CHAPTER IV

RESEARCH FINDING AND ANALYSIS

A. Description of Research Findings

To find out the difference between the students who were taught using songs as a media and the students who were not taught using songs in teaching English articles in MIN Purwokerto, the writer did an analysis of quantitative data. The data was obtained by giving test to the experimental class and control class after giving a different treatment of learning process in both classes.

The subjects of this research were divided into two classes. They are experimental class (III Utsman bin Affan), control class (III Umar bin Khotob). Before items were given to the students, the writer gave try out test to analyze validity, reliability, difficulty level and also the discrimination power of each item. The writer prepared 15 items as the instrument of the test. Test was given before and after the students follow the learning process that was provided by the writer.

Before the activities were conducted, the writer determined the materials and lesson plan of learning. Learning in the experiment class used songs, while the control class without used songs.

After the data were collected, the writer analyzed it. The first analysis data is from the beginning of control class and experimental class that is taken from the pre test value. It is the normality test and homogeneity test. It is used to know that two groups are normal and have same variant. Another analysis data is from the ending of control class and experimental class. It is used to prove the truth of hypothesis that has been planned.

B. Data Analysis And Hypothesis Test

1. The Data Analysis

a. Try Out Test Analysis

This discussion covers validity, reliability, level of difficulty and discriminating power.

1) Validity of Instrument

In this study, item validity is used to know the index validity of the test. To know the validity of instrument, the writer used the Pearson product moment formula to analyze each item.

It is obtained that from 20 test items; there are 15 test items which are valid and 5 test items which are invalid. They are on number $7,8,15,16,19$. They are invalid with the reason computation result of their $\mathrm{r}_{x y}$ value (the correlation of score each item) is lower than their $\mathrm{r}_{\text {abble }}$ value.

The following is the example of item validity computation for item number 1 and for the other items would use the same formula.

$$
\begin{aligned}
& \mathrm{N}=24 \quad \sum Y=355 \\
& \sum X Y=321 \quad \sum X^{2}=21 \\
& \sum X=21 \quad \sum Y^{2}=5457 \\
& r_{x y}=\frac{N \sum X Y-\sum(X) \sum(Y)}{\sqrt{\left.\left\{N \sum X^{2}-\left(\sum X\right)^{2}\right\} N \sum Y^{2}-\left(\sum Y\right)^{2}\right\}}} \\
& r_{x y}=\frac{24(321)-21(355)}{\sqrt{\left.\left\{24(21)-(21)^{2}\right\} 24(5457)-(355)^{2}\right\}}} \\
& r_{x y}=\frac{7704-7455}{\sqrt{(504-441)(130968-126025)}} \\
& r_{x y}=\frac{249}{\sqrt{(63)(4943)}}
\end{aligned}
$$

$$
\begin{aligned}
& r_{x y}=\frac{249}{\sqrt{311409}} \\
& r_{x y}=\frac{249}{558.040} \\
& r_{x y}=0.446
\end{aligned}
$$

From the computation above, the result of computing validity of the item number 1 is 0.446 . After that, the writer consulted the result to the table of r Product Moment with the number of subject $(\mathrm{N})=24$ and significance level 5% it is 0.404 . Since the result of the computation is higher than r in table, the index of validity of the item number 1 is considered to be valid.
2) Reliability of Instrument

A good test must be valid and reliable. Besides the index of validity, the writer calculated the reliability of the test using KuderRicharson Formula 20(K-R 20).

Before computing the reliability, the writer had to compute varian $\left(S^{2}\right)$ with the formula below:

$$
\begin{aligned}
& \mathrm{k} \quad=20 \quad \sum Y=355 \\
& \sum Y^{2}=5457 \quad \sum p q=1.6493 \\
& S^{2}=\frac{\sum y^{2}-\frac{\left(\sum y\right)^{2}}{k}}{k} \\
& S^{2}=\frac{5457-\frac{(355)^{2}}{20}}{20} \\
& S^{2}=\frac{5457-6301.25}{20} \\
& S^{2}=\frac{-844.25}{20} \\
& S^{2}=-42.213
\end{aligned}
$$

The computation of the variant $\left(\mathrm{S}^{2}\right)$ is -42.213 . After finding the variant $\left(\mathrm{S}^{2}\right)$ the writer computed the reliability of the test as follows:

$$
\begin{aligned}
& r_{11}=\left(\frac{k}{k-1}\right)\left(\frac{S^{2}-\sum p q}{S^{2}}\right) \\
& r_{11}=\left(\frac{20}{20-1}\right)\left(\frac{-42.213-1.6493}{-42.213}\right) \\
& r_{11}=1.053\left(\frac{-43.8623}{-42.213}\right) \\
& r_{11}=1.094
\end{aligned}
$$

From the computation above, it is found out that r_{11} (the total of reliability test) is 1.094 , whereas the number of subjects is 24 and the critical value for r-table with significance level 5% is 0.444 . Thus, the value resulted from the computation is higher than its critical value. It could be concluded that the instrument used in this research is reliable.
3) Degree of the Test Difficulty

The following computation of the level difficulty for the item number 1 and for the other items would use the same formula.

$$
\begin{array}{ll}
B=12+9=21 & P=\frac{B}{J S} \\
J S=24 & P=\frac{21}{24} \\
& P=0.88
\end{array}
$$

From the computation above, the question number 1 can be said as the easy category, because the calculation result of the item number 1 is in the interval $0.70<\mathrm{P}<1.00$
4) Discriminating Power

The following is the computation of the discriminating power for item number 1, and for other items would use the same formula.
$D=\frac{B A}{J A}-\frac{B B}{J B}$
Before computed using the formula, the data divided into 2 (group). They were upper group and low group.

Table 3
The Table of the Gathered Score of Item Number 1

Upper Group			Lower Group		
No	Code	Score	No	Code	Score
1	C-2	1	1	C-4	1
2	C-7	1	2	C-6	1
3	C-9	1	3	C-10	1
4	C-11	1	4	C-3	1
5	C-14	1	5	C-16	1
6	C-15	1	6	C-17	0
7	C-18	1	7	C-1	0
8	C-13	1	8	C-8	0
9	C-21	1	9	C-12	1
10	C-22	1	10	C-19	1
11	C-24	1	11	C-23	1
12	C-5	1	12	C-20	1
Total Score		12	Total Score	9	

From the table above known as below
$\mathrm{BA}=12 \quad \mathrm{BB}=12$
$\mathrm{JA}=12 \quad \mathrm{JB}=9$
$D=\frac{B A}{J A}-\frac{B B}{J B}$
$D=\frac{12}{12}-\frac{9}{12}$
$D=\frac{3}{12}$
$D=0.25$
From the computation above, the question number 1 can be said as the fair category, because the calculation result of the item number 1 is in the interval $0.20<\mathrm{DP} \leq 0.40$.

Based on the analysis of validity, reliability, difficulty level and discriminating power, finally 15 items are accepted. They are number $1,2,3,4,5,6,9,10,11,12,13,14,17,18$, and 20.

b. The Data Analysis of Pre Test Scores of the Experimental Class and the Control Class

Table 4
The list of Pre-test Scores of the Experimental and Control Class

No	Experiment Class				Control Class			
	Code of the Students	x_{i}	$\left(x_{i}-\bar{x}\right)$	Code of $\left(x_{i}-\bar{x}\right)^{2}$ the Students	x_{i}	$\left(x_{i}-\bar{x}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$	
1	D-1	66	1,625	2,640	E-1	53	$-9,416$	88,661
2	D-2	53	$-11,375$	129,390	E-2	46	$-16,416$	269,485
3	D-3	66	1,625	2,640	E-3	66	3,583	12,837
4	D-4	73	8,625	74,390	E-4	73	10,583	111,999
5	D-5	66	1,625	2,640	E-5	66	3,583	12,837
6	D-6	66	1,625	2,640	E-6	66	3,583	12,837
7	D-7	80	15,625	244,140	E-7	53	$-9,416$	88,661
8	D-8	73	8,625	74,390	E-8	66	3,583	12,837
9	D-9	60	$-4,375$	19,140	E-9	60	$-2,416$	5,837

10	D-10	53	$-11,375$	129,390	E-10	80	17,583	309,161
11	D-11	46	$-18,375$	337,640	E-11	60	$-2,416$	5,837
12	D-12	60	$-4,375$	19,140	E-12	53	$-9,416$	88,661
13	D-13	73	8,625	74,390	E-13	66	3,583	12,837
14	D-14	66	1,625	2,640	E-14	60	$-2,416$	5,837
15	D-15	53	$-11,375$	129,390	E-15	66	3,583	12,837
16	D-16	60	$-4,375$	19,140	E-16	60	$-2,416$	5,837
17	D-17	60	$-4,375$	19,140	E-17	53	$-9,416$	88,661
18	D-18	66	1,625	2,640	E-18	60	$-2,416$	5,837
19	D-19	66	1,625	2,640	E-19	66	3,583	12,837
20	D-20	60	$-4,375$	19,140	E-20	66	3,583	12,837
21	D-21	73	8,625	74,390	E-21	60	$-2,416$	5,837
22	D-22	66	1,625	2,640	E-22	73	10,583	111,999
23	D-23	60	$-4,375$	19,140	E-23	66	3,583	12,837
24	D-24	80	15,625	244,140	E-24	60	$-2,416$	5,837
	\sum	1545		1647,61	\sum	1498		1313,68
	\bar{x}	64,375			\bar{x}	62,416		

1) The Normality Pre-test of the Experimental Class

The normality test is used to know whether the data obtained is normally distributed or not. Based on the table above, the normality test:

Hypothesis:

Ha: The distribution list is normal.
Ho: The distribution list is not normal

Test of hypothesis:

The formula is used:

$$
\chi^{2}=\sum \frac{\left(f_{o}-f_{h}\right)^{2}}{f_{h}}
$$

The computation of normality test:
$\mathrm{N}=24$
Length of the class $=5$
Maximum score $=80$
Minimum score $=46$
$\mathrm{K} /$ Number of class $=6$

$$
\begin{array}{ll}
\sum x & =1545 \\
\bar{x} & =64.375 \\
\text { Range } & =34
\end{array}
$$

Table 5

Frequency Distribution

Class Interval	xi	fi	$\left(x_{1}-\bar{x}\right)$	$\left(x_{1}-\bar{x}\right)^{2}$	$f\left(x_{1}-\bar{x}\right)^{2}$
$46-51$	48.5	1	-15.875	252.0156	252.0156
$52-57$	54.5	3	-9.875	97.51563	292.5469
$58-63$	60.5	6	-3.875	15.01563	90.09375
$64-69$	66.5	8	2.125	4.515625	36.125
$70-75$	72.5	4	8.125	66.01563	264.0625
$76-80$	78.5	2	14.125	199.5156	399.0313

Table 6
Normality Pre test of the Experimental Class

Class interval	Limit class	Z for the limit class	Opportuni -ties Z	Size classes for Z	$f h$	$f o$	$\frac{f o-f h^{2}}{f h}$
$46-51$	45.5	-2.47866	0.494	0.038	0.912	1	0.008491
$52-57$	51.5	-1.69074	0.456	0.138	3.312	3	0.029391
$58-63$	57.5	-0.90282	0.318	0.275	6.6	6	0.054545
$64-69$	63.5	-0.1149	0.043	0.208	4.992	8	1.812513
$70-75$	69.5	0.673014	0.251	0.178	4.272	4	0.017318
$76-80$	75.5	1.460932	0.429	0.054	1.296	2	0.38242
	80.5	2.117531	0.483				
7							

With $\alpha=5 \%$ and $\mathrm{dk}=6-3=3$, from the chi-square distribution table, obtained $\chi^{2}{ }_{\text {table }}=7.815$. Because χ^{2} count is lower than χ^{2} table $(2.304<7.815)$. So, the distribution list is normal.
2) The Normality Pre-test of the Control Class

Test of hypothesis:

The formula is used:

$$
\chi^{2}=\sum \frac{\left(f_{o}-f_{h}\right)^{2}}{f_{h}}
$$

The computation of normality test:

| $\mathrm{N}=24$ | Length of the class $=5$ | |
| :--- | :--- | :--- | :--- |
| Maximum score $=80$ | $\sum x$ | $=1545$ |
| | | |
| Minimum score $=46$ | \bar{x} | $=64.375$ |
| $\mathrm{~K} /$ Number of class $=6$ | Range | $=34$ |

Table 7

Frequency Distribution

Class Interval	xi	fi	$\left(x_{2}-\bar{x}\right)$	$\left(x_{2}-\bar{x}\right)^{2}$	$f\left(x_{2}-\bar{x}\right)^{2}$
$46-51$	48,5	1	$-13,91667$	193,67362	193,67362
$52-57$	54,5	4	$-7,916667$	62,673616	250,69447
$58-63$	60,5	7	$-1,916667$	3,6736124	25,715287
$64-69$	66,5	9	4,083333	16,673608	150,06248
$70-75$	72,5	2	10,083333	101,6736	203,34721
$76-80$	78,5	1	16,083333	258,6736	258,6736
		24			1082,1667

$$
S=\sqrt{\frac{\sum f_{i}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}=\sqrt{\frac{1082.167}{24-1}}=6.862
$$

Table 8
Normality Pre test of the Control Class

Class interval	Limit class	Z for the limit class	Opportuni -ties Z	Size classes for Z	$f h^{2}$	$f o$	$\frac{f o-f h^{2}}{f h}$
$46-51$	45.5	$-2,46527$	0,493	0,049	1,176	1	0.02634
$52-57$	51.5	$-1,59089$	0,444	0,183	4,392	4	0,034987
$58-63$	57.5	$-0,71651$	0,261	0,202	4,848	7	0,955261
$64-69$	63.5	0,157874	0,059	0,289	6,936	9	0,614201
$70-75$	69.5	1,032254	0,348	0,123	2,952	2	0,307014
	80.5	1,906635	0,471	0,024	0,576	1	0,312111
The result of computation Chi-Square							

With $\alpha=5 \%$ and $\mathrm{dk}=6-3=3$, from the chi-square distribution table, obtained $\chi_{\text {table }}^{2}=7.815$. Because $\chi^{2}{ }_{\text {count }}$ is lower than χ^{2} table $(2.249<7.815)$. So, the distribution list is normal.
3) The Homogeneity Pre-Test of the Experimental Class

Hypothesis :

$$
\begin{aligned}
& H_{o}: \sigma_{1}^{2}=\sigma_{2}^{2} \\
& H_{A}: \sigma_{1}^{2} \neq \sigma_{2}^{2}
\end{aligned}
$$

Test of hypothesis:

The formula is used:
$F=\frac{\text { Biggest variant }}{\text { smallest var iant }}$

The Data of the research:

$$
\sum\left(x_{i}-\bar{x}\right)_{1}^{2}=1647.61 \quad \mathrm{n}_{1}=24
$$

$$
\begin{aligned}
& \sum\left(x_{i}-\bar{x}\right)_{2}^{2}=1313.83 \quad \mathrm{n}_{2}=24 \\
& \sigma_{1}^{2}=S_{1}^{2}=\frac{\sum(x-\bar{x})^{2}}{n_{1}-1}=\frac{1647.61}{23}=71.635 \\
& \sigma_{2}^{2}=S_{2}^{2}=\frac{\sum(x-\bar{x})^{2}}{n_{2}-1}=\frac{1313.68}{23}=57.116
\end{aligned}
$$

Biggest variant $(\mathrm{Bv})=71.635$
Smallest variant $(\mathrm{Sv})=57.116$

Based on the formula, it is obtained:
$F=\frac{71.635}{57.116}=1.254$

With $\alpha=5 \%$ and $\mathrm{dk}=(24-1=23)$: $(24-1=23)$, obtained $F_{\text {table }}=2.00$. Because $F_{\text {count }}$ is lower than $F_{\text {table }}(1.254<2.00)$. So, Ho is accepted and the two groups have same variant / homogeneous.
4) The average similarity Test of Pre-Test of Experimental and Control Classes

Hypothesis:

Ho: $\mu_{1}=\mu_{2}$
На: $\mu_{1} \neq \mu_{2}$

Test of hypothesis:

Based on the computation of the homogeneity test, the experimental class and control class have same variant. So, the ttest formula:

$$
t=\frac{\overline{x_{1}}-\overline{x_{2}}}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \quad S=\sqrt{\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}}
$$

The data of the research:

$$
\begin{aligned}
& \overline{x_{1}}=64.375 \quad \overline{x_{2}}=62.416 \\
& \mathrm{~S}_{1}{ }^{2}=71.635 \quad \mathrm{~S}_{1}{ }^{2}=57.116 \\
& \mathrm{n}_{1}=24 \quad n_{2}=24 \\
& S=\sqrt{\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}} \\
& \mathrm{~S}=\sqrt{\frac{(24-1) 71.635+(24-1) 57.116}{24+24-2}}=\sqrt{\frac{2961.274}{46}}=8.023
\end{aligned}
$$

So, the computation t -test:

$$
t=\frac{\overline{x_{1}}-\overline{x_{2}}}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=\frac{64.375-62.416}{8.023 \sqrt{\frac{1}{24}}+\frac{1}{24}}=\frac{1.959}{2.316}=0.845
$$

With $\alpha=5 \%$ and $\mathrm{dk}=24+24-2=46$, obtained $t_{\text {table }}$ $=2,00$. Because $t_{\text {count }}$ is lower than $t_{\text {table }}(0.845<2.00)$. So, Ho is accepted and there is no difference of the pre test average value from both groups.

c. The Data Analysis of Post-test Scores in Experimental Class and Control Class.

Table 9

The List of Post Test Scores of the Experimental and Control Class

No	Experiment Class				Control Class			
	Code of the Students	x_{i}	$\left(x_{i}-\bar{x}\right)$	Code of the $\left(x_{i}-\bar{x}\right)^{2}$	Students	x_{i}	$\left(x_{i}-\bar{x}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$
1	D-1	73	4,416	19,501	E-1	66	$-4,5$	20,25
2	D-2	73	4,416	19,501	E-2	53	$-17,5$	306,25
3	D-3	73	4,416	19,501	E-3	80	9,5	90,25
4	D-4	86	8,583	73,667	E-4	80	9,5	90,25
5	D-5	73	4,416	19,501	E-5	73	2,5	6,25

6	D-6	86	8,583	73,667	E-6	80	9,5	90,25
7	D-7	93	15,583	242,829	E-7	60	$-10,5$	110,25
8	D-8	86	8,583	73,667	E-8	73	2,5	6,25
9	D-9	73	4,416	19,501	E-9	80	9,5	90,25
10	D-10	66	11,416	130,325	E-10	86	15,5	240,25
11	D-11	60	17,416	303,331	E-11	66	$-4,5$	20,25
12	D-12	80	2,583	6,671	E-12	60	$-10,5$	110,25
13	D-13	86	8,583	73,667	E-13	73	2,5	6,25
14	D-14	80	2,583	6,671	E-14	60	$-10,5$	110,25
15	D-15	66	11,416	130,325	E-15	73	2,5	6,25
16	D-16	80	2,583	6,671	E-16	66	$-4,5$	20,25
17	D-17	73	4,416	19,501	E-17	60	$-10,5$	110,25
18	D-18	80	2,583	6,671	E-18	73	2,5	6,25
19	D-19	80	2,583	6,671	E-19	66	$-4,5$	20,25
20	D-20	66	11,416	130,325	E-20	73	2,5	6,25
21	D-21	86	8,583	73,667	E-21	66	$-4,5$	20,25
22	D-22	80	2,583	6,671	E-22	86	15,5	240,25
23	D-23	66	11,416	130,325	E-23	73	2,5	6,25
24	D-24	93	15,583	242,829	E-24	66	$-4,5$	20,25
	\sum	1858		1835,656	\sum	1692		1754
	\bar{x}	77,416			\bar{x}	70,5		

1) The Normality Post-Test of the Experimental Class

Based on the table above, the normality test:

Hypothesis :

Ho : The distribution list is normal.
Ha : The distribution list is not normal.

Test of hypothesis:

The formula is used:
The formula is used:

$$
\chi^{2}=\sum \frac{\left(f_{o}-f_{h}\right)^{2}}{f_{h}}
$$

The computation of normality test:
$\mathrm{N}=24$
Maximum score $=93$

Length of the class $=5$
$\sum x=1858$

Minimum score	$=60$	\bar{x}	$=77.416$
K / Number of class $=6$	Range	$=33$	

Table 10

Frequency Distribution

Class Interval	Xi	fi	$\left(x_{1}-\bar{x}\right)$	$\left(x_{1}-\bar{x}\right)^{2}$	$f\left(x_{1}-\bar{x}\right)^{2}$
$60-65$	62.5	1	-14.916	222.4871	222.4871
$66-71$	68.5	4	-8.916	79.49506	317.9802
$72-77$	74.5	6	-2.916	8.503056	51.01834
$78-83$	80.5	6	3.084	9.511056	57.06634
$84-59$	86.5	5	9.084	82.51906	412.5953
$90-95$	92.5	2	15.084	227.5271	455.0541
		24			1516.201

$$
S=\sqrt{\frac{\sum f_{i}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}=\sqrt{\frac{1516.201}{24-1}}=8.124
$$

Table 11
Normality Post Test of the Experimental Class

Class interval	Limit class	Z for the limit class	Opportuni -ties Z	Size classes for Z	$f h$	$f o$	$\frac{f o-f h^{2}}{f h}$
$60-65$	59.5	-2.20532	0.486	0.059	1.416	1	0.008491
$66-71$	65.5	-1.46677	0.427	0.163	3.912	4	0.122215
$72-77$	71.5	-0.72821	0.264	0.26	6.24	6	0.00198
$78-83$	77.5	0.01034	0.004	0.266	6.384	6	0.009231
$84-89$	83.5	0.748892	0.27	0.16	3.84	5	0.023098
$90-95$	89.5	1.487445	0.43	0.056	1.344	2	0.350417
	95.5	2.225997	0.486				0.32019
The result of computation Chi-Square							

With $\alpha=5 \%$ and $\mathrm{dk}=6-3=3$, from the Chi-Square distribution table, obtained $\chi_{\text {table }}^{2}=7.815$. Because $\mathrm{d} \chi^{2}{ }_{\text {count }}$ is lower than $\chi^{2}{ }_{\text {table }}(0.827<7.815)$. So, the distribution list is normal.
2) The Normality Post-Test of the Control Class

Test of hypothesis:

The formula is used:

$$
\chi^{2}=\sum \frac{\left(f_{o}-f_{h}\right)^{2}}{f_{h}}
$$

The computation of normality test:
$\mathrm{N}=24$

Maximum score	$=86$
Minimum score	$=53$
K $/$ Number of class	$=6$

Length of the class $=5$
$\sum x=1692$
$\bar{x} \quad=70.5$
Range $=27$

Table 12
Frequency Distribution

Class Interval	Xi	fi	$\left(x_{1}-\bar{x}\right)$	$\left(x_{1}-\bar{x}\right)^{2}$	$f\left(x_{1}-\bar{x}\right)^{2}$
$53-58$	55.5	1	-15.083	227.4969	227.4969
$59-64$	61.5	4	-9.083	82.50089	330.0036
$65-70$	67.5	6	-3.083	9.504889	57.02933
$71-76$	73.5	7	2.917	8.508889	59.56222
$77-82$	79.5	4	8.917	79.51289	318.0516
$83-88$	85.5	2	14.917	222.5169	445.0338
		24			1437.177

$$
S=\sqrt{\frac{\sum f_{i}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}=\sqrt{\frac{1437.177}{24-1}}=7.905
$$

Table 13
Normality Post test of the Control Class

Class interval	Limit class	Z for the limit class	Opportuni -ties Z	Size classes for Z	$f h$	$f o$	$\frac{f o-f h^{2}}{f h}$
$53-58$	52.5	-2.28754	0.488	0.053	1.272	1	0.058164
$59-64$	58.5	-1.52853	0.435	0.159	3.816	4	0.008872
$65-70$	64.5	-0.76951	0.276	0.272	6.528	6	0.042706
$71-76$	70.5	-0.0105	0.004	0.266	6.384	7	0.059439
$77-82$	76.5	0.748514	0.27	0.163	3.912	4	0.00198
$83-88$	82.5	1.507527	0.433	0.055	1.32	2	0.350303
	88.5	2.26654	0.488				0.058164
The result of computation Chi-Square							

With $\alpha=5 \%$ and $\mathrm{dk}=6-3=3$, from the chi-square distribution table, obtained χ^{2} table $=7.815$. Because χ^{2} count is lower than χ^{2} table $(0.5214<7.815)$. So, the distribution list is normal.
3) The Homogeneity Post-Test of the Control Class

Hypothesis :

$H_{o}: \sigma_{1}^{2}=\sigma_{2}^{2}$
$H_{A}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$

Test of hypothesis:

The formula is used:

$$
F=\frac{\text { Biggest var iant }}{\text { smallest variant }}
$$

The Data of the research:

$\sum\left(x_{i}-\bar{x}\right)_{1}^{2}=1835,656 \quad \mathrm{n}_{1}=24$
$\sum\left(x_{i}-\bar{x}\right)_{2}^{2}=1754 \quad \mathrm{n}_{2}=24$
$\sigma_{1}^{2}=S_{1}^{2}=\frac{\sum(x-\bar{x})^{2}}{n_{1}-1}=\frac{1835.656}{23}=79.811$
$\sigma_{2}^{2}=S_{2}^{2}=\frac{\sum(x-\bar{x})^{2}}{n_{2}-1}=\frac{1754}{23}=76.267$
Biggest variant $(\mathrm{Bv})=79.811$
Smallest variant $(S v)=76.267$
Based on the formula, it is obtained:
$F=\frac{79.811}{76.267}=1.046$
With $\alpha=5 \%$ and $\mathrm{dk}=(24-1=23):(24-1=23)$, obtained $F_{\text {table }}=2.00$. Because $F_{\text {count }}$ is lower than $F_{\text {table }}(1.046<2.00)$.

So, Ho is accepted and the two groups have same variant / homogeneous.
5) The average similarity Test of Post-Test of Experimental and Control Classes

Hypothesis:

Ho: $\mu_{1}=\mu_{2}$
На: $\mu_{1} \neq \mu_{2}$

Test of hypothesis:

Based on the computation of the homogeneity test, the experimental class and control class have same variant. So, the t test formula:

$$
t=\frac{\overline{x_{1}}-\overline{x_{2}}}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \quad S=\sqrt{\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}}
$$

The data of the research:

$$
\begin{aligned}
& \overline{x_{1}}=77.416 \quad \overline{x_{2}}=70.5 \\
& \mathrm{~S}_{1}{ }^{2}=79.811 \quad \mathrm{~S}_{1}{ }^{2}=76.267 \\
& \mathrm{n}_{1}=24 \quad n_{2}=24 \\
& S=\sqrt{\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}} \\
& S=\sqrt{\frac{(24-1) 79.811+(24-1) 76.267}{24+24-2}}=\sqrt{\frac{3589.794}{46}}=8.833
\end{aligned}
$$

So, the computation t-test:

$$
t=\frac{\overline{x_{1}}-\overline{x_{2}}}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=\frac{77.416-70.5}{8.833 \sqrt{\frac{1}{24}}+\frac{1}{24}}=\frac{6.916}{2.550}=2.712
$$

From the computation above, the t-table is 2.00 by 5% alpha level of significance and $\mathrm{dk}=24+24-2=46$. T-value was 2.712 . So, the t -value was higher than the critical value on the table ($2.712>2.00$).

From the result, it can be concluded that there is a significant difference in English Articles achievement score between students were taught using songs and those were taught without using songs. So, it can be said that Songs is effective to teach English Articles, and so the action hypothesis is accepted.

C. Discussion of The Research Findings

Before giving the treatment, writer checked the balance of the students' initial ability of both classes. The data used to test the balance was the score of pre-test. Analysis of initial data was conducted through normality test that aimed at showing whether the data is normally
distributed or not. This can be seen from the normality test with chisquare, where $X^{2}{ }_{\text {count }}<X_{\text {table }}^{2}, \alpha=5 \%, \mathrm{dk}=3$.

On the normality test of pre-test of the experimental class, it can be seen $X^{2}{ }_{\text {count }}(2.304)<X_{\text {table }}$ (7.815) and the control class $X^{2}{ }_{\text {count }}$ (2.249) $<X_{\text {table }}^{2}$ (7.815). Since homogeneity test shows $F_{\text {count }}$ is $<F_{\text {table }}(1.254<$ 2.00), it can be concluded that the two classes is homogeneous. Based on the analysis of t -test at the pre-test, it is obtained $t_{\text {count }}=0.845$ with $t_{\text {table }}=$ 2.00 which proves that there is no difference of the average of pre-test between both classes.

The normality test of post-test of experimental class results $X^{2}{ }_{\text {count }}$ $(0.827)<X_{\text {table }}^{2}(7.815)$ and control class results $X^{2}{ }_{\text {count }}(0.521)<X_{\text {table }}^{2}$ (7.815). The post-test demonstrate that the hypothesis of those classes is normal on the distribution. It is proved with $F_{\text {count }}(1.046)<F_{\text {table }}(2.00)$ from the homogeneity test that had the same variant.

From the last phase of the t -test, it is obtained $t_{\text {count }}=2.712$ with $t_{\text {table }}=2.00$ with the standard of significant 5%. Because of $t_{\text {count }}>t_{\text {table }}=$ $(2.712>2.00)$ so the hypothesis is accepted. It means that using Songs in teaching English Articles is effective.

Song has some positive influences for the students in improving English Articles achievement. There were some reasons why the students can improve their English Articles by using Songs. They were as follows:

1. By using songs make students easy to memorize the material.
2. Using songs, the students can learn English Articles relaxes and enjoy. In the process of learning, teacher should be resourceful in determining the classroom setting in order to make students focus on the lesson.
3. The use of songs in Senior Elementary School can give opportunities for students to study grammar indirectly. It offers similar rich of opportunities for learning English Articles from context indirectly. So, students not only understand the meaning of English Articles, but also they can use it in daily life context.

The result of the research shows that the experimental class (the students who are taught using Songs) has the mean value 77.416. Meanwhile, the control class (the students who are taught without using Songs) has the mean value 70.5. It can be said that the English Articles achievement of experiment class is higher than the control class.

On the other hand, the test of hypothesis using t-test formula shows the value of the t -test is higher than the critical value, $t_{\text {count }}>t_{\text {table }}\left(t_{\text {count }}\right.$ higher than $\left.t_{\text {table }}\right)$. The value of t -test is 2.712 , while the critical value on $t_{s 0,05}$ is 2.00. It means that there is a significant difference the English Articles achievement between students taught using Songs and those taught without Songs. In this case, the use of songs is necessary needed in teaching English Articles.

D. Limitation of The Research

The writer realizes that this research had not been done optimally. There were constraints and obstacles faced during the research process. Some limitations of this research are:

1. Relative short time of research makes this research could not be done maximum.
2. The research is limited at MIN Purwokerto. So that when the same research will be gone in other schools, it is still possible to get different result.
3. The implementation of the research process was less smooth; this was more due to lack of experience and knowledge of the writer.

Considering all those limitations, there is a need to do more research about teaching English Articles using songs. So that, the more optimal result will be gained.

