KONTROL OPTIMAL MODEL SEIPQ PADA PECANDU GAME ONLINE DENGAN MEMPERTIMBANGKAN EDUKASI DAN TREATMENT

SKRIPSI

Diajukan untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Matematika dalam Ilmu Matematika

Diajukan oleh:

LATIFATUL AHFA

NIM: 1908046023

PROGRAM STUDI MATEMATIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS ISLAM NEGERI WALISONGO
SEMARANG

2023

KONTROL OPTIMAL MODEL SEIPQ PADA PECANDU GAME ONLINE DENGAN MEMPERTIMBANGKAN EDUKASI DAN TREATMENT

SKRIPSI

Diajukan oleh:

LATIFATUL AHFA

NIM: 1908046023

PROGRAM STUDI MATEMATIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS ISLAM NEGERI WALISONGO
SEMARANG

2023

PERNYATAAN KEASLIAN

Yang bertanda tangan dibawah ini:

Nama : Latifatul Ahfa

NIM : 1908046023

Jurusan : Matematika

Menyatakan bahwa skripsi yang berjudul

"Kontrol Optimal Model SEIPQ pada Pecandu Game Online dengan Mempertimbangkan Edukasi dan Treatment"

Secara keseluruhan adalah hasil penelitian/karya saya sendiri, kecuali bagian tertentu yang dirujuk sumbernya.

Semarang, 28 Juni 2023

Pembuat Pernyataan,

Latifatul Ahfa

AC000000001

NIM. 1908046023

KEMENTERIAN AGAMA REPUBLIK INDONESIA UNIVERSITAS ISLAM NEGERI WALISONGO FAKULTAS SAINS DAN TEKNOLOGI

Jalan Prof. Dr. H. Hamka Kampus II Ngaliyan Semarang 50185 Telepon (024) 76433366, Website: fst.walisongo.ac.id

PENGESAHAN

Naskah skripsi berikut ini:

Judul : OPTIMAL KONTROL MODEL SEIPQ PADA PECANDU

> GAME ONLINE DENGAN MEMPERTIMBANGKAN

EDUKASI DAN TREATMENT

Penulis

: Latifatul Ahfa

NIM

: 1908046023

Jurusan

: Matematika

Telah diujikan dalam sidang tugas akhir oleh Dewan Penguji Fakultas Sains dan Teknologi UIN Walisongo dan dapat diterima sebagai salah satu syarat memperoleh gelar sarjana dalam Ilmu Matematika.

Semarang, 28 Juni 2023

DEWAN PENGUII

Penguji I,

Penguji II,

Any Muanalifah, M.Si

Aini Fitriyah, M.Sc

NIP: 198909292019032021 NIP: 198201132011012009

Penguji III,

Penguji IV.

olanda Norasia, M.Sc

NIP: 199012262019030

199409232019032011

Pembimbing I,

Pembimbing II,

Aini Fitriyah, M.Sc

NIP: 198904172019031010

198909292619032021

Zulaikha, M.Sc

NIP: 199204092019032027

NOTA DINAS

Semarang, 28 Juni 2023

Kepada Yth. Dekan Fakultas Sains dan Teknologi UIN Walisongo di Semarang

Assalamualaikum wr. wh.

Dengan ini diberitahukan bahwa saya telah melakukan bimbingan, arahan dan koreksi naskah skripsi dengan

Judul : Kontrol Optimal Model SEIPQ pada

Pecandu *Game Online* dengan Mempertimbangkan Edukasi dan

Treatment

Nama : Latifatul Ahfa NIM : 1908046023 Jurusan : Matematika

Saya memandang bahwa naskah skripsi tersebut sudah dapat diajukan kepada Fakultas Sains dan Teknologi UIN Walisongo untuk diujikan dalam Sidang Munagosyah.

untuk ulujikan dalam Sidang Munaq

Wassalamualaikum wr. Wh

Pembimbing I,

Aini Fitriyah, S.Pd, M.Sc NIP.199204092019032027

NOTA DINAS

Semarang, 28 Juni 2023

Kepada Yth. Dekan Fakultas Sains dan Teknologi UIN Walisongo di Semarang

Assalamualaikum wr. wb.

Dengan ini diberitahukan bahwa saya telah melakukan bimbingan, arahan dan koreksi naskah skripsi dengan

Judul : Kontrol Optimal Model SEIPQ pada Pecandu

Game Online dengan Mempertimbangkan

Edukasi dan Treatment"

Nama : Latifatul Ahfa NIM : 1908046023 Jurusan : Matematika

Saya memandang bahwa naskah skripsi tersebut sudah dapat diajukan kepada Fakultas Sains dan Teknologi UIN Walisongo untuk diujikan dalam Sidang Munaqosyah.

Wassalamualaikum wr. Wh

Pembimbing II,

Zulaikha, M.Si

NIP.199204092019032027

ABSTRAK

Game online merupakan sejenis permainan yang menggunakan perangkat elektronik seperti komputer atau perangkat khusus lainya yang digunakan untuk bermain game. Game online dapat menjadi hiburan namun jika berlebihan dapat menyebabkan kecanduan sehingga perlu adanya pencegahan. Dari fenomena tersebut, skripsi ini akan dibentuk model SEIPQ (Susceptible-Exposed-Infected-Professional-Quit) kecanduan game online dengan kontrol optimal salah satunya edukasi dan treatment. Berdasarkan analisis dan hasil simulasi, diperoleh bentuk kontrol optimal :

$$u_1^* = min \left\{ 1, maks \left(0, \frac{1}{A} (\lambda_2 - \lambda_1) \alpha S \frac{(I+p)}{N} \right) \right\}$$

$$u_2^* = min\left\{1, maks\left(0, \frac{1}{B}((\lambda_5 - \lambda_3)\gamma I + (\lambda_4 - \lambda_3)I)\right)\right\}$$

Hasil simulasi menunjukan keefektifan kontrol edukasi dan *treatment* dalam meminimalisir subpopulasi *Exposed* dan subpopulasi *Infected* pada model *SEIPQ* kecanduan *game online* sehingga dapat berhenti atau berpindah menjadi professional atau orang yang ahli di bidang *game*.

Kata Kunci: Kontrol Optimal, Model Kecanduan *Game Online*, Simulasi Numerik metode *sweep* maju-mundur

KATA PENGANTAR

Bismillahirrahmanirrahim.

Pembuka yang pertama dan paling utama tiada lain ucapan syukur kepada Allah swt. yang ke-Maha Baikanya tidak ternilai, dan pengabul setiap tengadah tangan hamba-Nya yang merapal do'a. Kedua, lantunan sholawat semoga selalu mengiringi langkah penulis kepada manusia yang menjadi pedoman utama, Nabi Muhammad saw. sebaik-baik manusia yang patut dicinta yang membawa kesejukan dunia. Selanjutnya, ucapan terima kasih pada diri, sebagai bentuk syukur sudah melewati seluruh fase kehidupan dengan lapang yang salah satunya penyelesaian tugas akhir untuk memenuhi syarat memperoleh gelar Sarjana Matematika (S1).

Penyusunan tugas akhir memang tidak mudah. Meskipun ucapan saja belum cukup, untuk dua permata yang sudah melahirkan dan membesarkan saya dengan sebaikbaiknya, penulis sampaikan terima kasih dan semoga Allah selalu menyayangi bapak dan ibu seperti halnya rasa sayang kalian sepanjang masa kepada penulis. Begitupun kemudahan dan pencapaian yang penulis alami saat ini tidak lain karena salah satu do'a bapak dan ibu yang menembus langit. Tidak lupa untuk ke-5 saudara saya yang selalu menjadi sebaik-baik teman dan tempat pulang penulis. Allah begitu baik memberi

takdir seberuntung penulis yang memiliki bapak dan ibu serta ke-5 saudara yang begitu istimewa.

Ucapan terima kasih juga penulis khususkan kepada Pengasuh Ponpes An-Nur Karanganyar, Tugu, Semarang Ibu Nyai Luthfah Karim As-Salawy dan Gus Mumtaz Almukaffa Ayatullah serta segenap keluarga ndalem atas do'a yang tak pernah alpa dan keikhlasan yang lapang menerima penulis sebagai santrinya. Sebuah kehormatan yang begitu besar, dan membawa bagitu banyak pelajaran hidup bagi penulis.

Ucapan terima kasih selanjutnya, penulis sampaikan dengan hormat kepada :

- Prof. Dr. H. Imam Taufiq, M.Ag., selaku Rektor UIN Walisongo Semarang.
- Dr. H. Ismail, M.Ag., selaku Dekan Fakultas Sains dan Teknologi UIN Walisongo Semarang.
- 3. Hj. Emy Siswanah, M.Sc., selaku Ketua Jurusan Matematika Walisongo Semarang.
- 4. Ibu Aini Fitriyah, S.Pd, M.Sc., sebagai Dosen Pembimbing I dan Ibu Zulaikha, M.Si., sebagai Dosen Pembimbing II yang begitu baik dan sabar serta merelakan waktunya menjadi pembimbing penulis selama proses penulisan. Semoga Allah balas dengan sebaik-baiknya.
- 5. Ibu Seftina Dyah Miasary, M.Sc., selaku Dosen Wali yang telah menjadi ibuyanf selalu memberikan motivasi dan

- bimbingan kepada penulis.
- Segenap Staf Tata Usaha UIN Walisongo Semarang yang telah membantu penulis selama perkuliahan dan penulisan skripsi
- 7. Segenap keluarga kebinet Angel Ponpes An-Nur Karanganyar, Tugu, Semarang yang menjadi teman sekaligus keluarga yang percayalah, kalian begitu istimewa dan menjadikan hidup penulis lebih berwarna.
- Teman-teman Matematika angkatan 2019 terkhusus MM-A, yang sudah mewarnai dan membersamai belajar penulis.
- 9. Seseorang yang membuat saya menikmati bulan yang indah menjadi lebih indah, dan memperlihatkan bahwa ada bermacam warna dalam hidup.
- 10. Segenap teman dan pihak yang telah membantu dan tidak bisa disebutkan satu persatu.

Semoga kebaikan dan keberkahan selalu menyertai atas amal kebaikannya. Dan penulis hanya bisa mengucapkan banyak terima kasih.

> Semarang, 28 Juni 2023 Penulis,

Latifatul Ahfa NIM. 1908046023

DAFTAR ISI

HALAM	AN JUDUL	i
PERNY	ATAAN KEASLIAN	ii
PENGES	SAHAN	iii
NOTA D	INAS	iv
NOTA D	INAS	v
	AK	
	ENGANTAR	
	R ISI	
	R GAMBAR	
	R TABEL	
	R LAMPIRAN	
	ENDAHULUAN	
1.1	Latar Belakang Masalah	
1.2	Rumusan Masalah	
1.3	Tujuan Penelitian	
1.4	Manfaat Penelitian	
1.5	Batasan Masalah	
	ANDASAN PUSTAKA	
2.1	Kecanduan Game Online	
2.2	Persamaan Diferensial Biasa	
2.3	Pemodelan matematika	
2.4	Teori Kontrol Optimal	
2.5	Kajian Penelitian Terdahulu	
BAB III	METODE PENELITIAN	
3.1		
3.2	Tahap Analisis Model Penelitian	
3.3	Diagran Alir Penelitian	
BAB IV	HASIL DAN PEMBAHASAN	
1.4	Model Matematika Kecanduan Game Online .	50
2.4	Analisis Kontrol Optimal	
3.4		
BAB V	KESIMPULAN	
5.1	Kesimpulan	88

5.2 Saran	91
DAFTAR PUSTAKA	93
DAFTAR LAMPIRAN	
RIWAYAT HIDUP	107

DAFTAR GAMBAR

Gambar	Judul	Halaman
Gambar 2. 1	Diagram Kompartemen Model SIR	26
Gambar 2. 2	Diagram Kompartemen Model SEIR	29
Gambar 2. 3	Diagram Kompartemen SIPQ	31
Gambar 3.1	Diagram Alir Penelitian	43
Gambar 4.1	Diagram kompartemen SEIPQ pada Kecanduan Game Online dengan Kontrol Edukasi dan Treatment	47
Gambar 4.2	Subpopulasi <i>Susceptible</i> Sebelum dan Sesudah Kontrol	65
Gambar 4.3	Subpopulasi <i>Exposed</i> Sebelum dan Sesudah Kontrol	66
Gambar 4. 4	Subpopulasi <i>Infected</i> Sebelum dan Sesudah Kontrol	67
Gambar 4.5	Subpopulasi <i>Professiaonal</i> Sebelum dan Sesudah Kontrol	68
Gambar 4.6	Subpopulasi <i>Quit</i> Sebelum dan Sesudah Kontrol	69
Gambar 4.7	Kontrol Edukasi u_1	71
Gambar 4.8	Kontrol Edukasi u ₂	72
Gambar 4.9	Subpopulasi Susceptible Sebelum dan Sesudah Kontrol	74
Gambar 4.10	Subpopulasi Exposed Sebelum dan Sesudah Kontrol	75

Gambar 4.11	Subpopulasi Infec dan Sesudah Kontro		76
Gambar 4.12	Subpopulasi Sebelum dan Sesudo	Professiaonal ah Kontrol	77
Gambar 4.13	Subpopulasi Quit Sesudah Kontrol	Sebelum dan	78
Gambar 4.14	Kontrol Edukasi u ₁		79
Gambar 4.15	Kontrol Edukasi u ₂		81

DAFTAR TABEL

Tabel	Judul	Halaman
Tabel 2. 1	Kajian Penelitian Terdahulu	38
Tabel 4.1	Parameter Model	51
Tabel 4.2	Nilai Awal Subpopulasi Model	63
Tabel 4. 3	Nilai Parameter Model	64

DAFTAR LAMPIRAN

Lampiran	Judul	Halaman
Lampiran 1	Program MATLAB2011a model kecanduan <i>game online</i> dengan dan tanpa kontrol	92
Lampiran 3	Riwayat Hidup	105

BAB I

PENDAHULUAN

1.1 Latar Belakang Masalah

Perkembangan internet di masa sekarang semakin canggih dan sudah sangat pesat. Hampir setiap sendi kehidupan berhubungan dengan internet yang menjadi sarana informasi, komunikasi, dan sarana lainya. *Game online* merupakan satu fitur internet yang banyak penggunanya (Tohet et al., 2021).

Game online dapat menjadi hiburan, namun jika berlebihan dalam memainkanya dapat menimbulkan efek kecanduan bagi penggunanya. Efek dari orang yang menjadi pecandu game online menyebabkan seseorang akan terus bermain game dan melalaikan dalam menyibukan diri dengan kegiatan positif (Novrialdy et al., 2019). Padahal dalam Al-Qur'an dijelaskan bahwa Allah melarang kita untuk lalai dan terperdaya dalam kehidupan dunia sehingga melupakan kita dalam berbuat kebaikan. Firman Allah dalam Q.S Luqman ayat 33:

يَانَيُهَا النَّاسُ اتَّقُوْا رَبَّكُمْ وَاخْشَوْا يَوْمًا لَا يَجْزِيْ وَالِدِّ عَنْ وَّلَدِهُ ۚ وَلَا مَوْلُوْدٌ هُوَ جَازٍ عَنْ وَالِدِهٖ شَيْئًا ۖ إِنَّ وَعْدَ اللهِ حَقِّ فَلَا تَغُرَّنَكُمُ الْحَيٰوةُ الدُّنْيَأَ ۗ وَلَا يَغُرَّنَكُمْ بِاللهِ الْغَرُورُ (٣٣)

Artinya : "Wahai manusia, bertakwalah kepada Tuhanmu dan takutlah agkan hari yang (ketika itu) seorang bapak tidak dapat membela anaknya dan seorang anak tidak dapat (pula) membela bapaknya sedikit pun! Sesungguhnya janji Allah adalah benar, maka janganlah sekali-kali kamu diperdaya oleh kehidupan dunia dan jangan sampai karena (kebaikan-kebaikan) Allah kamu diperdaya oleh penipu." (Q.S Luqman: 33)

Salah satu faktor dari luar penyebab kecanduan game online ternyata salah atunya dari teman-teman yang banyak bermain game online. sehingga walaupun di rumah tidak diizinkan bermain game namun dalam pergaulanya bisa membuat seseorang mengenal game online (Masya & Candra, 2016). Kecanduan *game online* merupakan salah satu fenomena dalam dunia nyata yang dapat digambarkan dalam pemodelan matematika. Pemodelan matematika dapat dinyatakan sebagai gambaran permasalahan nyata dengan lebih sederhana disertai asumsi-asumsi dalam mengatasi kejadian yang ada (Anwar, 2020).

Zadrak (2018) dalam bukunya menjelaskan bahwa pemodelan matematika merupakan bagian dari matematika terapan berfungsi yang menggambarkan tentang permasalahan kompleks di dunia nyata menjadi lebih sederhana dalam bahasa matematika. Tujuan dari pemodelan matematika adalah memprediksi, menggambarkan, dan dalam menielaskan suatu fenomena bentuk matematika. Melalui pemodelan matematika dapat diketahui informasi yang lebih mendekati dengan fenomena yang sebenarnya.

Ketertarikan terhadap hubungan pola penyebaran pecandu *game online* dengan pola model matematika kecanduan game online mengantarkan pada penelitian-penelitian yang dilakukan matematika. Dalam salah peneliti satu iurnal matematika (Seno, 2021) melakukan penelitian tersebut berisi tentang model matematika sederhana MAR (Moderat Gamer - Addictive Gamer - Under *Treatment*) dengan menggunakan sistem persamaan diferensial (PDB) dinamika biasa mengenai subsubpopulasi kecanduan game internet.

Fakta di lapangan menyebutkan bahwa lingkungan berpengaruh terhadap seseorang menjadi

pecandu game online. Penelitian milik (Masya & Candra, 2016) menjelaskan bahwa salah satu faktor eksternal seseorang mengalami kecanduan game online salah satunya adalah kurang terkontrolnya karena melihat lingkungan teman-teman disekelilingnya banyak bermain game online. untuk menimimalisir adanya peningkatan kecanduan game online perlu dilakukan sebuah kontrol. Merujuk kepada jurnal milik (Zulaikha et al., 2017) bahwa suatu model matematika SEIQR (Susceptible-Exposed-*Infected-Ouarantine*) mengenai penyakit menular dapat ditangani dan diminimalisir dengan pemberian kontrol berupa edukasi dan pengobatan. Kemudian milik (Norasia et al., 2022) yang penelitian menjelaskan tentang pengendalian secara optimal penyebaran HIV-1 melalui kontrol gizi dan pengobatan ARV.

Kecanduan *game online* ternyata dapat diminimalisir dengan adanya pemberian beberapa kontrol untuk menguranginya. Dalam jurnal milik Renidayati & Suhaimi (2018) melakukan penelitan sosial tentang program pelatihan arsetif (pelatihan peningkatan pengetahuan pribadi dan social mengenai kecanduan *game online* secara dini) dan

psikoedukasi keluarga (treatment atau perawatan edukasi keluarga untuk remaja yang sudah mengalami kecanduan game online). Dalam bidang matematika, Li (2019) mempelajari tentang dan Guo analisis kestabilan dan kontrol optimal pada model matematika pecandu game online SIPQ (Susceptible atau subpopulasi rentan -Infected atau subpopulasi kecanduan Professional atau subpopulasi professional – *Quit* atau subpopulasi berhenti) dengan mempertimbangkan kontrol edukasi kepada pecandu untuk menjadi profesional game.

Penelitian lain mengenai kontrol kecanduan game online dilakukan pada September 2021 oleh Li dan Guo yang meneliti tentang kecanduan game online dengan resiko terpapar (Exposed) tinggi dan rendah dengan kontrol isolasi, Pendidikan, dan treatment). Dilanjutkan pada desember 2021, Li dan Guo (Guo & Li, 2021) meneliti tentang kecanduan game online SIPQ (Susceptible-Infected-Professional-Quit) namun dengan mempertimbangkan kontrol edukasi keluarga, dimana pada subpopulasi S (Susceptible) dan I (Infected) terbagi menjadi 2 yaitu S (Susceptible) dan I (Infected) dengan kontrol edukasi dari keluarga dan tanpa kontrol edukasi dari keluarga.

Terinspirasi dari penelitian Renidiyati dan Suhaimi (2018) yang melakukan penelitian sosial tentang edukasi dan treatment sebagai kontrol kecanduan game online serta Li dan Guo (2019) yang meneliti kontrol optimal kecanduan game online dengan model matematika SIPQ, serta adanya proses dari rentan menjadi pecandu, pada penelitian ini akan dikembangkan dengan menambahkan subpopulasi E subpopulasi (Exposed atau terpapar) yang diasumsikan sebagai subpopulasi yang sudah bermain game online namun belum menjadi pecandu game online. Dengan penambahan subpopulasi E dan keseluruhan penjelasan mengenai kontrol pemodelan matematika pada pecandu game online tersebut, peneliti tertarik melakukan penelitian dengan judul "Kontrol Optimal Model SEIPQ pada Pecandu Game Online dengan Mempertimbangkan Edukasi dan Treatment".

1.2 Rumusan Masalah

Berdasarkan latar belakang yang telah diuraikan di atas, didapatkan rumusan masalah sebagai berikut:

- 1. Bagaimana model *SEIPQ* pada pecandu *game online* dengan mempertimbangkan edukasi keluarga dan *treatment*?
- 2. Bagaimana kontrol optimal model *SEIPQ* pada pecandu *game online* dengan mempertimbangkan edukasi keluarga dan *treatment*?
- 3. Bagaimana interpretasi simulasi numerik model SEIPQ pada pecandu game online dengan mempertimbangkan edukasi keluarga dan treatment?

1.3 Tujuan Penelitian

- Untuk mengetahui model SEIPQ pada pecandu game online dengan mempertimbangkan edukasi keluarga dan treatment.
- 2. Untuk mengetahui kontrol optimal model *SEIPQ* pada pecandu game online dengan mempertimbangkan edukasi keluarga dan *treatment*
- 3. Untuk mengetahui interpretasi simulasi numerik model *SEIPQ* pada pecandu *game online* dengan mempertimbangkan edukasi keluarga dan *treatment*?

1.4 Manfaat Penelitian

Manfaat Praktis

Manfaat praktis dari penelitian ini adalah untuk memperoleh gambaran suatu fenomena pecandu game online dalam dunia nyata menjadi bentuk sederhana dalam bahasa matematika serta memprediksi bagaimana meminimalisir pecandu game online dengan penggunaan kontrol berupa edukasi dan treatment dengan perhitungan matematika.

2. Manfaat Keilmuan dan Akademis

Secara keilmuan (teori), penelitian ini dapat memberikan wawasan tentang model *SEIPQ* pada pecandu *game online* dengan mempertimbangkan edukasi dan *treatment*. Secara akademis, penelitian ini memberikan khasanah bagi Fakultas Sains dan Teknologi khususnya di jurusan Matematika yang membahas tentang Pemodelan *SEIPQ*.

3. Manfaat bagi penulis

Manfaat bagi penulis sebagai proses memperdalam tentang pengetahuan model *SEIPQ* dangan menggunakan control edukasi dan *treatment*. Dan juga sebagai sarana dalam

memenuhi persyaratan kelulusan S1 di jurusan Matematika UIN Walisongo Semarang.

4. Manfaat bagi Mahasiswa Matematika

Sebagai sarana menambah wawasan tentang materi pemodelan matematika dan kontrol optimal khususnya pada model *SEIPQ* dengan mempertimbangkan control edukasi dan *treatment*.

5. Manfaat bagi Pembaca

Sebagai sarana menambah wawasan tentang model *SEIPQ* dengan control edukasi dan *treatment*.

1.5 Batasan Masalah

Berdasarkan pada rumusan masalah di atas, untuk mengantisipasi adanya perluasan masalah yang diselesaikan maka ruang lingkup permasalahan dan penyelesaianya dibatasi dengan:

- 1. Pemodelan matematika dalam kasus kecanduan *game online* berbentuk *SEIPQ*.
- 2. Analisis numerik model *SEIPQ* dalam penelitian ini menggunakan *forwards-backward methode* atau metode *sweep* maju-mundur dengan aplikasi *Matlah* 2011a.

BAB II

LANDASAN PUSTAKA

Pada bab ini akan diuraikan mengenai teoriteori yang digunakan sebagai acuan dalam penulisan skripsi ini. materi yang akan dibahas antara lain : kecanduan *game online*, persamaan diferensial biasa, pemodelan matematika, teori kontrol optimal, dan kajian penelitian terdahulu.

2.1 Kecanduan Game online

Game online merupakan sejenis permainan yang menggunakan perangkat elektronik seperti komputer atau perangkat khusus lainya yang digunakan untuk bermain game. Game ini juga menggunakan jaringan internet sehingga pemain di seluruh dunia dapat bermain bersama dalam waktu yang bersamaan. Game online semakin meningkat dari hari ke hari karena pesatnya jaringan komputer yang dulunya berskala kecil (small local network) menjadi internet yang terus berkembang hingga sekarang (Anwar et al., 2021).

Permainan dengan fasilitas online (Side et al., 2021) melalui internet tidak hanya menawarkan fasilitas permainan yang menyenangkan, tetapi pemain dapat berkomunikasi dengan pemain lain di

seluruh dunia melalui chat dan memiliki fasilitas terjemahan yang sangat memudahkan komunikasi antar pemain.

Seiring perkembangan *game*, *e-sport* (Karimah & Subhan, 2022) juga mulai digemari baik dari kalangan remaja maupun dewasa. E-sport sendiri merupakan sebutan untuk bidang olahraga dengan memanfaatkan *game* sebagai bidang kompetitifnya. Hingga kini *e-sport* semakin banyak melahirkan dalam bidangnya professional masing-masing. diantaranya perencana organisasi media e-sport, kontestan profesional, host e-sport, pengembang game, komentar game, dan masih banyak lagi. secara berangsur mereka menjadi sekelompok yang tidak bisa diabaikan. Meskipun menghabiskan game lebih dari 5 jam perhari, mereka tetap tidak disebut sebagai pecandu game.

Apabila *game online* dimanfaatkan sebagai hiburan maka akan berdampak positif yang berguna untuk mengurangi stress dan sedikit melepas penat. Namun sekarang ini banyak yang bermain game online dengan berlebihan serta menjadikanya sebagai pelampiasan dari realitas kehidupan yang akhirnya

menyebabkan kecanduan *game online* (Novrialdy et al., 2019).

Kecanduan merupakan perilaku tidak sehat yang dilakukan berkali-kali dan sulit dihilangkan dapat merusak diri sendiri. Sedangkan vang kecanduan game online diartikan sebagai penggunaan game online dengan tidak normal serta melewati batas yang disebabkan oleh gangguan kontrol impulsive. Kecanduan game online tidak berbeda jauh dengan kecanduan alkohol. Kecanduan game online didapati dengan sejauh mana dampak negatif pelaku game online yang bermain dengan berlebihan (Abdi & Karneli, 2020).

Kecanduan game online dapat terjadi karena minimnya kontrol pada diri sendiri, kurang pengasuhan orang tua, bahkan stress dan depresi. Dampaknya antara lain menjadi acuh tak acuh atas kegiatan lainya, tidak bisa mengontrol waktu, prestasi akademik yang menurun, timbul rasa tidak tenang, bahkan berdampak pada finansial, relasi sosial, dan kesehatan (Anggraini & Rudi Yanto, 2022).

Kecanduan *game online* telah ditetapkan menjadi penyakit gangguan mental oleh WHO secara resmi dimana pengguna *game online* bermain terus menerus secara berlebihan dalam waktu yang lama. Sudah pasti sesuatu yang berlebihan itu tidak baik dan tidak sedikit dampak negatif yang ditimbulkan akibat dari kecanduan *game online*. Karenanya, perlu strategi pencegahan yang efisian dengan memikirkan faktor-faktor risiko yang ditimbulkan. Dampak kecanduan *game online* antara depresi, insomnia, penurunan prestasi belajar,

penurunan ketajaman mata, dan lemahnya daya tahan tubuh. Namun kecanduan *game online* dapat dicegah dengan edukasi, pengawasan orang tua, dan pengalihan perhatian (Kusumaningrum, 2021).

2.2 Persamaan Diferensial

Beraneka ragam persoalan misalnya di bidang ekonimi, pertanian, teknik, dan lain sebaginya banyak menerapkan Persaman Diferensial. Persamaan diferensal atau biasa disingkat PD merupakan persamaan yang di dalamnya terdapat suatu turunanturunan dari fungsi dengan nama y(x) yang tidak diketahui dan yang ditentukan dari persamaan tersebut (Bambang Suprihatin et al., 2013). Definisi persamaan diferensial dirumuskan sebagai berikut:

Definisi 2.1 (Persamaan Diferensial, e.g (Nuryadi, 2018))

Misalkan f(x) merupakan definisi sebuah fungsi dari x dalam interval I[a,b] dimana $a \le x \le b$. Persamaan diferensial adalah persamaan yang memuat turunan dari f(x).

Persaman diferensial dibagi menjadi 2, yaitu persamaan diferensial biasa (PDB) dan persamaan diferensial parsial (PDP). Apabila suatu persamaan diferensial memiliki satu atau lebih variabel terikat san hanya satu variabel bebas maka disebut persamaan diferensial biasa. Namun apabila variabel bebasnya lebih dari satu maka disebut persamaan diferensial parsial (Kartono, 2012).

Persamaan diferensial memiliki tingkat atau orde. Tingkat atau orde dari suatu persamaan diferensial diartikan sebagai pangkat tertinggi dari turunan yang termuat dalam suatu persamaan tersebut. Berikut ini contoh dari persamaan orde persamaan diferensial:

$$1.\frac{dy}{dx} = e^x + \sin x \text{ (persamaan diferensial biasa)}$$

2.
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$
 (persaman diferensial parsial)

Pada nomer 1 merupakan persamaan diferensial biasa orde 1 karena memiliki satu variabel terikat yaitu y dan satu variabel bebas yaitu x dengan pangkat tertinggi dari turunanya adalah 1. Sedangkan pada nomer 2 merupakan persamaan diferensial parsial orde 2 karena memiliki satu variabel bebas yaitu u dan dua variabel bebas yaitu u dan dua variabel bebas yaitu u dan u0 dengan pangkat tertinggi dari turunanya adalah 2 (Ross, 1984).

2.2.1 Persamaan Diferensial Biasa

Persamaan Diferensial Biasa atau biasa disingkat PDB menurut (Nugro, 2011) merupakan suatu persamaan diferensial yang hanya memuat satu variabel bebas. Apabila kita mengambil suatu fungsi satu variabel y(x), dengan y disebut variabel terikat dan x disebut variabel bebas, maka bentuk dari PDB dapat dinyatakan dengan:

$$F\left(x, y, \frac{dy}{dx}, \frac{d^2y}{dx^2}, \dots, \frac{d^ny}{dx^n}\right) = 0$$
 (2.1)

Berikut ini beberapa contoh dari persamaan diferensial biasa antara lain (Nugro, 2011) :

15

$$(1)\frac{dy}{dx} = e^x + \sin x$$
$$(2)3x^2dx + 2ydy = 0$$

Penyelesaian:

$$(1)\frac{dy}{dx} = e^x + \sin x$$
$$dy = (e^x + \sin x)dx$$
$$\int dy = \int (e^x + \sin x)$$
$$y = e^x - \cos x + C$$

$$(2)3x^{2}dx + 2ydy = 0$$
$$3x^{2}dx = -2ydy$$
$$\int 3x^{2}dx = \int -2ydy$$
$$x^{3} = -y^{2}$$
$$x^{3} - y^{2} = 0$$

Berdasarkan bentuk persamaanya, persamaan diferensial biasa dibagi menjadi dua, yaitu persamaan diferensial biasa linear dan persamaan diferensial non linear. Jika variabel terikat beserta turunanya berpangkat satu dengan koefisien konstanta atau tergantung pada variabel bebas maka dikatakan linear (Bambang

Suprihatin et al., 2013). Sedangkan selainya dikatakan non linear. Berikut ini salah satu definisi persamaan diferensial linier:

Definisi 2.3 (PDB Linier (Ross, 1984))

Suatu persamaan diferensial biasa linier berorde n dengan variabel terikat y dan variabel bebas x adalah persamaan yang dapat dinyatakan dalam bentuk:

$$a_{0}(x)\frac{d^{n}y}{dx^{n}} + a_{1}(x)\frac{d^{n-1}y}{dx^{n-1}} + a_{2}(x)\frac{d^{n-2}y}{dx^{n-2}} + (2.2)$$
...+ $a_{n-1}(x)\frac{dy}{dx} + a(x)y$

dimana $a_0 \neq 0$.

Contoh persamaan diferensial linier adalah:

$$\frac{dy}{dx} = -ay + b$$

dimana untuk setiap a dan b adalah konstan (Dettman et al., 1967).

Mengenai persamaan diferensial nonlinier, terdapat beberapa hal yang memenuhi suatu persamaan diferensial dikatakan nonlinier:

- 1. Memiliki variabel tak bebas atau turunanya yang berpangkan selain satu.
- 2. Memiliki fungsi transedental dari variabel tak bebas dan turunan-turunanya.

Memiliki perkalian pada variabel tak bebas dan turunan-turunanya.

2.2.2 Sistem Persamaan Diferensial

Apabila suatu persamaan diferensial memiliki lebih dari satu persamaan diferensial maka dinamakan sistem persamaan diferensial (sistem PD). Di dalam suatu sistem persamaan diferensial terdapat dua atau lebih persamaan diferensial lengkap dengan dua atau lebih dari fungsi yang tidak diketahuinya. (Waluyo, 2006) dalam bukunya menerangkan bahwa secara umum sistem persamaan diferensial dapat dituliskan sebagai:

$$\begin{cases} \frac{dx_{1}}{dt} = F_{1}(t, x_{1}, x_{2}, ..., x_{n}) \\ \frac{dx_{2}}{dt} = F_{2}(t, x_{1}, x_{2}, ..., x_{n}) \\ \vdots \\ \frac{dx_{n}}{dt} = F_{n}(t, x_{1}, x_{2}, ..., x_{n}) \end{cases}$$
(2.3)

Jika setiap fungsi $F_1, F_2, ..., F_n$ merupakan suatu fungsi linier dari variable tak bebas $(x_1, x_2, ..., x_n)$ maka sistem (2.3) dikatakan linier.

sebaliknya, jika tidak maka sistem (2.3) tidak linier.

2.3 Pemodelan Matematika

Tidak sedikit fenomena di luar bidang matematika yang dapat diselesaikan dengan ilmu matematika seperti bidang fisika, teknik, biologi, demografi, ekonomi dan lainya dalam bentuk model matematika (Yulinar, 2009).

Pada beberapa tahun terakhir, metode pemodelan matematika banyak mendapat perhatian luas dan diterapkan dalam permasalahan dunia nyata. Model-model ini dapat digunakan dalam mengembangkan stategi pengendalian yang tepat terhadap solusi pemberantasan penyakit. Beberapa simulasi dalam pemodelan dapat memprediksi kasus penyebaran penyakit (Ndii, 2018).

Pemodelan matematika didefinisikan sebagai matematika digunakan untuk cabang yang menggambarkan dan menjelaskan masalah di dunia nyata ke dalam bentuk pernyataan matematika untuk memperoleh penyelesaian yang lebih tepat. Dalam arti singkatnya pemodelan matematika merupakan representasi permasalahan nyata dalam rumus matematika sehingga memudahkan dalam

mempelajarinya ataupun melakukan perhitungan sebagai bagian dari gambaran permasalahan yang ada. Pemodelan matematika berbentuk persamaan diferensial (Iswanto, 2012).

Dalam bukunya, (Kartono, 2012) memaparkan penjelasan mengenai tahapan dalam Mengkontruksi Model Matematika sebagai berikut:

1. Identifikasi Masalah

Mengidentifikasi masalah merupakan mengenali apa yang akan dilakukan. Seorang pemodel wajib memiliki kemampuan yang cukup tepat secara verbal dalam merumuskan persoalan tersebut supaya berhasil mengalihbahasakan ke dalam bahasa matematika. Pada tahap ini, pemodel mulai mengidentifikasi seorang variabel-variabel yang ikut serta atau mengkonstruksikan fenomena yang berlangsung. Pemilihan antara variabel bebas dan tak bebas merupakan tahap yang sangat penting dan cermat. Misalkan pada gejala perbahan ukuran subsubpopulasi suatu spesies terhadap waktu. Pada kejadian ini, ukuran subsubpopulasi sebagai variabel tak bebas dan waktu sebagai variabel Dengan bebas. ukuran subsubpopulasi dinotasikan dengan N(t), dan waktu dinotasikan dengan t.

2. Perumusan Asumsi atau Dugaan

Pada biasanya tidak setiap aspek yang mempengaruhi kejadian yang diidentifikasi dengan pengamatan akan digunakan dalam pemodelan matematika. Suatu model matematika memang bergerak menangkap, dalam formasi abstrak, karakteristik yang melekat dari kejadian yang diamati. Kesuksesan usaha ini berpegang pada kemampuan matematis seorang pemodel serta pengetahuan atas pengalamanya (empiris). Jika tidak ada pengalaman dari seorang pemodel maka biasanya dibuat asumsi-asumsi rasioanal.

3. Penyelesaian Model Matematika

Pada penelitian ini persamaan diferensial seperti dimana persamaannya memodelkan fenomena perubahan yang terjadi pada suatu objek. Sehingga digunakan metode tertentu untuk menyelesaikan persamaan diferensial tersebut. Pada bagian ini, solusi matematis kemudian dianalisis baik sifat atau kestabilanya. Seiring perkembangan zaman dan teknologi, solusi persamaan dapat diperoleh dengan mmanfaatkan

aplikasi perangkat lunak, seperti *matlab, maple,* dan lain-lain.

4. Memvalidasi Model

Model perlu diuji terlebih dahulu kevalidanya sebelum mencapai kesimpulan pada masalah yang nyata. diantaranya apakah model mampu menjawab atau justru menyimpang dari fenomena yang terjadi?. Apakah model tersebut masuk akal?. Apakah data dapat dikumpulkan untuk dilakukan pengujian dan mendukung ketika data tersebut diuji?.

Interpretasi Solusi Matematis ke dalam Fenomena Nyata

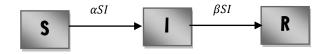
Setelah model dinyatakan valid pada uji validasi, selanjutnya solusi matematis perlu diinterpretasikan ke dalam fenomena nyata. Dengan demikian, diperoleh kesimpulan penting dalam menyelesaikan fenomena nyata.

Berikut ini beberapa penjelasan mengenai model matematika dari awal ditemukanya dan beberapa perkembanganya:

1. Model Matematika SIR

Model SIR(Susceptible-Infected-Recovered) merupakan model klasik yang pertama kali dirumuskan dalam suatu makalah berjudul "A Contribution to the Methematical Theory of Epidemic" pada tahun 1927 oleh W.O Kermack dan Mc. Kendrick yang menggambarkan dan menjelaskan mengenai penyebaran penyakit. Pada model SIR terdapat 3 subpopulasi yaitu subpopulasi *S* (*Susceptible*) yang menyatakan subpopulasi yang sehat namun rentan terhadap penyakit. Selanjutnya subpopulasi *I* (*Infected*) yang menyatakan subpopulasi yang mengalami berkemungkinan infeksi dan menularkan penyakitnya. Dan subpopulasi R (Recovered) yang menyatakan subpopulasi yang telah sembuh dari terinfeksi (Chasnov, 2009).

Model *SIR* dapat digambarkan dalam diagram arah berikut ini :



Gambar 2.1 Diagram Kompartemen Model SIR

Berdasarkan diagram arah yang disajikan di atas, didapatkan suatu persamaan dalam bentuk persamaan diferensial dibawah ini :

a. Laju perpindahan S (Susceptible) menuju I (Infected) dalam satuan waktu, persamaanya menjadi

$$\frac{dS}{dt} = -\alpha SI$$

Dimana α merupakan laju perpindahan dari S menuju I

b. Laju perpindahan *I* (*Infected*) menuju *R* (Recovered) dalam satuan waktu, persamaanya menjadi

$$\frac{dI}{dt} = \alpha SI - \beta IR$$

Dimana β merupakan laju perpindahan dari I menuju R

c. Laju perubahan *R* (Recovered) dalam satuan waktu, persamaanya menjadi

$$\frac{dR}{dt} = \beta IR$$

Berdasarkan diagram arah dan penjelasan yang disajikan, didapatkan suatu persamaan dalam bentuk sistem persamaan diferensial dibawah ini:

$$\begin{cases} \frac{dS}{dt} = -\alpha SI \\ \frac{dI}{dt} = \alpha SI - \beta IR \\ \frac{dR}{dt} = \beta IR \end{cases}$$
 (2.4)

total populasi adalah:

$$N(t) = S(t) + I(t) + R(t)$$

dengan,

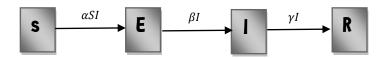
N =total populasi

t = waktu.

2. Model Matematika SEIR

Model matematika *SEIR* (*Susceptible-Exposed-Infected-Recovered*) perkembangan dari model matematika *SIR*, dimana terdapat penambahan subpopulasi *E* (*Exposed*) dengan asumsi bahwa subpopulasi sudah terdeteksi penyakit namun belum terinfeksi. Secara umum formulasi model *SEIR* juga identik dengan dengan model *SIR*, hanya kemudian ditambahkan subsubpopulasi *E*.

Model SEIR dapat digambarkan dalam diagram arah berikut ini:



Gambar 2.2 Diagram Kompartemen SEIR

Berdasarkan diagram arah yang disajikan di atas, didapatkan suatu persamaan dalam bentuk sistem persamaan diferensial dibawah ini:

$$\begin{cases} \frac{dS}{dt} = -\alpha SI \\ \frac{dE}{dt} = \alpha SI - \beta I \end{cases}$$

$$\begin{cases} \frac{dI}{dt} = \beta I - \gamma I \\ \frac{dR}{dt} = \gamma I \end{cases}$$
(2.5)

total populasi adalah:

$$N(t) = S(t) + E(t) + I(t) + R(t)$$

dengan,

N = total populasi

t = waktu.

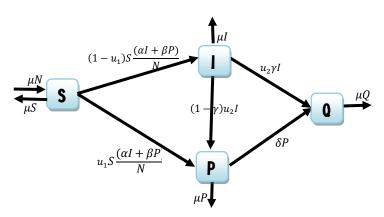
Kemudian seiring dengan perkembangan waktu, muncul model *SIRS*, dan *SEIRS*, dan model bentuk lainya sebagai pengembangan dari *SIR* (Iswanto, 2012).

3. Model Matematika SIPO

Model SIPQ (Susceptible-Infected-Professional-Quit) merupakan salah satu pengembangan model dasar SIR dimana dalam jurnal milik (Li & Guo, 2019) digunakan dalam mengasumsikan pemodelan pada kecanduan game online. Setiap model matematika dapat dikembangkan dalam bentuk apapun sesuai dengan asumsi yang ada. Model *SIPQ* pada kecanduan game online terbagi dalam 4 kompartemen yaitu subpopulasi S menyatakan subpopulasi (Susceptible) vang rentan yang bermain game online kurang dari 5 jam perhari. Subpopulasi I (Infected) yang menyatakan subpopulasi yang bermain game online dengan waktu lebih dari 5 jam setiap dan tidak memiliki harinya pekerjaan Subpopulasi Ρ (Professional) dibidangnya. menyatakan subpopulasi yang bermain game online dengan waktu lebih dari 5 jam setiap harinya dan memiliki pekerjaan dibidangnya. Dan

subpopulasi Q (Quit) yang menyatakan subpopulasi yang sudah berhenti dari bermain $game\ online$.

Model *SIPQ* dapat digambarkan dalam diagram arah berikut ini.



Gambar 2.3 Diagram Kompartemen SIPQ

Berdasarkan diagram arah yang disajikan di atas, didapatkan suatu persamaan dalam bentuk persamaan diferensial dibawah ini:

a. Laju perpindahan S (Susceptible) menuju I (Infected) dan menuju P (Professional) dalam satuan waktu, persamaanya menjadi:

$$\frac{dS}{dt} = -S\frac{(\alpha I + \beta P)}{N} + \mu(N - S)$$

Dimana α merupakan laju perpindahan dari S menuju I sedangkan β merupakan laju perpindahan dari S menuju P. Sehingga laju dari S dipengaruhi karena interaksi dengan I dan P

Laju perubahan I (Infected) dalam satuan waktu, persamaanya menjadi,

$$\frac{dI}{dt} = (1 - u_1)S\frac{(\alpha I + \beta P)}{N} - (u_2 + \mu)I$$

Dimana laju pertumbuhan I dipengaruhi oleh adanya perpindahan subpopulasi menjadi S, Q, dan P maupun sebaliknya.

c. Laju perubahan *P* (Professional) dalam satuan waktu, persamaanya menjadi

$$\frac{dP}{dt} = u_1 S \frac{(\alpha I + \beta P)}{N} + (1 - \gamma) u_2 I - (\mu + \delta) P$$

Dimana laju pertumbuhan P dipengaruhi oleh adanya perpindahan subpopulasi menjadi S, I, dan Q maupun sebaliknya.

d. Laju perubahan *P* (Professional) dalam satuan waktu, persamaanya menjadi

$$\frac{dP}{dt} = u_2 \gamma I + \delta P - \mu Q$$

Dimana laju pertumbuhan Q dipengaruhi oleh adanya perpindahan subpopulasi menjadi S, I, dan P maupun sebaliknya.

Berdasarkan diagram arah yang disajikan di atas, didapatkan suatu persamaan dalam bentuk sistem persamaan diferensial berikut:

$$\begin{cases}
\frac{dS}{dt} = -S \frac{(\alpha I + \beta P)}{N} + \mu (N - S) \\
\frac{dI}{dt} = (1 - u_1) S \frac{(\alpha I + \beta P)}{N} - (u_2 + \mu) I \\
\frac{dP}{dt} = u_2 S \frac{(\alpha I + \beta P)}{N} - (1 - \gamma) u_2 I - (\mu + \delta) P \\
\frac{dQ}{dt} = u_2 \gamma I + \delta P - \mu Q
\end{cases} \tag{2.6}$$

total populasi adalah:

$$N(t) = S(t) + I(t) + P(t) + Q(t)$$

dengan,

N =total populasi

t = waktu.

Persamaan model matematika SIPQ di atas penyelesaian memiliki metode vang sama pemodelan SIR, SEIR, SIRS, dan SEIRS. Model SIPQ tersebut mampu menggambarkan keadaan nyata dari pecandu game online. Selanjutnya model di atas akan dikembangkan penelitian ini dengan menambahkan subpopulasi E (Exposed) yang menyatakan subpopulasi yang sudah mengenal *game online* dan bermain kurang dari 5 jam perhari serta mengubah asumsi S (Susceptible) menyatakan subpopulasi rentan kecanduan game online namun tidak mencoba bermain *game online*.

2.4 Teori Kontrol Optimal

Kontrol optimal merupakan salah satu cabang ilmu di bidang matematika dan teknik. Penerapan kontrol optimal sama seperti optimasi dimana merupakan sebuah proses untuk menemukan hasil terbaik (Syukron, 2022).

Permasalahan kontrol optimal yang berbentuk persamaan diferensial, dimisalkan terdapat u(t) sebagai notasi variabel kontrol dan x(t) sebagai variabel state. Variabel state pada sistem bersifat kontinu terhadap waktu t yang dapat juga disebut

sebagai fungsi kendala. Misalkan $I \subseteq R$ dan terdapat $u: I \to R$ kontinu, dan $x: I \to R$ kontinu, apabila $g: R^3 \to R$ kontinu dalam tiga variabel, maka *State* dapat dinyatakan dengan:

$$x' = g(t, x(t), u(t))$$
(2.7)

Persamaan diferensial akan berubah apabila variabel kontrol diubah. Hubungan variabel kontrol dan state dapat ditulis dengan $u(t) \to x = x(u)$ dalam artian x(u) menunjukan bahwa variabel x tidak bergantung pada t melainkan bergantung pada variabel u. Kontrol optimal bertujuan menemukan kontrol seminimal mungkin dengan tujuan/hasil yang semaksimal mungkin, yaitu:

$$\max_{u} \int_{t_0}^{t_f} f(t, x(t), u(t)) dt \tag{2.8}$$

dengan,

$$x' = g(t, x(t), u(t))$$

$$x(t_0) = x_0 \operatorname{dan} x(t_f) \operatorname{bebas}.$$

Kontrol maksimasi di atas disebut kontrol optimal dengan $x(t_f)$ bebas yang artinya nilai $x(t_f)$ tidak dibatasi. Fungsi tujuan dipengaruhi oleh oleh u(t) dan x(u) yang dirumuskan dengan :

$$J(u) = \int_{t_0}^{t_f} f(t, x(t), u(t)) dt$$
 (2.9)

dimana x = x(u) adalah *state* yang sesuai.

Berdasarkan kondisi yang diperlukan, Pontryagin pada 1950 memperkenalkan fungsi costate atau fungsi adjoint untuk menambahkan persamaan diferensial pada fungsi tujuan. Fungsi costate memiliki tujuan yang sama dengan pengali kalkulus pada multivariat Lagrange yang menambahkan Batasan pada fungsi di beberapa variabel yang dimaksimalkan atau diminimumkan (Lenhart & Workman, 2007).

2.4.1 Syarat Perlu Kontrol Optimal

Permasalahan kontrol optimal dalam penyelesaianya salah satunya dengan syarat perlu kontrol optimal, dimana u^* sebagai variabel kontrol dan x^* sebagai variabel state dengan $J(u) \leq J(u^*)$ untuk semua kontrol u dengan memisalkan h(t) sebagai fungsi variasi kontinu dan $\varepsilon \in R$ adalah konstan sedemikian sehingga:

$$u^{\varepsilon}(t) = u^{*}(t) + \varepsilon h(t) \tag{2.10}$$

Dengan ε adalah jarak untuk $[t_0, t_f]$. Misalkan x^{ε} adalah *state* dari yang bersesuaian dengan u^{ε} yang memenuhi:

$$\frac{d}{dt}x^{\varepsilon}(t) = g(t, x^{\varepsilon}(t), u^{\varepsilon}(t))$$
 (2.11)

Dengan state berawal pada posisi yang sama yaitu $x^{\varepsilon}(t_0)=x_0$. Diketahui bahwa $u\to u^*(t)$ untuk semua t, maka hal ini juga berlaku untuk u^{ε} , yaitu $u^{\varepsilon}\to u^*(t)$ untuk semua $\varepsilon=0$, dan $x^{\varepsilon}(t_0)=x_0$ dan terdapat

$$\frac{du^{\varepsilon}(t)}{d\varepsilon}|_{\varepsilon=0}$$

untuk setiap t.

Dengan substitusi ke persamaan (2.9) diperoleh fungsi tujuan dari u^{ε} adalah:

$$J(u^{\varepsilon}) = \int_{t_0}^{t_f} f(t, x^{\varepsilon}(t), u^{\varepsilon}(t)) dt$$

$$J(u^*(t) + \varepsilon h(t)) = \int_{t_0}^{t_f} f(t, x^{\varepsilon}(t), u^*(t), \varepsilon h(t)) dt$$
(2.11)

Setelah itu diberikan veriabel costate dengan notasi $\lambda(t)$, maka dihasilkan :

$$\int_{t_0}^{t_f} \frac{d}{dt} [\lambda(t), x^{\varepsilon}(t)] dt = \lambda (t_f) x^{\varepsilon} (t_f) - \lambda(t_0) x^{\varepsilon}(t_0)$$
(2.12)

Atau dapat ditulis dengan:

$$\int_{t_0}^{t_f} \frac{d}{dt} [\lambda(t), x^{\varepsilon}(t)] dt + \lambda (t_f) x^{\varepsilon} (t_f) - \lambda(t_0) x^{\varepsilon}(t_0) = 0$$
(2.13)

Selanjutnya tambahkan persamaan (2.13) ke dalam persamaan (2.11) menjadi :

$$J(u^{*}(t) + \varepsilon h(t))$$

$$= \int_{t_{0}}^{t_{f}} f\left((t, x^{\varepsilon}(t), u^{*}(t), \varepsilon h(t)) + \frac{d}{dt}(\lambda(t), x^{\varepsilon}(t))\right) dt$$

$$+ \lambda(t_{0})x^{\varepsilon}(t_{0}) - \lambda(t_{f})x^{\varepsilon}(t_{f})$$

$$= \int_{t_{0}}^{t_{f}} \left(f(t, x^{\varepsilon}(t), u^{*}(t), \varepsilon h(t)) + \lambda'(t)x^{\varepsilon}(t) + g(t, x^{\varepsilon}(t), u^{\varepsilon}(t))\right) dt + \lambda(t_{0})x^{\varepsilon}(t_{0}) - \lambda(t_{f})x^{\varepsilon}(t_{f})$$

$$(2.14)$$

Seperti yang diketahui bahwa $\frac{d}{dt}x^{\varepsilon}(t) = g(t, x^{\varepsilon}(t), u^{\varepsilon}(t))$. Karena maksimum J dengan kontrol u terjadi pada u^* , maka turunan dari $J(u^{\varepsilon})$ (pada arah h) adalah 0, yaitu :

$$0 = \frac{d}{d\epsilon} J(u^{\epsilon})|_{\epsilon=0} = \lim_{\epsilon \to 0} \frac{J(u^{\epsilon}) - J(u^{*})}{\epsilon}$$

$$0 = \frac{d}{d\epsilon} J(u^{\epsilon})|_{\epsilon=0}$$

$$= \int_{t_{0}}^{t_{f}} \left(f(t, x^{\epsilon}(t), u^{*}(t), \epsilon h(t)) + \lambda'(t) x^{\epsilon}(t) + g(t, x^{\epsilon}(t), u^{\epsilon}(t)) \frac{\partial}{\partial t} \right)|_{\epsilon=0} dt$$

$$- \frac{\partial}{\partial t} \lambda(t_{f}) x^{\epsilon}(t_{f})$$

$$= \int_{t_{0}}^{t_{f}} \left(f(t, x^{\epsilon}(t), u^{*}(t), \epsilon h(t)) + \lambda'(t) x^{\epsilon}(t) + g(t, x^{\epsilon}(t), u^{\epsilon}(t)) \frac{\partial}{\partial t} \right)|_{\epsilon=0} dt - \lambda(t_{f}) \frac{\partial x^{\epsilon}}{\partial \epsilon}(t_{f})$$

$$(2.15)$$

dimana f_x , f_u , g_x dan g_u adalah $(t, x^*(t), u^*(t))$. Meninjau ulang persamaan (2.17), diberikan:

$$0 = \int_{t_0}^{t_f} \left(f_x + \lambda(t) g_x + \lambda'(t) \frac{\partial x^{\varepsilon}}{\partial \varepsilon}(t) |_{\varepsilon = 0} + f_u + (\lambda'(t) g_u h(t)) \right) dt - \lambda(t_f) \frac{\partial x^{\varepsilon}}{\partial t}(t_f)$$
(2.16)

Kita pilih fungsi *costate* untuk menyederhanakan (2.21) dengan membuat koefisien :

$$\frac{\partial x^{\varepsilon}}{\partial \epsilon}(t)|_{\varepsilon=0}$$

Dengan demikian diperoleh fungsi costate:

$$\lambda'(t) = -[f_x(t, x^*(t), u^*(t)) + \lambda(t)g_x(t, x^*(t), u^*(t))]$$
(2.17)

Dengan,

$$\lambda(t_f) = 0$$

Disebut dengan kondisi transversal (Lenhart & Workman, 2007).

2.4.2 Prinsip Maksimum Pontryagin

Prinsip maksimum *pontryagin* merupakan prinsip yang dapat menyelesaikan masalah kontrol optimal .

Teorema 2.1. (Teorema Fungsi Hamiltonian) Apabila $u^*(t)$ dan $x^*(t)$ adalah masalah kontrol optimal (2.11) dengan syarat perlu λ sedemikian sehingga,

$$H\big(t,x^*(t),u(t),\lambda(t)\big) \leq H\big(t,x^*(t),u^*(t),\lambda(t)\big)$$

Untuk semua kontrol dalam waktu t, dimana Hamiltonian H adalah

$$H = f(t, x(t), u(t)) + \lambda(t)g(t, x(t), u(t))$$

dengan,

$$\lambda' = -\frac{\partial H(t, x^*(t), u^*(t), \lambda(t))}{\partial x}$$
$$\lambda(t) = 0$$

Diketahui fungsi *costate* dan Hamiltonian, $H_u = 0$ pada u^* untuk semua t. Artinya,

Hamiltonian memiliki tiitk kritis dalam variabel u, pada u^* untuk semua t. Cukup sulit untuk menyelesaikanya. Sehingga dapat diselesaikan dengan lebih sederhana dengan teorema milik Pontryagin yang disebut dengan Prinsip Maksimum Pontryagin

Teorema 2.2. (Teorema Fungsi Hamiltonian) Misalkan f(t,x(t),u(t)) dan g(t,x(t),u(t)) keduanya fungsi berbeda secara kontinu dalam u. Misalkan u^* adalah optimal kontrol masalah (2.10) dengan state $x^*(t)$ dan λ adalah syarat perlu, dengan $\lambda(t) \geq 0$ untuk semua t dengan $t_0 \leq t \leq t_f$ dan

$$0 = H_u\big(t, x^*(t), u^*(t), \lambda(t)\big)$$
 Untuk semua kontrol u dengan $t_0 \le t \le t_f$ dimana,
$$H\big(t, x^*(t), u(t), \lambda(t)\big) \le H\big(t, x^*(t), u^*(t), \lambda(t)\big)$$

Bukti 2

Diketahui kontrol u pada waktu $t_0 \le t \le t_f$. Maka: $H(t, x^*(t), u^*(t), \lambda(t)) - H(t, x^*(t), u(t), \lambda(t))$ $= [f(t, x^*(t), u^*(t)) + \lambda(t)g(t, x^*(t), u^*(t))] - [f(t, x^*(t), u(t)) + \lambda(t)g(t, x^*(t), u(t))]$ $= [f(t, x^*(t), u^*(t)) - f(t, x^*(t), u(t))] + \lambda(t)[g(t, x^*(t), u^*(t)) - g(t, x^*(t), u^*(t))]$ $\ge (u^*(t) - u(t))f_u(t, x^*(t), u^*(t)) + \lambda(t)(u^*(t) - u(t))g_u(t, x^*(t), u^*(t))$

$$= (u^*(t) - u(t))H_u(t, x^*(t), u^*(t), \lambda(t)) = 0$$

Hal ini berlaku juga baik untuk maksimum maupun minimum. Apabila menyelesaikan minimum maka menjadi,

$$H(t, x^*(t), u(t), \lambda(t)) \ge H(t, x^*(t), u^*(t), \lambda(t))$$

Dengan demikian permasalahan maksimum dan minimum tidak perlu diselesaikan dengan menghitung integral dari fungsi objektif, melainkan dapat diselesaikan dengan fungsi Hamiltonian. Perbedaan maksimum dan minimum untuk mendapatkan u^* yaitu:

Pada permasalahan maksimum:

$$\frac{\partial^2 H}{\partial u^2} < 0$$

Sedangkan pada permasalahan minimum:

$$\frac{\partial^2 H}{\partial u^2} > 0$$

Apabila terdapat permasalahan kontrol optimal x^* dan u^* yang tidak diketahui dengan variabel costate λ sebagai pengali lagrange, berikut ini langkah-langkah untuk menemukan

maksimum atau minimum dari kontrol optimal yang diberikan:

- 1. Menentukan persamaan Hamiltonian.
- 2. Menentukan *Costate,* kondisi transversal, dan kondisi optimal dari x^*, u^*, λ .
- 3. Hilangkan u^* pada persamaan $H_u = 0$ untuk menyelesaikan u^* pada x^* dan λ .
- 4. Selesaikan kedua persamaan x^* dan λ dengan dua kondisi batas dengan substitusikan u^* .
- 5. Setelah ditemukan state dan costate maka selesaikan masalah kontrol optimal Berikut ini contoh dari permasalahan kontrol optimal:
- 1. Selesaikan masalah berikut,

$$\min_{u} \int_{0}^{1} u(t)^{2} dt$$

dengan, x'(t) = x(t) + u(t) , x(0) = 1 , dan x(1) = bebas

Penyelesaian:

Tujuan di atas untuk meminimumkan. Langkah-langkahnya adalah :

Bentuk persamaan Hamiltonian

$$H = u^2 + \lambda(x + u)$$

Kondisi Optimal

$$0 = \frac{\partial H}{\partial u} = 2u + \lambda$$
$$u^* = -\frac{1}{2}\lambda$$

atau dapat diminimalisir

$$\frac{\partial^2 H}{\partial u^2} = 2 > 0$$

➤ Costate

$$\lambda' = -\frac{\partial H}{\partial x} = -\lambda$$
$$\lambda(t) = ce^{-t}.$$

untuk c konstan.

Kondisi Transversal

$$\lambda(1) = 0$$

$$ce^{-1} = 0$$

$$c = 0$$

Dengan demikian $\lambda=0$ sehingga $u^*=-\frac{1}{2}\lambda=0$. Jadi x^* memenuhi x'=x dan x(0)=1. Oleh karena itu, solusinya $\lambda=0$, $u^*=0$, dan $x^*(t)=e^t$ (Lenhart & Workman, 2007).

2.4.3 Metode Sweep Maju Mundur

Permasalahan kontrol optimal optimal juga dapat diselesaikan dengan metode numerik salah satunya adalah merode *sweep* maju-mundur. Secara umum tahapan algoritma metode *sweep* maju-mundur sebagai berikut :

- Tentukan nilai awal u dan simpan nilai awal
 u
- Gunakan kondisi awal $x(0)=x_0$ dan nilai awal **u** untuk menyelesaikan persamaan *state* x dengan langkah maju metode Runge Kutta orde 4.
- Menggunakan kondisi transversal $y(t_f) = 0$ dan nilai **u** dan **x** untuk menyelesaikan persamaan *costate* (λ) dengan langkah mundur metode Runge Kutta orde 4.
- Memperbarui nilai kontrol u dengan memasukkan nilai x dan y yang baru ke dalam karakteristik dari u.
- ➤ Jika nilai error dari setiap variabel dalam iterasi saat ini dan iterasi sebelumnya sangat kecil maka cetak nilai nilai saat ini sebagai solusi. Tetapi, jika nilai errornya tidak sangat kecil maka kembali ke langkah b.

2.5 Kajian Penelitian Terdahulu

Sudah banyak dilakukan penelitian mengenai model kecanduan game online. Berikut ini beberapa penelitian terdahulu mengenai game online yang menjadi rujukan peneliti dalam melakukan penelitian.

Tabel 2.1 Kajian Penelitian Terdahulu

No	Penelitian	Persamaan	Perbedaan
	Terdahulu		
1.	Penelitian dari Youming Guo dan Tingting Li (2021) yang berjudul "Stability and Optimal Kontrol in a Mathematical Model of Online game Addicion	Penelitian ini sama- sama menggunakan model matematika kecanduan online dengan menambahknan kontrol optimal brupa edukasi dan treatment pada model tersebut	Pada jurnal model berbentuk SIPQ, sedangkan pada penelitian ini terdapat penambahan kompartemen E (Exposed) sehingga model matematikanya berbentuk SEIPQ
2.	Penelitian dari Youming Guo dan Tingting Li (2021) yang berjudul "Dynamics and optimal kontrol of an online game addiction model with considering family education	Penelitian ini sama- sama menggunakan model matematika kecanduan online dengan menambahknan kontrol optimal pada model tersebut Penelitian ini sama- sama menggunakan kontrol optimal edukasi keluarga, isolasi, dan pengobatan untuk pengurangi kecanduan game online	Model pada jurnal sebelumnya berbentuk SIPQ dimana pada komparteman S dan I menjadi 2 yaitu dengan edukasi keluarga dan tanpa edukasi keluarga, sedangkan pada penelitian ini terdapat penambahan kompartemen E sehingga modelnya berbentuk SEIPQ namun komparteman S

berjudul " dengan dengan $E_{1,2}$ men terpapar tinggi dar rendah sed penelitian mengguna model be $SEIPQ$ Pada kontrol digunakan	ya satu, artian an seluruh bulasi pada nemiliki rbentuk dimana
	resiko i resiko dangkan ini kan rbentuk jurnal optimal
maupun yang tanpa tangn r sedangkan penelitian optimal	an negative positif natural campur nanusia, pada kontrol
digunakan meminima kecanduar online.	lisir
3. Penelitian dari Zulaikha, Tri sama menggunakan jurnal susilowati, dan model matematika mengguna intan Fadhilah kecanduan online (2017) yang dengan keduanya sedangkan	•

	berjudul "Kontrol Optimal pada Model Epidemi SEIQR dengan Tingkat Kejadian Standar" (Zulaikh a et al., 2017)	sama-sama memiliki 5 subpopulasi pada modelnya.	penelitian ini menggunakan model SEIPQ Pada jurnal kontrol optimal digunakan untuk meminimalisir penyakit HFMD, sedangkan pada penelitian kontrol optimal digunakan untuk meminimalisir kecanduan game online.
4.	Penelitian dari Putri Karimah dan Muhammad Subhan (2022) yang berjudul "Analisis Stabilitas dan Kontrol Optimal Model Matematika Kecanduan Game online"	Penelitian ini sama- sama menggunakan model matematika kecanduan online dengan menambahkan dua kontrol pada model.	Pada jurnal model berbentuk SIPQ, sedangkan pada penelitian ini menambahkan kompartemen E (Exposed) sehingga model matematikanya berbentuk SEIPQ
5.	Penelitian dari Renidayati dan Suhaimi (2018) yang berjudul "Program Assertiveness Training dan Program Psiko Edukasi Keluarga sebagai Model dalam Previnsi Adiksi Game Online pada	Keduanya menggunakan kontrol berupa edukasi dan treatment atau perawatan Ketika sudah kecanduan game online	Penelitian pada jurnal merupakan penelitian social sedangkan penelitian ini merupakan penelitian dengan menggunakan formulasi di bidang matematika

Remaja di Kota	
Padang"(Reniday	
ati & Suhaimi,	
2018)	

BAB III

METODE PENELITIAN

3.1 Studi Literatur

Sebelum proses penelitian, peneliti malakukan studi literatur terkait pemodelan matematika dalam kontrol optimal pecandu game online terhadap edukasi dan *treatment*. Beberapa referensi kemudian dikembangkan sehingga menghasilkal model kontrol berupa edukasi terhadap subpopulasi *Susceptible* dan kontrol berupa *treatment* terhadap subpopulasi *Infected*.

3.2 Tahap Analisis Model Penelitian

Langkah selanjutnya adalah menganalisis model yang akan diteliti. Berikut ini tahapan analisis model yang akan diteliti :

- 1. Pembentukan model matematika kecanduan *game online* yang dimodifikasi dari pemodelan sebelumnya oleh Youming Guo dan Tingting Li (2019). Dalam hal ini model dimodifikasi dari *SIPQ* mendapatkan tambahan kompartemen *E* (*Exposed*) sehingga modelnya menjadi *SEIPQ*.
- 2. Menganalisis kontrol optimal. Pada penelitian ini akan digunakan 2 kontrol berupa kontrol edukasi

dan *treatment*. Dalam analisis kontrol optimal ini, akan dilakukan beberapa tahapan berikut ini :

- a. Menentukan fungsi objektif/tujuan
- b. Menentukan fungsi Hamiltonian
- c. Menentukan kondisi stasioner
- d. Menentukan persamaan state
- e. Menentukan persamaan costate
- f. Menentukan solusi optimal
- 3. Tahap selanjutnya dengan melakukan simulasi numerik menggunakan Range kutta dan forward-Backward Sweep Method atau metode sweep majumundur, dimana State sebagai forward atau step maju dan Costate sebagai backward atau step mundur. Perhitungan simulasi numerik menggunakan aplikasi Matlab.
- 4. Interpretasi hasil simulasi numerik
- 5. Membuat kesimpulan dari hasil penelitian.

3.3 Diagram Alir Penelitian

Langkah-langkah dalam penelitian ini akan disajikan dalam diagram alir berikut ini :



Gambar 3.1 Diagram Alir Penelitian

BAB IV

HASIL DAN PEMBAHASAN

Pada bagian bab ini akan dilakukan pembahasan mengenai pemodelan *SEIPQ* pada kecanduan game online dengan kontrol optimalnya berupa edukasi dan *treatment* disertai dengan analisis numeriknya dengan menggunakan *Matlab* 2011a.

4.1 Model Matematika Kecanduan Game Online

Agar memudahkan untuk menggambarkan model yang akan dibuat, akan diberikan asumsi-asumsi pada model kecanduan *game online SEIPQ* sebagai berikut:

- 1. Laju kelahiran dan laju kematian adalah sama.
- 2. Adanya sifat tertutup pada subpopulasinya, dengan kata lain tidak adanya emigrasi maupun imigrasi.
- 3. Merujuk pada penelitian kecanduan *game online* milik Li dan Guo (2018) berbentuk model *SIPQ*, penelitian ini memodifikasinya dengan menambahkan subpopulasi *E* (*Exposed*) sehingga berbentuk model *SEIPQ*.
- 4. Merujuk kepada penelitian milik milik Li dan Guo (2021) memaparkan bahwa dibutuhkan waktu yang cukup lama untuk seseorang yang rentan berubah menjadi kecanduan, oleh karena itu dalam penelitian ini diasumsikan subpopulasi terpapar (*Exposed*) menjadi kompartemen sendiri.(Lil, 2021)

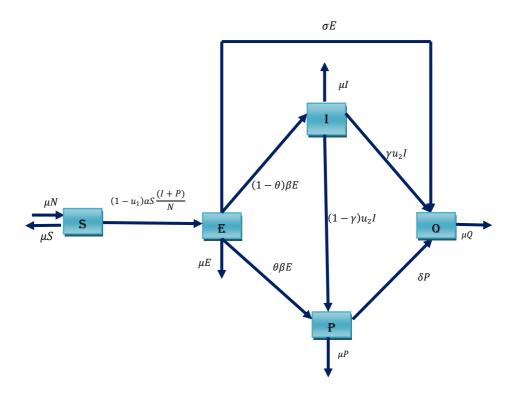
- 5. Populasi dibagi menjadi 5 kompartemen yaitu subpopulasi *S* (*Susceptible*), *E*(*Exposed*), *I*(*Infected*), *P*(*Professional*), dan *Q* (*Quit*).
- 6. Subpopulasi *Susceptible* (*S*) adalah subpopulasi rentan yang mengenal *game online* namun belum mencoba bermain *game online* dan berkemungkinan untuk menjadi pecandu *game online*.
- 7. Subpopulasi *Exposed* (*E*) adalah subpopulasi terpapar yang sudah mengenal *game online* dan bermain kurang dari 5 jam perhari namun tidak mempengaruhi orang lain untuk bermain.
- 8. Subpopulasi *Infected* (*I*) adalah subpopulasi yang bermain lebih dari 5 jam perhari dan tidak memiliki perkerjaan dibidang *game* serta mempengaruhi orang lain untuk bermain.
- 9. Subpopulasi *Professional* (*P*) adalah subpopulasi yang bermain lebih dari 5 jam perhari dan memiliki pekerjaan di bidang *game*.
- 10. Subpopulasi *Quit* (*Q*) adalah subpopulasi yang sudah berhenti dari bermain *game*.
- 11. Yang dapat mempengaruhi subpopulasi *Susceptible* (*S*) adalah subpopulasi *Infected* (*I*) dan *Professional* (*P*) karena subpopulasi *Exposed* (*E*) tidak mempengaruhi orang lain untuk bermain.

- 12. Subpopulasi *Exposed* (*E*) dapat langsung berhenti tanpa melalui *Infected* (*I*) maupun *professional* (*P*),
- 13. Subpopulasi *Infected* (*I*) yang berpindah menjadi subpopulasi *Professional* (*P*) diasumsikan tidak kembali menjadi *Infected* (*I*).
- 14. Setelah berpindah menjadi Subpopulasi *Quit* (*Q*) maka tidak kembali menjadi Subpopulasi *Susceptible* (*S*).

Total subpopulasi yang diberikan adalah:

$$N(t) = S(t) + E(t) + I(t) + P(t) + Q(t)$$

Berikut ini merupakan diagram kompartemen untuk model *SEIPQ* dengan kontrol edukasi dan *treatment* setealah dimodifikasi dengan penambahan pupulasi E (*Exposed*).



Gambar 4.1 Diagram Kompartemen *SEIPQ* pada Kecanduan Game Online dengan Kontrol Edukasi dan *Treatment*

Berdasarkan diagram di atas, didapatkan suatu model matematika pecandu *game online* dengan penjelasan-penjelasan yaitu :

Laju perubahan subpopulasi *Susceptible* persatuan waktu. Subpopulasi *Susceptible* akan bertambah karena adanya kelahiran subpopulasi sejumlah μ . Jumlah subpopulasi *Susceptible* akan berkurang karena kematian

subpopulasi sejumlah μ dan adanya interaksi dengan Exposed. Untuk mengurangi kontak laju penularan keduanya juga diberi kontrol edukasi (u_1) , sehingga menghasilkan persamaan berikut:

$$\frac{dS}{dt} = \mu(N-S) - (1-u_1)\left(\alpha S \frac{(I+P)}{N}\right)$$

Selanjutnya laju perubahan subpopulasi Exposed persatuan waktu. Pupulasi Exposed akan bertambah karena adanya interaksi dengan Susceptible. Akan berkurang karena kematian subpopulasi sejumlah μ , dan karena adanya interaksi dengan subpopulasi Infected dan subpopulasi Professional, sehingga menghasilkan persamaan berikut:

$$\frac{dE}{dt} = (1 - u_1) \alpha S \frac{(I + P)}{N} - (\mu + \sigma + \beta) E$$

Selanjutnya laju perubahan subsubpopulasi Infected persatuan waktu. Pupulasi Infected akan bertambah karena adanya interaksi dengan Exposed. Akan berkurang karena kematian subpopulasi sejumlah μ , dan karena adanya interaksi dengan subpopulasi Professional dan subpopulasi Quit. Pada subpopulasi Infected ini, akan diberi kontrol berupa treatment yang bertujuan mengurangi adanya subpopulasi Infected dan berpindah menuju subpopulasi

Professional dan subpopulasi Quit, sehingga menghasilkan persamaan berikut:

$$\frac{dI}{dt} = (1 - \theta)\beta E - u_2 I - \mu I$$

Selanjutnya laju perubahan subpopulasi Professional persatuan waktu. Subpopulasi Professional akan bertambah karena adanya interaksi dengan subpopulasi Exposed dan subpopulasi Infected. Akan berkurang karena kematian subpopulasi sejumlah μ , dan karena adanya interaksi dengan subpopulasi Quit, sehingga menghasilkan persamaan berikut :

$$\frac{dP}{dt} = \theta \beta E + (1 - \gamma) u_2 I - (\mu + \delta) P$$

Selanjutnya laju perubahan subpopulasi Quit persatuan waktu. Subpopulasi Quit akan bertambah karena adanya interaksi dengan subpopulasi Exposed, subpopulasi Professional dan subpopulasi Infected. Akan berkurang karena kematian subpopulasi sejumlah μ , sehingga menghasilkan persamaan berikut:

$$\frac{dQ}{dt} = \sigma E + \gamma u_2 I + \delta P - \mu Q$$

Berdasarkan keterangan di atas, modifikasi model matematika kecanduan game online ini memiliki tujuan utama untuk meminimalkan jumlah Infected atau yang mengalami kacanduan game online. Kontrol optimal dilakukan dengan memberikan dua variabel tidakan kontrol yaitu u_1 sebagai kontrol berupa edukasi untuk membatasi kontak antara subpopulasi Suspected dengan subpopulasi Exposed dan u_2 sebagai kontrol berupa treatment dengan harapan akan semakin sedikit subpopulasi Infected atau yang mengalami kecanduan game online. Berikut ini akan diberikan hasil model matematika setelah pemberian kontrol u_1 dan u_2 , dimana setelah dikontrol persamaanya menjadi:

$$\begin{cases}
\frac{dS}{dt} = \mu(N-S) - (1-u_1) \left(\alpha S \frac{(I+P)}{N}\right) \\
\frac{dE}{dt} = (1-u_1) \alpha S \frac{(I+P)}{N} - (\mu + \sigma + \beta) E
\end{cases}$$

$$\begin{cases}
\frac{dI}{dt} = (1-\theta) \beta E - u_2 I - \mu I \\
\frac{dP}{dt} = \theta \beta E + (1-\gamma) u_2 I - (\mu + \delta) P
\end{cases}$$

$$\frac{dQ}{dt} = \sigma E + \gamma u_2 I + \delta P - \mu Q$$

$$(4.1)$$

Mengenai penjelasan tentang kompartemen dan parameter dari model di tersebut akan ditunjukan dalam tabel berikut ini :

Tabel 4.1 Parameter Model SEIPQ pada Kecanduan Game
Online

Simbol	Keterangan	Satuan
N(t)	Keseluruhan jumlah populasi	Individu
S(t)	Susceptible atau subpopulasi rentan	Individu
	yang mengenal <i>game online</i> namun	
	belum mencoba bermain game online	
E(t)	Exposed atau subpopulasi yang sudah	Individu
	mengenal game online dan bermain	
	kurang dari 5 jam perhari namun tidak	
	mempengaruhi orang lain untuk bermain	
I(t)	Infected atau subpopulasi yang bermain	Individu
	lebih dari 5 jam perhari dan tidak	
	memiliki perkerjaan dibidang game	
	serta mempengaruhi orang lain untuk	
	bermain	
P(t)	Professional atau subpopulasi yang	Individu
	bermain lebih dari 5 jam perhari dan	
2(1)	memiliki pekerjaan di bidang game	7 11 1 1
Q(t)	Quit atau subpopulasi yang sudah berhenti dari bermain game.	Individu
μ	Tingkat kelahiran dan kematian alami	/minggu
α	Laju kontak dari subpopulasi <i>S</i> ke	/minggu
	subpopulasi <i>E</i>	
β	Laju perpindahan dari subpopulasi E ke	/minggu
	subpopulasi I dan subpopulasi P	
σ	Laju perpindahan dari subpopulasi E ke	/minggu
	subpopulasi Q	
δ	Menunjukan laju perpindahan dari	/minggu
	subpopulasi P ke subpopulasi Q	
γ	rasio perpindahan subpopulasi I ke	
	subpopulasi P dan subpopulasi Q	-

θ	Menunjukan peluang subpopulasi E		
	yang melakukan kontak langsung	-	
	dengan subpopulasi I		
$(1-\theta)$	Menunjukan peluang subpopulasi E		
	yang melakukan kontak langsung	-	
	dengan subpopulasi P		

4.2 Analisis Kontrol Optimal

Permasalahan kontrol optimal akan memenuhi ketika masalah tersebut memenuhi syarat pada Prinsip minimum *pontryagin* dengan metode *sweep* maju mundur, antara lain sebagai berikut:

4.2.1 Menentukan Fungsi Tujuan

Tujuan penelitian ini untuk meminimumkan subpopulasi *exposed* dan *infected* dengan meminimalkan biaya edukasi dan treatment. Kontrol edukasi berfungsi untuk mengurangi laju kontak penularan antara subpopulasi Susceptible dengan subpopulasi Exposed. Kontrol edukasi disimbolkan dengan u_1 . Sedangkan kontrol treatment dilakukan untuk mengurangi subpopulasi *Infected* agar menjadi subpopulasi Professional atau Quit. Kontrol treatment disimbolkan dengan u_2 . Fungsi tujuan dari model kecandua game online SEIPQ setelah diberikan kontrol menjadi :

$$J(u_1, u_2) = \min \int_0^{t_f} \left[E(t) + I(t) + \frac{A}{2} u_1^2(t) + \frac{B}{2} u_2^2(t) \right] dt \quad (4.2)$$

dengan,

$$u_1(t), u_2(t) \in U(t)$$
$$U(t) \in (0,1)$$

dengan kendala,

$$F(t) = \left(\frac{dS}{dt}, \frac{dE}{dt}, \frac{dI}{dt}, \frac{dP}{dt}, \frac{dQ}{dt}\right)$$

dengan kondisi awal $S(0) = S_0, E(0) = E_0, I(0) = I_0, P(0) = P_0, Q(0) = Q_0.$

Bobot A adalah parameter bobot sebagai factor penyeimbang terkait biaya edukasi. Bobot A diasumsikan bernilai 10 pada simulasi pertama dan bernilai 30 pada simulasi kedua. Sedangkan bobot B merupakan parameter bobot sebagai faktor penyeimbang terkait biava treatment. Bobot B diasumsikan bernilai 5 pada simulasi pertama dan bernilai 20 pada simulasi kedua. Kedua simulasi dilakukan untuk membandingkan hasil yang yang maksimal dengan biaya seminimal mungkin. Kontrol optimal model kecanduan game online SEIPQ dirumuskan untuk menemukan kontrol u_1^*, u_2^* pada interval waktu $t_0 < t < t_f$ dengan $t_0 = 0$ sebagai waktu awal dan $t_f = T$ sebagai waktu akhir sedemikian sehingga dihasilkan fungsi yang optimal, dirumuskan dengan:

$$J(u_1^*, u_2^*) = \min J(u_1, u_2),$$

4.2.2 Persamaan Hamiltonian

Persamaan Hamiltonian dirumuskan dengan menjumlahkan fungsi tujuan dengan perkalian fungsi kendala dangan pengali *lagrange*. Bentuk persamaan yang dihasilkan antara lain:

$$H = E(t) + I(t) + \frac{A}{2}u_1^2 + \frac{B}{2}u_2^2 + \sum_{i=1}^{5} \lambda_i f_i$$
 (4.3)

Dengan f_i sebagai kendala atau *state*, dimana :

$$f_{1} = \frac{dS}{dt} = \mu(N-S) - (1-u_{1}) \left(\alpha S \frac{(I+P)}{N}\right)$$

$$f_{2} = \frac{dE}{dt} = (1-u_{1})\alpha S \frac{(I+P)}{N} - (\mu + \sigma + \beta)E$$

$$f_{3} = \frac{dI}{dt} = (1-\theta)\beta E - u_{2}I - \mu I$$

$$f_{4} = \frac{dP}{dt} = \theta \beta E + (1-\gamma)u_{2}I - (\mu + \delta)P$$

$$f_{5} = \frac{dQ}{dt} = \sigma E + \gamma u_{2}I + \delta P - \mu Q$$

dan λ_i adalah pengali *lagrange* sebagai variabel *costate* dengan λ_1 untuk f_1 , λ_2 untuk f_2 , λ_3 untuk f_3 , λ_4 untuk f_4 , λ_5 untuk f_5 . Jika dijabarkan menghasilkan Persamaan Hamiltonian berikut ini :

$$H = E(t) + I(t) + \frac{A}{2}u_1^2 + \frac{B}{2}u_2^2$$

$$+ \lambda_1 \left[\mu(N - S) - (1 - u_1)\alpha S\left(\frac{I + P}{N}\right) \right]$$

$$+ \lambda_2 \left[(1 - u_1)\alpha S\left(\frac{I + P}{N}\right) - (\mu + \sigma + \beta)E \right]$$

$$+ \lambda_3 \left[(1 - \theta)\beta E - u_2 I - \mu I \right]$$

$$+ \lambda_4 \left[\theta \beta E + (1 - \gamma)u_2 I - (\mu + \delta)P \right] +$$

$$+ \lambda_5 \left[\sigma E + \gamma u_2 I + \delta P - \mu Q \right]$$

$$(4.4)$$

Dari fungsi Hamiltonian, akan diperoleh solusi optimal apabila memenuhi 3 syarat antara lain kondisi stasioner, persamaan *state*, dan persamaan *costate*.

4.2.3 Kondisi Stasioner

Fungsi tujuan yang optimal harus memenuhi kondisi stasioner. Kondisi stasioner adalah kondisi ketika kontrol optimal u_1 dan u_2 dapat meminimumkan bentuk hamiltonianya terhadap waktu, yang artinya turunan pertama persamaan Hamiltonian terhadap masing-masing kontrol u_1 dan u_2 .

 \triangleright Untuk variabel kontrol u_1

$$\frac{\partial H}{\partial u_1} = 0$$

$$\frac{2Au_1}{2} + \lambda_1 \alpha S \frac{(I+P)}{N} - \lambda_2 \alpha S \frac{(I+P)}{N} = 0$$

$$Au_1 = \lambda_2 \alpha S \frac{(I+P)}{N} - \lambda_1 \alpha S \frac{(I+P)}{N}$$

$$Au_1 (\lambda_2 - \lambda_1) \alpha S \frac{(I+P)}{N}$$

diperoleh

$$u_1^* = \frac{1}{A} \left(\left(\lambda_2 - \lambda_1 \right) \alpha S \frac{\left(I + P \right)}{N} \right) \tag{4.5}$$

 \triangleright Untuk variabel kontrol u_1

$$\frac{\partial H}{\partial u_2} = 0$$

$$\frac{2Bu_2}{2} - \lambda_3 I \mp (1 - \gamma) I + \lambda_5 \gamma I = 0$$

$$Bu_2 = +\lambda_3 I - \lambda_4 (1 - \gamma) I - \gamma I$$

$$Bu_2 = \lambda_3 I - \lambda_4 I + \lambda_4 \gamma I - \gamma I$$

$$Bu_2 = (\lambda_3 - \lambda_4) I + (\lambda_4 - \lambda_5) \gamma$$
diperoleh,
$$u_2^* = \frac{1}{B} ((\lambda_3 - \lambda_4) I + (\lambda_4 - \lambda_5) \gamma)$$
(4.6)

Diketahui bahawa $0 \le u_1 \le 1$ dan $0 \le u_2 \le 1$ maka dapat ditulis nilai optimalnya dalam bentuk :

$$u_{1}^{*} = \begin{cases} 1, & u_{1}^{*} \ge 1 \\ u_{1}, & 0 \le u_{1}^{*} \le 1 \\ 0, & u_{1}^{*} \le 0 \end{cases}$$

dan

$$u_{2}^{*} = \begin{cases} 1, & u_{2}^{*} \ge 1 \\ u_{2}, & 0 \le u_{2}^{*} \le 1 \\ 0, & u_{2}^{*} \le 0 \end{cases}$$

Sehingga nilai kontrol optimalnya dapat ditulis sebagai berikut:

$$u_1^* = min\left\{1, maks\left(0, \frac{1}{A}(\lambda_2 - \lambda_1)\alpha S\frac{(I+p)}{N}\right)\right\}$$
 (4.7)

dan

$$u_2^* = min\left\{1, maks\left(0, \frac{1}{B}((\lambda_5 - \lambda_3)\gamma I + (\lambda_4 - \lambda_3)I)\right)\right\} (4.8)$$

4.2.4 Persaman State

Persamaan state dalam masalah kontrol optimal disebut juga persamaan kendala dan diperoleh dengan menurunkan persamaan Hamiltonian terhadap variabel costate $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5$:

$$\begin{cases}
\frac{\partial H}{\partial \lambda_{1}} = \frac{dS}{dt} = \mu(N-S) - (1-u_{1})\alpha S \left(\frac{I+P}{N}\right) \\
\frac{\partial H}{\partial \lambda_{2}} = \frac{dE}{dt} = (1-u_{1})\alpha S \left(\frac{I+P}{N}\right) - (\mu+\sigma+\beta)E
\end{cases}$$

$$\begin{cases}
\frac{\partial H}{\partial \lambda_{3}} = \frac{dI}{dt} = (1-\theta)\beta E - u_{2}I - \mu I \\
\frac{\partial H}{\partial \lambda_{4}} = \frac{dP}{dt} = \theta\beta E + (1-\gamma)u_{2}I - (\mu+\delta)P
\end{cases}$$

$$\frac{\partial H}{\partial \lambda_{5}} = \frac{dQ}{dt} = \sigma E + \gamma u_{2}I + \delta P - \mu Q$$
(4.9)

dimana diketahui kondisi awalnya $S(0) = S_0, E(0) = E_0, I(0) = I_0, P(0) = P_0, Q(0) = Q_0.$

4.2.5 Persamaan Costate

Persamaan *costate* merupakan nilai negatif dari fungsi hamiltonianya kemudian diturunkan terhadap variabel *state*. Diperoleh persamaan *costate* sebagai berikut :

$$\begin{cases} \frac{d\lambda_{1}}{dt} = \frac{\partial H}{\partial S} = \lambda_{1}\mu + \lambda_{1}(1 - u_{1})\alpha\left(\frac{I + P}{N}\right) \\ -\lambda_{2}(1 - u_{1})\alpha\left(\frac{I + P}{N}\right) \end{cases}$$

$$\frac{d\lambda_{2}}{dt} = \frac{\partial H}{\partial E} = -1 + \lambda_{2}\mu + \lambda_{2}\sigma + \lambda_{2}\beta$$

$$-\lambda_{3}(1 - \theta)\beta - \lambda_{4}\theta\beta - \lambda_{5}\sigma$$

$$\begin{cases} \frac{d\lambda_{3}}{dt} = \frac{\partial H}{\partial I} = -1 + \lambda_{1}(1 - u_{1})\frac{\alpha S}{N} - \lambda_{2}(1 - u_{1})\frac{\alpha S}{N} \\ +\lambda_{3}u_{2} + \lambda_{3}\mu - \lambda_{4}(1 - \gamma)u_{2} - \lambda_{5}u_{2}\gamma \end{cases}$$

$$\frac{d\lambda_{4}}{dt} = \frac{\partial H}{\partial P} = \lambda_{1}(1 - u_{1})\frac{\alpha S}{N} - \lambda_{2}(1 - u_{1})\frac{\alpha S}{N}$$

$$+\lambda_{4}\mu + \lambda_{4}\delta - \lambda_{5}\delta$$

$$\frac{d\lambda_{5}}{dt} = \frac{\partial H}{\partial Q} = \lambda_{5}\mu$$

(2.10)

dimana kondisi transversalnya antara lain $\lambda_1(T)=\lambda_2(T)=\lambda_3(T)=\lambda_4(T)=\lambda_5(T)=0.$

4.2.6 Menentukan Kondisi Optimal

Dengan sudstitusi persamaan (4.9) yang mana u_1^* (4.5) dan u_2^* (4.6) diperoleh *state* yang optimal yaitu :

$$\frac{\partial H^*}{\partial \lambda_1} = \frac{dS^*}{dt} = \mu \left(N - S^* \right) - \alpha S^* \left(\frac{I^* + P^*}{N} \right) \\
\left(1 - \frac{1}{A} \left((\lambda_2 - \lambda_1) \alpha S^* \frac{(I^* + P^*)}{N} \right) \right) \\
\frac{\partial H^*}{\partial \lambda_2} = \frac{dE^*}{dt} = \left(1 - \frac{1}{A} \left((\lambda_2 - \lambda_1) \alpha S^* \frac{(I^* + P^*)}{N} \right) \right) \\
\alpha S^* \left(\frac{I^* + P^*}{N} \right) - (\mu + \sigma + \beta) E^* \\
\frac{\partial H^*}{\partial \lambda_3} = \frac{dI^*}{dt} = (1 - \theta) \beta E^* - \mu I^* - (1 - \gamma) \\
\left(\frac{1}{B} \left((\lambda_3 - \lambda_4) I^* + (\lambda_4 - \lambda_5) \gamma I^* \right) \right) I^* \\
\frac{\partial H^*}{\partial \lambda_4} = \frac{dP^*}{dt} = \theta \beta E^* - (\mu + \delta) P^* + (1 - \gamma) I^* \\
\left(\frac{1}{B} \left((\lambda_3 - \lambda_4) I^* + (\lambda_4 - \lambda_5) \gamma I^* \right) \right) \\
\frac{\partial H^*}{\partial \lambda_5} = \frac{dQ^*}{dt} = \sigma E^* + \delta P^* - \mu Q^* + \gamma I^* \\
\left(\frac{1}{B} \left((\lambda_3 - \lambda_4) I^* + (\lambda_4 - \lambda_5) \gamma I^* \right) \right) \\
(4.11)$$

Dengan stubstitusi persamaan yang mana u_1^* (4.5) dan u_2^* (4.6) diperoleh co*state* yang optimal yaitu :

$$\frac{d\lambda_{1}}{dt} = \frac{\partial H^{*}}{\partial S^{*}} = \lambda_{1}\mu + \lambda_{1}\left(1 - \frac{1}{A}\left((\lambda_{2} - \lambda_{1})\alpha S^{*}\frac{\left(I^{*} + P^{*}\right)}{N^{*}}\right)\right)$$

$$\alpha\left(\frac{I^{*} + P^{*}}{N}\right) - \alpha\left(\frac{I^{*} + P^{*}}{N}\right)$$

$$\lambda_{2}\left(1 - \frac{1}{A}\left((\lambda_{2} - \lambda_{1})\alpha S^{*}\frac{\left(I^{*} + P^{*}\right)}{N^{*}}\right)\right)$$

$$\frac{d\lambda_{2}}{dt} = \frac{\partial H^{*}}{\partial E^{*}} = -1 + \lambda_{2}\left(\mu + \sigma + \beta\right) - \lambda_{3}\left(1 - \theta\right) - \lambda_{4}\theta\beta - \lambda_{5}\sigma$$

$$\frac{d\lambda_{3}}{dt} = \frac{\partial H^{*}}{\partial I^{*}} = -1 + \lambda_{1}\left(1 - \frac{1}{A}\left((\lambda_{2} - \lambda_{1})\alpha S^{*}\frac{\left(I^{*} + P^{*}\right)}{N}\right)\right)\frac{\alpha S^{*}}{N}$$

$$-\lambda_{2}\left(1 - \frac{1}{A}\left((\lambda_{2} - \lambda_{1})\alpha S^{*}\frac{\left(I^{*} + P^{*}\right)}{N}\right)\right)\frac{\alpha S^{*}}{N}$$

$$+\lambda_{3}\left(\frac{1}{B}\left((\lambda_{3} - \lambda_{4})I^{*} + (\lambda_{4} - \lambda_{5})\gamma I^{*}\right)\right) + \lambda_{3}\mu$$

$$-\lambda_{4}\left(1 - \gamma\right)\left(\frac{1}{B}\left((\lambda_{3} - \lambda_{4})I^{*} + (\lambda_{4} - \lambda_{5})\gamma I^{*}\right)\right)$$

$$-\lambda_{5}\gamma\left(\frac{1}{B}\left((\lambda_{3} - \lambda_{4})I^{*} + (\lambda_{4} - \lambda_{5})\gamma I^{*}\right)\right)$$

$$\begin{cases} \frac{d\lambda_{4}}{dt} = \frac{\partial H}{\partial P} = \lambda_{1} \left(1 - \frac{1}{A} \left((\lambda_{2} - \lambda_{1}) \alpha S^{*} \frac{\left(I^{*} + P^{*} \right)}{N} \right) \right) \frac{\alpha S^{*}}{N} \\ - \lambda_{2} \left(1 - \frac{1}{A} \left((\lambda_{2} - \lambda_{1}) \alpha S^{*} \frac{\left(I^{*} + P^{*} \right)}{N} \right) \right) \frac{\alpha S^{*}}{N} \\ + \lambda_{4} \mu + \lambda_{4} \delta - \lambda_{5} \delta \\ \frac{d\lambda_{5}}{dt} = \frac{\partial H}{\partial Q} = \lambda_{5} \mu \end{cases}$$

(4.12)

4.3 Interpretasi Hasil Simulasi Numerik

Setelah dilakukan perhitungan dengan analisis kontrol optimal, selanjutnya akan dilakukan perhitungan simulasi numerik untuk mengetahui perilaku model penyebaran Kecanduan $game\ online$. Pada model diberikan 2 kontrol berupa u_1 sebagi kontrol edukasi yang diberikan pada subpopulasi $Susceptible\ dan\ u_2$ sebagai kontrol $treatment\ yang\ diberikan\ pada\ subpopulasi\ Infected$. Langkah pertama akan diberikan nilai awal pada subpopulasi yang akan digunakan pada simulasi numerik.

Tabel 4.2 Nilai Awal Subpopulasi pada Model *SEIPQ* pada Kecanduan *Game Online*

Popualasi awal		Sumber
S(0)	580	(Li & Guo, 2019)
E(0)	38	(Asumsi)

I(0)	100	(Asumsi)
P(0)	40	(Li & Guo, 2019)
Q(0)	71	(Li & Guo, 2019)

Selanjutnya menentukan nilai dari masing-masing parameter yang terdapat pada model yang akan digunakan dalam simulasi.

Tabel 4.3 Nilai Parameter Model SEIPQ pada Kecanduan

Game Online

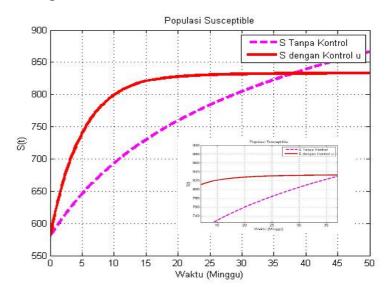
Parameter	Nilai Parameter	Sumber
μ	0,2	(Li & Guo, 2019)
α	0,35	(Asumsi)
β	0,45	(Asumsi)
γ	0,2	(Li & Guo, 2019)
θ	0,2	(Asumsi)
σ	0,2	(Asumsi)
δ	0,05	(Li & Guo, 2019)

Nilai awal subpopulasi diasumsikan berdasarkan jurnal Li dan Guo yang berjumlah *I* yang awalnya berjumlah 138 kemudian diasumsikan sebagian subpopulasi belum menjadi pecandu meskipun sudah bermain *game online* yaitu dimisalkan berjumlah 38. Kemuadian beberapa nilai parameter merujuk kepada jurnal Li dan Guo dan sebagian lainya diasumsikan penulis untuk mendapatkan hasil yang optimal.

Pengendalian kecanduan dilakukan dengan kontrol. Model simulasinya menggunakan metode *sweep* majumundur dan menggunakan aplikasi Matlab.

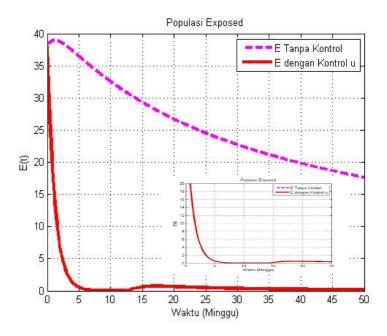
1. Simulasi Pertama

Pada simulasi 1, menggunakan bobot Edukasi sebesar A=10 dan bobot treatment sebesar B=5, diperoleh hasil simulasi numerik akan disajikan dalam tabel grafik di bawah ini :



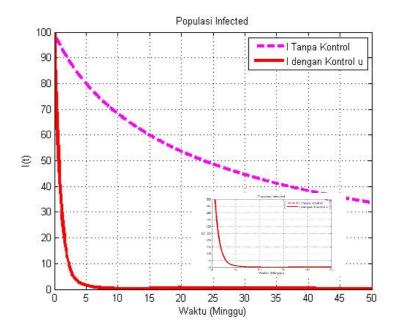
Gambar 4.2 Subpopulasi *Susceptible* Sebelum Kontrol dan
Sesudah Kontrol

Pada gambar 4.2 menunjukan grafik subpopulasi Susceptible sebelum dikontrol dan setelah dikontrol. Jumlah subpopulasi Susceptible sebelum dikontrol mengalami kenaikan dari nilai awal S(0) = 580 dan terus mengalami kenaikan. Setelah diberi kontrol jumlah subpopulasi *Susceptible* mengalami penurunan lebih cepat dari nilai awal S(0) = 580 hingga minggu ke-28 menuju kestabilan. Hal ini menunjukan dengan adanya kontrol edukasi yang diberikan dapat mengurangi subpopulasi *Susceptible*.



Gambar 4.3 Subpopulasi *Exposed* Sebelum Kontrol dan
Sesudah Kontrol

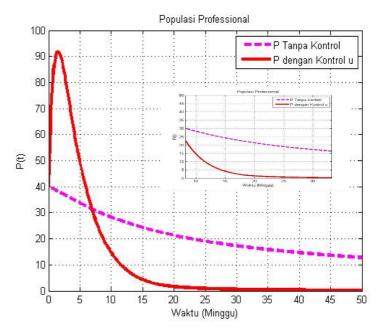
Pada gambar 4.3 menunjukan grafik subpopulasi Exposed sebelum dikontrol dan setelah dikontrol. Jumlah subpopulasi Exposed sebelum dikontrol mengalami kenaikan dari E(0)=38 hingga E(1)=39 dalam selang waktu satu minggu dan mengalami penurunan secara bertahap sampai minggu ke-50 tersisa 17. Setelah diberi kontrol jumlah subpopulasi E(0)=38 mengalami penurunan hingga minggu ke-5 dan konstan hingga minggu ke-15 karena adanya kontrol edukasi yang diberikan secara maksimal. kemudian terjadi kenaikan kembali secara konstan sampai minggu ke-30. Kemudian turun menuju tiitk optimal. Hal ini menunjukan dengan adanya kontrol edukasi dapat menurunkan subpopulasi Exposed lebih cepat.



Gambar 4.4 Subpopulasi *Infected* Sebelum Kontrol dan

Sesudah Kontrol

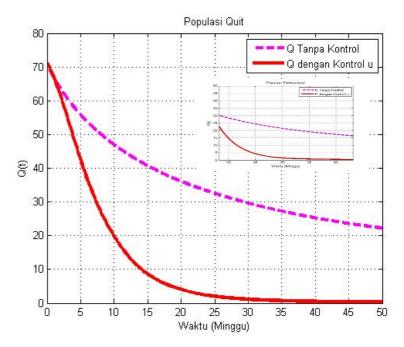
Pada gambar 4.4 menunjukan grafik subpopulasi Infected sebelum dikontrol dan setelah dikontrol. Jumlah subpopulasi Infected sebelum dikontrol dari I(0)=100 mengalami penurunan hingga selang waktu 50 minggu tersisa 34. Namun setelah diberi kontrol jumlah subpopulasi I(0)=100 dapat diturunkan dengan lebih cepat sampai minggu ke-5. Hal ini menunjukan dengan adanya kontrol edukasi dan treatment yang diberikan dapat menurunkan subsubpopulasi I dalam waktu lebih singkat.



Gambar 4.5 Subpopulasi *Professional* Sebelum Kontrol dan
Sesudah Kontrol

Pada gambar 4.5 menunjukan grafik subpopulasi Professional sebelum dikontrol dan setelah dikontrol. Jumlah subpopulasi Professional sebelum dikontrol mengalami penurunan P(0)=40 sampai minggu ke 50 tersisa 12. Namun setelah diberi kontrol jumlah subpopulasi I naik menjadi P(1,5)=92 subpopulasi dalam selang waktu 1,5 minggu. Kemudian mengalami penurunan secara bertahap sampai minggu ke-27 dan menuju titik optimal. Hal ini menunjukan dengan

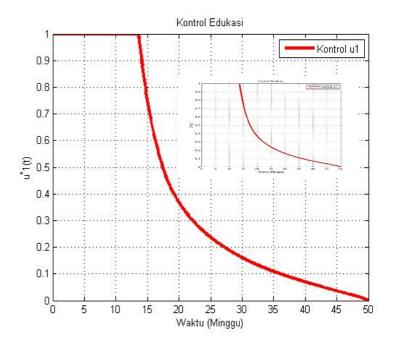
adanya kontrol edukasi dan *treatment* yang diberikan dapat menaikan subpopulasi *P* dalam waktu lebih singkat. kemudian turun karena pengaruh dari adanya penurunan subpopulasi *Exposed* dan subpopulasi *Infected*.



Gambar 4.6 Subpopulasi *Quit* Sebelum Kontrol dan
Sesudah Kontrol

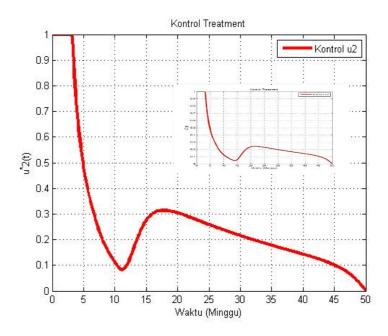
Gambar 4.6 menunjukan grafik subpopulasi Quit sebelum dikontrol dan setelah dikontrol. Jumlah subpopulasi Quit sebelum dikontrol mengalami penurunan dari Q(0) = 71 sampai minggu ke 50 tersisa

12. Setelah diberi kontrol jumlah subpopulasi *Quit* mengalami penurunan lebih cepat dari sebelum dikontrol, yaitu hanya dalam waktu 25 minggu. Hal ini menunjukan dengan adanya kontrol edukasi dan *treatment* yang diberikan dapat menurunkan subpopulasi *Q* dalam waktu lebih singkat karena pengaruh dari subpopulasi *Exposed* dan subpopulasi *Infected* yang mengalami penurunan.



Gambar 4.7 Kontrol Edukasi u_1

Gambar 4.7 menunjukan simulasi kontrol u_1 berupa edukasi bagi subpopulasi Susceptible selama 50 minggu. Berdasarkan gambar, dapat dilihat bahwa periode pengendalian awal adalah 1 atau dapat dinyatakan 100% penuh dalam pemberian bobot edukasi pada t=0 sampai pada t=13,5. Kemudian bergerak menurun secara bertahap sampai t=50. Hal ini menunjukan adanya keefektifan dari kontrol edukasi yang diberikan yang ditandai dengan adanya subpopulasi Exposed yang mengalami penurunan karena adanya kontrol edukasi.

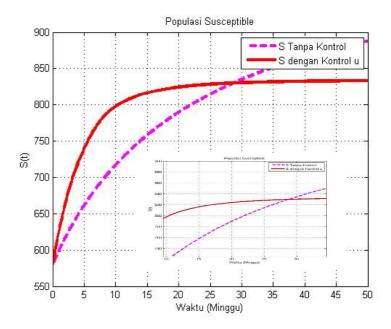


Gambar 4.8 Simulasi Kontrol *Treatment* u_2

Gambar 4.8 menunjukan simulasi kontrol u_2 berupa treatment bagi popupasi Infected selama 50 minggu. Berdasarkan gambar, dapat dilihat bahwa periode pengendalian awal adalah 1 atau dapat dinyatakan 100% penuh dalam pemberian bobot treatment pada t = 0 sampai pada t = 3. Kemudian bergerak menurun kurang lebih sampai t = 14. Hal ini menunjukan adanya keefektifan dari kontrol treatment yang diberikan yang ditandai dengan keseimbangan antara subpopulasi infected menurun. Namun mengalami kenaikan kembali sampai pada minggu ke-21 karena pada waktu tersebut subpopulasi esposed mengalami penurunan sehingga berkemungkinan berpindah ke subpopulasi Infected menvebabkan perlunya kontrol *treatment* vang kembali. Setelahnya mengalami penurunan secara bertahap sampai minggu ke-50.

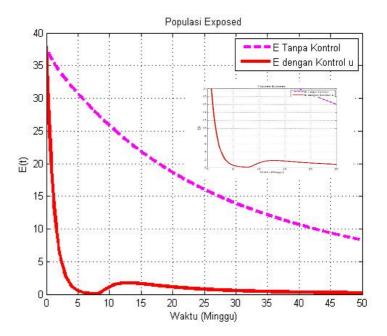
2. Simulasi Kedua

Pada simulasi kedua, menggunakan bobot Edukasi sebesar A=30 dan bobot treatment sebesar B=20 serta merubah parameter α menjadi 0,3 diperoleh hasil simulasi numerik akan disajikan dalam tabel grafik di bawah ini :



Gambar 4.9 Subpopulasi *Susceptible* Sebelum Kontrol dan
Sesudah Kontrol

Pada gambar 4.9 menunjukan grafik subpopulasi Susceptible sebelum dikontrol dan setelah dikontrol. Jumlah subpopulasi Susceptible sebelum dikontrol mengalami kenaikan dari nilai awal $S(0)=580\,$ dan terus mengalami kenaikan. Setelah diberi kontrol jumlah subpopulasi Susceptible mengalami penurunan dalam waktu 24 minggu dan menuju titik optimal. Hal ini menunjukan dengan adanya kontrol edukasi yang diberikan dapat mengurangi subpopulasi Susceptible.

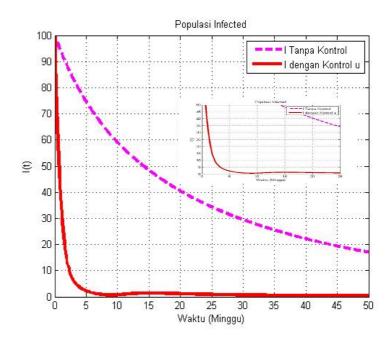


Gambar 4.10 Subpopulasi *Exposed* Sebelum Kontrol dan

Sesudah Kontrol

Pada gambar 4.10 enunjukan grafik subpopulasi Exposed sebelum dikontrol dan setelah dikontrol. Jumlah subpopulasi Exposed sebelum dikontrol dari E(0)=38 mengalami penurunan secara bertahap sampai minggu ke-50 tersisa 8. Setelah diberi kontrol jumlah subpopulasi E(0)=38 mengalami penurunan hingga minggu ke-5 dan konstan hingga minggu ke-8 setelah adanya kontrol edukasi yang diberikan secara maksimal. Naik sampai minggu ke-13 dan terjadi secara

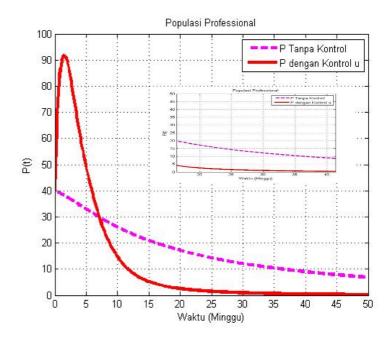
bertahap sampai minggu ke-35 kemudian menuju titik optimal. Hal ini menunjukan kontrol edukasi dapat mempengaruhi penurunan subpopulasi *Exposed*.



Gambar 4.11 Subpopulasi *Infected* Sebelum Kontrol dan
Sesudah Kontrol

Pada gambar 4.11 menunjukan grafik subpopulasi *Infected* sebelum dikontrol dan setelah dikontrol. Jumlah subpopulasi *Infected* sebelum dikontrol dari I(0) = 100 mengalami penurunan hingga selang waktu 50 minggu tersisa 18. Namun setelah diberi kontrol jumlah subpopulasi I(0) = 100 dapan diturunkan

dengan lebih cepat sampai minggu ke-6. Hal ini menunjukan dengan adanya kontrol edukasi dan *treatment* yang diberikan dapat menurunkan subpopulasi *I* dalam waktu lebih singkat.

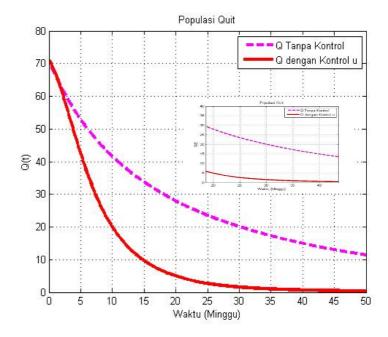


Gambar 4.12 Subpopulasi *Professional* Sebelum Kontrol

dan Sesudah Kontrol

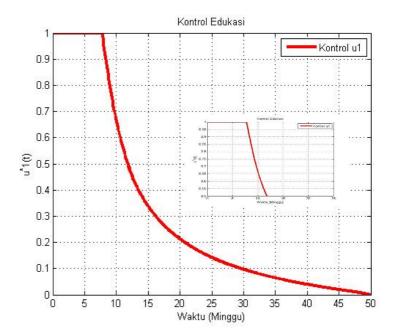
Pada gambar 4.12 menunjukan grafik subpopulasi *Professional* sebelum dikontrol dan setelah dikontrol. Jumlah subpopulasi *Professional* sebelum dikontrol mengalami penurunan P(0) = 40 sampai minggu ke 50 tersisa 8. Namun setelah diberi kontrol jumlah

subpopulasi I naik menjadi P(1,5)=92 subpopulasi dalam selang waktu 1,5 minggu. Kemudian mengalami penurunan secara bertahap sampai minggu ke-30 karena dipengaruhi oleh subpopulasi *Susceptible* dan subpopulasi *Exposed* yang mengalami penurunan. Kemudiam menuju titik optimal. Hal ini menunjukan dengan adanya kontrol edukasi dan *treatment* yang diberikan dapat berpindah menuju subpopulasi P dalam waktu lebih singkat.



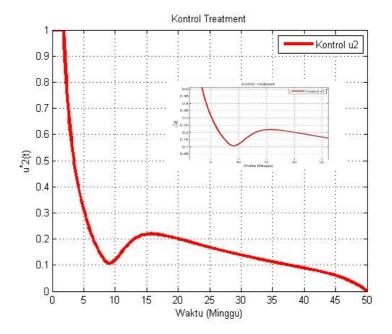
Gambar 4.13 Subpopulasi *Quit* Sebelum Kontrol dan
Sesudah Kontrol

Gambar 4.13 menunjukan grafik subpopulasi Quit sebelum dikontrol dan setelah dikontrol. Jumlah subpopulasi Quit sebelum dikontrol mengalami penurunan dari Q(0)=71 sampai minggu ke 50 tersisa 11. Setelah diberi kontrol jumlah subpopulasi Quit mengalami penurunan lebih cepat dari sebelum dikontrol, yaitu hanya dalam waktu 35 minggu. Hal ini menunjukan dengan adanya kontrol edukasi dan treatment yang diberikan dapat subpopulasi Q dalam waktu lebih singkat karena subpopulasi Q dipengaruhi oleh subpopulasi Q dan subpopulasi Q dipengaruhi perkurang.



Gambar 4.14 Simulasi Kontrol Edukasi u_1

Gambar 4.14 menunjukan simulasi kontrol u_2 berupa edukasi bagi subpopulasi Susceptible selama 50 minggu. Berdasarkan gambar, dapat dilihat bahwa periode pengendalian awal adalah 1 atau dapat dinyatakan 100% penuh dalam pemberian bobot edukasi pada t=0 sampai pada t=8 atau minggu ke-8. Kemudian bergerak menurun secara bertahap sampai t=50. Hal ini menunjukan adanya keefektifan dari kontrol edukasi yang diberikan yang ditandai dengan keseimbangan antara subpopulasi Exposed yang berkurang karena adanya edukasi.



Gambar 4.15 Kontrol Treatment u₂

Gambar 4.15 menunjukan simulasi kontrol u_2 berupa treatment bagi subpopupasi Infected selama 50 minggu. Berdasarkan gambar, dapat dilihat bahwa periode pengendalian awal adalah 1 atau dapat dinyatakan 100% penuh dalam pemberian bobot treatment pada t=0 sampai pada t=2. Kemudian bergerak menurun kurang lebih sampai t=9. Hal ini menunjukan adanya keefektifan dari kontrol treatment yang diberikan yang ditandai dengan keseimbangan antara subpopulasi t0 infected menurun. Namun mengalami kenaikan kembali

sampai pada minggu ke-16 karena pada waktu tersebut subpopulasi *esposed* mengalami penurunan sehingga berkemungkinan berpindah ke subpopulasi *Infected* yang menyebabkan perlunya kontrol *treatment* kembali. Setelahnya mengalami penurunan secara bertahap sampai minggu ke-50.

Hasil kedua simulasi menunjukan adanya keefektifan kontrol edukasi yang dapat mengurangi subpopulasi *Exposed* dan kontrol *treatment* yang dapan mengurangi subpopulasi *Infected* pada kecanduan *game online*. selain itu berdasarkan perbandingan simulasi 1 dan dua menunjukan bahwa tentang perbandingan bobot biaya seminimal mungkin untuk mendapatkan hasil yang semaksimal mungkin.

BABV

PENUTUP

5.1 Kesimpulan

Berdasarkan uraian hasil pembahasan mengenai analisis kontrop optimal yang dilakukan, diperoleh kesimpulan berikut ini :

- 1. Model SIPQ pada kecanduan game online hasil penelitian Li & Guo (2019), dapat dimodifikasi dengan menambahkan kompartemen E (Exposed) dengan tetap memberikan kontrol u_1 mewakili edukasi pada subpopulasi S (Suspected) dan kontrol u_1 mewakili treatment sehingga menghasilkan model berupa SEIPQ dengan penambahan pupulasi E (Exposed)
- 2. Perhitungan kontrol optimal menghasilkan u_1^* dan u_2^* yang optimal antara lain :

$$u_{1}^{*} = min \left\{ 1, maks \left(0, \frac{1}{A} (\lambda_{2} - \lambda_{1}) \alpha S \frac{(I+p)}{N} \right) \right\}$$

$$u_{2}^{*} = min \left\{ 1, maks \left(0, \frac{1}{B} ((\lambda_{5} - \lambda_{3}) \gamma I + (\lambda_{4} - \lambda_{3}) I) \right) \right\}$$

Berdasarkan hasil u_1^* dan u_2^* diperole state yang optimal yaitu :

$$\begin{cases} \frac{\partial H^*}{\partial \lambda_1} = \frac{dS^*}{dt} = \mu \left(N - S^* \right) - \alpha S^* \left(\frac{I^* + P^*}{N} \right) \\ \left(1 - \frac{1}{A} \left((\lambda_2 - \lambda_1) \alpha S^* \frac{(I^* + P^*)}{N} \right) \right) \\ \frac{\partial H^*}{\partial \lambda_2} = \frac{dE^*}{dt} = \left(1 - \frac{1}{A} \left((\lambda_2 - \lambda_1) \alpha S^* \frac{(I^* + P^*)}{N} \right) \right) \\ \alpha S^* \left(\frac{I^* + P^*}{N} \right) - (\mu + \sigma + \beta) E^* \\ \frac{\partial H^*}{\partial \lambda_3} = \frac{dI^*}{dt} = (1 - \theta) \beta E^* - \mu I^* - (1 - \gamma) \\ \left(\frac{1}{B} \left((\lambda_3 - \lambda_4) I^* + (\lambda_4 - \lambda_5) \gamma I^* \right) \right) I^* \\ \frac{\partial H^*}{\partial \lambda_4} = \frac{dP^*}{dt} = \theta \beta E^* - (\mu + \delta) P^* + (1 - \gamma) I^* \\ \left(\frac{1}{B} \left((\lambda_3 - \lambda_4) I^* + (\lambda_4 - \lambda_5) \gamma I^* \right) \right) \\ \frac{\partial H^*}{\partial \lambda_5} = \frac{dQ^*}{dt} = \sigma E^* + \delta P^* - \mu Q^* + \gamma I^* \\ \left(\frac{1}{B} \left((\lambda_3 - \lambda_4) I^* + (\lambda_4 - \lambda_5) \gamma I^* \right) \right) \end{cases}$$

Selanjutnya, diperoleh juga *costate* yang optimal antara lain:

$$-\lambda_{2}\left(1-\frac{1}{A}\left((\lambda_{2}-\lambda_{1})\alpha S^{*}\frac{\left(I^{*}+P^{*}\right)}{N}\right)\right)\frac{\alpha S^{*}}{N}$$

$$+\lambda_{3}\left(\frac{1}{B}\left((\lambda_{3}-\lambda_{4})I^{*}+(\lambda_{4}-\lambda_{5})\gamma I^{*}\right)\right)+\lambda_{3}\mu$$

$$-\lambda_{4}\left(1-\gamma\right)\left(\frac{1}{B}\left((\lambda_{3}-\lambda_{4})I^{*}+(\lambda_{4}-\lambda_{5})\gamma I^{*}\right)\right)$$

$$-\lambda_{5}\gamma\left(\frac{1}{B}\left((\lambda_{3}-\lambda_{4})I^{*}+(\lambda_{4}-\lambda_{5})\gamma I^{*}\right)\right)$$

$$\frac{d\lambda_{4}}{dt}=\frac{\partial H}{\partial P}=\lambda_{1}\left(1-\frac{1}{A}\left((\lambda_{2}-\lambda_{1})\alpha S^{*}\frac{\left(I^{*}+P^{*}\right)}{N}\right)\right)\frac{\alpha S^{*}}{N}$$

$$-\lambda_{2}\left(1-\frac{1}{A}\left((\lambda_{2}-\lambda_{1})\alpha S^{*}\frac{\left(I^{*}+P^{*}\right)}{N}\right)\right)\frac{\alpha S^{*}}{N}$$

$$+\lambda_{4}\mu+\lambda_{4}\delta-\lambda_{5}\delta$$

$$\frac{d\lambda_{5}}{dt}=\frac{\partial H}{\partial Q}=\lambda_{5}\mu$$
90

 $-\lambda_{2}\left[1-rac{1}{A}\left(\left(\lambda_{2}-\lambda_{1}
ight)lpha S^{*}rac{\left(I^{*}+P^{*}
ight)}{N}
ight)
ight]rac{lpha S^{*}}{N}$ $+\lambda_{3}\left(\frac{1}{R}\left(\left(\lambda_{3}-\lambda_{4}\right)I^{*}+\left(\lambda_{4}-\lambda_{5}\right)\gamma I^{*}\right)\right)+\lambda_{3}\mu$ $-\lambda_4 (1-\gamma) \left(\frac{1}{R} \left((\lambda_3 - \lambda_4) I^* + (\lambda_4 - \lambda_5) \gamma I^* \right) \right)$ $-\lambda_{5}\gamma\left(\frac{1}{R}\left(\left(\lambda_{3}-\lambda_{4}\right)I^{*}+\left(\lambda_{4}-\lambda_{5}\right)\gamma I^{*}\right)\right)$

 $\left| \frac{d\lambda_{1}}{dt} = \frac{\partial H^{*}}{\partial S^{*}} = \lambda_{1}\mu + \lambda_{1} \left[1 - \frac{1}{A} \left((\lambda_{2} - \lambda_{1}) \alpha S^{*} \frac{\left(I^{*} + P^{*} \right)}{N^{*}} \right) \right]$

 $\alpha \left(\frac{I^* + P^*}{N} \right) - \alpha \left(\frac{I^* + P^*}{N} \right)$

 $\lambda_2 \left[1 - \frac{1}{A} \left[\left(\lambda_2 - \lambda_1 \right) \alpha S^* \frac{\left(I^* + P^* \right)}{N^*} \right] \right]$

 $\frac{d\lambda_2}{dt} = \frac{\partial H^*}{\partial F^*} = -1 + \lambda_2 (\mu + \sigma + \beta) - \lambda_3 (1 - \theta) - \lambda_4 \theta \beta - \lambda_5 \sigma$

 $\left| \frac{d\lambda_3}{dt} = \frac{\partial H^*}{\partial I^*} = -1 + \lambda_1 \left| 1 - \frac{1}{A} \left((\lambda_2 - \lambda_1) \alpha S^* \frac{\left(I^* + P^* \right)}{N} \right) \right| \frac{\alpha S^*}{N}$

Solusi numeriknya dapat dilakukan dengan perhitungan matlab 2011a yang menghasilkan kesimpulan dengan adanya keefektifan kontrol u_1 mewakili edukasi dan kontrol u_1 mewakili *treatment*. Hasil kedua simulasi menunjukan adanya keefektifan kontrol edukasi yang dapat mengurangi subpopulasi Exposed dan kontrol treatment yang dapan mengurangi subpopulasi Infected pada kecanduan game online. selain itu berdasarkan perbandingan simulasi 1 dan 2 menunjukan tentang perbandingan bobot biava seminimal mungkin untuk mendapatkan hasil yang semaksimal mungkin.

5.2 Saran

Penulis menyadari bahwa pembahasan dalam penelitian mengenai kontrol optimal model *SEIPQ* yang membahas tentang kecanduan *game online* dan merupakan modifikasi jurnal milik Li & Guo (2019), belum sempurna. Penelitian ini hanya merujuk kepada analisis kontrol optimal untuk mengetahui bagaimana prediksi pecandu *game online* dapat diminimalisir dengan adanya kontrol edukasi dan *treatment* tanpa

melakukan analisis kestabilanya. Oleh karena itu, penelitian ini memberikan keterbukaan kepada pembaca untuk memodifikasinya pada penelitian selanjutnya.

DAFTAR PUSTAKA

- Abdi, S., & Karneli, Y. (2020). *Kecanduan game online:* penanganannya dalam konseling individual. 17(12).
- Anggraini, S., & Rudi Yanto, A. (2022). Edukasi Pencegahan Bahaya Kecanduan Game Onlinepada Remajadi Smpn Alok Maumere. *J-Abdi Jurnal Pengabdian Kepada Masyarakat*, 1(8), 1–8.
- Anwar, A. (2020). Pemodelan Matematika SEIRS Terhadap
 Kecanduan Game Online Pada Mahasiswa Jurusan Matematika
 FMIPA Universitas Negeri Makassar. *E-Print Universitas Negeri Makasar*, 123(10), 2176–2181.
 - https://shodhganga.inflibnet.ac.in/jspui/handle/10603/7385
- Anwar, A., Syam, R., Pratama, M. I., & Side, S. (2021). SEIRS model analysis for online game addiction problem of mathematics students. *Journal of Physics: Conference Series*, 1918(4). https://doi.org/10.1088/1742-6596/1918/4/042024
- Bambang Suprihatin, M. S., Bangun, P. B. J., & Arhami, M. (2013).

 *Persamaan Diferensial Biasa (F. S. Suyantoro (ed.); pertama).

 *Penerbit ANDI Yogyakarta.
- Dettman, J. W., Boyce, W. E., & DiPrima, R. C. (1967). Elementary
 Differential Equations and Boundary Value Problems. In *The American Mathematical Monthly* (Vol. 74, Issue 6).
 https://doi.org/10.2307/2314317
- Guo, Y., & Li, T. (2021). Dynamics and optimal control of an online 93

- game addiction model with considering family education. 7(December), 3745–3770.
- Iswanto, R. J. (2012). *PEMODELAN MATEMATIKA Aplikasi dan Terapanya* (Pertama). GRAHA ILMU.
- Karimah, P., & Subhan, M. (2022). *Analisis Stabilitas dan Kontrol Optimal Model Matematika Kecanduan Game Online.* 7(3), 99–109.
- Kartono, P. D. B. (2012). PERSAMAAN DIFERENSIAL BIASA, Model Matematika Fenomena Perubahan. In *Yogyakarta: Graha Ilmu* (pertama). GRAHA ILMU.
- Kusumaningrum, D. (2021). Adiksi game online: dampak dan pencegahannya. *Jurnal Medika Hutama*, 02(04), 1231–1235.
- Lenhart, S., & Workman, J. T. (2007). Optimal Control Applied to Biological Models. In *Optimal Control Applied to Biological Models*. https://doi.org/10.1201/9781420011418
- Li, T., & Guo, Y. (2019). Stability and Optimal Control in a

 Mathematical Model of Online Game Addiction. 17(July), 5691–
 5711.
- Lil, Y. G. and T. (2021). *OPTIMAL CONTROL STRATEGIES FOR AN ONLINE GAME*. *26*(10), 5355–5382. https://doi.org/10.3934/dcdsb.2020347
- Masya, H., & Candra, D. A. (2016). Faktor-Faktor yang

 Mempengaruhi Perilaku Gangguan Kecanduan Game Online

 pada Peserta Didik Kelas X di Madrasah Aliyah Al Furqon

 Prabumulih Tahun Pelajaran 2015/2016 Hardiyansyah Masya,

- Dian Adi Candra. 03(2), 103-118.
- Ndii, M. Z. (2018). *PEMODELAN MATEMATIKA Dinamika Populasi* dan Penyebaran Penyakit (Pertama). DEEPUBLISH.
- Norasia, Y., Tafrikan, M., Ghani, M., & Mukama, D. S. (2022). *Optimal Control of HIV-1 Spread in Combination with Nutritional Status and ARV-Treatment*. 8(2), 66–70.
- Novrialdy, E., Pendidikan, F. I., & Padang, U. N. (2019). *Kecanduan Game Online pada Remaja: Dampak dan Pencegahannya Online Game Addiction in Adolescents: Impacts and its Preventions*. https://doi.org/10.22146/buletinpsikologi.47402
- Nugro, D. B. (2011). *Persamaan Diferensial Biasa dan Aplikasinya* (2011th ed.). GRAHA ILMU.
- Renidayati, & Suhaimi. (2018). Program Assertivenes Training Dan Program Psiko Edukasi Keluarga Sebagai Model Dalam Prevensi Adiksi Game Online Pada Remaja Di Kota Padang.

 Jurnal Sehat Mandiri, 13(1), 10–17.

 https://doi.org/10.33761/jsm.v13i1.8
- Ross, S. L. (1984). Differential Equations Third Edition (ketiga). WIE.
- Seno, H. (2021). A mathematical model of population dynamics for the internet gaming addiction *. 26(5), 861–883.
- Side, S., Phys, J., & Ser, K. (2021). Sekolah Solusi Numerik Model SEIR untuk Masalah Kecanduan Game Online Homotopy Perturbation pada Siswa SMP Solusi Numerik Model SEIR Untuk Masalah Kecanduan Game Online Dengan Metode Homotopy Perturbation Pada Siswa SMP. https://doi.org/10.1088/1742-

- 6596/2123/1/012004
- Syukron, A. N. D. (2022). implementasi model matematika pada penyebaran HIV-AIDS dengan kontrol optimal. *Sifonoforos,* 1(August 2015), 2019.
- Tohet, M., Nurul, U., & Paiton, J. (2021). Penanggulangan Kecanduan Game Online Melalui Pendidikan Karakter Regilius Pada Anak Sofiya Mauliza PENDAHULUAN Kemajuan teknologi saat ini sangat pesat dan semakin canggih . 1 Banyak teknologi yang telah diciptakan membawa perubahan besar dalam kehidupan . 6(2), 147–164. https://doi.org/10.29240/belajea.v6
- Waluyo, S. . (2006). Persamaan Diferensial (Pertama). GRAHA ILMU.
- Yulinar, S. L. (2009). *Titik kesetimbangan model matematika pada* pertumbuhan sel t yang mensekresi interleukin-2.
- Zulaikha, Trisilowati, & Fadhilah, I. (2017). *Kontrol Optimal pada Model Epidemi SEIQR dengan Tingkat Kejadian Standar*. 1(1),
 41–51.

LAMPIRAN

Lampiran 1. Program MATLAB2011a model kecanduan *game* online dengan dan tanpa kontrol

```
%function cc=UJB;
clc:
clear all;
close all;
%jumlah popopulasi pada t=0
S0=580;
E0 = 38;
I0=100;
P0=40;
Q.0 = 71;
%Parameter2
miu=0.2;
alpha=0.30;
beta=0.45;
teta=0.2;
sigma=0.2;
gamma=0.02;
delta=0.05;
A=30; %bobot u 1 %diubah2
B=20; %bobot u 2 %diubah2
u1max=1; %0<u1<1
u2max=1; %0<u2<1 %diubah menjadi lebih besar</pre>
h=0.1; %h=1/N misal: h=1/10=0.1
t=0:h:50; %selang dari 0 sampai 10 dipartisi dengan
jarak h=0.1
Z=length(t); %banyaknya t
%parameter e1
%membentuk matrik baris isinya nol dengan z baris,
1 kolom
u1=zeros(Z,1);
ulold=zeros(Z,1);
```

```
u2=zeros(Z,1);
u2old=zeros(Z,1);
S=zeros(Z,1);
E=zeros(Z,1);
I=zeros(Z,1);
P=zeros(Z,1);
O=zeros(Z,1);
Sold=zeros(Z,1);
Eold=zeros(Z,1);
Iold=zeros(Z,1);
Pold=zeros(Z,1);
Qold=zeros(Z,1);
%p1 adalah lambda 1 dsb
p1=zeros(Z,1);
p2=zeros(Z,1);
p3=zeros(Z,1);
p4=zeros(Z,1);
p5=zeros(Z,1);
plold=zeros(Z,1);
p2old=zeros(Z,1);
p3old=zeros(Z,1);
p4old=zeros(Z,1);
p5old=zeros(Z,1);
%kontrol ada 2 pada u 1 dan u 1old
tes=1;
it=0;
while tes >1e-3
    ulold=ul;
    u2old=u2;
    Sold=S; Eold=E; Iold=I; Pold=P; Qold=Q;
    p1o=p1; p2o=p2; p3o=p3; p4o=p4; p5o=p5;
    S(1)=S0; E(1)=E0; I(1)=I0; P(1)=P0; O(1)=O0;
    J(it+1)=0;
    for i=1:Z-1
```

```
J(it+1) = J(it+1) + h*(I(i) + E(i) + 1/2*A*ulold(i)^2 + 1/2*B
*u2old(i)^2);
         y=[S(i) E(i) I(i) P(i) Q(i)];
         %RungeKutta
k1=h*PSJ(y,u1old(i),u2old(i),miu,alpha,beta,teta,si
qma, qamma, delta);
k2=h*PSJ(y+0.5*k1,ulold(i),u2old(i),miu,alpha,beta,
teta, sigma, gamma, delta);
k3=h*PSJ(y+0.5*k2,u1old(i),u2old(i),miu,alpha,beta,
teta, sigma, gamma, delta);
k4=h*PSJ(y+k3,u1old(i),u2old(i),miu,alpha,beta,teta
, sigma, gamma, delta);
         y=y+(1/6)*(k1+2*k2+2*k3+k4);
         S(i+1) = v(1);
         E(i+1) = y(2);
         I(i+1) = y(3);
        P(i+1) = y(4);
        Q(i+1) = y(5);
    end
J(it+1) = J(it+1) + h*(I(i) + E(i) + 1/2*A*u1old(i)^2 + 1/2*B
*u2old(i)^2);
     %Plot populasi tanpa kontrol
if it == 0
figure(1)
plot(t,S,'m--','LineWidth',3);
hold on;
figure(2)
plot(t, E, 'm--', 'LineWidth', 3);
hold on;
figure (3)
plot(t,I,'m--','LineWidth',3);
```

```
hold on;
figure (4)
plot(t,P,'m--','LineWidth',3);
hold on;
figure (5)
plot(t,Q,'m--','LineWidth',3);
hold on;
end
    p1(Z)=0; p2(Z)=0; p3(Z)=0; p4(Z)=0; p5(Z)=0;
    for i=1:Z-1
        je=Z-i;
        y=[p1(je+1) p2(je+1) p3(je+1) p4(je+1)
p5(je+1)];
k1=h*PCJ(y,S(je+1),E(je+1),I(je+1),P(je+1),Q(je+1),
ulold(je+1),u2old(je+1),miu,alpha,beta,teta,sigma,q
amma, delta);
k2=h*PCJ(y+0.5*k1,S(je+1),E(je+1),I(je+1),P(je+1),Q
(je+1), ulold(je+1), u2old(je+1), miu, alpha, beta, teta,
sigma, gamma, delta);
k3=h*PCJ(y+0.5*k2,S(je+1),E(je+1),I(je+1),P(je+1),Q
(je+1), ulold(je+1), u2old(je+1), miu, alpha, beta, teta,
sigma, gamma, delta);
k4=h*PCJ(y+k3,S(je+1),E(je+1),I(je+1),P(je+1),Q(je+1)
1), ulold(je+1), u2old(je+1), miu, alpha, beta, teta, sigm
a, gamma, delta);
        y=y-(1/6)*(k1+2*k2+2*k3+k4);
        p1(je) = y(1);
        p2(je) = y(2);
        p3(je) = y(3);
        p4(je) = y(4);
        p5(je) = y(5);
```

```
NO(je) = S(je) + E(je) + I(je) + P(je) + Q(je);
     temp2=min([(1/A)*(p2(je)-
p1(je))*alpha*S(je)*(I(je)+P(je))*(1/N0(je))
u1max]);
     u1(je) = max([temp2 0]);
     temp4=min([(1/B)*(p3(je)*I(je)-
p4(je)*I(je)+p4(je)*gamma*I(je)-p5(je)*gamma*I(je))
u2max1);
     u2(je) = max([temp4 0]);
    end
    eS=sum(abs(S-Sold));
    eE=sum(abs(E-Eold));
    eI=sum(abs(I-Iold));
    eP=sum(abs(P-Pold));
    eO=sum(abs(O-Oold));
    ep1=sum(abs(p1-p1o));
    ep2=sum(abs(p2-p2o));
    ep3 = sum(abs(p3 - p3o));
    ep4=sum(abs(p4-p4o));
    ep5=sum(abs(p5-p5o));
    eu1=sum(abs(u1-u1old));
    eu2=sum(abs(u2-u2old));
    %error = sum dari error yang lama dengan yang
baru
    tes=eS+eE+eI+eP+eQ+ep1+ep2+ep3+ep4+ep5+eu1+eu2;
    it=it+1;
    u1=(0.5*u1+0.5*u1old);
    u2=(0.5*u2+0.5*u2old);
end
  figure(1)
  subplot(2,1,1);
% plot(t,E,'g-','Linewidth',3);
응
 xlabel('Waktu');
% vlabel('E(t)');
% hold on; grid on
  subplot(2,1,2);
   plot(t, I, 'g-', 'linewidth', 3);
```

```
xlabel('Waktu');
응
  ylabel('I(t)');
응
  hold on; grid on
응
응
  figure(2)
응
  subplot(2,1,1);
  plot(t,u1,'b-','linewidth',2); hold on;
응
  ylabel('tingkat Edukasi');
응
  xlabel('Waktu');
응
  grid on
응
  subplot(2,1,2);
% plot(t,u2,'b-','linewidth',2); hold on;
응
  ylabel('Tingkat Treatment');
% xlabel('Waktu');
% grid on
 %Langkah 8
%Plot populasi dengan kontrol
figure(1)
plot(t,S,'r-','LineWidth',3);
xlabel('Waktu (Minggu)');
ylabel('S(t)');
grid on;
legend('S Tanpa Kontrol','S dengan Kontrol u');
title('Populasi Susceptible');
hold on;
figure(2)
plot(t, E, 'r-', 'LineWidth', 3);
xlabel('Waktu (Minggu)');
ylabel('E(t)');
arid on;
legend('E Tanpa Kontrol','E dengan Kontrol u');
title('Populasi Exposed');
hold on;
```

```
figure (3)
plot(t, I, 'r-', 'LineWidth', 3);
xlabel('Waktu (Minggu)');
ylabel('I(t)');
grid on;
legend('I Tanpa Kontrol','I dengan Kontrol u');
title('Populasi Infected');
hold on;
figure (4)
plot(t,P,'r-','LineWidth',3);
xlabel('Waktu (Minggu)');
ylabel('P(t)');
grid on;
legend('P Tanpa Kontrol', 'P dengan Kontrol u');
title('Populasi Professional');
hold on:
figure (5)
plot(t,Q,'r-','LineWidth',3);
xlabel('Waktu (Minggu)');
ylabel('Q(t)');
grid on;
legend('Q Tanpa Kontrol','Q dengan Kontrol u');
title('Populasi Quit');
hold on;
figure (6)
plot(t,u1,'r-','LineWidth',3);
xlabel('Waktu (Minggu)');
vlabel('u^*1(t)');
grid on;
legend('Kontrol u1');
title('Kontrol Edukasi');
hold on;
```

```
figure(7)
plot(t,u2,'r-','LineWidth',3);
xlabel('Waktu (Minggu)');
ylabel('u^*2(t)');
grid on;
legend('Kontrol u2');
title('Kontrol Treatment');
hold on;
```

```
function
dy=PSJ(y,u1,u2,miu,alpha,beta,teta,sigma,gamma,delt
a)
N0=y(1)+y(2)+y(3)+y(4)+y(5);
x(1) = (miu*(N0-y(1))) - ((1-
u1) *alpha*y(1)*(y(3)+y(4))*(1/N0));
x(2) = ((1-u1)*alpha*y(1)*(y(3)+y(4))*(1/N0)) -
(miu+sigma+beta) *y(2);
x(3) = (1-teta) *beta*y(2) -u2*y(3) -miu*y(3);
x(4) = teta*beta*y(3) + (1-qamma)*u2*y(3) -
(delta+miu) *y(4);
x(5) = sigma*y(2) + u2*gamma*y(3) + delta*y(4) - miu*y(5);
dy=[x(1) x(2) x(3) x(4) x(5)];
```

```
function
dg=PCJ(y,S,E,I,P,Q,u1,u2,miu,alpha,beta,teta,sigma,
 gamma, delta)
 N0=S+E+I+P+Q;
p1=y(1); p2=y(2); p3=y(3); p4=y(4); p5=y(5);
 %lambda1=p1,lambda2=p2
 x(1) = p1 * miu + p1 * (1-u1) * alpha * (I+P) * (1/N0) - p2 * (1-u1) * alpha * (I+P) * (1/N0) - p2 * (1-u1) * alpha * (I+P) * (1/N0) - p2 * (1-u1) * alpha * (I+P) * (1/N0) - p2 * (1-u1) * alpha * (I+P) * (1/N0) - p2 * (1-u1) * alpha * (I+P) * (1/N0) - p2 * (1-u1) * alpha * (I+P) * (1/N0) - p2 * (1-u1) * alpha * (I+P) * (1/N0) - p2 * (1-u1) * alpha * (I+P) * (1/N0) - p2 * (1-u1) * alpha * (I+P) * (1/N0) - p2 * (1-u1) * alpha * (I+P) * (1/N0) - p2 * (1-u1) * alpha * (I+P) * (1/N0) - p2 * (1-u1) * alpha * (I+P) * (1/N0) - p2 * (1-u1) * alpha * (I+P) * (1/N0) - p2 * (1-u1) * alpha * (I+P) * (1/N0) - p2 * (1-u1) * alpha * (I+P) * (1/N0) - p2 * (1-u1) * alpha * (I+P) * (1/N0) - p2 * (1-u1) * alpha * (I+P) * (1/N0) - p2 * (1-u1) * alpha * (I+P) * (1/N0) - p2 * (1-u1) * (1/N0) - p2 * (1/N0
 u1) *alpha*(I+P)*(1/N0);
 x(2) = p2*(miu+sigma+beta) - p3*(1-teta)*beta-
p4*teta*beta-p5*sigma-1;
 x(3) = p1*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N
u1) *alpha*S*(1/N0) +p3*u2+p3*miu-p4*(1-qamma)*u2-
p5*u2*qamma-1;
 x(4) = p1*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1-u1)*alpha*S*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N0)-p2*(1/N
 u1) *alpha*S*(1/N0)+p4*(delta+miu)-p5*delta;
 x(5) = p5 * miu;
dg=[x(1) x(2) x(3) x(4) x(5)];
```

Lampiran 2. Daftar Riwayat Hidup

DAFTAR RIWAYAT HIDUP

A. Identitas Diri

1. Nama Lengkap : Latifatul Ahfa

2. Tempat, Tanggal Lahir : Tegal, 23 Desember 2000

3. Alamat : Desa Kesuben 05/08

Kec. Lebaksiu Kab. Tegal

4. No. Hp. : 088227634410

5. Email : ltfhahfa@gmail.com

B. Riwayat Pendidikan

1. Pendidikan Formal

a. SD Negeri 02 Kesuben : lulus tahun 2013

b. MTs N Lebaksiu : lulus tahun 2016

c. MAN 1 Tegal : lulus tahun 2019

2. Pendidikan Non-Formal

a. TPQ Darul Hikmah Kesuben

b. MDTA Nurul Ulum Kesuben

c. Ponpes An-Nur Karanganyar, Kec. Tugu, Kota Semarang