımlah	1933,5	2929,18	21,1285	
Rat	ta-Rata	53,7083	81,3661	0,5869	
N-Gain		0,59747			
Kı	riteria	Sedang			

Indikator 5 Eksplanasi dengan sub skill dapat menulis hasil akhir dan memberikan alasan tentang kesimpulan yang diambil

No	Nama	Ni	lai	N-Gain	Tinglest
NO	INama	Pretest	Posttest	N-Gaill	Tingkat
1	ANA	12,5	58,33	0,524	Sedang
2	ASN	20,8	75	0,684	Sedang
3	ANH	20,8	75	0,684	Sedang
4	AL	12,5	37,5	0,286	Rendah
5	CAZ	25	37,5	0,167	Rendah
6	DAM	12,5	75	0,714	Tinggi
7	DAS	12,5	70,83	0,667	Sedang
8	DDR	25	75	0,667	Sedang
9	DI	16,7	66,67	0,600	Sedang
10	EAW	16,7	58,33	0,500	Sedang
11	FDP	8,3	75	0,727	Tinggi
12	FAY	16,7	70,83	0,650	Sedang
13	HN	16,7	70,83	0,650	Sedang
14	HI	16,7	75	0,700	Sedang
15	JAR	16,7	33,33	0,200	Rendah

16	KNS	16,7	54,17	0,450	Sedang
17	LC	4,2	58,33	0,565	Sedang
18	MAB	16,7	70,83	0,650	Sedang
19	MNF	16,7	58,33	0,500	Sedang
20	MDN	20,8	75	0,684	Sedang
21	MSA	12,5	66,67	0,619	Sedang
22	MN	12,5	70,83	0,667	Sedang
23	MSM	16,7	58,33	0,500	Sedang
24	NAA	25	70,83	0,611	Sedang
25	NZS	8,3	58,33	0,546	Sedang
26	NKA	16,7	70,83	0,650	Sedang
27	SA	25	75	0,667	Sedang
28	SSW	12,5	29,17	0,191	Rendah
29	SRW	8,3	75	0,727	Tinggi
30	SMQA	25	37,5	0,167	Rendah
31	TW	8,3	54,17	0,500	Sedang
32	UA	16,7	79,17	0,750	Tinggi
33	VFS	4,2	75	0,739	Tinggi
34	YFL	4,2	50	0,478	Sedang
35	ZSA	12,5	79,17	0,762	Tinggi
36	ZE	8,3	37,5	0,318	Sedang
]	[umlah	541,9	2258,31	20,1582	
Ra	ata-Rata	15,0528	62,7308	0,55995	
	N-Gain	0,56127			
ŀ	Kriteria	Sedang			

Lampiran 25 N-Gain Indikator Berpikir Kritis Kelas Kontrol Indikator 1 Interpretasi dengan sub skill dapat menuliskan apa yang ditanyakan soal dengan jelas dan tepat

No	Nama	Ni	lai	N. Cain	Tinglest
NO	Nama	Pretest	Posttest	N-Gain	Tingkat
1	ARW	12,5	50	0,43	Sedang
2	AIM	0	75	0,75	Tinggi
3	ASA	0	50	0,5	Sedang
4	AAR	0	50	0,5	Sedang
5	AA	0	50	0,5	Sedang
6	AH	0	25	0,25	Rendah
7	ASS	0	50	0,5	Sedang
8	AAB	12,5	50	0,42857	Sedang
9	CIN	0	50	0,5	Sedang
10	DS	0	50	0,5	Sedang
11	EAA	0	50	0,5	Sedang
12	HCA	0	100	1	Tinggi
13	KA	0	50	0,5	Sedang
14	MA	0	100	1	Tinggi
15	MCS	0	50	0,5	Sedang
16	MNR	0	75	0,75	Tinggi
17	MA	0	100	1	Tinggi
18	MNN	0	100	1	Tinggi
19	MA	0	50	0,5	Sedang
20	MH	0	50	0,5	Sedang
21	MRR	0	50	0,5	Sedang
22	M	0	75	0,75	Tinggi
23	NUR	0	100	1	Tinggi
24	NKI	0	75	0,75	Tinggi
25	NAM	0	50	0,5	Sedang
26	NPK	0	100	1	Tinggi
27	NAS	0	50	0,5	Sedang
28	NFA	0	62,5	0,625	Sedang
29	NMS	0	100	1	Tinggi
30	RA	12,5	100	1	Tinggi

31	R	0	50	0,5	Sedang
32	RPL	0	50	0,5	Sedang
33	RQN	0	62,5	0,625	Sedang
34	SNS	0	50	0,5	Sedang
35	UA	0	50	0,5	Sedang
36	VAF	0	50	0,5	Sedang
Jumlah		37,5	2300	22,8571	
Rata-Rata		1,04167	63,8889	0,63492	
N-Gain		0,63509			
Krit	teria	Sedang			

Indikator 2 Analisis dengan sub skill dapat menuliskan apa yang harus dilakukan dalam menyelesaikan soal

No	Nama	Nilai		N. Cain	m: l .
		Pretest	Posttest	N-Gain	Tingkat
1	ARW	31,25	87,5	0,818	Tinggi
2	AIM	25	75	0,66667	Sedang
3	ASA	37,5	87,5	0,8	Tinggi
4	AAR	25	25	0	Rendah
5	AA	25	50	0,33333	Sedang
6	AH	25	56,25	0,41667	Sedang
7	ASS	31,25	87,5	0,81818	Tinggi
8	AAB	37,5	87,5	0,8	Tinggi
9	CIN	25	56,25	0,41667	Sedang
10	DS	37,5	87,5	0,8	Tinggi
11	EAA	31,25	75	0,63636	Sedang
12	HCA	37,5	43,75	0,1	Rendah
13	KA	25	87,5	0,83333	Tinggi
14	MA	25	87,5	0,83333	Tinggi
15	MCS	31,25	81,25	0,72727	Tinggi
16	MNR	31,25	81,25	0,72727	Tinggi
17	MA	31,25	87,5	0,81818	Tinggi
18	MNN	25	75	0,66667	Sedang
19	MA	31,25	37,5	0,09091	Rendah

20	MH	31,25	81,25	0,72727	Tinggi
21	MRR	31,25	37,5	0,09091	Rendah
22	M	37,5	87,5	0,8	Tinggi
23	NUR	25	81,25	0,75	Tinggi
24	NKI	37,5	75	0,6	Sedang
25	NAM	37,5	81,25	0,7	Sedang
26	NPK	37,5	68,75	0,5	Sedang
27	NAS	31,25	87,5	0,81818	Tinggi
28	NFA	31,25	68,75	0,54545	Sedang
29	NMS	31,25	93,75	0,90909	Tinggi
30	RA	37,5	81,25	0,7	Sedang
31	R	31,25	75	0,63636	Sedang
32	RPL	31,25	87,5	0,81818	Tinggi
33	RQN	37,5	87,5	0,8	Tinggi
34	SNS	25	87,5	0,83333	Tinggi
35	UA	37,5	81,25	0,7	Sedang
36	VAF	25	87,5	0,83333	Tinggi
Jumlah		1125	2706,25	23,0652	
R	Rata-Rata		75,1736	0,6407	
	N-Gain				
I	Kriteria	Sedang			

Indikator 3 Evaluasi dengan sub skill menuliskan tentang penyelesaian soal

No	Nama	Nilai		N-Gain	Timeles t
		Pretest	Posttest	IN-Galli	Tingkat
1	ARW	0	83,33	0,833	Tinggi
2	AIM	8,33	58,33	0,54543	Sedang
3	ASA	8,33	83,33	0,81815	Tinggi
4	AAR	0	8,33	0,0833	Rendah
5	AA	0	25	0,25	Rendah
6	AH	8,33	58,3	0,54511	Sedang
7	ASS	0	75	0,75	Tinggi
8	AAB	0	83,33	0,8333	Tinggi

9	CIN	0	25	0,25	Rendah
10	DS	8,33	83,33	0,81815	Tinggi
11	EAA	16,67	75	0,69999	Sedang
12	HCA	8,33	25	0,18185	Rendah
13	KA	8,33	83,33	0,81815	Tinggi
14	MA	8,33	91,67	0,90913	Tinggi
15	MCS	8,33	75	0,72728	Tinggi
16	MNR	16,67	66,67	0,60002	Sedang
17	MA	0	83,33	0,8333	Tinggi
18	MNN	0	83,33	0,8333	Tinggi
19	MA	0	25	0,25	Rendah
20	MH	0	66,67	0,6667	Sedang
21	MRR	0	16,67	0,1667	Rendah
22	M	8,33	75	0,72728	Tinggi
23	NUR	0	50	0,5	Sedang
24	NKI	8,33	66,67	0,63641	Sedang
25	NAM	8,33	41,67	0,3637	Sedang
26	NPK	8,33	58,33	0,54543	Sedang
27	NAS	8,33	83,33	0,81815	Tinggi
28	NFA	8,33	41,67	0,3637	Sedang
29	NMS	8,33	91,67	0,90913	Tinggi
30	RA	8,33	58,33	0,54543	Sedang
31	R	8,33	33,33	0,27272	Rendah
32	RPL	0	83,33	0,8333	Tinggi
33	RQN	8,33	83,33	0,81815	Tinggi
34	SNS	0	83,33	0,8333	Tinggi
35	UA	8,33	66,67	0,63641	Sedang
36	VAF	0	50	0,5	Sedang
	Jumlah		2241,61	21,7163	
R	Rata-Rata		62,2669	0,60323	
	N-Gain				
l	Kriteria	Sedang			

Indikator 4 Inferensi dengan sub skill dapat menarik kesimpulan dari apa yang ditanyakan secara logis

No	Nama	Ni	lai	N-Gain	Tingkat
NO		Pretest	Posttest		
1	ARW	62,5	66,67	0,111	Rendah
2	AIM	50	83,33	0,6666	Sedang
3	ASA	70,83	79,17	0,28591	Rendah
4	AAR	50	58,33	0,1666	Rendah
5	AA	66,67	75	0,24992	Rendah
6	AH	70,83	66,67	-0,1426	Rendah
7	ASS	50	75	0,5	Sedang
8	AAB	62,5	83,3	0,55467	Sedang
9	CIN	50	45,8	-0,084	Rendah
10	DS	29,17	87,5	0,82352	Tinggi
11	EAA	75	87,5	0,5	Sedang
12	HCA	54,17	95,83	0,90901	Tinggi
13	KA	58,33	87,5	0,70002	Tinggi
14	MA	58,33	95,83	0,89993	Tinggi
15	MCS	45,83	91,67	0,84622	Tinggi
16	MNR	66,67	95,83	0,87489	Tinggi
17	MA	50	87,5	0,75	Tinggi
18	MNN	62,5	95,83	0,8888	Tinggi
19	MA	54,17	75	0,45451	Sedang
20	MH	50	83,33	0,6666	Sedang
21	MRR	37,5	37,5	0	Rendah
22	M	66,67	91,67	0,75008	Tinggi
23	NUR	66,67	87,5	0,62496	Sedang
24	NKI	62,5	95,83	0,8888	Tinggi
25	NAM	58,33	75	0,40005	Sedang
26	NPK	75	91,67	0,6668	Sedang
27	NAS	79,17	91,67	0,6001	Sedang
28	NFA	54,17	62,5	0,18176	Rendah
29	NMS	58,33	95,83	0,89993	Tinggi
30	RA	62,5	83,33	0,55547	Sedang
31	R	70,83	83,33	0,42852	Sedang

32	RPL	41,67	87,5	0,7857	Tinggi
33	RQN	75	95,83	0,8332	Tinggi
34	SNS	33,33	95,83	0,93745	Tinggi
35	UA	58,33	95,83	0,89993	Tinggi
36	VAF	33,33	70,83	0,56247	Sedang
Jumlah		2070,83	2958,24	20,637	
Rata-Rata		57,5231	82,1733	0,57325	
N-Gain		0,58032			
	Kriteria				

Indikator 5 Eksplanasi dengan sub skill dapat menulis hasil akhir dan memberikan alasan tentang kesimpulan yang diambil

No	Nama	Nilai		N. Caire	m: 1 ,
		Pretest	Posttest	N-Gain	Tingkat
1	ARW	20,83	58,33	0,4737	Sedang
2	AIM	16,66	70,83	0,64999	Sedang
3	ASA	8,33	70,83	0,68179	Sedang
4	AAR	4,16	16,67	0,13053	Rendah
5	AA	16,66	58,33	0,5	Sedang
6	AH	4,16	58,33	0,56521	Sedang
7	ASS	16,66	62,5	0,55004	Sedang
8	AAB	25	66,67	0,5556	Sedang
9	CIN	4,16	45	0,42613	Sedang
10	DS	4,16	75	0,73915	Tinggi
11	EAA	16,66	75	0,70002	Tinggi
12	HCA	25	75	0,66667	Sedang
13	KA	8,33	50	0,45457	Sedang
14	MA	16,67	83,33	0,79995	Tinggi
15	MCS	20,83	58,33	0,47366	Sedang
16	MNR	16,67	79,17	0,75003	Tinggi
17	MA	16,67	54,17	0,45002	Sedang
18	MNN	20,83	75	0,68422	Sedang
19	MA	12,5	50	0,42857	Sedang
20	MH	16,67	66,67	0,60002	Sedang

21	MRR	0	37,5	0,375	Sedang
22	M	8,33	62,5	0,59092	Sedang
23	NUR	12,5	54,17	0,47623	Sedang
24	NKI	16,67	62,5	0,54998	Sedang
25	NAM	29,17	54,17	0,35296	Sedang
26	NPK	8,33	62,5	0,59092	Sedang
27	NAS	8,33	62,5	0,59092	Sedang
28	NFA	20,83	50	0,36845	Sedang
29	NMS	20,83	83,33	0,78944	Tinggi
30	RA	29,17	70,83	0,58817	Sedang
31	R	8,33	58,33	0,54543	Sedang
32	RPL	4,17	75	0,73912	Tinggi
33	RQN	16,67	62,5	0,54998	Sedang
34	SNS	0	54,17	0,5417	Sedang
35	UA	8,33	62,5	0,59092	Sedang
36	VAF	0	66,67	0,6667	Sedang
	Jumlah	483,27	2228,33	20,1867	
R	ata-Rata	13,4242	61,8981	0,56074	
	N-Gain	0,5599			
	Kriteria	Sedang			

Lampiran 26 N-Gain Indikator Pemahaman Konsep Kelas Eksperimen
Indikator 1 Kemampuan menyatakan ulang konsep yang telah
dipelajari

NI -	N	Ni	lai	N. Cain	T:1
No	Nama	Pretest	Posttest	N-Gain	Tingkat
1	ANA	25	87,5	0,833	Tinggi
2	ASN	33,3	87,5	0,81259	Tinggi
3	ANH	41,7	91,67	0,85712	Tinggi
4	AL	33,3	62,5	0,43778	Sedang
5	CAZ	37,5	70,83	0,53328	Sedang
6	DAM	25	87,5	0,83333	Tinggi
7	DAS	37,5	87,5	0,8	Tinggi
8	DDR	33,3	91,67	0,87511	Tinggi
9	DI	41,7	91,67	0,85712	Tinggi
10	EAW	33,3	87,5	0,81259	Tinggi
11	FDP	33,3	91,67	0,87511	Tinggi
12	FAY	25	83,33	0,77773	Tinggi
13	HN	33,3	87,5	0,81259	Tinggi
14	HI	25	91,67	0,88893	Tinggi
15	JAR	37,5	91,67	0,86672	Tinggi
16	KNS	33,3	91,67	0,87511	Tinggi
17	LC	41,7	54,17	0,21389	Rendah
18	MAB	25	75	0,66667	Sedang
19	MNF	25	83,33	0,77773	Tinggi
20	MDN	41,7	91,67	0,85712	Tinggi
21	MSA	25	83,33	0,77773	Tinggi
22	MN	37,5	83,33	0,73328	Tinggi
23	MSM	33,3	87,5	0,81259	Tinggi
24	NAA	33,3	87,5	0,81259	Tinggi
25	NZS	37,5	87,5	0,8	Tinggi
26	NKA	33,3	87,5	0,81259	Tinggi
27	SA	33,3	87,5	0,81259	Tinggi
28	SSW	33,3	50	0,25037	Rendah
29	SRW	29,2	91,67	0,88234	Tinggi

30	SMQA	41,7	62,5	0,35678	Sedang
31	TW	37,5	87,5	0,8	Tinggi
32	UA	33,3	91,67	0,87511	Tinggi
33	VFS	33,3	91,67	0,87511	Tinggi
34	YFL	33,3	79,17	0,68771	Sedang
35	ZSA	37,5	83,33	0,73328	Tinggi
36	ZE	41,7	66,67	0,4283	Sedang
	Jumlah	1216,4	2995,86	26,7143	
	Rata-Rata	33,7889	83,2183	0,74206	
	N-Gain	0,74654			
	Kriteria	Tinggi			

Indikator 2 Kemampuan mengklasifikasikan objek menurut sifat-sifat tertentu sesuai dengan konsepnya

No	Nama	Ni	lai	N. Coin	Tin alsot
No	Nama	Pretest	Posttest	N-Gain	Tingkat
1	ANA	25	87,5	0,833	Tinggi
2	ASN	37,5	87,5	0,8	Tinggi
3	ANH	25	75	0,66667	Sedang
4	AL	25	50	0,33333	Sedang
5	CAZ	25	62,5	0,5	Sedang
6	DAM	25	87,5	0,83333	Tinggi
7	DAS	37,5	87,5	0,8	Tinggi
8	DDR	25	87,5	0,83333	Tinggi
9	DI	37,5	75	0,6	Sedang
10	EAW	37,5	87,5	0,8	Tinggi
11	FDP	37,5	87,5	0,8	Tinggi
12	FAY	25	62,5	0,5	Sedang
13	HN	37,5	87,5	0,8	Tinggi
14	HI	25	87,5	0,83333	Tinggi
15	JAR	37,5	87,5	0,8	Tinggi
16	KNS	25	87,5	0,83333	Tinggi
17	LC	50	37,5	-0,25	Rendah
18	MAB	25	50	0,33333	Sedang
19	MNF	25	62,5	0,5	Sedang

20	MDN	25	87,5	0,83333	Tinggi
21	MSA	25	62,5	0,5	Sedang
22	MN	50	75	0,5	Sedang
23	MSM	25	75	0,66667	Sedang
24	NAA	37,5	75	0,6	Sedang
25	NZS	25	75	0,66667	Sedang
26	NKA	25	87,5	0,83333	Tinggi
27	SA	37,5	75	0,6	Sedang
28	SSW	25	37,5	0,16667	Rendah
29	SRW	25	87,5	0,83333	Tinggi
30	SMQA	25	50	0,33333	Sedang
31	TW	25	75	0,66667	Sedang
32	UA	25	87,5	0,83333	Tinggi
33	VFS	25	75	0,66667	Sedang
34	YFL	37,5	75	0,6	Sedang
35	ZSA	37,5	62,5	0,4	Sedang
36	ZE	37,5	62,5	0,4	Sedang
Jun	nlah	1100	2662,5	22,25	
Rata	-Rata	30,5556	73,9583	0,61806	
N-(Gain	0,625			
Kri	teria	Sedang			

Indikator 3 Kemampuan menerapkan konsep secara algoritma dalam pemecahan masalah

No	Nama	Nilai		N-Gain	Tinglest
No	Nama	Pretest	Posttest	N-Gaill	Tingkat
1	ANA	16,7	66,67	0,60	Sedang
2	ASN	25	83,33	0,77773	Tinggi
3	ANH	25	83,33	0,77773	Tinggi
4	AL	25	41,67	0,22227	Rendah
5	CAZ	25	50	0,33333	Sedang
6	DAM	16,7	83,33	0,79988	Tinggi
7	DAS	25	83,33	0,77773	Tinggi
8	DDR	33	83,33	0,75119	Tinggi

9	DI	25	75	0,66667	Sedang
10	EAW	41,7	66,67	0,4283	Sedang
11	FDP	25	83,33	0,77773	Tinggi
12	FAY	25	75	0,66667	Sedang
13	HN	25	91,67	0,88893	Tinggi
14	HI	16,7	83,33	0,79988	Tinggi
15	JAR	25	83,33	0,77773	Tinggi
16	KNS	25	83,33	0,77773	Tinggi
17	LC	25	25	0	Rendah
18	MAB	25	75	0,66667	Sedang
19	MNF	25	75	0,66667	Sedang
20	MDN	25	83,33	0,77773	Tinggi
21	MSA	16,7	75	0,69988	Sedang
22	MN	25	83,33	0,77773	Tinggi
23	MSM	16,7	83,33	0,79988	Tinggi
24	NAA	25	83,33	0,77773	Tinggi
25	NZS	25	66,67	0,5556	Sedang
26	NKA	41,7	83,33	0,71407	Tinggi
27	SA	25	83,33	0,77773	Tinggi
28	SSW	25	33,33	0,11107	Rendah
29	SRW	25	83,33	0,77773	Tinggi
30	SMQA	25	50	0,33333	Sedang
31	TW	25	66,67	0,5556	Sedang
32	UA	25	91,67	0,88893	Tinggi
33	VFS	25	91,67	0,88893	Tinggi
34	YFL	25	41,67	0,22227	Rendah
35	ZSA	25	83,33	0,77773	Tinggi
36	ZE	25	33,33	0,11107	Rendah
Jun	ılah	899,9	2608,3	22,7038	
Rata	-Rata	24,9972	72,4528	0,63066	
N-C	ain	0,63272			
Krit	eria	Sedang			

Indikator 4 Kemampuan memberikan contoh dari konsep yang dipelajari

N	NI	Ni	lai	N.C.	m: 1 ,
No	Nama	Pretest	Posttest	N-Gain	Tingkat
1	ANA	50	75	0,5	Sedang
2	ASN	50	75	0,5	Sedang
3	ANH	75	75	0	Rendah
4	AL	50	75	0,5	Sedang
5	CAZ	75	75	0	Rendah
6	DAM	50	75	0,5	Sedang
7	DAS	75	75	0	Rendah
8	DDR	50	75	0,5	Sedang
9	DI	50	75	0,5	Sedang
10	EAW	50	50	0	Rendah
11	FDP	50	75	0,5	Sedang
12	FAY	50	75	0,5	Sedang
13	HN	50	75	0,5	Sedang
14	HI	50	75	0,5	Sedang
15	JAR	75	75	0	Rendah
16	KNS	50	75	0,5	Sedang
17	LC	75	75	0	Rendah
18	MAB	50	75	0,5	Sedang
19	MNF	50	75	0,5	Sedang
20	MDN	75	75	0	Rendah
21	MSA	75	75	0	Rendah
22	MN	50	75	0,5	Sedang
23	MSM	50	75	0,5	Sedang
24	NAA	50	75	0,5	Sedang
25	NZS	75	75	0	Rendah
26	NKA	50	75	0,5	Sedang
27	SA	50	75	0,5	Sedang
28	SSW	50	0	-1	Rendah
29	SRW	75	75	0	Rendah
30	SMQA	50	50	0	Rendah
31	TW	75	75	0	Rendah
32	UA	50	75	0,5	Sedang

33	VFS	50	75	0,5	Sedang
34	YFL	50	25	-0,5	Rendah
35	ZSA	50	75	0,5	Sedang
36	ZE	75	75	0	Rendah
Jur	nlah	2075	2525	9	
Rata	a-Rata	57,6389	70,1389	0,25	
N-(Gain	0,29508			
Kri	teria	Rendah			

Indikator 5 Menyajikan konsep dalam berbagai bentuk representasi kimia

No	Nama	Nilai		N-Gain	Tinglest
NO	Ivallia	Pretest	Posttest	N-Gaill	Tingkat
1	ANA	25	87,5	0,83333	Tinggi
2	ASN	37,5	87,5	0,8	Tinggi
3	ANH	25	87,5	0,83333	Tinggi
4	AL	25	62,5	0,5	Sedang
5	CAZ	50	62,5	0,25	Rendah
6	DAM	25	87,5	0,83333	Tinggi
7	DAS	75	87,5	0,5	Sedang
8	DDR	50	87,5	0,75	Tinggi
9	DI	50	87,5	0,75	Tinggi
10	EAW	50	87,5	0,75	Tinggi
11	FDP	37,5	87,5	0,8	Tinggi
12	FAY	12,5	87,5	0,85714	Tinggi
13	HN	37,5	87,5	0,8	Tinggi
14	HI	25	75	0,66667	Sedang
15	JAR	37,5	87,5	0,8	Tinggi
16	KNS	37,5	87,5	0,8	Tinggi
17	LC	50	62,5	0,25	Rendah
18	MAB	12,5	87,5	0,85714	Tinggi
19	MNF	12,5	87,5	0,85714	Tinggi
20	MDN	50	100	1	Tinggi
21	MSA	12,5	87,5	0,85714	Tinggi
22	MN	25	87,5	0,83333	Tinggi

23	MSM	25	87,5	0,83333	Tinggi
24	NAA	37,5	87,5	0,8	Tinggi
25	NZS	25	87,5	0,83333	Tinggi
26	NKA	62,5	87,5	0,66667	Sedang
27	SA	37,5	87,5	0,8	Tinggi
28	SSW	37,5	50	0,2	Rendah
29	SRW	25	87,5	0,83333	Tinggi
30	SMQA	37,5	75	0,6	Sedang
31	TW	25	87,5	0,83333	Tinggi
32	UA	37,5	87,5	0,8	Tinggi
33	VFS	25	87,5	0,83333	Tinggi
34	YFL	25	87,5	0,83333	Tinggi
35	ZSA	25	87,5	0,83333	Tinggi
36	ZE	50	62,5	0,25	Rendah
	Jumlah	1237,5	3000	26,1286	
F	Rata-Rata	34,375	83,3333	0,72579	
	N-Gain	0,74603			
	Kriteria	Tinggi			

Indikator 6 Kemampuan mengaitkan berbagai konsep

No	Nama	Ni	lai	N-Gain	Tinglest
No	Nama	Pretest	Posttest	N-Gain	Tingkat
1	ANA	20,8	91,67	0,8948	Tinggi
2	ASN	33,3	95,83	0,93748	Tinggi
3	ANH	29,2	91,67	0,88234	Tinggi
4	AL	33,3	62,5	0,43778	Sedang
5	CAZ	33,3	79,17	0,68771	Sedang
6	DAM	20,8	95,83	0,94735	Tinggi
7	DAS	25	95,83	0,9444	Tinggi
8	DDR	37,5	95,83	0,93328	Tinggi
9	DI	33,3	95,83	0,93748	Tinggi
10	EAW	41,7	91,67	0,85712	Tinggi
11	FDP	29,2	95,83	0,9411	Tinggi
12	FAY	25	83,33	0,77773	Tinggi
13	HN	33,3	95,83	0,93748	Tinggi
14	HI	20,8	83,33	0,78952	Tinggi

15	JAR	29,2	91,67	0,88234	Tinggi
16	KNS	20,8	91,67	0,89482	Tinggi
17	LC	29,2	41,67	0,17613	Rendah
18	MAB	25	75	0,66667	Sedang
19	MNF	25	79,17	0,72227	Tinggi
20	MDN	37,5	95,83	0,93328	Tinggi
21	MSA	25	83,33	0,77773	Tinggi
22	MN	29,2	91,67	0,88234	Tinggi
23	MSM	20,8	91,67	0,89482	Tinggi
24	NAA	33,3	91,67	0,87511	Tinggi
25	NZS	25	91,67	0,88893	Tinggi
26	NKA	37,5	95,83	0,93328	Tinggi
27	SA	33,3	91,67	0,87511	Tinggi
28	SSW	20,8	50	0,36869	Sedang
29	SRW	25	95,83	0,9444	Tinggi
30	SMQA	25	62,5	0,5	Sedang
31	TW	25	87,5	0,83333	Tinggi
32	UA	29,2	95,83	0,9411	Tinggi
33	VFS	33,3	91,67	0,87511	Tinggi
34	YFL	29,2	87,5	0,82345	Tinggi
35	ZSA	29,2	75	0,64689	Sedang
36	ZE	25	45,83	0,27773	Rendah
	Jumlah	1029	3058,33	28,5192	
R	ata-Rata	28,5833	84,9536	0,7922	
	N-Gain	0,78932			
I	Kriteria	Tinggi			

Indikator 7 Kemampuan mengembangkan syarat perlu dan syarat cukup suatu konsep

No	Nama	Nilai		N Cain	Tingkat	
INO	Nama	Pretest	Posttest	N-Gain	Tingkat	
1	ANA	25	62,5	0,5	Sedang	
2	ASN	37,5	87,5	0,8	Tinggi	
3	ANH	25	100	1	Tinggi	
4	AL	25	50	0,33333	Sedang	
5	CAZ	25	62,5	0,5	Sedang	

6	DAM	25	87,5	0,83333	Tinggi
7	DAS	25	87,5	0,83333	Tinggi
8	DDR	37,5	100	1	Tinggi
9	DI	25	87,5	0,83333	Tinggi
10	EAW	62,5	62,5	0	Rendah
11	FDP	25	87,5	0,83333	Tinggi
12	FAY	25	75	0,66667	Sedang
13	HN	25	100	1	Tinggi
14	HI	37,5	100	1	Tinggi
15	JAR	25	100	1	Tinggi
16	KNS	37,5	100	1	Tinggi
17	LC	25	37,5	0,16667	Rendah
18	MAB	25	75	0,66667	Sedang
19	MNF	25	75	0,66667	Sedang
20	MDN	25	75	0,66667	Sedang
21	MSA	25	75	0,66667	Sedang
22	MN	25	87,5	0,83333	Tinggi
23	MSM	25	100	1	Tinggi
24	NAA	37,5	100	1	Tinggi
25	NZS	25	62,5	0,5	Sedang
26	NKA	62,5	100	1	Tinggi
27	SA	37,5	100	1	Tinggi
28	SSW	25	50	0,33333	Sedang
29	SRW	25	100	1	Tinggi
30	SMQA	25	62,5	0,5	Sedang
31	TW	25	62,5	0,5	Sedang
32	UA	37,5	100	1	Tinggi
33	VFS	25	100	1	Tinggi
34	YFL	25	50	0,33333	Sedang
35	ZSA	25	87,5	0,83333	Tinggi
36	ZE	25	37,5	0,16667	Rendah
Jur	nlah	1062,5	2887,5	25,9667	
Rata	-Rata	29,5139	80,2083	0,7213	
N-0	Gain	0,71921			
Kri	teria	Tinggi			

Lampiran 27 N-Gain Indikator Pemahaman Konsep Kelas Kontrol Indikator 1 Kemampuan menyatakan ulang konsep yang telah dipelajari

No	Nama	Ni	lai	N-Gain	Tinglest
INO	Nama	Pretest	Posttest	N-Gain	Tingkat
1	ARW	41,67	70,83	0,4999	Sedang
2	AIM	29,17	87,5	0,82352	Tinggi
3	ASA	37,5	83,33	0,73328	Tinggi
4	AAR	29,17	50	0,29408	Rendah
5	AA	29,17	62,5	0,47056	Sedang
6	AH	33,33	62,5	0,43753	Sedang
7	ASS	37,5	79,17	0,66672	Sedang
8	AAB	29,17	83,33	0,76465	Tinggi
9	CIN	29,17	41,67	0,17648	Rendah
10	DS	29,17	83,33	0,76465	Tinggi
11	EAA	33,33	75	0,62502	Sedang
12	HCA	45,83	83,33	0,69227	Sedang
13	KA	33,33	83,33	0,74996	Tinggi
14	MA	33,33	83,33	0,74996	Tinggi
15	MCS	37,5	83,33	0,73328	Tinggi
16	MNR	33,33	83,33	0,74996	Tinggi
17	MA	37,5	75	0,60	Sedang
18	MNN	29,17	83,33	0,76465	Tinggi
19	MA	33,33	62,5	0,43753	Sedang
20	MH	33,33	87,5	0,81251	Tinggi
21	MRR	25	37,5	0,16667	Rendah
22	M	37,5	83,33	0,73328	Tinggi
23	NUR	37,5	70,83	0,53328	Sedang
24	NKI	33,33	83,33	0,74996	Tinggi
25	NAM	33,33	70,83	0,56247	Sedang
26	NPK	33,33	87,5	0,81251	Tinggi
27	NAS	29,17	83,33	0,76465	Tinggi
28	NFA	37,5	50	0,20	Rendah
29	NMS	33,33	87,5	0,81251	Tinggi
30	RA	33,33	87,5	0,81251	Tinggi

31	R	33,33	79,17	0,68757	Sedang
32	RPL	33,33	79,17	0,68757	Sedang
33	RQN	29,17	83,33	0,76465	Tinggi
34	SNS	25	83,33	0,77773	Tinggi
35	UA	33,33	87,5	0,81251	Tinggi
36	VAF	25	83,33	0,77773	Tinggi
Jun	nlah	1187,48	2741,62	23,2021	
Rata	-Rata	32,9856	76,1561	0,6445	
N-C	Gain	0,6442			
Krit	teria	Sedang			

Indikator 2 Kemampuan mengklasifikasikan objek menurut sifat-sifat tertentu sesuai dengan konsepnya

No	Nama	Nilai		N-Gain	Tingkat
NO	Nama	Pretest	Posttest	N-Gaill	Tingkat
1	ARW	25	75	0,6667	Sedang
2	AIM	25	87,5	0,83333	Tinggi
3	ASA	25	87,5	0,83333	Tinggi
4	AAR	25	37,5	0,16667	Rendah
5	AA	25	50	0,33333	Sedang
6	AH	25	87,5	0,83333	Tinggi
7	ASS	25	87,5	0,83333	Tinggi
8	AAB	25	87,5	0,83333	Tinggi
9	CIN	25	37,5	0,16667	Rendah
10	DS	25	87,5	0,83333	Tinggi
11	EAA	25	87,5	0,83333	Tinggi
12	HCA	50	87,5	0,75	Tinggi
13	KA	50	87,5	0,75	Tinggi
14	MA	25	87,5	0,83333	Tinggi
15	MCS	37,5	87,5	0,8	Tinggi
16	MNR	37,5	100	1	Tinggi
17	MA	25	87,5	0,83333	Tinggi
18	MNN	37,5	100	1	Tinggi
19	MA	25	50	0,33333	Sedang
20	MH	25	87,5	0,83333	Tinggi
21	MRR	25	37,5	0,16667	Rendah

22	M	37,5	87,5	0,8	Tinggi
23	NUR	25	62,5	0,5	Sedang
24	NKI	25	50	0,33333	Sedang
25	NAM	37,5	87,5	0,8	Tinggi
26	NPK	25	87,5	0,83333	Tinggi
27	NAS	37,5	87,5	0,8	Tinggi
28	NFA	37,5	50	0,2	Rendah
29	NMS	37,5	87,5	0,8	Tinggi
30	RA	25	100	1	Tinggi
31	R	25	75	0,66667	Sedang
32	RPL	12,5	87,5	0,85714	Tinggi
33	RQN	25	87,5	0,83333	Tinggi
34	SNS	12,5	87,5	0,85714	Tinggi
35	UA	25	75	0,66667	Sedang
36	VAF	12,5	87,5	0,85714	Tinggi
	Jumlah	1012,5	2825	25,2714	
R	ata-Rata	28,125	78,4722	0,70198	
	N-Gain	0,70048			
	Kriteria	Tinggi			

Indikator 3 Kemampuan menerapkan konsep secara algoritma dalam pemecahan masalah

No	Nama	Ni	lai	N-Gain	Tinglest
NO	Ivallia	Pretest	Posttest	N-Gain	Tingkat
1	ARW	25	66,67	0,556	Sedang
2	AIM	25	58,33	0,4444	Sedang
3	ASA	25	66,67	0,5556	Sedang
4	AAR	25	16,67	-0,1111	Rendah
5	AA	16,67	25	0,09996	Rendah
6	AH	25	58,33	0,4444	Sedang
7	ASS	25	58,33	0,4444	Sedang
8	AAB	25	66,67	0,5556	Sedang
9	CIN	25	33,33	0,11107	Rendah
10	DS	16,67	83,33	0,79995	Tinggi
11	EAA	25	83,33	0,77773	Tinggi
12	HCA	25	25	0	Rendah

13	KA	25	66,67	0,5556	Sedang
14	MA	25	83,33	0,77773	Tinggi
15	MCS	25	41,67	0,22227	Rendah
16	MNR	25	66,67	0,5556	Sedang
17	MA	25	66,67	0,5556	Sedang
18	MNN	25	83,33	0,77773	Tinggi
19	MA	25	25	0	Rendah
20	MH	25	58,33	0,4444	Sedang
21	MRR	25	25	0	Rendah
22	M	25	66,67	0,5556	Sedang
23	NUR	25	50	0,33333	Sedang
24	NKI	25	50	0,33333	Sedang
25	NAM	25	50	0,33333	Sedang
26	NPK	25	66,67	0,5556	Sedang
27	NAS	25	66,67	0,5556	Sedang
28	NFA	25	41,67	0,22227	Rendah
29	NMS	25	91,67	0,88893	Tinggi
30	RA	25	75	0,66667	Sedang
31	R	25	41,67	0,22227	Rendah
32	RPL	16,67	83,33	0,79995	Tinggi
33	RQN	25	66,67	0,5556	Sedang
34	SNS	16,67	66,67	0,60002	Sedang
35	UA	25	66,67	0,5556	Sedang
36	VAF	16,67	83,33	0,79995	Tinggi
Jun	ılah	858,35	2125,02	16,5446	
Rata	-Rata	23,8431	59,0283	0,45957	
N-(Gain	0,46201			
Krit	eria	Sedang			

Indikator 4 Kemampuan memberikan contoh dari konsep yang dipelajari

N	NI	Ni	lai	N.C.	m: 1 ,
No	Nama	Pretest	Posttest	N-Gain	Tingkat
1	ARW	25	75	0,6667	Sedang
2	AIM	25	75	0,66667	Sedang
3	ASA	25	75	0,66667	Sedang
4	AAR	25	25	0	Rendah
5	AA	25	50	0,33333	Sedang
6	AH	25	0	-0,3333	Rendah
7	ASS	75	75	0	Rendah
8	AAB	25	75	0,66667	Sedang
9	CIN	25	50	0,33333	Sedang
10	DS	75	75	0	Rendah
11	EAA	75	50	-1	Rendah
12	HCA	75	75	0	Rendah
13	KA	50	75	0,5	Sedang
14	MA	50	75	0,5	Sedang
15	MCS	25	75	0,66667	Sedang
16	MNR	25	50	0,33333	Sedang
17	MA	75	75	0	Rendah
18	MNN	50	50	0	Rendah
19	MA	25	50	0,33333	Sedang
20	MH	25	75	0,66667	Sedang
21	MRR	25	50	0,33333	Sedang
22	M	75	75	0	Rendah
23	NUR	25	75	0,66667	Sedang
24	NKI	25	75	0,66667	Sedang
25	NAM	50	75	0,5	Sedang
26	NPK	25	75	0,66667	Sedang
27	NAS	25	75	0,66667	Sedang
28	NFA	25	50	0,33333	Sedang
29	NMS	25	75	0,66667	Sedang
30	RA	25	75	0,66667	Sedang
31	R	75	75	0	Rendah
32	RPL	75	75	0	Rendah

33	RQN	25	75	0,66667	Sedang
34	SNS	25	75	0,66667	Sedang
35	UA	25	75	0,66667	Sedang
36	VAF	25	75	0,66667	Sedang
Jun	nlah	1400	2375	12,8333	
Rata	ı-Rata	38,8889	65,9722	0,35648	
N-0	Gain	0,44318			
Kri	teria	Sedang			

Indikator 5 Menyajikan konsep dalam berbagai bentuk representasi kimia

No	Nama	Ni	lai	N-Gain	Tin alsot
NO	Nama	Pretest	Posttest	N-Gain	Tingkat
1	ARW	25	75	0,6667	Sedang
2	AIM	37,5	62,5	0,4	Sedang
3	ASA	37,5	75	0,6	Sedang
4	AAR	25	25	0	Rendah
5	AA	37,5	62,5	0,4	Sedang
6	AH	25	75	0,66667	Sedang
7	ASS	50	62,5	0,25	Rendah
8	AAB	25	75	0,66667	Sedang
9	CIN	12,5	50	0,42857	Sedang
10	DS	37,5	75	0,6	Sedang
11	EAA	37,5	87,5	0,8	Tinggi
12	HCA	37,5	12,5	-0,4	Rendah
13	KA	25	75	0,66667	Sedang
14	MA	50	100	1	Tinggi
15	MCS	25	50	0,33333	Sedang
16	MNR	37,5	50	0,2	Rendah
17	MA	50	87,5	0,75	Tinggi
18	MNN	25	87,5	0,83333	Tinggi
19	MA	25	50	0,33333	Sedang
20	MH	25	75	0,66667	Sedang
21	MRR	25	37,5	0,16667	Rendah
22	M	50	87,5	0,75	Tinggi

23	NUR	25	50	0,33333	Sedang
24	NKI	50	37,5	-0,25	Rendah
25	NAM	37,5	37,5	0	Rendah
26	NPK	50	37,5	-0,25	Rendah
27	NAS	50	87,5	0,75	Tinggi
28	NFA	25	50	0,33333	Sedang
29	NMS	50	100	1	Tinggi
30	RA	25	50	0,33333	Sedang
31	R	50	62,5	0,25	Rendah
32	RPL	37,5	75	0,6	Sedang
33	RQN	50	87,5	0,75	Tinggi
34	SNS	25	75	0,66667	Sedang
35	UA	37,5	87,5	0,8	Tinggi
36	VAF	25	37,5	0,16667	Rendah
Jumlah		1262,5	2312,5	16,2619	
Rata-Rata		35,0694	64,2361	0,45172	
	N-Gain	0,4492			
	Kriteria	Sedang			

Indikator 6 Kemampuan mengaitkan berbagai konsep

No	Nama	Ni	lai	N-Gain	Tingkat
NO	Nama	Pretest	Posttest	N-Gaill	Tillgkat
1	ARW	29,17	79,17	0,7059	Tinggi
2	AIM	20,83	87,5	0,84211	Tinggi
3	ASA	25	79,17	0,72227	Tinggi
4	AAR	16,67	25	0,09996	Rendah
5	AA	16,67	54,17	0,45002	Sedang
6	AH	16,67	75	0,69999	Sedang
7	ASS	16,67	79,17	0,75003	Tinggi
8	AAB	25	91,67	0,88893	Tinggi
9	CIN	20,83	33,33	0,15789	Rendah
10	DS	12,5	79,17	0,76194	Tinggi
11	EAA	33,33	79,17	0,68757	Sedang
12	HCA	25	50	0,33333	Sedang
13	KA	20,83	87,5	0,84211	Tinggi
14	MA	20,83	95,83	0,94733	Tinggi

15	MCS	25	62,5	0,5	Sedang
16	MNR	25	79,17	0,72227	Tinggi
17	MA	16,67	87,5	0,84999	Tinggi
18	MNN	20,83	87,5	0,84211	Tinggi
19	MA	20,83	45,83	0,31578	Sedang
20	MH	20,83	91,67	0,89478	Tinggi
21	MRR	20,83	29,17	0,10534	Rendah
22	M	16,67	87,5	0,84999	Tinggi
23	NUR	20,83	62,5	0,52634	Sedang
24	NKI	20,83	70,83	0,63155	Sedang
25	NAM	29,17	58,33	0,41169	Sedang
26	NPK	16,67	66,67	0,60002	Sedang
27	NAS	16,67	87,5	0,84999	Tinggi
28	NFA	29,17	54,17	0,35296	Sedang
29	NMS	20,83	95,83	0,94733	Tinggi
30	RA	25	75	0,66667	Sedang
31	R	25	62,5	0,5	Sedang
32	RPL	12,5	87,5	0,85714	Tinggi
33	RQN	20,83	87,5	0,84211	Tinggi
34	SNS	12,5	79,17	0,76194	Tinggi
35	UA	37,5	83,33	0,73328	Tinggi
36	VAF	12,5	70,83	0,66663	Sedang
	Jumlah		2608,35	23,3173	
R	ata-Rata	21,2961	72,4542	0,6477	
	N-Gain	0,65001			
I	Kriteria	Sedang			

Indikator 7 Kemampuan mengembangkan syarat perlu dan syarat cukup suatu konsep

No	Nama	Ni	lai	N Coin	Tingkat	
No	Nama	Pretest	Posttest	N-Gain	Ü	
1	ARW	25	62,5	0,50	Sedang	
2	AIM	25	50	0,33333	Sedang	
3	ASA	25	62,5	0,5	Sedang	
4	AAR	25	12,5	-0,1667	Rendah	
5	AA	12,5	25	0,14286	Rendah	

	1			0.00000	2 1
6	AH	25	50	0,33333	Sedang
7	ASS	25	62,5	0,5	Sedang
8	AAB	25	62,5	0,5	Sedang
9	CIN	25	37,5	0,16667	Rendah
10	DS	25	100	1	Tinggi
11	EAA	25	75	0,66667	Sedang
12	HCA	25	25	0	Rendah
13	KA	25	62,5	0,5	Sedang
14	MA	25	100	1	Tinggi
15	MCS	25	50	0,33333	Sedang
16	MNR	25	87,5	0,83333	Tinggi
17	MA	25	62,5	0,5	Sedang
18	MNN	25	100	1	Tinggi
19	MA	25	25	0	Rendah
20	MH	25	50	0,33333	Sedang
21	MRR	25	25	0	Rendah
22	M	25	62,5	0,5	Sedang
23	NUR	25	62,5	0,5	Sedang
24	NKI	25	62,5	0,5	Sedang
25	NAM	25	62,5	0,5	Sedang
26	NPK	25	62,5	0,5	Sedang
27	NAS	25	62,5	0,5	Sedang
28	NFA	25	62,5	0,5	Sedang
29	NMS	25	87,5	0,83333	Tinggi
30	RA	25	100	1	Tinggi
31	R	25	50	0,33333	Sedang
32	RPL	25	87,5	0,83333	Tinggi
33	RQN	25	62,5	0,5	Sedang
34	SNS	12,5	62,5	0,57143	Sedang
35	UA	25	62,5	0,5	Sedang
36	VAF	12,5	87,5	0,85714	Tinggi
Jun	nlah	862,5	2225	17,9048	
Rata	-Rata	23,9583	61,8056	0,49735	
	Gain	0,49772			
	teria	Sedang			
L					

Lampiran 28 Uji-t Berpikir Kritis

Hipotesis:

Ho
$$= \mu_1 \le \mu_2$$

Ha $= \mu_1 > \mu_2$

- Ho diterima jika $t_{hitung} < t_{tabel}$ (model inkuiri terbimbing berbantuan *PhET simulation* tidak efektif untuk meningkatkan kemampuan berpikir kritis siswa)
- Ha diterima jika $t_{hitung} > t_{tabel}$ (model inkuiri terbimbing berbantuan *PhET simulation* efektif untuk meningkatkan kemampuan berpikir kritis siswa)

Uji Hipotesis:

$$t = \frac{\frac{\chi_{1} - \chi_{2}}{\sqrt{\frac{(n1 - 1)s1^{2} + (n2 - 1)s2^{2}}{n + n2 - 2}} (\frac{1}{n1} + \frac{1}{n2})}$$

No	Nilai Posttest				
No	Eksperimen	kontrol			
1	80,95	69,05			
2	82,14	73,81			
3	88,1	76,19			
4	55,95	22,62			
5	66,67	55,95			
6	82,14	53,57			
7	71,43	72,62			
8	86,9	76,19			
9	86,9	45,24			
10	85,71	80,95			
11	79,76	76,19			
12	78,57	71,43			
13	84,52	76,19			

14	77,38	90,48
15	83,33	73,81
16	83,33	80,95
17	46,43	78,57
18	77,38	84,52
19	79,76	51,19
20	84,52	72,62
21	78,57	35,71
22	82,14	78,57
23	82,14	72,62
24	57,14	76,19
25	82,14	63,1
26	84,52	76,19
27	86,9	77,38
28	52,38	57,14
29	85,71	91,67
30	66,67	77,38
31	77,38	64,29
32	86,9	82,14
33	88,1	79,76
34	70,24	76,19
35	84,52	75
36	53,57	70,24

Dari data diperoleh:

### ##################################					
Sumber Variansi	eksperimen	Kontrol			
Jumlah	2780,89	2535,71			
N	36	36			
X	77,24694444	70,43639			
Standar deviasi	11,31361703	14,41981			
Varians	127,9979304	207,9309			

$$t = \frac{77,246 - 70,436}{\sqrt{\frac{(36-1).\ 127,997 + (36-1).\ 207,930}{36+36-2}\left(\frac{1}{36} + \frac{1}{36}\right)}}$$

$$t = \frac{6,81}{\sqrt{\frac{4479,895 + 7277,55}{70} (0,055)}}$$

$$t = \frac{6,81}{\sqrt{167,963(0,055)}} = \frac{6,81}{3,039} = 2,240$$

Jadi $t_{hitung} = 2,240$

 T_{tabel} pada α =5% dengan dk = (36+36-2 =70) = 1,66691

Berdasarkan perhitungan di atas menunjukkan bahwa t_{hitung} > t_{tabel}, sehingga Ho ditolak dan Ha diterima artinya ada perbedaan rata-rata kemampuan berpikir kritis antara kelas eksperimen dan kontrol (Model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* efektif untuk meningkatkan kemampuan berpikir kritis siswa)

Lampiran 29 Uji-t Pemahaman Konsep Siswa

Hipotesis:

Ho =
$$\mu_1 \le \mu_2$$

Ha = $\mu_1 > \mu_2$

- Ho diterima jika t_{hitung} < t_{tabel} (model inkuiri terbimbing berbantuan PhET simulation tidak efektif untuk meningkatkan pemahaman konsep siswa)
- Ha diterima jika $t_{hitung} > t_{tabel}$ (model inkuiri terbimbing berbantuan PhET simulation efektif untuk meningkatkan pemahaman konsep siswa)

Uji Hipotesis:

Uji Hipotesis:

$$t = \frac{\chi_{1} - \chi_{2}}{\sqrt{\frac{(n1-1)s1^{2} + (n2-1)s2^{2}}{n+n2-2} (\frac{1}{n1} + \frac{1}{n2})}}$$

M -	Nilai Posttest			
No	Eksperimen	Kontrol		
1	81,82	72,72		
2	88,64	79,54		
3	88,64	77,27		
4	57,95	28,4		
5	68,18	50		
6	88,64	63,63		
7	80,68	73,86		
8	90,91	80,68		
9	86,36	39,77		
10	82,95	82,95		
11	89,77	78,4		
12	79,55	54,54		
13	86,36	79,54		
14	86,36	89,77		
15	89,77	65,9		
16	89,77	77,27		

17	45,45	78,4
18	72,73	86,36
19	78,41	46,59
20	89,77	79,54
21	81,82	32,95
22	85,23	80,68
23	79,55	62,5
24	87,5	69,31
25	81,82	62,5
26	89,77	70,45
27	87,5	80,68
28	45,45	51,13
29	90,91	85,22
30	64,77	79,54
31	80,68	64,77
32	92,05	82,68
33	85,23	80,68
34	71,59	77,27
35	79,55	79,54
36	53,41	72,72

Dari data diperoleh :

Sumber Variansi	Eksperimen	Kontrol
Jumlah	2879,54	2517,75
N	36	36
X	79,98722222	69,9375
Standar deviasi (s)	12,50325983	15,32256
Varians (s ²)	156,3315063	234,7808

$$t = \frac{79,987 - 69,937}{\sqrt{\frac{(36-1).\ 156,331 + (36-1).\ 234,780}{36+36-2}} \left(\frac{1}{36} + \frac{1}{36}\right)}$$

$$t = \frac{10,05}{\sqrt{\frac{5471,585 + 8217,3}{70} (0,055)}}$$

$$t = \frac{10,05}{\sqrt{195,555(0,055)}} = \frac{10,05}{3,279} = 3,064$$

Jadi
$$t_{hitung} = 3,064$$

$$t_{tabel}$$
 pada α = 5% dengan dk = (36+36-2 = 70) = 1,66691

Berdasarkan perhitungan di atas menunjukkan bahwa t_{hitung} > t_{tabel}, sehingga Ho ditolak dan Ha diterima artinya ada perbedaan rata-rata pemahaman konsep antara kelas eksperimen dan kontrol (Model pembelajaran inkuiri terbimbing berbantuan *PhET simulation* efektif untuk meningkatkan pemahaman konsep siswa)

Lampiran 30 Modul Ajar

Modul Ajar

Kelas Eksperimen

A. Informasi Umum

1. Identitas

Jenjang	Kelas	Fase	Perkiraan Siswa	Pembelaja ran	Alokasi Waktu
SMA	XI	F	34-36	Tatap Muka	5x45 menit

2. Profil Pelajar Pancasila

Bernalar kritis, mandiri, objektif

3. Sarana dan Prasarana

Seluruh sarana dan prasarana yang diperlukan siswa dalam proses pembelajaran meliputi:

- Sumber belajar (buku paket kimia kelas XI, artikel dari internet, video youtube)
- Alat untuk mendapatkan sumber belajar (handphone, laptop, alat tulis)
- Media Pembelajaran (*Powerpoint*, LKS, Simulasi *PhET*)
- Lingkungan belajar dalam dan luar sekolah atau sekolah yang aman, dan tidak mengganggu konsentrasi belajar siswa (tidak ribut/bau/kotor)

4. Target Siswa

Dengan adanya modul ajar ini diharapkan siswa dapat mengetahui fenomena di lingkungan sekitar yang berkaitan dengan laju reaksi dan dapat melakukan percobaan menggunakan *PhET simulation* terkait teori tumbukan dan faktor-faktor yang mempengaruhinya.

5. Model/Metode Pembelajaran

Model : inkuiri terbimbing

Metode: tanya jawab, diskusi kelompok, eksperimen

B. Kompetensi Inti

1. Tujuan Pembelajaran

- 11.8 Menganalisis fenomena di lingkungan sekitar yang berkaitan dengan laju reaksi
- 11.9 Menganalisis data percobaan untuk menentukan persamaan laju reaksi suatu reaksi kimia
- 11.10 Merancang, melaksanakan dan mempresentasikan hasil percobaan melalui *PhET simulation* berdasarkan teori tumbukan dan faktor yang mempengaruhi laju reaksi

2. Pengetahuan Prasyarat

Sebelum mempelajari materi ini, siswa diharapkan sudah mampu:

- Mempelajari materi reaksi kimia: persamaan reaksi kimia dan ciri-cirinya serta contoh dalam kehidupan
- Mampu melakukan perhitungan kimia dengan benar

3. Pengetahuan Bermakna

Diperlukan pemahaman yang baik mengenai laju reaksi agar dapat melakukan perhitungan. Melalui perhitungan kimia, siswa akan dapat menghitung laju reaksi dan orde reaksi.

4. Kegiatan Pembelajaran

1. Pertemuan Kedua dan Ketiga

Tahap		Alokasi
Kegiatan	Kegiatan Guru	Waktu
Kegiatan Awal	 Pendahuluan Guru membuka dengan mengucap salam dan berdoa untuk memulai pembelajaran Guru mulai memeriksa kehadiran siswa dan menanyakan kabar siswa dalam mengawali pembelajaran Guru mengarahkan siswa untuk mempersiapkan alat pembelajaran Apersepsi Guru memberikan apersepsi awal kepada siswa tentang materi yang akan diajarkan tentang materi laju reaksi Motivasi Guru memberi motivasi siswa tentang pentingnya laju reaksi dalam kehidupan sehari-hari Guru menyampaikan tujuan pembelajaran yang harus dicapai oleh siswa dalam mempelajari laju reaksi Guru membagi kelompok siswa dan setiap kelompok terdiri dari 6 siswa Guru membagikan LKS yang telah disediakan pada setiap kelompok 	15 Menit
	Mengamati	

	• Guru menampilkan <i>powerpoint</i>	
	untuk menjelaskan konsep laju	
	reaksi dan berdiskusi mengenai orde	
	reaksi.	
	Menanya	
	• Guru membimbing siswa untuk	
	menanya mengenai apa yang telah	
Kegiatan	diamati	65
Inti	• Guru mengarahkan siswa untuk	Menit
	membaca LKS yang sudah diberikan	
	Merumuskan Masalah	
	• Siswa membaca fenomena yang	
	disajikan di dalam LKS dan guru	
	membimbing siswa untuk membuat	
	rumusan masalah berdasarkan	
	fenomena tersebut.	
	Merumuskan Hipotesis	
	• Siswa dengan bimbingan guru	
	berlatih menyusun hipotesis dari	
	rumusan masalah yang sudah dibuat	
	Menyelidiki Untuk Mengambil Data	
	Mengumpulkan Data	
	• Setiap kelompok mengumpulkan	
	informasi dari bahan ajar dan	
	literatur lainnya untuk menjawab	
	pertanyaan	
	• Dengan pengetahuan yang	
	didapatkan, siswa mencoba soal	
	latihan dalam LKS yang telah	
	disiapkan	

	 Guru keliling untuk mengoreksi apabila terdapat kesalahan konsep atau lainnya Menguji Hipotesis Mengasosiasi Siswa berlatih mengolah/menganalisis data yang diperoleh Siswa berdiskusi dengan temanteman satu kelompok untuk menyimpulkan hasil analisis data 	
	dikaitkan dengan hipotesis dan tujuan kegiatan LKS Mengkomunikasikan • Salah satu kelompok mempresentasikan hasil dari	
	percobaannya. Kelompok lain mendengarkan dan memberikan tanggapan atas presentasi tersebut	
	 Guru dan siswa memberikan applause bagi kelompok yang sudah mempresentasikan hasil diskusinya dan kepada semua siswa yang sudah berperan aktif 	
	• Guru menambahkan atau meluruskan konsep yang telah dimiliki siswa	
Penutup	Merumuskan Kesimpulan • Siswa dengan arahan guru menyimpulkan materi laju reaksi	15 Menit
	yang telah dipelajari	

Siswa diberi pesan oleh guru untuk mempelajari materi selanjutnya yaitu teori tumbukan dan faktor- faktor yang mempengaruhi laju reaksi	
• Guru mengakhiri pembelajaran dengan berdoa bersama-sama dan salam penutup	

2. Pertemuan Keempat dan Kelima

Tahap Kegiatan	Kegiatan Guru	Alokasi Waktu
Kegiatan Awal	 Pendahuluan Guru membuka dengan mengucap salam dan berdoa untuk memulai pembelajaran Guru mulai memeriksa kehadiran siswa dan menanyakan kabar siswa dalam mengawali pembelajaran Guru mengarahkan siswa untuk mempersiapkan alat pembelajaran Apersepsi Guru memberikan apersepsi awal kepada siswa tentang materi yang yang telah dipelajari Motivasi Guru memberi motivasi untuk menumbuhkan rasa ingin tahunya tentang materi hari ini Guru menyampaikan tujuan pembelajaran yang harus dicapai 	15 Menit

	oleh siswa dalam mempelajari teori tumbukan dan faktor-faktor yang mempengaruhi laju reaksi Guru mempersilahkan siswa untuk duduk sesuai dengan kelompoknya masing-masing Guru membagikan LKS yang telah disediakan pada setiap kelompok	
Kegiatan Inti	 Mengamati Guru menampilkan PhET simulation untuk berdiskusi terkait teori tumbukan dan menjelaskan cara menggunakan PhET Simulation untuk menganalisis faktor yang mempengaruhi laju reaksi. Menanya Guru membimbing siswa untuk menanya materi yang sudah didiskusikan dengan guru Guru mengarahkan siswa untuk membaca LKS yang sudah diberikan Merumuskan Masalah Guru memberikan fenomena tentang faktor-faktor yang mempengaruhi laju reaksi Siswa merumuskan masalah berdasarkan fenomena tersebut Merumuskan Hipotesis Siswa dengan bimbingan guru berlatih menyusun hipotesis dari rumusan masalah yang sudah dibuat 	65 Menit

 Guru mempersilahkan siswa untuk menyelesaikan LKS sesuai kelompoknya masing-masing

Menyelidiki Untuk Mengambil Data Mengumpulkan Data

- Setiap kelompok mengumpulkan informasi dari bahan ajar dan literatur lainnya untuk menjawab pertanyaan.
- Dengan pengetahuan yang didapatkan, siswa mencoba soal latihan dalam LKS yang telah disiapkan
- Guru keliling untuk mengoreksi apabila terdapat kesalahan konsep atau lainnya

Menguji Hipotesis

Mengasosiasi

- Siswa berlatih mengolah/ menganalisis data yang diperoleh
- Siswa berdiskusi dengan temanteman satu kelompok untuk menyimpulkan hasil analisis data dikaitkan dengan hipotesis dan tujuan kegiatan LKS

Mengkomunikasikan

 Salah satu kelompok mempresentasikan hasil dari diskusinya. Kelompok lain mendengarkan dan memberikan tanggapan atas presentasi tersebut

	 Guru dan siswa memberikan applause bagi kelompok yang sudah mempresentasikan hasil diskusinya dan kepada semua siswa yang sudah berperan aktif Guru menambahkan atau meluruskan konsep yang telah dimiliki siswa 	
Penutup	 Merumuskan Kesimpulan Siswa dengan arahan guru menyimpulkan materi teori tumbukan dan faktor yang mempengaruhi laju reaksi yang telah dipelajari Siswa diberi pesan oleh guru untuk mempelajari materi selanjutnya Guru mengakhiri pembelajaran dengan berdoa bersama-sama dan salam penutup 	15 Menit

Lembar Kerja Siswa 1

Materi Laju Reaksi

Kelas : Kelompok : Anggota :

Petunjuk:

- 1. Bacalah buku paket, bahan ajar dan literatur lainnya yang berkaitan dengan materi "Laju Reaksi", Kemudian jawablah soal-soal pada LKS berikut dengan mendiskusikannya bersama kelompok masing-masing
- 2. Persiapkan hasil diskusi untuk dipresentasikan
- 3. Waktu yang diberikan adalah 40 menit. Gunakan waktu sebaik mungkin.

A. TUJUAN

Setelah selesai mempelajari materi ini siswa dapat menghitung orde reaksi masing-masing reaktan, orde reaksi total, serta konstanta laju

B. STUDI KASUS

Orde reaksi dapat ditentukan dengan cara membandingkan data laju reaksi sebagai fungsi dari konsentrasi pereaksi. Doni melakukan suatu percobaan untuk melakukan penentuan orde reaksi dan persamaan laju reaksi pada reaksi pembentukan FClO₂, dengan persamaan reaksi sebagai berikut:

$$F_2(g) + 2ClO_2(g) \rightarrow 2FClO_2(g)$$

Doni akan melakukan 3 kali percobaan untuk mendapatkan data yang diinginkan.

Percobaan	[F ₂] M	[ClO ₂] M	V (M/detik)
1	0,1	0,01	1,2 x 10 ⁻³
2	0,1	0,04	4,8 x 10 ⁻³
3	0,2	0,01	2,4 x 10 ⁻³

С.	RU	M	US.	AN	M	AS	Α	LA	H
----	----	---	-----	----	---	----	---	----	---

1.												
L.	 • • •	 ٠.,	 	••	٠.				•	 	•	

D. HIPOTESIS

1																		
L.																		

E. ANALISIS DATA

1. Berdasarkan data eksperimen dari reaksi:

 $F_2(g) + 2ClO_2(g) \rightarrow 2FClO_2(g)$

2(0)	(0)	-(0)	
Percobaan	[F ₂] M	[ClO ₂] M	V (M/detik)
1	0,1	0,01	1,2 x 10 ⁻³
2	0,1	0,04	4,8 x 10 ⁻³
3	0,2	0,01	2,4 x 10 ⁻³

Tentukan:

- a. Orde reaksi F2
- b. Orde reaksi ClO₂
- c. Orde reaksi total
- d. Persamaan laju reaksi
- e. Nilai kostanta

F. SIMPULAN

1.

Lembar Kerja Siswa 2

Materi Laju Reaksi

Kelas : Kelompok : Anggota :

Petunjuk:

- 1. Siapkan media *PhET simulation* untuk melakukan eksperimen. Bacalah buku paket, bahan ajar dan literatur lainnya yang berkaitan dengan materi "Laju Reaksi", Kemudian jawablah soal-soal pada LKS berikut dengan mendiskusikannya bersama kelompok masing-masing
- 2. Persiapkan hasil diskusi untuk dipresentasikan
- 3. Waktu yang diberikan adalah 40 menit. Gunakan waktu sebaik mungkin

https://phet.colorado.edu/in/simulations/reactionsand-rates/teaching-resources

A. TUJUAN

Siswa dapat melakukan percobaan faktor-faktor yang mempengaruhi laju reaksi

B. STUDI KASUS

1. Pada hari minggu Nina pergi kepasar untuk membeli Daging. Daging yang dibeli Nina sangatlah besar sehingga daging tersebut tidak cukup jika dimasukkan ke dalam kulkas. Nina meletakkan sebagian daging di kulkas dan sebagian lagi di dapur. Menurut pendapat Anda, daging manakah yang lebih cepat busuk?

2. Arka adalah remaja masjid di kampung halamannya. Suatu hari, Arka mengetahui bahwa kloset yang ada di masjid itu sangat kotor sekali. Lalu ia pergi ke toko untuk membeli cairan pembersih kloset. Namun ketika sampai di sana, ia bingung karena banyak sekali pilihannya. Namun ketika membaca komposisinya, ia melihat perbedaaan komposisi HCl. Merk A, B, C, dan D berturutturut memiliki kandungan HCl 5%; 10%; 15%; dan 20%. Kira-kira cairan pembersih merk apakah apa yang paling efektif untuk membersikan kloset itu? Jelaskan jawaban Anda!

C. RU	JMUSAN MASALAH
1.	
2.	
D. H	IPOTESIS
1.	
2.	

E. DATA PENGAMATAN

1. Pengaruh suhu terhadap laju reaksi

Sistem	Suhu	Jumlah molekul produk (salah satu saja AB atau C pada menit ke-)										
		0	1	2	3							
Α	Dingin											
В	Sedang											
С	Panas											

2. Pengaruh konsentrasi terhadap laju reaksi

Sistem	Jumlah molekul reaktan	(sala	h satu s	ekul pro aja AB a enit ke-] 2	tau C
A	2A + 2BC				
В	4A + 4BC				
С	6A + 6BC				

F. ANALISIS DATA

- Berdasarkan percobaan pengaruh suhu terhadap laju reaksi, pada sistem manakah yang proses pembentukan produknya paling cepat? Jelaskan alasan Anda! Jawab:
- 2. Berdasarkan percobaan pengaruh suhu terhadap laju reaksi, pada sistem manakah yang proses pembentukan produknya paling lambat? Jelaskan alasan Anda! Jawab:
- 3. Berdasarkan percobaan pengaruh konsentrasi terhadap laju reaksi, pada sistem manakah yang proses pembentukan produknya paling cepat? Jelaskan alasan Anda!

 Jawab:
- 4. Berdasarkan percobaan pengaruh konsentrasi terhadap laju reaksi, pada sistem manakah yang proses pembentukan produknya paling lambat? Jelaskan alasan Anda!

 Jawab:

F. SIMPULAN

L.	•••		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	
2.																																										

Modul Ajar

Kelas Kontrol

A. Informasi Umum

1. Identitas

Ioniana	Kelas	Fase	Perkiraan	Pembelaja	Alokasi
Jenjang	Keias	rase	Siswa	ran	Waktu
SMA	XI	I.	34-36	Tatap	5x45
SMA	ΛI	Г	34-30	Muka	menit

2. Profil Pelajar Pancasila

Bernalar kritis, mandiri, objektif

3. Sarana dan Prasarana

Seluruh sarana dan prasarana yang diperlukan siswa dalam proses pembelajaran meliputi:

- Sumber belajar (buku paket kimia kelas XI, artikel dari internet, video *youtube*)
- Alat untuk mendapatkan sumber belajar (handphone, laptop, alat tulis)
- Media Pembelajaran (*Powerpoint*, LKS)
- Lingkungan belajar dalam dan luar sekolah atau sekolah yang aman, dan tidak mengganggu konsentrasi belajar siswa (tidak ribut/bau/kotor)

4. Target Siswa

Dengan adanya modul ajar ini diharapkan siswa dapat mengetahui fenomena di lingkungan sekitar yang berkaitan dengan laju reaksi dan dapat bekerjasama dengan kelompoknya dalam proses pembelajaran.

5. Model/Metode Pembelajaran

Model : discovery learning

Metode: tanya jawab, diskusi kelompok

B. Kompetensi Inti

1. Tujuan Pembelajaran

- 11.8 Menganalisis fenomena di lingkungan sekitar yang berkaitan dengan laju reaksi
- 11.9 Menganalisis data percobaan untuk menentukan persamaan laju reaksi suatu reaksi kimia
- 11.10 Merancang, melaksanakan dan mempresentasikan hasil percobaan ilmiah berdasarkan teori tumbukan dan faktor yang mempengaruhi laju reaksi

2. Pengetahuan Prasyarat

Sebelum mempelajari materi ini, siswa diharapkan sudah mampu:

- Mempelajari materi reaksi kimia : persamaan reaksi kimia dan ciri-cirinya serta contoh dalam kehidupan
- Mampu melakukan perhitungan kimia dengan benar

3. Pengetahuan Bermakna

Tidak hanya pemahaman, untuk mempelajari kimia siswa juga perlu kemampuan menghitung. Namun diperlukan pemahaman yang baik mengenai laju reaksi agar dapat melakukan perhitungan. Melalui perhitungan kimia, siswa akan dapat menghitung laju reaksi dan orde reaksi.

4. Kegiatan Pembelajaran

1. Pertemuan Kedua dan Ketiga

Tahap		Alokasi
Kegiatan	Kegiatan Guru	Waktu
Kegiatan Awal	 Guru melakukan pembukaan dengan salam pembuka dan berdoa untuk memulai pembelajaran Guru memeriksa kehadiran siswa dan menanyakan kabar serta kondisi kesehatan siswa dalam mengawali kegiatan pembelajaran Guru mengarahkan siswa untuk mempersiapkan alat pembelajaran Apersepsi Guru memberikan apersepsi awal kepada siswa tentang materi yang akan diajarkan tentang materi laju reaksi Motivasi Guru memberi motivasi untuk menumbuhkan rasa ingin tahu siswa tentang materi laju reaksi Guru menyampaikan tujuan pembelajaran yang harus dicapai oleh siswa dalam mempelajari laju reaksi Guru membagi kelompok siswa dan setiap kelompok terdiri dari 6 siswa 	10 Menit

	Curry manufactives lessels as distant	ĺ
	Guru membagikan lembar diskusi siswa kepada masing-masing	
	1 1 1 1 1 1 1 0 1 1 0	
	kelompok Stimulasi	
	Mengamati	
	Siswa memperhatikan gambar yang	
	ada dalam <i>powerpoint</i> terkait laju	
	reaksi	
	Identifikasi Masalah	
	Menanya	
	• Guru membimbing siswa untuk	
	menanya mengenai apa yang telah	
	didiskusikan	
Kegiatan	Pengumpulan Data	70
Inti	Mengumpulkan Data	Menit
	• Guru memberikan waktu kepada	
	siswa untuk berdiskusi kelompok	
	• Guru membimbing siswa dalam	
	mengumpulkan data	
	Pengolahan Data	
	Asosiasi	
	• Guru membimbing atau menilai	
	kemampuan siswa mengolah data	
	hasil pengamatan dengan cara	
	menyatukan pemahaman terkait	
	data yang telah diperoleh masing-	
	masing siswa dalam kelompok	

	Verifikasi	
	Mengkomunikasikan	
	 Guru meminta salah seorang siswa atau perwakilan dari kelompok untuk menyampaikan hasil diskusi kelompoknya tentang materi hari ini Guru dan siswa memberikan applause bagi kelompok yang sudah mempresentasikan hasil diskusinya dan kepada semua siswa yang sudah berperan aktif 	
	• Guru menambahkan dan meluruskan konsep yang telah	
	dimiliki siswa	
	Generalisasi	
	• Guru membimbing siswa menyimpulkan materi tentang laju reaksi	
	Penutup	
Kegiatan Akhir	 Siswa diberi pesan oleh guru untuk mempelajari materi selanjutnya yaitu teori tumbukan dan faktor- faktor yang mempengaruhi laju reaksi Guru mengakhiri pembelajaran dengan berdoa bersama-sama dan salam penutup 	10 Menit

2. Pertemuan keempat dan kelima

Tahap	W	Alokasi
Kegiatan	Kegiatan Guru	Waktu
Kegiatan Awal	 Guru melakukan pembukaan dengan salam pembuka dan berdoa untuk memulai pembelajaran Guru memeriksa kehadiran siswa dan menanyakan kabar serta kondisi kesehatan siswa dalam mengawali kegiatan pembelajaran Guru mengarahkan siswa untuk mempersiapkan alat pembelajaran Apersepsi Guru memberikan apersepsi awal kepada siswa tentang materi yang akan diajarkan yaitu teori tumbukan dan faktor yang mempengaruhi laju reaksi Motivasi Guru memberi motivasi untuk menumbuhkan rasa ingin tahu siswa tentang teori tumbukan dan faktor yang mempengaruhi laju reaksi Guru menyampaikan tujuan pembelajaran yang harus dicapai oleh siswa dalam mempelajari teori tumbukan dan faktor yang mempengaruhi laju reaksi 	10 Menit

	 Guru mempersilahkan siswa untuk duduk dengan kelompoknya masing- masing Guru membagikan lembar diskusi siswa kepada masing-masing kelompok Stimulasi 	
Kegiatan Inti	 Mengamati Guru menampilkan video youtube untuk mendiskusikan materi hari ini https://youtu.be/-KRxsg-roPw Identifikasi Masalah Menanya Guru membimbing siswa untuk menanya mengenai apa yang telah didiskusikan Pengumpulan Data Mengumpulkan Data Guru memberikan waktu kepada siswa untuk berdiskusi kelompok Guru membimbing siswa dalam mengumpulkan data Pengolahan Data Asosiasi Guru membimbing atau menilai kemampuan siswa mengolah data hasil pengamatan dengan cara menyatukan pemahaman terkait data yang telah diperoleh masingmasing siswa dalam kelompok Verifikasi 	70 Menit

	Mengkomunikasikan	
	• Guru meminta salah seorang siswa	
	atau perwakilan dari kelompok	
	untuk menyampaikan hasil diskusi	
	kelompoknya tentang materi hari ini	
	•Guru dan siswa memberikan	
	applause bagi kelompok yang sudah	
	mempresentasikan hasil diskusinya	
	dan kepada semua siswa yang sudah	
	berperan aktif	
	• Guru menambahkan dan	
	meluruskan konsep yang telah	
	dimiliki siswa	
	Generalisasi	
	• Guru membimbing siswa	
	menyimpulkan materi tentang teori	
	tumbukan dan faktor yang	
	mempengaruhi laju reaksi	
	Penutup	
	Siswa diberi pesan oleh guru untuk	
Kegiatan	mempelajari materi selanjutnya	10
Akhir	• Guru mengakhiri pembelajaran	Menit
	dengan berdoa bersama-sama dan	
	salam penutup	

Lembar Kerja Siswa 1

Materi Laju Reaksi

Kelas : Kelompok : Anggota :

Petunjuk:

- 1. Bacalah buku paket, bahan ajar dan literatur lainnya yang berkaitan dengan materi "Laju Reaksi", Kemudian jawablah soal-soal pada LKS berikut dengan mendiskusikannya bersama kelompok masing-masing
- 2. Persiapkan hasil diskusi untuk dipresentasikan
- 3. Waktu yang diberikan adalah 40 menit. Gunakan waktu sebaik mungkin

TUJUAN

Siswa mampu menentukan orde reaksi, laju reaksi, harga dan satuan tetapan laju reaksi berdasarkan analisis data yang diperoleh dari percobaan.

A. STIMULUS

Konsentrasi merupakan salah satu faktor mempengaruhi laju reaksi. Dimana semakin besar konsentrasi pereaksi maka makin cepat reaksi berlangsung. Hal ini disebabkan semakin besar konsentrasi berarti jarak antarmolekul akan semakin rapat, sehingga semakin banyak terjadi tumbukan yang menghasilkan reaksi, sehingga laju reaksi juga semakin cepat. Dengan mengetahui pengaruh konsentrasi terhadap laju reaksi maka kita ingin mengetahui sejauh mana pengaruh konsentrasi terhadap laju reaksi melalui

perhitungan secara matematis. Salah satu cara mengkaji secara matematis pengaruh konsentrasi reaktan terhadap laju reaksi ialah dengan menggunakan orde reaksinya.

R	ID	EN	TH	FIK	Δ	CI	M	Δ	SI	l l	Δ	Н
1).	ıν	LIN	111			.71	141	м	J)	۱.	<i>_</i>	11

1															
L.	 	 					 							 ••	

C. PENGUMPULAN DATA

Cari informasi sebanyak-banyaknya dari beberapa referensi untuk menjawab pertanyaan-pertanyaan yang telah dituliskan di atas!

1.

D. PENGOLAHAN DATA

Kerjakan soal-soal berikut dengan pembahasannya!

1. Diketahui reaksi $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ Dari data berikut :

[N ₂] M	[H ₂] M	Laju Reaksi (M/s)
0,01	0,20	0,02
0,02	0,20	0,08
0,02	0,40	0,16
0,03	0,60	0,54

Tentukanlah

- a. Orde reaksi total
- b. Persamaan laju reaksinya

Jawab:

2. Dari reaksi di bawah ini:

$$2NO(g) + H_2(g) \rightarrow N_2O(g) + H_2O$$

Data kinetika reaksi untuk melihat pengaruh konsentrasi NO dan H_2 terhadap laju reaksi adalah sebagai berikut:

Davashaan	Konsentras	Laju reaksi	
Percobaan	NO H ₂		awal (M/s)
1	6,4 x 10 ⁻³	2,2, x 10 ⁻³	2,5 x 10 ⁻⁵
2	12,8 x 10 ⁻³	2,2, x 10 ⁻³	1,0 x 10 ⁻⁴
3	6,4 x 10 ⁻³	4,4, x 10 ⁻³	5,0 x 10 ⁻⁵

Tentukanlah konstanta dan persamaan laju reaksinya! Jawab:

E. GENERALISASI

Tuli	kan kesimpulan di bawal	ı ini!
1.		

Lembar Kerja Siswa 2

Materi Laju Reaksi

Kelas : Kelompok : Anggota :

Petunjuk:

- Bacalah buku paket, bahan ajar dan literatur lainnya yang berkaitan dengan materi "Laju Reaksi", Kemudian jawablah soal-soal pada LKS berikut dengan mendiskusikannya bersama kelompok masing-masing
- 2. Persiapkan hasil diskusi untuk dipresentasikan
- 3. Waktu yang diberikan adalah 40 menit. Gunakan waktu sebaik mungkin

TUJUAN

Siswa mampu menganalisis dan mengidentifikasi faktor-faktor yang mempengaruhi laju reaksi

A. STIMULUS

Dalam kehidupan sehari-hari sering menjumpai reaksi kimia. Reaksi kimia yang berlangsung memiliki kecepatan reaksi yang berbeda-beda. Ada reaksi yang berlangsung sangat cepat serta ada pula yang berlangsung sangat lambat. Perhatikan fenomena di bawah ini!

Fenomena tersebut merupakan contoh reaksi kimia yang berlangsung lambat pada perkaratan besi dan reaksi kimia yang berlangsung cepat pada pembakaran kayu. Berdasarkan hal tersebut, mengapa fenomena tersebut memiliki kecepatan yang berbeda? Kecepatan reaksi kimia pada fenomena tersebut dinamakan laju reaksi. Laju reaksi kimia dapat dinyatakan sebagai berkurangnya konsentrasi pereaksi (reaktan) tiap satuan waktu atau bertambahnya konsentrasi hasil reaksi (produk) tiap satuan waktu. Kemudian terjadinya laju reaksi dipengaruhi oleh beberapa faktor. Berlangsung atau tidaknya reaksi kimia dapat dijelaskan dengan menggunakan teori tumbukan.

B. IDENTIFIKASI MASALAH

Berdasarkan informasi yang didapatkan, tuliskan permasalahan-permasalahan yang ditemukan dalam bentuk pertanyaan!

1	
ı.	

C	PENGI	IMDI	I A NI	DATA
	PHNG		I.AN	1) A I A

Cari	inf	ormasi	sebanyak	-banyaknya	dari	beb	erapa
refere	ensi	untuk	menjawab	pertanyaan	-pertany	yaan	yang
telah	ditu	liskan d	li atas!				

1			

D. PENGOLAHAN DATA

Jawablah pertanyaan berikut!

- Sebutkan faktor-faktor yang mempengaruhi laju reaksi
 !
 Jawab :
- Bagaimana pengaruh faktor tersebut terhadap laju reaksi?Jawab:
- 3. Kaitkan faktor-faktor pada kehidupan sehari-hari! Jawab:

E. GENERALISASI

[u]	lis	kan	kesi	impu	lan (di	bawal	h ini!

Lampiran 31 Kisi-Kisi Soal Pretest dan Posttest

NO	Indikator Soal	Soal-Soal	Indikator Berpikir Kritis	Indikator Pemahaman Konsep
1	Menganalisis pernyataan yang ada untuk mendapatkan jawaban yang benar (C4)	Laju reaksi pembentukan gas amonia $N_2(g)$ + $3H_2(g) \rightarrow 2NH_3(g)$ pada setiap saat dapat dinyatakan sebagai berikut : (1) Dina menyatakan laju reaksi zat N_2 dapat dituliskan V $N_2 = + \frac{\Delta[N_2]}{\Delta t}$ (2) Dini menyatakan laju reaksi zat H_2 dapat dituliskan V $H_2 = + \frac{\Delta[H_2]}{\Delta t}$ (3) Roni menyatakan laju reaksi zat NH_3 dapat dituliskan V $NH_3 = + \frac{\Delta[NH_3]}{\Delta t}$ (4) Dinda menyatakan laju reaksi zat NH_3 dapat dituliskan V $NH_3 = -\frac{\Delta[NH_3]}{\Delta t}$ (5) Dodi menyatakan laju reaksi zat N_2 dapat dituliskan V $N_2 = \pm \frac{\Delta[N_2]}{\Delta t}$	- Analisis dengan sub skill dapat menuliskan apa yang harus dilakukan dalam menyelesaikan soal (skor 4) - Eksplanasi dengan sub skill dapat menulis hasil akhir dan memberikan alasan (skor 4)	-Kemampuan menyatakan ulang konsep yang telah dipelajari (skor 4)

Pernyataan di atas yang benar adalah	
(Berikan alasannya)!	
Jawab:	
Pernyataan no (3) Roni menyatakan laju	
reaksi zat NH ₃ dapat dituliskan V NH ₃ = +	
$\frac{\Delta[NH_3]}{\Delta t}$. Karena laju reaksi didefinisikan	
sebagai perubahan konsentrasi zat tiap	
satuan waktu. Perubahan konsentrasi zat	
dapat berupa pengurangan konsentrasi	
pereaksi atau penambahan konsentrasi	
produk.	
- no (1) dan (5) zat N ₂ merupakan pereaksi	
sehingga laju reaksinya dapat dituliskan	
$V N_2 = -\frac{\Delta[N_2]}{\Delta t}$	
- no (2) zat H ₂ merupakan pereaksi	
sehingga laju reaksinya dapat dituliskan V	
$H_2 = -\frac{\Delta[H_2]}{\Delta t}$	
- no (3) dan (4) zat NH3 merupakan produk	
sehingga laju reaksinya dapat dituliskan	

	$V NH_3 = + \frac{\Delta[NH_3]}{\Delta t}$ Dari pernyataan di atas maka jawaban yang paling benar adalah (3) Roni menyatakan laju reaksi zat NH ₃ dapat dituliskan V NH ₃ = $+ \frac{\Delta[NH_3]}{\Delta t}$ SKOR	8	4
2 Memecahkan suatu fenomen untuk mengetahui laj reaksi tercepat (C4)	Perhatikanlah gambar di bawah ini :	- Analisis dengan sub skill dapat menuliskan apa yang harus dilakukan dalam menyelesaikan soal (skor 4) - Inferensi dengan sub skill dapat menarik kesimpulan dari apa yang ditanyakan secara logis (skor 4)	-Kemampuan menyatakan ulang konsep yang telah dipelajari (skor 4)

	·		
	Perkaratan besi terjadi karena dimana besi		
	(Fe) bereaksi dengan oksigen di udara yang		
	membentuk karat (Fe ₂ O ₃). Reaksi kimianya		
	adalah 4Fe + $3O_2 \rightarrow 2Fe_2O_3$		
	Proses perkaratan besi membutuhkan		
	waktu lama karena proses ini memerlukan		
	udara dan paparan sinar matahari		
	Ledakan merupakan peristiwa spontan		
	dengan kekuatan energi tinggi yang terjadi		
	akibat reaksi kimia. Ledakan terjadi karena		
	adanya bahan yang mudah meledak seperti		
	Bom nuklir memiliki reaksi kimia yang		
	berlangsung sebelumnya		
	Dari gambar di atas maka jawaban yang		
	benar adalah (b) peristiwa ledakan karena		
	hanya memerlukan waktu singkat saja		
	untuk terjadi ledakan dibandingkan besi		
	berkarat yang membutuhkan waktu yang		
	lama untuk bereaksi.		
1	SKOR	8	4

3	Menganalisis	Perhatikan grafik berikut!	- Inferensi dengan	-Kemampuan
	grafik untuk		sub <i>skill</i> dapat	menyatakan ulang
	mendapatkan	≚	menarik kesimpulan	konsep yang telah
	jawaban yang	A D C	dari apa yang	dipelajari (skor 4)
	benar (C4)		ditanyakan secara	-Kemampuan
		te la	logis (skor 4)	mengaitkan
		un l	- Eksplanasi dengan	berbagai konsep
			sub <i>skill</i> dapat	(skor 4)
		Waktu	menulis hasil akhir	
		Grafik di atas adalah grafik dari reaksi zat-	dan memberikan	
		zat yang sama, tetapi dilakukan pada suhu	alasan (skor 4)	
		yang berbeda.		
		(1) Energi kinetik partikel pada grafik C		
		lebih tinggi daripada grafik B		
		(2) Urutan suhu reaksi dari yang terendah		
		adalah A < B < C		
		(3) Energi kinetik partikel pada grafik B		
		lebih tinggi daripada grafik A		
		(4) Grafik B dan C adalah hasil penambahan		
		katalis dari grafik A		

		(5) Reaksi pada grafik B dan C terjadi pada		
		suhu yang lebih rendah dibanding A		
		Manakah pernyataan yang benar		
		berdasarkan grafik di atas ? Berikan		
		alasannya!		
		Jawab :		
		Pernyataan yang benar berdasarkan grafik		
		di atas adalah no (5) Reaksi pada grafik B		
		dan C terjadi pada suhu rendah dibanding A.		
		Alasannya karena makin tinggi suhu reaksi		
		yang terjadi makin cepat, karena makin		
		tinggi suhu energi kinetik partikel yang		
		bereaksi makin tinggi. Di antara grafik A, B,		
		dan C pada jumlah produk yang sama, waktu		
		reaksi dari yang tercepat adalah A, B, dan C.		
		Jadi, urutan suhu terjadinya reaksi dari suhu		
		tertinggi adalah A, B dan C.		
	•	SKOR	8	8
4	Menyimpulkan	Tabel di bawah ini merupakan data dari	- Inferensi dengan	-Kemampuan
	persamaan laju	reaksi:	sub <i>skill</i> dapat	_
	reaksi	$P + Q \rightarrow R + S$	menarik kesimpulan	_

berdasarkan	Percob	[P] awal	[Q] awal	Laju	dari apa yang	algoritma dalam
data percobaan	aan	[M]	[M]	Reaksi	ditanyakan secara	pemecahan
(C5)				(M/s)	logis (skor 4)	masalah (skor 4)
	1	A	В	V	- Eksplanasi dengan	-Kemampuan
	2	2A	В	4V	sub <i>skill</i> dapat	mengembangkan
	3	3A	В	9V	menulis hasil akhir	syarat perlu dan
	4	A	2B	V	dan memberikan	syarat cukup suatu
	5	A	3B	V	alasan tentang	konsep (skor 4)
	Dari data t	ersebut ter	nyata Dita, I	Roni, Sarah	kesimpulan yang	
	dan Bella	memiliki	kesimpula	n masing-	diambil (skor 4)	
	masing.					
	(1) Dita n	nenyimpulk	an bahwa l	laju reaksi		
	sebanding	dengan [P]	3			
	(2) Ron	menyim	pulkan laj	u reaksi		
	sebanding	dengan [P]				
	(3) Sarah	menyimp	ulkan tingl	kat reaksi		
	terhadap I	Padalah 3				
	(4) Bella	menyimpu	lkan persa	maan laju		
	reaksinya	adalah V = ŀ	κ[P] ²			

Dari pernyataan tersebut, kesimpulan	
siapakah yang paling benar? Buktikanlah	
dengan perhitungan !	
Jawab:	
(4) Bella menyimpulkan persamaan laju	
reaksinya adalah $V = k[P]^2$. Dapat dibuktikan	
dengan perhitungan sebagai berikut	
Persamaan laju reaksi umum :	
$V = k [P]^x [Q]^y$	
- Untuk menentukan x cari data dimana	
[Q] tidak berubah, yaitu data (1) dan (2)	
$\frac{V_2}{V_1} = \left[\frac{P_2}{P_1}\right] x \cdot \left[\frac{Q_2}{Q_1}\right] y$	
$\frac{4V}{V} = \left[\frac{2A}{A}\right] \times \cdot \left[\frac{B}{B}\right] Y$	
4 = 2 ^x	
x = 2	
- Untuk menentukan y, cari data dimana	
[P] tidak berubah, yaitu data (1) dan (4)	
$\frac{V_4}{V_1} = \left[\frac{P_4}{P_1}\right]^{\chi} \cdot \left[\frac{Q_4}{Q_1}\right]^{\chi}$	
$\frac{v}{v} = \left[\frac{A}{A}\right] x \cdot \left[\frac{2B}{B}\right] y$	

		$\begin{split} 1 &= 2^y \\ y &= 0 \\ \text{- Persamaan laju reaksinya adalah} \\ V &= k \ [P]^x \ [Q]^y \\ V &= k \ [P]^2 \ [Q]^0 \\ \text{Dengan demikian persamaan laju reaksinya} \\ \text{adalah } V &= k \ [P]^2 \end{split}$					
	T	SKOR				8	8
5	Memecahkan		100	107) diperoleh	- Analisis dengan	-Kemampuan
	soal berdasarkan	data percol	paan sebag	ai berikut :	, , , , , , , , , , , , , , , , , , , 	sub <i>skill</i> dapat	mengaitkan
	data percobaan	Percoba	[A] M	[B] M	V (M/s)	menuliskan apa	berbagai konsep
	(C4)	an	[A] M	ואו [מ]	v (141/3)	yang harus	(skor 4)
		1	0,1	0,2	0,02	dilakukan dalam	-Kemampuan
		2	0,2	0,2	0,08	menyelesaikan soal	menerapkan
		3	0,4	0,1	0,04	(skor 4)	konsep secara
		4	0,4	0,4	0,16	- Evaluasi dengan	algoritma dalam
		Berdasarka	Berdasarkan data di atas tentukan :			sub <i>skill</i> dapat	pemecahan
		a. Tentukan Orde total				menuliskan tentang	masalah (skor 4)
		b. Tentukan rumus laju reaksinya			a	penyelesaian soal	-Kemampuan
		c. Tentukar	-	-		(skor 4)	mengembangkan
				. ,			syarat perlu dan

Jawab :	syarat cukup suatu
- [A] berubah, [B] tetap, percobaan 1 & 2	konsep (skor 4)
$\frac{V1}{V2} = \left[\frac{A1}{A2}\right] \times \cdot \cdot \left[\frac{B1}{B2}\right] Y$	
$\frac{0.02 \ M/s}{0.08 \ M/s} = \left[\frac{0.1 \ M}{0.2 \ M}\right] x \cdot \left[\frac{0.2 \ M}{0.2 \ M}\right] y$	
$\frac{1}{4} = \left[\frac{1}{2}\right] x$	
$\left[\frac{1}{2}\right]^2 = \left[\frac{1}{2}\right]^x \to x = 2$	
- [B] berubah, [A] tetap, percobaan 3 & 4	
$\frac{V3}{V4} = \left[\frac{A3}{A4}\right] \times \cdot \cdot \left[\frac{B3}{B4}\right] Y$	
$\frac{0.04 \ M/s}{0.16 \ M/s} = \left[\frac{0.4 \ M}{0.4 \ M}\right] x \cdot \left[\frac{0.1 \ M}{0.4 \ M}\right] y$	
$\left[\frac{1}{4}\right]^1 = \left[\frac{1}{4}\right]^y \to y = 1$	
a. Orde total $x + y = 2 + 1 = 3$	
b. Rumus laju reaksinya	
$v = k [A]^x. [B]^y$	
$v = k [A]^2. [B]^1$	
$v = k [A]^2. [B]$	
c. Harga tetapan laju reaksi	
$v = k [A]^2. [B]$	

	0,02 M/s = k 0,02 M/s = k 0,02 M/s = k $K = \frac{0,02 M/s}{0,002 M^3}$ SKOR	8		11	2		
6 Menyimpulkan kurva yang tepat untuk menunjukkan tingkat reaksi terhadap [O ₂] pada [NO] tetap berdasarkan hasil eksperimen (C5)	Reaksi NO(g) NO ₂ (g). Berd dihasilkan data [NO] M 1 x 10 ⁻⁴ 1 x 10 ⁻⁴ 2 x 10 ⁻⁴ Gambarkanlah tingkat reaksi tetap! Jawab: Untuk menghi	asarkan hasia sebagai berika $[0_2]$ M 1×10^{-4} 3×10^{-4} 3×10^{-4} grafik yang terhadap [C	menghasilkan il eksperimen tut: Laju Reaksi M/s 2,8 x 10 ⁻⁶ 8,4 x 10 ⁻⁶ 3,4 x 10 ⁻⁵ menunjukkan 0 ₂] pada [NO]	- Analisis sub skill menuliskan yang dilakukan menyelesaik (skor 4) - Evaluasi sub skill menuliskan penyelesaia (skor 4)	apa harus dalam kan soal dengan dapat tentang	- Me konsep berbagai represent (skor 4) -Kemamp mengaitka berbagai	enyajikan dalam bentuk asi kimia uan

konsentrasi [NO] saat tetap. Perhitungannya sebagai berikut: $\frac{V_1}{V_2} = k \left[\frac{NO}{NO}\right]^{\chi} \cdot \left[\frac{O2}{o2}\right]^{\chi}$

$$\begin{split} & \frac{V_1}{V_2} = k \left[\frac{NO}{NO} \right]^{\chi} \cdot \left[\frac{O2}{o2} \right]^{y} \\ & \frac{2.8 \times 10^{-6} \, M/s}{8.4 \times 10^{-6} \, M/s} = k \left[\frac{1 \times 10^{-4} \, M}{1 \times 10^{-4} \, M} \right]^{\chi} \cdot \left[\frac{1 \times 10^{-4} \, M}{3 \times 10^{-4} \, M} \right]^{y} \\ & \frac{1}{3} = \left[\frac{1}{3} \right]^{y} \quad \rightarrow y = 1 \end{split}$$

Orde reaksi O₂ adalah 1. Reaksi dengan orde 1 adalah reaksi dimana laju bergantung pada konsentrasi reaktan yang dipangkatkan dengan bilangan satu. Sehingga, laju reaksinya berbanding lurus dengan konsentrasi reaktan. Jadi, grafik yang menunjukkan tingkat reaksi terhadap [O₂] pada [NO] yang tetap adalah:

			T	
		SKOR	8	8
] I	Menyimpulkan pengaruh adanya katalis dari grafik yang sudah disajikan (C5)	Perhatikan grafik di bawah ini! Reaksi tanpa katalis Jelaskan apa pengaruh adanya katalis dalam reaksi tersebut terhadap nilai Ea dan ΔΗ! Jawab: Laju reaksi berbanding lurus dengan konsentrasi per satuan waktu. Jika reaksi ditambah suatu katalis maka reaksi akan berlangsung lebih cepat, karena katalis mempercepat reaksi dengan cara mencari mekanisme reaksi alternatif dengan nilai energi aktivasi (Ea) yang lebih rendah. Nilai ΔΗ tetap karena nilai entalpi reaktan dan	- Inferensi dengan sub skill dapat menarik kesimpulan dari apa yang ditanyakan secara logis (skor 4) - Eksplanasi dengan sub skill dapat menulis hasil akhir dan memberikan alasan tentang kesimpulan yang diambil (skor 4)	-Kemampuan menyatakan ulang konsep yang telah dipelajari (Skor 4)

	katalis. menyebal cepat kan dengan n	entalpi produk tidak dipengaruhi oleh katalis. Sehingga penambahan katalis menyebabkan reaksi berlangsung lebih cepat karena mekanisme reaksi alternatif dengan nilai Ea yang lebih rendah dan ΔH tidak berubah.						
	SKOR					8		4
untuk menget reaksi y hanya dipeng	gram CaC data seba vang aruhi luas kaan (C4) Proses la oleh luas		Cl 0,1 M (3)	HCl 0,2 M (4) Dengaruhi	menuli yang	skill iskan ditar dengan oat (sko sis deng il dapat iskan ap arus kan dala	dapat apa nyakan jelas r 4) gan	-Kemampuan menyatakan ulang konsep yang telah dipelajari (skor 4) -Kemampuan mengklasifikasi objek menurut sifat-sifat tertentu sesuai dengan konsepnya (skor 4)

Jawab :	
Diketahui :	
Tabung 1 : massa serbuk CaCO ₃ = 1 gram	
M HCl = 0,1 M	
Tabung 2 : massa serbuk CaCO ₃ = 1 gram	
M HCl = 0,3 M	
Tabung 3: massa keping CaCO ₃ = 1 gram	
M HCl = 0,1 M	
Tabung 4: massa serbuk CaCO ₃ = 1 gram	
M HCl = 0,2 M	
Ditanya : Laju reaksi yang dipengaruhi luas	
permukaan?	
Laju reaksi yang hanya dipengaruhi oleh	
luas permukaan adalah nomor 1 dan 3.	
Alasannya karena :	
nomor (1) memiliki 1 gram serbuk CaCO ₃	
dengan konsentrasi HCl 0,1 M	
nomor (2) memiliki 1 gram serbuk CaCO ₃	
dengan konsentrasi HCl 0,3 M	
nomor (3) memiliki 1 gram keping CaCO ₃	
dengan konsentrasi HCl 0,1 M	

	1	_	1	,
		nomor (4) memiliki 1 gram serbuk CaCO ₃		
		dengan konsentrasi HCl 0,2 M		
		(1) dan (2) hanya dipengaruhi oleh		
		konsentrasi		
		(2) dan (3) dipengaruhi oleh luas		
		permukaan dan konsentrasi		
		(3) dan (4) dipengaruhi oleh luas		
		permukaan dan konsentrasi		
		(1) dan (3) hanya dipengaruhi oleh luas		
		permukaan.		
		Maka jawaban yang tepat pada pertanyaan		
		adalah (1) dan (3)		
		SKOR	8	8
9	Memprediksi	Siswa melakukan eksperimen terhadap 2	-Interpretasi dengan	-Kemampuan
	reaksi yang	gram CaCO₃ dengan larutan HCl dan	sub <i>skill</i> dapat	menyatakan ulang
	terjadi paling	didapat data sebagai berikut :	menuliskan apa	konsep yang telah
	cepat dalam		yang ditanyakan	dipelajari (skor 4)
	suatu percobaan		soal dengan jelas	-Kemampuan
	(C5)	0000000	dan tepat (skor 4)	mengaitkan
		000000	-Inferensi dengan	berbagai konsep
			sub <i>skill</i> dapat	(skor 4)

	menarik kesimpulan
HCl 0,1 M HCl 0,1 M HCl 0,2 M HCl 0,2 M	
(1) (2) (3) (4)	ditanyakan secara
	logis (skor 4)
Berdasarkan informasi yang ada,	- Eksplanasi dengan
prediksikanlah reaksi mana yang terjadi	sub <i>skill</i> dapat
paling cepat dan jelaskan alasannya	menulis hasil akhir
berdasarkan faktor yang mempengaruhi	dan memberikan
terhadap laju reaksi tersebut !	alasan tentang
Jawab :	kesimpulan yang
Diketahui :	diambil (skor 4)
Tabung 1 : M HCl = 0,1 M	
Massa serbuk CaCO₃ = 2 gram	
Tabung 2 : M HCl = 0,1 M	
Massa keping CaCO₃ = 2 gram	
Tabung 3 : M HCl = 0,2 M	
Massa serbuk CaCO ₃ = 2 gram	
Tabung 4 : M HCl = 0,2 M	
Massa keping CaCO ₃ = 2 gram	
Ditanya : Reaksi yang paling cepat ?	

		Reaksi yang terjadi paling cepat adalah nomor 3. Alasannya karena dimana semakin kecil ukuran partikel maka semakin luas permukaan bidang sentuh yang mengakibatkan frekuensi tumbukan akan semakin tinggi sehingga waktu yang diperlukan untuk membentuk suatu produk akan lebih cepat terjadi dan semakin besar konsentrasi maka molekul-molekul akan lebih banyak dan sering bertumbukan sehingga semakin cepat pula reaksi berlangsung. Jadi dapat disimpulkan semakin besar luas permukaan dan konsentrasinya maka laju reaksinya semakin cepat, sehingga reaksi paling cepat terdapat pada nomor (3) CaCO3 serbuk dengan HCl 0,2 M.		
SKOR		12	8	
10	Memberi contoh pengaplikasian laju reaksi dalam	Dalam pembuatan kertas, bahan baku pembuat kertas digerus untuk menghilangkan lignin dengan menambah	sub <i>skill</i> dapat	memberikan

		Τ ,	
kehidupan	NaOH dan Na ₂ S terlebih dahulu untuk		yang dipelajari
sehari-hari (C4)	membuat bubur kertas agar memperluas	dilakukan dalam	(skor 4)
	permukaan bidang sentuh sehingga	menyelesaikan soal	-Kemampuan
	campuran menjadi homogen dan reaksi	(skor 4)	menyatakan ulang
	berlangsung cepat. Dari pernyataan		konsep yang telah
	tersebut berikan dan jelaskan satu contoh		dipelajari (skor 4)
	pengaplikasian laju reaksi dalam kehidupan		
	sehari-hari!		
	Jawab :		
	Makanan lebih tahan lama jika disimpan		
	dalam udara dingin. Hal ini karena pada		
	suhu rendah atau dingin, energi kinetik		
	molekul partikel makanan juga akan		
	menurun. Dengan rendahnya energi kinetik,		
	maka tumbukan efektif yang dapat		
	menjadikan makanan mengalami proses		
	pembusukan juga akan semakin sedikit.		
	Maka proses pembusukan makanan		
	menjadi lebih lambat. Dengan demikian		
	dapat disimpulkan bahwa makanan lebih		
	tahan lama jika disimpan dalam udara		

		dingin. H	lal ini diseba	ıbkan laj	u reaks	i bakteri		
		dalam m	akanan berl	kurang.				
		SKO	R				4	8
11	Menganalisis faktor yang	Data has	-			- Inferensi dengan sub <i>skill</i> dapat	-Kemampuan menyatakan ulang	
	mempengaruhi laju reaksi dari	perco baan	Massa A	[B] M	t (s)	Suhu (°C)	menarik kesimpulan dari apa yang	konsep yang telah dipelajari (skor 4)
	data hasil percobaan (C4)	1	5g serbuk	0,1	2	25	ditanyakan secara logis (skor 4)	-Kemampuan mengklasifikasi
		2	5g keping	0,1	3	25	- Eksplanasi dengan sub <i>skill</i> dapat	objek menurut sifat-sifat tertentu
		3	5g serbuk	0,1	2	25	menulis hasil akhir	sesuai dengan
		4	5g serbuk	0,1	1,5	30	dan memberikan alasan tentang	konsepnya (skor 4)
		5	5g keping	0,1	3	25	kesimpulan yang diambil (skor 4)	-Kemampuan mengaitkan
			nlah : or apa yan ada percoba	_		-		berbagai konsep (skor 4)

b. Faktor apa yang mempengaruhi laju	
reaksi pada percobaan 3 dan 4, jelaskan !	
Jawab :	
a. Faktor yang mempengaruhi laju reaksi	
pada percobaan 1 dan 2 adalah luas	
permukaan.	
Pada percobaan 1, massa A memiliki 5 g	
serbuk dengan suhu 25°C. Pada percobaan	
2, massa A memiliki 5 g keping dengan suhu	
25°C. Dimana semakin kecil ukuran partikel	
maka semakin luas permukaan bidang	
sentuh yang mengakibatkan frekuensi	
tumbukan akan semakin tinggi sehingga	
waktu yang diperlukan untuk membentuk	
suatu produk akan lebih cepat terjadi pada	
percobaan ke-1 dibandingkan percobaan	
ke-2.	
b. Faktor yang mempengaruhi laju reaksi	
pada percobaan 3 dan 4 adalah suhu.	
Pada percobaan 3, massa A memiliki 5 g	
serbuk dengan suhu 25°C. Pada percobaan	

		4, massa A memiliki 5 g serbuk dengan suhu 30°C. Dimana semakin tinggi suhu maka akan mempercepat laju reaksi karena partikel dalam zat A dan zat B akan semakin sering untuk terjadi tumbukan, sehingga laju reaksi pada percobaan ke-4 akan lebih cepat terjadi dibandingkan dengan percobaan ke-3		
		SKOR	8	8
12	Menganalisis soal	Dalam suhu dan tekanan tertentu terjadi		-Kemampuan
	untuk	reaksi penguraian amonia menjadi gas N_2	sub <i>skill</i> dapat	menerapkan
	mendapatkan	dan gas H2. Laju penguraian NH3 sebesar 4 x	menuliskan tentang	konsep secara
	jawaban yang	10-2 M/detik. Dari data tersebut Syifa, Flo,	penyelesaian soal	algoritma dalam
	benar (C4)	Adit, Ihza dan Rosa memiliki pernyataan	(skor 4)	pemecahan
		masing-masing dimana:	- Inferensi dengan	masalah (skor 4)
	(1) Syifa menyatakan bahwa orde reaksi		sub <i>skill</i> dapat	-Kemampuan
	penguraian amonia sebesar 2		menarik kesimpulan	mengaitkan
		(2) Flo menyatakan bahwa reaksi	dari apa yang	berbagai konsep
		penguraian amonia memiliki orde total 4	ditanyakan secara	(skor 4)
		(3) Adit menyatakan bahwa konsentrasi	logis (skor 4)	-Menyajikan
		NH ₃ bertambah sebesar 4 x 10 ⁻² M		konsep dalam

(4) Ihza menyatakan bahwa konsentras bertambah $2 \times 10^{-2} \mathrm{M}$ tiap detik (5) Rosa menyatakan bahwa se detiknya, konsentrasi $\mathrm{H_2}$ berkurang $6 \times \mathrm{M}$ Dari pernyataan tersebut, pernyat siapakah yang paling benar ? Buktikar dengan perhitungan ! Jawab: Pernyataan (4) Ihza menyatakan bah konsentrasi $\mathrm{N_2}$ bertambah $2 \times 10^{-2} \mathrm{M}$ detik. Dapat dibuktikan dengan perhitun sebagai berikut - Reaksi penguraian amonia $2\mathrm{NH_3} \to \mathrm{N_2} + 3\mathrm{H_2}$ - Laju bertambahnya $\mathrm{N_2}$ $\frac{v\mathrm{N_2}}{v\mathrm{NH_3}} = \frac{1}{2}$ $V\mathrm{N_2} = \frac{1}{2} \times V\mathrm{NH_3}$ $V\mathrm{N_2} = \frac{1}{2} \cdot (4 \times 10^{-2} \mathrm{M/detik})$ $V\mathrm{N_2} = 2 \times 10^{-2} \mathrm{M/detik}$	sub skill dapat menulis hasil akhir dan memberikan alasan tentang kesimpulan yang diambil (skor 4)	berbagai bentuk representasi kimia (skor 4)
---	--	---

- Laju bertambahnya H_2 $\frac{v H_2}{v N_2} = \frac{3}{1}$ $V H_2 = 3 \times V N_2$ $V H_2 = 3 \cdot (2 \times 10^{-2} \text{M/detik})$ $V H_2 = 6 \times 10^{-2} \text{M/detik}$ Dengan demikian, dapat disimpulkan bahwa tiap detik, konsentrasi NH ₃ berkurang sebesar $4 \times 10^{-2} \text{M}$, konsentrasi N_2 bertambah $2 \times 10^{-2} \text{M}$ dan konsentrasi H ₂ bertambah $6 \times 10^{-2} \text{M}$. Maka pernyataan paling tepat adalah (4) Ihza menyatakan bahwa konsentrasi N_2 bertambah $2 \times 10^{-2} \text{M}$ tiap detik.		
SKOR	12	12
SKOR TOTAL	100	92

Lampiran 32 Rubrik Penilaian Berpikir Kritis

Indikator Berpikir Kritis	Skor	Kriteria Jawaban Siswa Terhadap Soal Berpikir Kritis	
Interpretasi dengan sub <i>skill</i> dapat	0	Tidak menulis yang diketahui dan ditanyakan	
menuliskan apa yang ditanyakan soal	1	Menulis diketahui dan yang ditanyakan dengan tidak tepat	
dengan jelas dan tepat	2	Menulis yang diketahui saja dengan tepat atau yang ditanyakan saja dengan	
		tepat	
	3	Menulis yang diketahui dari soal dengan tepat tetapi kurang lengkap	
	4	Menulis yang diketahui dan ditanyakan dari soal dengan tepat dan lengkap	
Analisis dengan sub	0	Tidak menjawab sama sekali	
skill dapat menuliskan	1	Alur berpikir kurang baik, konsep tidak	
apa yang harus		saling berkaitan	
dilakukan dalam	2	Alur berpikir cukup baik, sebagian kecil	
menyelesaikan soal		saling berkaitan	
	3	Alur berpikir baik, sebagian konsep	
		saling berkaitan dan terpadu	
	4	Alur berpikir baik, semua konsep saling	
		berkaitan dan terpadu	
Evaluasi dengan sub	0	Tidak menggunakan strategi dalam	
skill dapat menuliskan		menyelesaikan soal	
tentang penyelesaian soal	1	Menggunakan strategi yang tidak tepat	
Sodi		dan tidak lengkap dalam menyelesaikan soal	
	2	Menggunakan strategi yang tepat tetapi belum lengkap dalam menyelesaikan	
		soal	
	3	Menggunakan strategi yang tepat dalam menyelesaikan soal, lengkap	

		tetapi melakukan kesalahan perhitungan atau penjelasan
	4	Menggunakan strategi yang tepat dalam menyelesaikan soal, lengkap dan benar dalam melakukan perhitungan
		atau penjelasan
Inferensi dengan sub	0	Tidak membuat kesimpulan
skill dapat menarik	1	Membuat kesimpulan yang tidak tepat
kesimpulan dari apa		dan tidak sesuai dengan konteks soal
yang ditanyakan	2	Membuat kesimpulan yang tidak tepat
secara logis		meskipun disesuaikan dengan konteks
		soal
	3	Membuat kesimpulan dengan tepat,
		sesuai dengan konteks tetapi tidak
		lengkap
	4	Membuat kesimpulan dengan tepat,
		sesuai dengan konteks soal dan lengkap
Eksplanasi dengan sub	0	Tidak menulis hasil akhir dan
skill dapat menulis		memberikan alasan tentang
hasil akhir dan		kesimpulan yang diambil
memberikan alasan	1	Menulis hasil akhir dan memberikan
tentang kesimpulan		alasan tentang kesimpulan yang
yang diambil	2	diambil tetapi masih banyak kesalahan Menulis hasil akhir dan memberikan
		alasan tentang kesimpulan yang
		diambil tetapi belum tepat dan lengkap
	3	Menulis hasil akhir dan memberikan
	,	alasan tentang kesimpulan yang
		diambil dengan tepat tapi kurang
		lengkap
	4	Menulis hasil akhir dan memberikan
		alasan tentang kesimpulan yang
		diambil dengan tepat dan lengkap

Lampiran 33 Rubrik Penilaian Pemahaman Konsep

Indikator	Skor	Kriteria Jawaban Siswa Terhadap	
Pemahaman Konsep	-	Soal Pemahaman Konsep	
Kemampuan	0	Tidak menjawab sama sekali	
menyatakan ulang	1	Tidak dapat menyatakan ulang	
konsep yang telah		konsep	
dipelajari	2	Dapat menyatakan ulang konsep	
		tetapi masih banyak kesalahan	
	3	Dapat menyatakan ulang konsep	
		tetapi belum tepat	
	4	Dapat menyatakan ulang konsep	
		dengan tepat	
Kemampuan	0	Tidak menjawab sama sekali	
mengklasifikasi	1	Tidak dapat mengkalsifikasikan	
objek menurut sifat-		objek sesuai dengan konsepnya	
sifat tertentu sesuai	2	Dapat menyebutkan sifat-sifat sesuai	
dengan konsepnya		dengan konsepnya tetapi masih	
		banyak kesalahan	
	3	Dapat menyebutkan sifat-sifat sesuai	
		dengan konsepnya tetapi belum	
		tepat	
	4	Dapat menyebutkan sifat-sifat sesuai	
		konsepnya dengan tepat	
Kemampuan	0	Tidak menjawab sama sekali	
menerapkan konsep	1	Tidak dapat mengaplikasikan rumus	
secara algoritma		sesuai prosedur dalam	
dalam pemecahan		menyelesaikan soal pemecahan	
masalah		masalah	
	2	Dapat mengaplikasikan rumus	
		•	
		kesalahan	
masalah	2	Dapat mengaplikasikan rumus sesuai prosedur dalam menyelesaikan soal pemecahan masalah tetapi masih banyak	

	3	Dapat mengaplikasikan rumus
		sesuai prosedur dalam
		menyelesaikan soal pemecahan
		masalah tetapi belum tepat
	4	Dapat mengaplikasikan rumus
		sesuai prosedur dalam
		menyelesaikan soal pemecahan
		masalah dengan tepat
Kemampuan	0	Tidak menjawab sama sekali
memberikan contoh	1	Tidak dapat memberikan contoh
dari konsep yang		dari konsep yang dipelajari
dipelajari	2	Dapat memberikan contoh dari
		konsep yang dipelajari tetapi masih
		banyak kesalahan
	3	Dapat memberikan contoh dari
		konsep yang dipelajari tetapi belum
		tepat
	4	Dapat memberikan contoh dari
		konsep yang dipelajari dengan tepat
Menyajikan konsep	0	Tidak menjawab sama sekali
dalam berbagai	1	Jawaban tidak sesuai dengan
bentuk representasi		pertanyaan
kimia	2	Dapat menyajikan sebuah konsep
		dalam bentuk representasi kimia
		(gambar, simbol, persamaan,
		struktur molekul) tetapi kurang
		lengkap dan belum tepat
	3	Dapat menyajikan sebuah konsep
	-	dalam bentuk representasi kimia
		(gambar, simbol, persamaan,
		struktur molekul) sudah lengkap
		tetapi belum tepat
	4	Dapat menyajikan sebuah konsep
	=	dalam bentuk representasi kimia
		Sometime Topi Coometion Killing

		(gambar, simbol, persamaan,
		struktur molekul) dengan lengkap
		dan tepat
Kemampuan	0	Tidak menjawab sama sekali
mengaitkan	1	Tidak dapat mengaitkan berbagai
berbagai konsep		konsep
	2	Dapat mengaitkan berbagai konsep
		tetapi masih banyak kesalahan
	3	Dapat mengaitkan berbagai konsep
		tapi belum tepat
	4	Dapat mengaitkan berbagai konsep
		dengan tepat
Kemampuan	0	Tidak menjawab sama sekali
mengembangkan	1	Tidak dapat menggunakan atau
syarat perlu dan		memilih prosedur atau operasi yang
syarat cukup suatu		digunakan
konsep	2	Dapat menggunakan atau memilih
		prosedur atau operasi yang
		digunakan tetapi masih banyak
		kesalahan
	3	Dapat menggunakan atau memilih
		prosedur atau operasi yang
		digunakan tetapi masih belum tepat
	4	Dapat menggunakan atau memilih
		prosedur atau operasi yang
		digunakan dengan tepat

Lampiran 34 Soal Pretest dan Posttest

NO	Indikator Soal	Soal-Soal	Indikator Berpikir Kritis	Indikator Pemahaman Konsep
1	Menganalisis grafik untuk mendapatkan jawaban yang benar (C4)	Perhatikan grafik berikut! Waktu Grafik di atas adalah grafik dari reaksi zatzat yang sama, tetapi dilakukan pada suhu yang berbeda. (1) Energi kinetik partikel pada grafik C lebih tinggi daripada grafik B (2) Urutan suhu reaksi dari yang terendah adalah A < B < C	- Inferensi dengan sub skill dapat menarik kesimpulan dari apa yang ditanyakan secara logis (skor 4) - Eksplanasi dengan sub skill dapat menulis hasil akhir dan memberikan alasan (skor 4)	-Kemampuan menyatakan ulang konsep yang telah dipelajari (skor 4) -Kemampuan mengaitkan berbagai konsep (skor 4)

(3) Energi kinetik partikel pada grafik B	
lebih tinggi daripada grafik A	
(4) Grafik B dan C adalah hasil penambahan	
katalis dari grafik A	
(5) Reaksi pada grafik B dan C terjadi pada	
suhu yang lebih rendah dibanding A	
Manakah pernyataan yang benar	
berdasarkan grafik di atas ? Berikan	
alasannya!	
Jawab :	
Pernyataan yang benar berdasarkan grafik	
di atas adalah no (5) Reaksi pada grafik B	
dan C terjadi pada suhu rendah dibanding A.	
Alasannya karena makin tinggi suhu reaksi	
yang terjadi makin cepat, karena makin	
tinggi suhu energi kinetik partikel yang	
bereaksi makin tinggi. Di antara grafik A, B,	
dan C pada jumlah produk yang sama, waktu	
reaksi dari yang tercepat adalah A, B, dan C.	
Jadi, urutan suhu terjadinya reaksi dari suhu	
tertinggi adalah A, B dan C.	

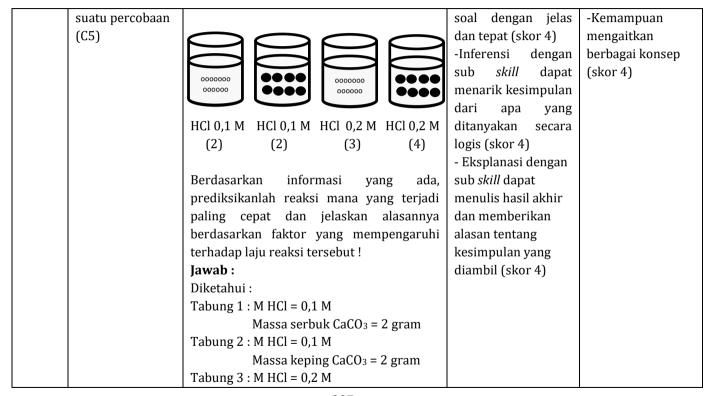
		SKOR				8	8
2	Menyimpulkan	Tabel di l	oawah ini	merupakan	data dari	- Inferensi dengan	-Kemampuan
	persamaan laju	reaksi:				sub <i>skill</i> dapat	menerapkan
	reaksi		P + Q -	\rightarrow R + S		menarik kesimpulan	konsep secara
	berdasarkan	Percob	[P] awal	[Q] awal	Laju	dari apa yang	algoritma dalam
	data percobaan	aan	[M]	[M]	Reaksi	ditanyakan secara	pemecahan
	(C5)				(M/s)	logis (skor 4)	masalah (skor 4)
		1	A	В	V	- Eksplanasi dengan	-Kemampuan
		2	2A	В	4V	sub <i>skill</i> dapat	mengembangkan
		3	3A	В	9V	menulis hasil akhir	syarat perlu dan
		4	A	2B	V	dan memberikan	syarat cukup suatu
		5	A	3B	V	alasan tentang	konsep (skor 4)
		Dari data t	ersebut teri	nyata Dita, F	Roni, Sarah	kesimpulan yang	
				kesimpulai		diambil (skor 4)	
		masing.					
		(1) Dita n	nenyimpulk	an bahwa l	laju reaksi		
		sebanding	dengan [P]	3			
		(2) Roni	menyim	pulkan laj	u reaksi		
		sebanding	dengan [P]				

(3) Sarah menyimpulkan tingkat reaksi	
terhadap P adalah 3	
•	
(4) Bella menyimpulkan persamaan laju	
reaksinya adalah V = k [P] ²	
Dari pernyataan tersebut, kesimpulan	
siapakah yang paling benar? Buktikanlah	
dengan perhitungan!	
Jawab:	
(4) Bella menyimpulkan persamaan laju	
reaksinya adalah $V = k[P]^2$. Dapat dibuktikan	
dengan perhitungan sebagai berikut	
Persamaan laju reaksi umum :	
$V = k [P]^x [Q]^y$	
- Untuk menentukan x cari data dimana	
[Q] tidak berubah, yaitu data (1) dan (2)	
$\frac{V_2}{V_1} = \left[\frac{P_2}{P_1}\right] x \cdot \left[\frac{Q_2}{Q_1}\right] y$	
$\frac{4V}{V} = \left[\frac{2A}{A}\right] x \cdot \left[\frac{B}{B}\right] y$	
$4 = 2^{x}$	
x = 2	

		Hatule	monontula	n u cari d	ata dimana				
				-	ata dimana				
				yaitu data	(1) dan (4)				
		$\frac{V_4}{V_1} = \left[\frac{P_4}{P_1}\right]$	$\left[\frac{4}{Q_1}\right]^{\chi} \cdot \left[\frac{Q_4}{Q_1}\right]^{\chi}$						
		$\frac{v}{v} = \left[\frac{A}{A}\right]$	$x \cdot \left[\frac{2B}{B}\right] y$						
		$1 = 2^{y}$							
		y = 0							
		- Persam	aan laju re	aksinya ada	alah				
		V = k[I]	P]x [Q]y						
		V = k [P	$[]^{2}[Q]^{0}$						
		Dengan der	mikian per:	samaan laji	ı reaksinya				
		adalah V =	k [P] ²						
	1	SKOR				8		8	
3	Memecahkan	Pada reaks	i A (g) + B	$(g) \rightarrow C (g)$) diperoleh	- Analisis	dengan	-Kemampı	ıan
	soal berdasarkan	data percol	oaan sebag	ai berikut :	-	sub <i>skill</i>	dapat	mengaitka	n
	data percobaan	Percoba	[A] N([D] M	X7 (X4 / X	menuliskan	apa	berbagai	konsep
	(C4)	an	[A] M	[B] M	V (M/s)	yang	harus	(skor 4)	
		1	0,1	0,2	0,02	dilakukan	dalam	-Kemampı	ıan
		2	0,2	0,2	0,08	menyelesaik	an soal	menerapk	an
		3	0,4	0,1	0,04	(skor 4)		konsep	secara
			<u> </u>	<u> </u>	ı '			algoritma	dalam

4	0,4	0,4	0,16	- Eva	aluasi	dengan	pemecahan
Berdasarka	n data di a	tas tentuka	n:	sub	skill	dapat	masalah (skor 4)
a. Tentukai	n Orde tota	l		menul	liskan	tentang	-Kemampuan
b. Tentuka	n rumus laj	u reaksinya	ì	penye	lesaiaı	n soal	mengembangkan
c. Tentukar	n harga teta	apan laju re	aksinya	(skor	4)		syarat perlu dan
Jawab:							syarat cukup suatu
- [A] berub	ah, [B] teta	p, percobaa	ın 1 & 2				konsep (skor 4)
$\frac{V1}{V2} = \left[\frac{A1}{A2}\right] X .$	$\left[\frac{B1}{B2}\right]$ y						
$\frac{0.02 \ M/s}{0.08 \ M/s} = \left[\frac{0.02 \ M/s}{0.08 \ M/s} \right]$	$\left[\frac{1}{2}\frac{M}{M}\right]^{X} \cdot \left[\frac{0.2}{0.2}\right]^{X}$	$\left[\frac{M}{M}\right]$ y					
$\frac{1}{4} = \left[\frac{1}{2}\right] x$							
$\left[\frac{1}{2}\right]^2 = \left[\frac{1}{2}\right]^{x}$	$\rightarrow x = 2$						
- [B] berub	ah, [A] teta	p, percobaa	n 3 & 4				
$\frac{V3}{V4} = \left[\frac{A3}{A4}\right]^{X} .$							
$\frac{0.04 \ M/s}{0.16 \ M/s} = \left[\frac{0.000 \ M/s}{0.000 \ M/s} \right]$	$\left[\frac{4 M}{4 M}\right]^{X} \cdot \left[\frac{0,1}{0,4}\right]^{X}$	<u>м</u>]у					
$\left[\frac{1}{4}\right]^1 = \left[\frac{1}{4}\right]^y$							
a. Orde tota	al x + y = 2 +	-1 = 3					
b. Rumus la	aju reaksin	ya					

		0.02 M/s = k 0.02 M/s = k]1] In laju reaksi] [0,1 M] ² . [0,2 (0,01 M ²).(0,2	M)				
		SKOR				8	1	2
4	Menyimpulkan	107	- 101	menghasilkan	- Analis	· ·		enyajikan
	kurva yang tepat	(0)		l eksperimen		rill dapat	konsep	dalam
	untuk	dihasilkan data	a sebagai berik	ut:	menulisk	· .	berbagai	
	menunjukkan	[NO] M	[O ₂] M	Laju Reaksi	yang	harus	represent	asi kimia
	tingkat reaksi	[110] [11	[O2] M	M/s	dilakukai	n dalam	(skor 4)	
	terhadap [O ₂]	1 x 10 ⁻⁴	1 x 10 ⁻⁴	2,8 x 10 ⁻⁶	menyeles	aikan soal	-Kemamp	uan
	pada [NO] tetap	1 x 10 ⁻⁴	3 x 10 ⁻⁴	8,4 x 10 ⁻⁶	(skor 4)		mengaitka	an
	berdasarkan	2 x 10 ⁻⁴	3 x 10 ⁻⁴	3,4 x 10 ⁻⁵	- Evalua	isi dengan	berbagai	konsep
	hasil eksperimen		•		sub sk	rill dapat	(skor 4)	
	(C5)				menulisk	an tentang		


Gambarkanlah grafik yang menunjukkan	penyelesaian soal	
tingkat reaksi terhadap [O2] pada [NO]	(skor 4)	
tetap!		
Jawab:		
Untuk menghitung orde reaksi [O2], perlu		
membandingkan laju reaksi pada saat		
konsentrasi [NO] saat tetap.		
Perhitungannya sebagai berikut:		
$\frac{V_1}{V_2} = k \left[\frac{NO}{NO} \right]^{\chi} \cdot \left[\frac{O2}{o2} \right]^{\chi}$		
$\left[\frac{2.8 \times 10^{-6} M/s}{8.4 \times 10^{-6} M/s} = k \left[\frac{1 \times 10^{-4} M}{1 \times 10^{-4} M} \right]^{X} . \left[\frac{1 \times 10^{-4} M}{3 \times 10^{-4} M} \right]^{Y} \right]$		
$\left \frac{1}{3} = \left[\frac{1}{3} \right] y \to y = 1$		
Orde reaksi O2 adalah 1. Reaksi dengan orde		
1 adalah reaksi dimana laju bergantung		
pada konsentrasi reaktan yang		
dipangkatkan dengan bilangan satu.		
Sehingga, laju reaksinya berbanding lurus		
dengan konsentrasi reaktan. Jadi, grafik		
yang menunjukkan tingkat reaksi		
terhadap [O2] pada [NO] yang tetap adalah:		

	SKOR	8	8
5 Menyimpulkan pengaruh adanya katalis dari grafik yang sudah disajikan (C5)	Perhatikan grafik di bawah ini! Reaksi tanpa katalis Reaksi dengan katalis Reaksi dengan katalis AH Jelaskan apa pengaruh adanya katalis dalam reaksi tersebut terhadap nilai Ea dan ΔH ! Jawab: Laju reaksi berbanding lurus dengan konsentrasi per satuan waktu. Jika reaksi	- Inferensi dengan sub skill dapat menarik kesimpulan dari apa yang ditanyakan secara logis (skor 4) - Eksplanasi dengan sub skill dapat menulis hasil akhir dan memberikan alasan tentang kesimpulan yang diambil (skor 4)	-Kemampuan menyatakan ulang konsep yang telah dipelajari (Skor 4)

		berlangsung lebih cepat, karena katalis mempercepat reaksi dengan cara mencari mekanisme reaksi alternatif dengan nilai energi aktivasi (Ea) yang lebih rendah. Nilai ΔH tetap karena nilai entalpi reaktan dan entalpi produk tidak dipengaruhi oleh katalis. Sehingga penambahan katalis menyebabkan reaksi berlangsung lebih cepat karena mekanisme reaksi alternatif dengan nilai Ea yang lebih rendah dan ΔH tidak berubah.		
		SKOR	8	4
6	Menganalisis data percobaan untuk mengetahui laju reaksi yang hanya dipengaruhi luas permukaan (C4)	Siswa melakukan eksperimen terhadap 1 gram CaCO ₃ dengan larutan HCl dan didapat data sebagai berikut. HCl 0,1 M HCl 0,3 M HCl 0,1 M HCl 0,2 M (2) (3) (4)	-Interpretasi dengan sub skill dapat menuliskan apa yang ditanyakan soal dengan jelas dan tepat (skor 4) - Analisis dengan sub skill dapat menuliskan apa	-Kemampuan menyatakan ulang konsep yang telah dipelajari (skor 4) -Kemampuan mengklasifikasi objek menurut sifat-sifat tertentu sesuai dengan

	yang harus	konsepnya (skor
Proses laju reaksi yang hanya dipengaruhi	dilakukan dalam	4)
oleh luas permukaan adalah nomor dan	menyelesaikan soal	
(Berikan alasannya!)	(skor 4)	
Jawab:		
Diketahui :		
Tabung 1 : massa serbuk CaCO ₃ = 1 gram		
M HCl = 0,1 M		
Tabung 2 : massa serbuk CaCO ₃ = 1 gram		
M HCl = 0,3 M		
Tabung 3: massa keping CaCO ₃ = 1 gram		
M HCl = 0,1 M		
Tabung 4 : massa serbuk CaCO ₃ = 1 gram		
M HCl = 0,2 M		
Ditanya : Laju reaksi yang dipengaruhi luas		
permukaan?		
Laju reaksi yang hanya dipengaruhi oleh		
luas permukaan adalah nomor 1 dan 3.		
Alasannya karena :		
nomor (1) memiliki 1 gram serbuk CaCO ₃		
dengan konsentrasi HCl 0,1 M		

			1	,
		nomor (2) memiliki 1 gram serbuk CaCO ₃		
		dengan konsentrasi HCl 0,3 M		
		nomor (3) memiliki 1 gram keping CaCO ₃		
		dengan konsentrasi HCl 0,1 M		
		nomor (4) memiliki 1 gram serbuk CaCO ₃		
		dengan konsentrasi HCl 0,2 M		
		(1) dan (2) hanya dipengaruhi oleh		
		konsentrasi		
		(2) dan (3) dipengaruhi oleh luas		
		permukaan dan konsentrasi		
		(3) dan (4) dipengaruhi oleh luas		
		permukaan dan konsentrasi		
		(1) dan (3) hanya dipengaruhi oleh luas		
		permukaan.		
		Maka jawaban yang tepat pada pertanyaan		
		adalah (1) dan (3)		
		SKOR	8	8
7	Memprediksi	Siswa melakukan eksperimen terhadap 2	-Interpretasi dengan	-Kemampuan
	reaksi yang	gram CaCO₃ dengan larutan HCl dan	sub <i>skill</i> dapat	menyatakan ulang
	terjadi paling	didapat data sebagai berikut :	menuliskan apa	konsep yang telah
	cepat dalam		yang ditanyakan	dipelajari (skor 4)

Massa serbuk CaCO₃ = 2 gram

Tabung 4: M HCl = 0.2 M

Massa keping $CaCO_3 = 2$ gram

Ditanya: Reaksi yang paling cepat?

Reaksi yang terjadi paling cepat adalah nomor 3. Alasannya karena dimana semakin kecil ukuran partikel maka semakin luas permukaan bidang sentuh vang mengakibatkan frekuensi tumbukan akan semakin tinggi sehingga waktu yang diperlukan untuk membentuk suatu produk akan lebih cepat terjadi dan semakin besar konsentrasi maka molekul-molekul akan lebih banyak dan sering bertumbukan sehingga semakin cepat pula reaksi berlangsung. Jadi dapat disimpulkan semakin besar luas permukaan dan konsentrasinya maka laju reaksinya semakin cepat, sehingga reaksi paling cepat terdapat pada nomor (3) CaCO3 serbuk dengan HCl 0,2 M.

		SKOR	12	8
8	Memberi contoh pengaplikasian laju reaksi dalam kehidupan sehari-hari (C4)	Dalam pembuatan kertas, bahan baku pembuat kertas digerus untuk menghilangkan lignin dengan menambah NaOH dan Na ₂ S terlebih dahulu untuk membuat bubur kertas agar memperluas permukaan bidang sentuh sehingga campuran menjadi homogen dan reaksi berlangsung cepat. Dari pernyataan tersebut berikan dan jelaskan satu contoh pengaplikasian laju reaksi dalam kehidupan sehari-hari! Jawab: Makanan lebih tahan lama jika disimpan dalam udara dingin. Hal ini karena pada suhu rendah atau dingin, energi kinetik molekul partikel makanan juga akan menurun. Dengan rendahnya energi kinetik, maka tumbukan efektif yang dapat menjadikan makanan mengalami proses pembusukan juga akan semakin sedikit.	- Analisis dengan sub <i>skill</i> dapat menuliskan apa yang harus dilakukan dalam	-Kemampuan memberikan contoh dari konsep yang dipelajari (skor 4) -Kemampuan menyatakan ulang konsep yang telah dipelajari (skor 4)

		menjadi dapat di tahan la dingin. H	proses po lebih lam' simpulkan ama jika d (al ini diseba akanan berl	bahwa lisimpan lbkan laj	ngan d makan dalan	an lebih n udara			
		SKO	R				4	8	
9	Menganalisis faktor yang	Data has	il percobaar	ı untuk r	eaksi A	$+B \rightarrow AB$	- Inferensi dengan sub <i>skill</i> dapat	-Kemampuan menyatakan ulang	
	mempengaruhi laju reaksi dari	perco baan	Massa A	[B] M	t (s)	Suhu (°C)	menarik kesimpulan dari apa yang	konsep yang telah dipelajari (skor 4)	
	data hasil percobaan (C4)		1	5g serbuk	0,1	2	25	ditanyakan secara logis (skor 4)	-Kemampuan mengklasifikasi
	percoouum (o 1)	2	5g keping	0,1	3	25	- Eksplanasi dengan	objek menurut sifat-sifat tertentu	
		3	5g serbuk	0,1	2	25	menulis hasil akhir	sesuai dengan	
		4	5g serbuk	0,1	1,5	30	dan memberikan alasan tentang	konsepnya (skor 4)	
		5	5g keping	0,1	3	25	kesimpulan yang diambil (skor 4)	-Kemampuan mengaitkan	
								5	

Tentukanlah :	berbagai	konsep
a. Faktor apa yang mempengaruhi laju	(skor 4)	-
reaksi pada percobaan 1 dan 2, jelaskan!		
b. Faktor apa yang mempengaruhi laju		
reaksi pada percobaan 3 dan 4, jelaskan!		
Jawab :		
a. Faktor yang mempengaruhi laju reaksi		
pada percobaan 1 dan 2 adalah luas		
permukaan.		
Pada percobaan 1, massa A memiliki 5 g		
serbuk dengan suhu 25°C. Pada percobaan		
2, massa A memiliki 5 g keping dengan suhu		
25°C. Dimana semakin kecil ukuran partikel		
maka semakin luas permukaan bidang		
sentuh yang mengakibatkan frekuensi		
tumbukan akan semakin tinggi sehingga		
waktu yang diperlukan untuk membentuk		
suatu produk akan lebih cepat terjadi pada		
percobaan ke-1 dibandingkan percobaan		
ke-2.		

		b. Faktor yang mempengaruhi laju reaksi pada percobaan 3 dan 4 adalah suhu. Pada percobaan 3, massa A memiliki 5 g serbuk dengan suhu 25°C. Pada percobaan 4, massa A memiliki 5 g serbuk dengan suhu 30°C. Dimana semakin tinggi suhu maka akan mempercepat laju reaksi karena partikel dalam zat A dan zat B akan semakin sering untuk terjadi tumbukan, sehingga laju reaksi pada percobaan ke-4 akan lebih cepat terjadi dibandingkan dengan		
		percobaan ke-3	0	0
	T	SKOR	8	8
10	Menganalisis soal untuk mendapatkan jawaban yang benar (C4)	Dalam suhu dan tekanan tertentu terjadi reaksi penguraian amonia menjadi gas N ₂ dan gas H ₂ . Laju penguraian NH ₃ sebesar 4 x 10 ⁻² M/detik. Dari data tersebut Syifa, Flo, Adit, Ihza dan Rosa memiliki pernyataan	sub <i>skill</i> dapat	-Kemampuan menerapkan konsep secara algoritma dalam pemecahan
	Deliai (CT)	masing-masing dimana: (1) Syifa menyatakan bahwa orde reaksi penguraian amonia sebesar 2	- Inferensi dengan	masalah (skor 4) -Kemampuan

	,		reaksi	dari	apa	yang	berbagai	konsep
1 0	amonia memiliki			ditany	akan	secara	(skor 4)	
	enyatakan bahv		entrasi	logis (skor 4)		-Menyajik	an
	bah sebesar 4 x 1			- Eksp	lanasi	dengan	konsep	dalam
	nyatakan bahwa		rasi N ₂	sub	skill	dapat	berbagai	bentuk
	2 x 10 ⁻² M tiap de menyatakan l		setiap			il akhir	represent	
7 5	nsentrasi H ₂ ber			dan		berikan	(skor 4)	
M detikilya, ko	nisenti asi 112 ber	Karang C	7 1 10	alasan		tentang	(51151 1)	
Dari perny	yataan tersebu	it, pern	yataan	kesim		yang		
	ng paling benar		-		il (skoi	, ,		
dengan perh				aiaiiib	(51.61	• • •		
Jawab:								
Pernyataan	(4) Ihza meny	yatakan	bahwa					
konsentrasi	N ₂ bertambah 2	2 x 10 ⁻²	M tiap					
detik. Dapat	dibuktikan deng	gan perhit	tungan					
sebagai beri	kut							
- Reaksi pen	guraian amonia							
$2NH_3 \rightarrow N_2$	2 + 3H ₂							
- Laju bertar	nbahnya N2							
$\frac{V N_2}{V N_2} = \frac{1}{2}$	J							
V NH ₃ 2								

	1		
	$V N_2 = \frac{1}{2} \times V NH_3$		
	$V N_2 = \frac{1}{2} \cdot (4 \times 10^{-2} \text{ M/detik})$		
	$V N_2 = 2 \times 10^{-2} \text{M/detik}$		
	- Laju bertambahnya H ₂		
	$\frac{VH_2}{H_2} = \frac{3}{4}$		
	V N ₂ 1		
	$V H_2 = 3 \times V N_2$		
	$V H_2 = 3. (2 \times 10^{-2} \text{ M/detik})$		
	$V H_2 = 6 \times 10^{-2} \text{M/detik}$		
	Dengan demikian, dapat disimpulkan		
	bahwa tiap detik, konsentrasi NH3		
	berkurang sebesar 4 x 10 ⁻² M, konsentrasi		
	N ₂ bertambah 2 x 10 ⁻² M dan konsentrasi H ₂		
	bertambah 6 x 10 ⁻² M. Maka pernyataan		
	paling tepat adalah (4) Ihza menyatakan		
	bahwa konsentrasi N ₂ bertambah 2 x 10 ⁻² M		
	tiap detik.		
·	SKOR	12	12
	SKOR TOTAL	84	88

Lampiran 35 Lembar Validasi Soal

LEMBAR VALIDASI INSTRUMEN TES KEMAMPUAN BERPIKIR KRITIS DAN PEMAHAMAN KONSEP SISWA

Nama Validator: SRI HARTATI, S.Pd

Instansi : SMA NEGERI 1 PEGAMOOM

Petunjuk Pengisian

Dalam rangka penyusunan skripsi dengan judul "Efektivitas Model Pembelajaran Inkuiri Terbimbing Berbantuan *PhET Simulation* Untuk Meningkatkan Kemampuan Berpikir Kritis dan Pemahaman Konsep Siswa", maka peneliti membuat instrumen kisi-kisi soal *pretest* dan *posttest* berpikir kritis dan pemahaman konsep. Mohon kiranya Bapak/Ibu dapat memberikan:

- a. Berilah tanda cek ($\sqrt{\ }$) pada kolom skor penilaian yang tersedia
- Kriteria skala penilaian menggunakan skor: 1, 2, 3, dan
 4. Adapun rentangan penilaian sebagai berikut:
 - 4 = Sangat sesuai
 - 3 = Sesuai
 - 2 = Kurang sesuai
 - 1 = Tidak sesuai
- Beri tanda cek (√) pada kolom kesimpulan penilaian sesuai dengan penilaian yang Bapak/lbu berikan.
 Kriteria kesimpulan penilaian:
 - TR : Dapat digunakan tanpa revisi
 - RK : Dapat digunakan dengan revisi kecil
 - RB : Dapat digunakan dengan revisi besar
 - PK : Belum dapat digunakan dan masih perlu konsultasi

- d. Bila menurut Bapak/Ibu validator butir soal pada penilaian ini perlu adanya revisi, mohon ditulis pada bagian komentar dan saran guna perbaikan butir soal pada penilaian ini.
- e. Berilah saran terkait hal-hal yang menjadi kekurangan dalam soal *Pretest* dan *Postest* siswa terhadap mata pelajaran kimia.

		Skala Penilaian				
NO	Aspek yang dinilai	1	2	3	4	
	ISI					
1	Kesesuaian butir soal dengan indikator berpikir kritis dan pemahaman konsep yang hendak dicapai				V	
2	Kesesuaian kata kerja operasional pada kalimat pertanyaan dengan level kognitif siswa			V		
3	Kejelasan maksud soal, serta gambar tabel atau diagram yang disajikan				V	
	BAHASA					
4	Butir soal menggunakan bahasa serta kaidah penulisan berdasarkan ejaan yang telah disempurnakan (EYD)			V		
5	Butir soal tidak menimbulkan penafsiran ganda				V	
6	Butir soal menggunakan bahasa yang sederhana dan mudah dipahami oleh siswa				V	

Kesimpula	n penilaian sesuai dengan penilaian yang
Bapak/Ibu	berikan
Т	R : Dapat digunakan tanpa revisi
√	K : Dapat digunakan dengan revisi kecil
1-	B : Dapat digunakan dengan revisi besar
P	K : Belum dapat digunakan dan masih perlu konsultasi
Komentar	dan Saran
Penulison	soal dari segi berpikir kritis sudah senuai,
hanya p	pertu penambahan sual literasi yana
mencalu	ф C4.
	Semarang, 22 Feb 2023
	Validator

(SRI HARTATI, S.Pd) NIP. 197/10114 200604 2016

LEMBAR VALIDASI INSTRUMEN TES KEMAMPUAN BERPIKIR KRITIS DAN PEMAHAMAN KONSEP SISWA

Nama Validator : Resi Pratiwi

Instansi : UIN Walisongo Semarang

Petunjuk Pengisian

Dalam rangka penyusunan skripsi dengan judul "Efektivitas Model Pembelajaran Inkuiri Terbimbing Berbantuan *PhET Simulation* Untuk Meningkatkan Kemampuan Berpikir Kritis dan Pemahaman Konsep Siswa", maka peneliti membuat instrumen kisi-kisi soal *pretest* dan *posttest* berpikir kritis dan pemahaman konsep. Mohon kiranya Bapak/Ibu dapat memberikan :

- a. Berilah tanda cek ($\sqrt{\ }$) pada kolom skor penilaian yang tersedia
- b. Kriteria skala penilaian menggunakan skor: 1, 2, 3, dan
 - 4. Adapun rentangan penilaian sebagai berikut:
 - 4 = Sangat sesuai
 - 3 = Sesuai
 - 2 = Kurang sesuai
 - 1 = Tidak sesuai
- c. Beri tanda cek (√) pada kolom kesimpulan penilaian sesuai dengan penilaian yang Bapak/Ibu berikan. Kriteria késimpulan penilaian:

TR : Dapat digunakan tanpa revisi

RK : Dapat digunakan dengan revisi kecil RB : Dapat digunakan dengan revisi besar

PK : Belum dapat digunakan dan masih perlu konsultasi

- d. Bila menurut Bapak/Ibu validator butir soal pada penilaian ini perlu adanya revisi, mohon ditulis pada bagian komentar dan saran guna perbaikan butir soal pada penilaian ini.
- e. Berilah saran terkait hal-hal yang menjadi kekurangan dalam soal *Pretest* dan *Postest* siswa terhadap mata pelajaran kimia.

NO	Acrak wana dinilai		Skala Penilaian				
NO	Aspek yang dinilai	1	2	3	4		
	ISI						
1	Kesesuaian butir soal dengan indikator berpikir kritis dan pemahaman konsep yang hendak dicapai			/			
2	Kesesuaian kata kerja operasional pada kalimat pertanyaan dengan level kognitif siswa				V		
3	Kejelasan maksud soal, serta gambar tabel atau diagram yang disajikan			V			
	BAHASA			-			
4	Butir soal menggunakan bahasa serta kaidah penulisan berdasarkan ejaan yang telah disempurnakan (EYD)				~		
5	Butir soal tidak menimbulkan penafsiran ganda			1			
6	Butir soal menggunakan bahasa yang sederhana dan mudah dipahami oleh siswa				V		

Kesimpi Bapak/I		penilaian sesuai dengan penilaian yang rikan
	TR	: Dapat digunakan tanpa revisi
$\overline{}$	RK	: Dapat digunakan dengan revisi kecil
	RB	: Dapat digunakan dengan revisi besar
	PK	: Belum dapat digunakan dan masih perlu konsultasi

Komentar dan Saran

Semarang, 27 Februari 2023 Validator

(Res prationi

NIP. 19870314 201903 2013

Lampiran 36 Surat Permohonan Izin Riset

KEMENTERIAN AGAMA REPUBLIK INDONESIA UNIVERSITAS ISLAM NEGERI WALISONGO SEMARANG **FAKULTAS SAINS DAN TEKNOLOGI**

Alamat: Jl. Prof. Dr. Hamka Km. 1 Semarang Telp. 024 76433366 Semarang 50185 E-mail: fst@walisongo.ac.id. Web: Http://fst.walisongo.ac.id

Nomor

: B.1585/Un.10.8/K/SP.01.08/02/2023

22 Februari 2023

Lamp

: Proposal Skripsi

Hal

: Permohonan Izin Riset

Kepada Yth.

Kepala Sekolah SMA Negeri 1 Pegandon Kendal

di tempat

Assalamu'alaikum Wr. Wb.

Diberitahukan dengan hormat dalam rangka penulisan skripsi, bersama ini kami sampaikan bahwa mahasiswa di bawah ini :

Nama

: Arini Kusuma Dewi

NIM

: 1908076001

Fakultas/Jurusan

: Sains dan Teknologi / Pendidikan Kimia

Judul Penelitian

: Efektivitas Model Pembelajaran Inkuiri Terbimbing Berbantuan PHET

Simulation Untuk Meningkatkan Kemampuan Berpikir Kritis dan

Pemahaman Konsep Siswa

Dosen Pembimbing: Apriliana Drastisianti, M.Pd

Mahasiswa tersebut membutuhkan data-data dengan tema/judul skripsi yang sedang disusun, oleh karena itu kami mohon mahasiswa tersebut Meminta ijin melaksanakan Riset di Sekolah yang Bapak / Ibu pimpin , yang akan dilaksanakan pada tanggal 6 - 17 Maret 2023

Demikian atas perhatian dan kerjasamanya disampaikan terima kasih.

Wassalamu'alaikum Wr. Wb.

Kharis, SH, M.H

P. 19691017 199403 1 002

Tembusan Yth.

- 1. Dekan Fakultas Sains dan Teknologi UIN Walisongo (sebagai laporan)
- 2. Arsip

PEMERINTAH PROVINSI JAWA TENGAH DINAS PENDIDIKAN DAN KEBUDAYAAN CABANG DINAS PENDIDIKAN WILAYAH XIII

Jl. Taman Makam Pahlawan Kelurahan Bugangin Kendal 51314 Telp. (0294) 3691319
Surat Elektronik: cabdin.xiii@gmail.com

SURAT REKOMENDASI

Nomor: 422.1/ 1148 /III/2023

Berdasarkan surat dari Universitas Islam Negeri Walisongo Semarang, Fakultas Sains dan Teknologi Nomor: B.1585/Un.10.8/K/SP.01.08/02/2023 Tanggal 22 Februari 2023 perihal Pemberitahuan Ijin Rizet atas nama.:

Nama : ARINI KUSUMA DEWI

NIM : 1908076001

Fakulats/Jutrusan : Sains dan Teknologi/Pendidikan Kimia

Judul : Efektivitas Model Pembalajaran Inkuiri Terbimbing

Berbantuan PHET Simulation Untuk Meningkatkan Kemampuan Berpikir Kritis dan Pemahaman Konsep Siswa

Dosen Pembimbing : Aprillana Drastisianti, M.Pd Sekolah : SMA Negeri 1 Pegandon Tanggal : 6 – 17 Maret 2023

Pada dasarnya kami sangat mengapresiasi dan memberikan rekomendasi untuk kegiatan tersebut, dengan catatan :

- Melaksanakan Penelitian dengan sungguh-sungguh dan mengikuti prosedur yang ada;
- 2. Kegiatan Penelitian memperhatikan Protokol Kesehatan;
- 3. Kegiatan Penelitian bermanfaat untuk proses belajar mengajar di sekolah;
- Mengirimkan hasil penelitian ke Sekolah dan Cabang Dinas Pendidikan Wilayah XIII.

Demikian untuk menjadi maklum.

Kendal, 2 Maret 2023 an. Kepala Cabang Dinas Pendidikan

Kepala Sub Bagian Tata Usaha

CABANG DINA

ARIF NUGROHO, S.Pd

NIP. 19841106 201001 1 023

Tembusan, kepada Yth.:

- Kepala Dinas Pendidikan dan Kebudayaan Provinsi Jawa Tengah (sebagai laporan);
- 2. Pengawas Sekolah Menengah dan Khusus

Lampiran 37 Surat Keterangan Selesai Penelitian

PEMERINTAH PROVINSI JAWA TENGAH DINAS PENDIDIKAN DAN KEBUDAYAAN SEKOLAH MENENGAH ATAS NEGERI 1 PEGANDON

Alamat Jatan Raya Putat - Pegandon 🎕 (1994.) 388482 Kode Pos. 51357. Surat Elektrosk: «nien tegandon @gmail.com. Website. www.smatpegandon.sch.id.

SURAT KETERANGAN

Nomor: 423.6 /077/111/ 2023

Yang bertanda tangan di bawah ini, Kepala SMA Negeri 1 Pegandon Kabupaten Kendal menerangkan bahwa:

Nama : ARINI KUSUMA DEWI

2. NIM : 1908076001

3. Fakultas/Jurusan : Sains dan Teknologi / Pendidikan Kimia

Benar-benar telah melaksanakan Penelitian dengan judul : "Efektivitas Model Pembelajaran Inkuiri Terbimbing Berbantuan PHET Simulation Untuk Meningkatkan Kemampuan Berpikir Kritis dan Pemahaman Konsep Siswa ". Pada tanggal 6 Maret – 17 Maret 2023 di SMA N 1 Pegandon.

Demikian surat keterangan ini dibuat dan agar dipergunakan sebagaimana mestinya.

Kendal, 20 Maret 2023

MA Negeri 1 Pegandon

NURHADI, S.Pd. 19760610 200701 1 012

Lampiran 38 Dokumentasi Kegiatan Penelitian

Kegiatan Pretest XI-1 (Kelas Eksperimen)

Kegiatan Pretest XI-5 (Kelas Kontrol)

Kerja Kelompok XI-1 (Kelas Eksperimen)

Kerja Kelompok Kelas XI-5 (Kelas Kontrol)

Kerja Kelompok Kelas XI-1 (Kelas Eksperimen)

Kerja Kelompok XI-5 (Kelas Kontrol)

Posttest Kelas XI-1 (Kelas Eksperimen)

Posttest Kelas XI-5 (Kelas Kontrol)

RIWAYAT HIDUP

A. Identitas Diri

1. Nama Lengkap : Arini Kusuma Dewi

2. Tempat & Tanggal Lahir: Ujung Batu III, 17/12/2000

3. Alamat Rumah : Ujung Batu III, Huragi, Palas

4. HP : 082192410839

5. E-mail : <u>arinikusumadewi17@gmail.com</u>

B. Riwayat Pendidikan

1. Pendidikan Formal

a. SD Negeri 0714, Lulus Tahun 2013

b. MTs Darul Mursyid, Lulus Tahun 2016

c. MAS Darul Mursyid, Lulus Tahun 2019

d. UIN Walisongo Semarang, Lulus Tahun 2023

Semarang, 14 April 2023

Arini Kusuma Dewi NIM. 1908076001