PENGARUH HABITS OF MIND DAN SELF EFFICACY TERHADAP KEMAMPUAN PEMECAHAN MASALAH MATEMATIS SISWA KELAS VIII MTs NEGERI 05 CILACAP

SKRIPSI

Diajukan untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Pendidikan dalam Ilmu Pendidikan Matematika

Oleh: SYIFA NUR AZIZAH

NIM: 1808056089

PROGRAM STUDI PENDIDIKAN MATEMATIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS ISLAM NEGERI WALISONGO SEMARANG
2022

PERNYATAAN KEASLIAN

PERNYATAAN KEASLIAN

Yang bertandatangan dibawah ini:

Nama : Syifa Nur Azizah

Nim : 1808056089

Jurusan : Pendidikan Matematika

Menyatakan bahwa skripsi yang berjudul

Pengaruh *Habits Of Mind* dan *Self Efficacy* terhadap Kemampuan Pemecahan Masalah Matematis Siswa Kelas VIII MTs Negeri 05 Cilacap

Secara keseluruhan adalah hasil penelitian/ karya saya sendiri, kecuali bagian tertentu yang dirujuk sumbernya.

Semarang, November 2022

Pembuat Pernyataan,

Syifa Nur Azizah

NIM. 1808056089

PENGESAHAN

KEMENTERIAN AGAMA REPUBLIK INDONESIA UNIVERSITAS ISLAM NEGERI WALISONGO

FAKULTAS SAINS DAN TEKNOLOGI Jl.Prof. Dr. Hamka Ngaliyan Semarang 50185 Telepon. 024-7601295, Fax. 024-7615387, www.walisongo.ac.id

PENGESAHAN

Naskah skripsi berikut ini:

Judul : Pengaruh Habits of Mind dan Self Efficacy terhadap Kemampuan

Pemecahan Masalah Matematis Siswa Kelas VIII MTs Negeri 05 Cilacap

Penulis : Syifa Nur Azizah NIM : 1808056089

Jurusan : Pendidikan Matematika

Telah diujikan dalam sidang munaqosyah oleh Dewan Penguji Fakultas Sains dan Teknologi UIN Walisongo Semarang dan dapat diterima sebagai salah satu syarat memperoleh gelar sarjana dalam Ilmu Pendidikan Matematika.

Semarang, 05 Januari 2023

DEWAN PENGUII

Ketua Sidang

Sekretaris Sidang

Nur Khasanah, M.Si. NIP.1991112120190320

Penguji Utama I

riska kurhia Rachmawati, M.Sc. NIP.198908112019032019

Penguji Utama II

Siti Maslihah, M.Si.

NIP.197706112011012004

Dosen Pembimbing I

Bud Cahyono, S.Pd., M.Si.

NIP.197604262006042001

Dosen Pembimbing II

Dr. Minhayati Shaleh, S.Si., M.Sc.,

NIP.197604262006042001

Sri Ispani Setiyaningsih, S.Ag., M.Hum,

NIP.199111212019032017

NOTA DINAS

NOTA DINAS

Semarang, Desember 2022

Kepada Yth Dekan Fakultas Sains dan Teknologi UIN Walisongo Di Semarang

Assalmu'alaikum Wr. Wb.

Dengan ini memberitahukan bahwa saya telah melakukan bimbingan, arahan dan koreksi naskah skripsi dengan:

Judul : Pengaruh Habits Of Mind dan Self Efficacy terhadap Kemampuan Pemecahan

Masalah Matematis Siswa Kelas VIII MTs Negeri 05 Cilacap

Nama : Syifa Nur Azizah NIM : 1808056089

Jurusan : Pendidikan Matematika

Saya memandang bahwa naskah skripsi tersebut sudah dapat diajukan kepada Fakultas Sains dan Teknologi UIN Walisongo untuk diujikan dalam Sidang Munaqosyah.

Wasssalamu'alaikum Wr. Wb.

Pembimbing I,

Dr. Hj. Minhayati Saleh, S.Si., M.Sc.

NIP. 197604262006042001

NOTA DINAS

NOTA DINAS

Semarang, Desember 2022

Kepada Yth Dekan Fakultas Sains dan Teknologi UIN Walisongo di Semarang

Assalmu'alaikum Wr. Wb.

Dengan ini memberitahukan bahwa saya telah melakukan bimbingan, arahan dan koreksi naskah skripsi dengan:

Judul : Pengaruh Habits Of Mind dan Self Efficacy terhadap Kemampuan Pemecahan

Masalah Matematis Siswa Kelas VIII MTs Negeri 05 Cilacap

Nama : Syifa Nur Azizah

NIM : 1808056089

Jurusan : Pendidikan Matematika

Saya memandang bahwa naskah skripsi tersebut sudah dapat diajukan kepada Fakultas Sains dan Teknologi UIN Walisongo untuk diujikan dalam Sidang Munaqosyah. Wasssalamu'alaikum Wr. Wb.

Pembimbing II

Sri Isnani Setiyaningsih, S.Ag., M.Hum

NIP 197703302005012001

ABSTRAK

Judul : Pengaruh Habits of Mind dan Self Efficacy

Terhadap Kemampuan Pemecahan Masalah Matematis Siswa Kelas VIII MTs Negeri 05

Matematis Siswa Reias vili Mis Negeli 03

Cilacap

Peneliti : Syifa Nur Azizah

NIM : 1808056089

Penelitian ini membahas mengenai pengaruh habits of mind dan self efficacy terhadap kemampuan pemecahan masalah matematis siswa. Tujuan penelitian ini untuk mengetahui: (1) Apakah terdapat pengaruh yang signifikan habits of mind terhadap kemampuan pemecahan masalah matematis siswa kelas VIII MTs Negeri 05 Cilacap; (2) Apakah terdapat pengaruh yang signifikan self efficacy terhadap kemapuan pemecahan masalah matematis siswa kelas VIII MTs Negeri 05 Cilacap; (3) Apakah terdapat pengaruh yang signifikan habits of mind dan self efficacy secara simultan terhadap kemampuan pemecahan masalah matematis siswa kelas VIII MTs Negeri 05 Cilacap.

Penelitian ini merupakan penelitian kuantitatif dengan metode survei. Populasi dalam penelitian ini adalah seluruh kelas VIII di MTs Negeri 05 Cilacap. Sampel penelitian yaitu kelas VIII D dan VIII E yang berjumlah 55 siswa yang dipilih menggunakan teknik *cluster random sampling*. Data dikumpulkan dengan menggunakan metode angket, tes, dan

dokumentasi. Analisis data yang digunakan adalah analisis regresi linear berganda.

Hasil penelitian ini adalah: (1) terdapat pengaruh yang signifikan habits of mind terhadap kemampuan pemecahan masalah matematis siswa; (2) terdapat pengaruh yang signifikan self effficacy terhadap kemampuan pemecahan maslah matematis siswa; (3) terdapat pengaruh yang signifikan habits of mind dan self efficacy secara simultan terhadap kemampuan pemecahan masalah matematis siswa.

Kata Kunci: *Habits of Mind, Self Efficacy,* Kemampuan Pemecahan Masalah Matematis.

KATA PENGANTAR

Alhamdulilahi rabbil'alamin, puji syukur atas kehadirat Allah SWT yang telah melimpahkan rahmat, hidayah dan inayah-Nya sehingga skripsi ini dapat terselesaikan dengan baik. Shalawat dan salam semoga senantiasa tercurahkan kepada Nabi Muhammad SAW, berharap semoga kita mendapat syafaatnya di hari akhir nanti. Penulisan skripsi dengan judul Pengaruh *Habits of Mind* dan *Self Efficacy* terhadap Kemampuan Pemecahan Masalah Matematis Siswa Kelas VIII MTs Negeri 05 Cilacap ini disusun guna memenuhi salah satu persyaratan untuk memperoleh gelar sarjana (S1) dalam Ilmu Pendidikan Matematika.

Naskah skripsi ini tidak akan selesai tanpa adanya bimbingan, dukungan dan bantuan dari semua pihak. Oleh karena itu, ucapan terimakasih dihaturkan kepada:

- Dr. H. Ismail, M.Ag. selaku Dekan Fakultas Sains dan Teknologi UIN Walisongo Semarang beserta seluruh jajarannya.
- 2. Yulia Romadiastri, S.Si., M.Sc. selaku Ketua Jurusan Pendidikan Matematika.
- 3. Dr. Hj. Minhayati Saleh, M.Sc., dan Sri Isnani Setiyaningsih, S.Ag., M.Hum. selaku dosen pembimbing yang telah memberikan banyak waktu, tenaga dan pikiran untuk memberikan bimbingan serta arahan dalam penyusunan skripsi ini.

- 4. Bapak dan Ibu dosen Jurusan Pendidikan Matematika yang telah memberikan ilmu dalam penyusunan skripsi
- 5. Kepala Sekolah serta dewan guru MTs Negeri 05 Cilacap yang telah memberikan kesempatan kepada peneliti untuk melaksanakan penelitian.
- 6. Kedua orang tua tercinta, Bapak Suyitno dan Ibu Makhulah yang senantiasa mendoakan tanpa kenal lelah dan memberikan dukungan baik moral maupun materi.
- Kedua adik tersayang, Dila Nur Fadilah dan Rafi' Al Hafiz yang menjadi motivasi untuk segera menyelesaikan skripsi.
- 8. Sahabat tersayang Lina, Ida, Nunung, Khansa, Itsna, Popy, Sulis, Arrof, Sofi, dan Ani yang senantiasa mengingatkan untuk menyelesaikan skripsi.
- Ahlan Romadon yang senantiasa memotivasi dan memberikan dukungan untuk segera menyelesaikan skripsi.
- 10. Keluarga besar Pendidikan Matematika angkatan 2018 khususnya PM C, rekan PPL SMA N 1 Kendal dan rekan KKN MIT DR Ke-13 Kelompok 33 yang telah berbagi sukaduka yang begitu berharga.
- 11. Semua pihak yang telah membantu terselesaikannya skripsi ini yang tidak dapat disebut satu-satu.

Peneliti menyadari bahwa masih terdapat kekurangan dari skripsi ini, sehingga jauh dari kata sempurna. Saran dan

kritik yang membangun sangat peneliti harapkan, semoga skripsi ini dapat bermanfaat bagi para pembaca. Aamiin.

Semarang, 01 Desember 2022 Penulis,

Syifa Nur Azizah

TRANSLITERASI ARAB-LATIN

Penulisan transliterasi huruf-huruf Arab Latin dalam skripsi ini berpedoman pada SKB Menteri Agama dan Menteri Pendidikan dan Kebudayaan R.I. Nomor: 158/1987 dan Nomor: 0543b/U/1987. Penyimpangan penulisan kata sandang (al-) disengaja secara konsisten supaya sesuai teks Arabnya.

-1/	Α	ط	ţ
ب	В	ظ	Ż
ت	T	ع	1
ث	Ś	غ	G
E	J	ف	F
て さ	ḥ	ق	Q
خ	Kh	اک	K
7	D	ل	L
ذ	Ż	م	M
ر	R	ن	N
ز	Z	و	W
س س	S	٥	Н
ش ش	Sy	۶	,
ص ض	Ş	ي	Y
ض	d		

Bacaan Madd: Bacaan Diftong:

a>= a panjang au= اُوْ

i>= i panjang ai= أيُ

u>= u panjang iv=اي

DAFTAR ISI

COVE	R	i
PERN	YATAAN KEASLIAN	ii
PENG	ESAHAN	iii
NOTA	DINAS	iv
NOTA	DINAS	v
ABST	RAK	vi
KATA	PENGANTAR	viii
TRAN	ISLITERASI ARAB-LATIN	xi
DAFT	'AR ISI	xii
	'AR TABEL	
DAFT	AR GAMBAR	xv
DAFT	AR LAMPIRAN	xvi
BAB I	PENDAHULUAN	1
A.	Latar Belakang Masalah	1
B.	Identifikasi Masalah	
C.	Batasan Masalah	10
D.	Rumusan Masalah	10
E.	Tujuan Penelitian	
F.	Manfaat Masalah	
BAB I	I LANDASAN PUSTAKA	
A.	Kajian Teori	
B.	Kajian Pustaka	
C.	Kerangka Berpikir	
D.	Hipotesis Penelitian	
BAB I	II METODE PENELITIAN	
A.	Jenis Penelitian	
В.	Tempat dan Waktu Penelitian	
C.	Populasi dan Sampel Penelitian	
D.	Definisi Operasional Variabel	
E.	Teknik dan Instrumen Pengumpulan Data	
F.	Uji Instrumen Penelitian	
G.	Metode Analisis Data	
	V HASIL DAN PEMBAHASANPENELITIAN	_
A.	Deskripsi hasil penelitian	
B.	Hasil Uji Hipotesis	80

LAMI	PIRAN-LAMPIRAN	108
DAFTAR PUSTAKA1		_
	Saran	
A.	Kesimpulan	98
BAB '	V PENUTUP	98
D.	Keterbatasan Penelitian	96
_	Pembahasan	

DAFTAR TABEL

Tabel 3. 1 Jumlah Siswa Kelas VIII MTs Negeri 05 Cilacap tahun
pelajaran 2022/202337
Tabel 3. 2 Hasil Uji Normalitas40
Tabel 3. 3 Hasil Uji Homogenitas41
Tabel 3. 4 Pedoman Pemberian Skor Angket Habits of Mind dan
<i>Self Efficacy</i> 45
Tabel 3. 5 Pedoman Kategorisasi Angket46
Tabel 3. 6 Pedoman Kategorisasi Tes47
Tabel 3. 7 Hasil Uji Validitas Angket Habits of Mind Tahap 1.49
Tabel 3. 8 Hasil Uji Validitas Angket <i>Habits of Mind</i> Tahap 2.50
Tabel 3. 9 Hasil Uji Validitas Angket Self Efficacy Tahap 1 51
Tabel 3. 10 Hasil Uji Validitas Angket Self Efficacy Tahap 252
Tabel 3. 11 Hasil Uji Validitas Angket Self Efficacy Tahap 353
Tabel 3. 12 Hasil Uji Validitas Tes Kemampuan Pemecahan
Masalah Matematis54
Tabel 3. 13 Kriteria Tingkat Kesukaran57
Tabel 3. 14 Hasil Tingkat Kesukaran Kemampuan Pemecahan
Masalah Matematis57
Tabel 3. 15 Kriteria Daya Pembeda58
Tabel 3. 16 Hasil Uji Daya Pembeda Kemampuan Pemecahan
Masalah Matematis59
Tabel 4. 1 Data Habits of Mind, Self Efficacy, dan Kemampuan
Pemecahan Masalah Matematis Siswa
Tabel 4. 2 Deskriptif Persentasi Angket <i>Habits Of Mind</i> 78
Tabel 4. 3 Deskriptif Persentasi Angket Self Efficacy79
Tabel 4. 4 Deskriptif Persentasi Tes Kemampuan Pemecahan
Masalah Matematis79
Tabel 4. 5 Output Tabel Anova81
Tabel 4. 6 Hasil Uji Normalitas83
Tabel 4. 7 Anova Regresi X1 terhadap Y85
Tabel 4. 8 Anova Regresi X2 terhadap Y88

DAFTAR GAMBAR

Gambar 2. 1 Kerangka Berpikir	34
Gambar 4. 1 Output Scatterplot	82

DAFTAR LAMPIRAN

Lampiran 1 Profil Sekolah	108
Lampiran 2 Daftar Nama Peserta Uji Coba	
Lampiran 3 Daftar Nama Peserta Penelitian	
Lampiran 4 Daftar Nilai Penilian Tengah Semester	
Lampiran 5 Uji Normalitas Tahap Awal	114
Lampiran 6 Uji Homogenitas Tahap Awal	
Lampiran 7 Kisi-Kisi Angket Habits Of Mind	
Lampiran 8 Angket Habits Of Mind	
Lampiran 9 Kisi-Kisi Angket Self Efficacy	
Lampiran 10 Angket Self Efficacy	
Lampiran 11 Kisi-Kisi Soal Tes Kemampuan Pemecahan	
Masalah Matematis	146
Lampiran 12 Soal Tes Kemampuan Pemecahan Masalah	
Matematis	148
Lampiran 13 Pedoman Penskoran Soal Tes Kemampuan	
Pemecahan Masalah Matematis	150
Lampiran 14 Penskoran dan Kunci Jawaban Soal Tes	
Kemampuan Komunikasi Matematis	152
Lampiran 15 Kisi-Kisi Habits Of Mind Uji Coba	164
Lampiran 16 Angket Habits Of Mind Uji Coba	165
Lampiran 17 Kisi-Kisi Angket Self Efficacy Uji Coba	169
Lampiran 18 Angket Self Efficacy Uji Coba	170
Lampiran 19 Kisi-Kisi Soal Tes Kemampuan Pemecahan	
Masalah Matematis Uji Coba	174
Lampiran 20 Soal Tes Kemampuan Pemecahan Masalah	
Matematis	176
Lampiran 21 Pedoman Penskoran Soal Tes Kemampuan	
Pemecahan Masalah Matematis	
Lampiran 22 Penskoran dan Kunci JawabanTes Kemamp	uan
Pemecahan Masalah Matematis Uji Coba	180
Lampiran 23 Lembar Validasi Ahli Angket Habits Of Mind	
Lampiran 24 Lembar Validasi Ahli Angket Self Efficacy	
Lampiran 25 Analisis Validitas Butir Variabel Habits Of M	
	194
Lampiran 26 Analisis Validitas Butir Variabel Self Efficac	v. 196

Lampiran 27 Analisis Validitas dan Reliabilitas Butir Variab	el
Kemampuan Pemecahan Masalah Matematis 1	99
Lampiran 28 Analisis Tingkat Kesukaran Vaiabel Kemampu	ıan
Pemecahan Masalah Matematis2	201
Lampiran 29 Analisis Daya Pembeda Vaiabel Kemampuan	
Pemecahan Masalah Matematis2	203
Lampiran 30 Uji Normalitas Residual2	205
Lampiran 31 Uji Multikolinearitas2	210
Lampiran 32 Uji Autokorelasi2	214
Lampiran 33 Uji Normalitas Tahap Akhir2	
Lampiran 34 Perhitungan Persamaan Regresi Sederhana X	1
terhadap Y2	231
Lampiran 35 Uji Keberatian dan Kelinearan Regresi	
Sederhana X1 terhadap Y2	234
Lampiran 36 Uji Koefisien Derminasi X1 terhadap Y 2	242
Lampiran 37 Perhitungan Persamaan Regresi Sederhana XX	2
terhadap Y2	243
Lampiran 38 Uji Keberatian dan Kelinearan Regresi	
Sederhana X1 terhadap Y2	246
Lampiran 39 Uji Koefisien Determinasi X2 terhadap Y 2	253
Lampiran 40 Perhitungan Persamaan Regresi Ganda 2	254
Lampiran 41 Perhitungan Uji Keberartian Regresi Ganda 2	260
Lampiran 42 Uji Koefisien Determinasi	264
Lampiran 43 Perhitungan Interval Pengkategorian 2	265
Lampiran 44 Keterangan Validasi Laboratorium Matematik	a
	269
Lampiran 45 Surat Permohonan Izin Riset2	272
Lampiran 46 Surat Keterangan Penelitian 2	273
Lampiran 47 Contoh Hasil Jawaban Uji Coba2	274
Lampiran 48 Contoh Hasil Jawaban2	283
Lampiran 49 Dokumentasi Penelitian2	
Lampiran 50 Tabel F2	291
Lampiran 51 Tabel t2	293
Lampiran 52 Tabel R2	295
Lampiran 53 Tabel Durbin Watson 2	296

BABI

PENDAHULUAN

A. Latar Belakang Masalah

Peraturan Menteri Pendidikan dan Kebudayaan atau Permendikbud Nomor 37 Tahun 2018 tentang kompetensi inti dan kompetensi dasar kurikulum 2013 mengatakan kompentensi dasar yang harus dimiliki siswa adalah kemampuan menyelesaikan masalah (Rahmatiya & Miatun, 2020). National Council of Teacher Mathematic atau NCTM menetapkan terdapat (2002)beberapa standar kemampuan matematis yaitu kemampuan pemecahan masalah, kemampuan komunikasi, kemampuan koneksi, kemampuan penalaran, dan kemampuan representasi (Rohman et al., 2020). Dari beberapa pernyataan yang telah disebutkan, dijelaskan bahwa tuiuan pembelajaran matematika adalah agar siswa dapat memiliki beberapa kemampuan, salah satunya yaitu kemampuan pemecahan masalah.

Menurut Polya (1973) pemecahan masalah adalah usaha mencari jalan keluar dari suatu tujuan yang tidak mudah dicapai dengan segera (Hendriana et al., 2017). Robert L. Solso dan Siwono mengemukakan pemecahan masalah adalah suatu pemikiran yang diarahkan secara langsung untuk menemukan solusi atau jalan keluar suatu

masalah tertentu (Mawaddah & Anisah, 2015). Pemecahan masalah adalah suatu proses individu dalam mengatasi halangan atau kendala ketika suatu jawaban atau metode jawaban belum jelas" (Amalia et al., 2018).

Kemudian Sumarmo (2005) mengartikan pemecahan masalah matematis sebagai kegiatan menyelesaikan soal cerita, menyelesaikan soal-soal tidak rutin, menerapkan matematika dalam kehidupan sehari-hari atau situasi lain, dan membuktikan atau mencipta atau menguji konjektur (Yuliyani et al., 2017). Pemecahan masalah meliputi pemahaman masalah, perancanaan pemecahan masalah, menyelesaikan masalah, penilaian kembali hasil yang diperoleh (Yuliyani et al., 2017). Dari beberapa pengertian tersebut, kemampuan pemecahan masalah matematis adalah upaya menemukan solusi atau jalan keluar dari suatu permasalahan dalam pembelajaran matematika.

Pemecahan masalah erat hubungannya dengan kehidupan manusia, karena setiap orang pasti menghadapi berbagai macam permasalahan yang harus diselesaikan. Sebagaimana yang diterangkan dalam Al-Qur'an surah Al-Baqarah ayat 286, Allah SWT berfirman:

Artinya: "Allah tidak membebani seseorang melainkan sesuai dengan kesanggupanya......". (Q.S. Al-Baqarah ayat 286)

Maksud dari firman Allah SWT tersebut yaitu hakikatnya setiap permasalahan atau cobaan yang datang dalam kehidupan manusia akan tidak pernah melebihi kapasitas kekuatan yang dimliki oleh manusia tersebut, dan Allah SWT selalu menyertakan kemudahan dan jalan untuk menyelesaikan permasalahan tersebut (Risdiantoro et al., 2022). Keterkaitan antara ayat ini dengan kemampuan pemecahan masalah matematis yaitu apabila seorang siswa ingin memperoleh hasil belajar secara optimal, maka siswa tersebut harus diberi permasalahan untuk dipecahkan agar dapat melatih keterampilan yang dimiliki oleh siswa tersebut. Siswa harus yakin dengan kemampuan yang dimilikinya dalam memecahkan masalah, tidak mudah menyerah jika menemui kesulitan, dan berusaha keras untuk mencapai hasil belajar yang terbaik.

Namun fakta menunjukkan hasil dari kemampuan pemecahan masalah matematis siswa masih rendah. Berdasarkan hasil studi PISA 2018, peringkat Indonesia pada PISA Matematika berada di peringkat 72 dari 78 negara yang berpartisipasi dengan skor rata-rata siswa

Indonesia yaitu 380, hal ini menunjukkan kemampuan matematis siswa dalam memecahkan masalah matematika di Indonesia masih tergolong rendah dibandingkan dengan negara lain (Wahyuni & Masriyah, 2021). Sejalan dengan hasil penelitian Fakhrudin (dalam Yuliyani et al., 2017) terhadap Sekolah Menengah Pertama hasil kemampuan pemecahan masalah matematik siswa SMP secara umum belum memuaskan sekitar 30,67% dari skor ideal. Hal ini dipengaruhi oleh banyak faktor yang menjadikan kemampuan pemecahan masalah matematis siswa masih rendah.

Dalam perkembangan kemampuan kognitifnya, siswa harus mempunyai suatu sikap atau pandangan yang akan mendukung kemampuan matematis khususnya kemampuan pemecahan masalah (Yuliyani et al., 2017). Hal ini senada dengan yang dikemukakan oleh Rosenberg, komponen afektif akan selalu menurut Rosenberg berhubungan dengan komponen kognitif dan hubungan tersebut dalam keadaan konsisten. Ini berarti jika seseroang mempunyai sikap positif terhadap suatu objek, maka indeks kognitifnya juga akan tinggi begitu pula sebaliknya (Walgito, 2002). Aspek afektif atau softskills yang perlu dikembangkan selain aspek kognitif, salah satunya adalah *habits of mind* (Hanifah et al., 2018).

Habits of Mind berarti kebiasaan berpikir. Menurut Costa dan Kallick (2008) "habits of mind adalah gabungan dari banyak keterampilan, sikap, isyarat, pengalaman masa lalu, dan kecenderungan" (Ridlo et al., 2021). Ramlah & Maya (2018) juga mengungkapkan bahwa kebiasan berpikir adalah pola kognitif atau kebiasaan diri yang meliputi; kesadaran akan pikiran sendiri, membuat rencana secara efektif, menyadari dan menggunakan sumber daya yang diperlukan, sensitif terhadap umpan balik, dan mengevaluasi efektivitas setiap tindakan.

Handayani (2015) mengungkapkan bahwa kebiasaan berpikir matematis (mathematical habits of mind) merupakan salah satu budaya yang penting untuk dikembangkan dalam lingkungan kelas ketika siswa mempelajari matematika. apabila dikaitkan dengan pemecahan masalah, mathematical habits of mind merupakan suatu kemampuan untuk menjelaskan pemikiran seseorang, dan secara produktif menggunakan pemikiran tersebut untuk menggunakan matematika dalam menyelesaikan masalah (Werdiningsih & Khoerunisa, 2021). Hal ini berarti habits of mind (kebiasaaan berpikir) perlu di miliki oleh siswa dalam memecahkan permasalahan matematika yang dihadapinya.

Hal ini sejalan dengan penelitian yang dilakukan oleh Nurmala et al., (2019) yang mengungkapkan bahwa siswa dengan habits of mind yang tinggi dapat memecahkan masalah dengan tepat. Kemudian siswa yang kurang mampu melaksanakan rencana penyelesaian dan memeriksa kembali jawaban, tergolong dalam siswa yang memiliki habits of mind dengan kategori sedang. Selain habits of mind, ada sikap afektif lain yang mempengaruhi siswa dalam memecahkan masalah ataupun dalam pembelajaran, yaitu self efficacy (Noviyanti et al., 2021).

Self-efficacy didefinisikan sebagai "penilaian orang tentang kemampuan mereka untuk mengatur dan melaksanakan rangkaian tindakan yang diperlukan untuk mencapai jenis kinerja yang ditentukan" (Singh & Kumar, 2021). Sa'adah et al., (2021) mengemukakan bahwa Self efficacy merupakan proses kognitif yang berupa keputusan atau keyakinan diri dalam melaksanakan tugas untuk mendapatkan hasil yang diinginkan. Self efficacy ini mempengaruhi siswa dalam memecahkan masalah. sehingga juga mempengaruhi hasil belajar siswa. Sejalan itu, Marasabessy (2020) mengatakan bahwa siswa yang mempunyai self-efficacy yang tinggi dapat membuat siswa tersebut juga mempunyai motivasi, keberanian, ketekunan

dalam melaksanakan tugas yang diberikan, begitu juga sebaliknya.

Hal ini sejalan dengan hasil penelitian yang dilakukan oleh Nurseha & Apiati (2019) yang mengungkapkan bahwa siswa dengan *self-efficacy* yang tinggi sudah mampu mencapai keempat aspek dari kemampuan pemecahan masalah yaitu memahami masalah, menyusun rencana pemecahan masalah, dan memeriksa kembali hasil pekerjaan. Siswa yang memiliki *self efficacy* dengan kategori sedang dan rendah belum mencapai secara maksimal keempat aspek dari kemampuan pemecahan masalah.

Berdasarkan pemaparan guru matematika di MTs Negeri 05 Cilacap yang mengatakan Matematika sering dianggap sebagai mata pelajaran yang sulit dan menyeramkan oleh kebanyakan siswa. Mereka merasa kesulitan ketika dihadapkan dengan soal matematika terlebih jika itu soal cerita, sebagian siswa masih merasa bingung untuk memahami permasalahan yang ada dalam soal cerita bahwa. Padahal ketika siswa diberikan soal yang bukan berbentuk cerita siswa dapat mengerjakan soal tersebut.

Kebanyakan siswa kesulitan mengubah informasi dari soal cerita ke dalam bentuk matematika, selain itu mereka masih kurang dalam menyusun rencana atau strategi dalam penyelesaian permasalahan tersebut. Siswa cenderung menyerah terlebih dahulu saat menghadapi soal berbentuk cerita dapat dilihat siswa masih banyak yang tidak mengerjakan soal sampai tuntas, hal ini menunjukkan bahwa siswa kurang memiliki motivasi dan kurangnya rasa percaya diri. Bahkan ada beberapa yang tidak mengerjakan soal sama sekali dan masih ada siswa yang salah perhitungan dalam penyelesaiannya. Selain itu, masih terdapat beberapa siswa yang mencontek hasil jawaban teman saat mengeriakan soal matematika. Hal itu semua hahwa menuniukkan siswa masih kurang pemecahan masalah matematis, kurang dalam mengeksplor matematis, kurang bertanggungjawab dalam ide-ide mengerjakan matematika, kurangnya kemandirian dan juga kurang dalam membiasakan diri untuk berpikir.

Dari pemaparan tersebut maka kemampuan pemecahan matematis menjadi kemampuan yang wajib dimiliki siswa dalam belajar matematika, kemampuan pemecahan masalah di pengaruhi oleh aspek afektif yaitu habits of mind dan self efficacy. Melalui sikap habits of mind dapat menjadikan seseorang bertanggungjawab atas tugasnya, mengeksplor ide-ide matematis, mempunyai kemandirian dalam mengerjakan tugas dan membiasakan

dirinya untuk berpikir, kemudian melalui sikap *self efficacy* dapat menumbuhkan rasa percaya diri akan kemampuan yang dimiliki, sehingga seseorang akan termotivasi dan tidak gampang menyerah saat menghadapi rintangan atau hambatan saat mengerjakan soal matematika.

Berdasarkan uraian tersebut, penulis tertarik untuk melakukan penelitian tentang "Pengaruh *Habits Of Mind* dan *Self Efficacy* terhadap Kemampuan Pemecahan Masalah Matematis Siswa Kelas VIII MTs Negeri 05 Cilacap".

B. Identifikasi Masalah

Berdasarkan latar belakang masalah yang telah dipaparkan diatas, dapat diidentifikasi masalah sebagai berikut:

- 1. Kemampuan pemecahan masalah matematis siswa kelas VIII MTs Negeri 05 Cilacap masih beragam.
- 2. Siswa kelas VIII MTs Negeri 05 Cilacap kurang bertanggungjawab dalam mengerjakan tugas.
- 3. Siswa kelas VIII MTs Negeri 05 Cilacap cenderung mudah menyerah saat berhadapan dengan soal yang sulit.

C. Batasan Masalah

Berdasarkan identifikasi masalah yang telah disebutkan diatas, maka agar penelitian lebih terarah, peneliti memfokuskan pada kemampuan pemecahan masalah matematis siswa, habits of mind dan self efficacy.

D. Rumusan Masalah

Berdasarkan latar belakang di atas, maka dapat dirumuskan masalah penelitian ini adalah:

- 1. Apakah terdapat pengaruh yang signifikan *habits of mind* terhadap kemampuan pemecahan masalah matematis siswa kelas VIII MTs Negeri 05 Cilacap?
- 2. Apakah terdapat pengaruh yang signifikan *self efficacy* terhadap kemampuan pemecahan masalah matematis siswa kelas VIII MTs Negeri 05 Cilacap?
- 3. Apakah terdapat pengaruh yang signifikan habits of mind dan self efficacy secara simultan terhadap kemampuan pemecahan masalah matematis siswa kelas VIII MTs Negeri 05 Cilacap?

E. Tujuan Penelitian

Berdasarkan rumusan masalah yang telah diuraikan di atas, maka tujuan dari penelitian ini adalah:

 Mengetahui adanya pengaruh yang signifikan habits of mind terhadap kemampuan pemecahan masalah matematis siswa kelas VIII MTs Negeri 05 Cilacap.

- 2. Mengetahui adanya pengaruh yang signifikan *self efficacy* terhadap kemampuan pemecahan masalah matematis siswa kelas VIII MTs Negeri 05 Cilacap.
- 3. Mengetahui adanya pengaruh yang signifikan *habits of mind* dan *self efficacy* secara simultan terhadap kemampuan pemecahan masalah matematis siswa kelas VIII MTs Negeri 05 Cilacap.

F. Manfaat Masalah

1. Manfaat secara teoritis

Peneltian ini diharapkan mampu memberikan kontribusi dalam memajukan ilmu pengetahuan dan dapat menjadi rujukan penelitian serupa selanjutnya.

2. Manfaat secara praktis

a. Bagi siswa

Mengetahui tingkat *habits of mind* dan *self efficacy* masing-masing siswa untuk meningkatkan kemampuan pemecahan masalah matematis.

b. Bagi guru

Menjadi referensi guru dalam membimbing siswa unutk menciptakan sikap *habits of mind* sdan sikap *self efficacy*, sehingga didapat hasil belajar yang optimal.

c. Bagi peneliti

Memberikan peneliti pengalaman dan gambaran terkait pengaruh *habits of mind* dan *self efficacy* terhadap kemampuan pemecahan masalah matematis siswa.

BAB II

LANDASAN PUSTAKA

A. Kajian Teori

1. Kemampuan Pemecahan Masalah Matematis

a. Pengertian Pemecahan Masalah Matematis

Polya (1973) pemecahan masalah adalah usaha mencari jalan keluar dari suatu tujuan yang tidak mudah dicapai dengan segera (Hendriana et al., 2017). Hal ini sejalan dengan Robert L. Solso dan Siwono yang berpendapat bahwa pemecahan masalah adalah suatu pemikiran yang diarahkan secara langsung untuk menemukan solusi atau jalan keluar suatu masalah tertentu (Mawaddah & Anisah, 2015).

(2018).Menurut Somawati pemecahan masalah merupakan aktivitas intelektual tingkat tinggi, dan siswa didorong serta diberi kesempatan seluas-luasnya untuk berinisiatif dan berpikir secara sistematis dalam menghadapi suatu masalah dengan menerapkan pengetahuan diperoleh vang sebelumnya. Anggraeni & Herdiman (2018) juga berpendapat bahwa pemecahan masalah adalah proses memecah atau menyelesaikan suatu masalah dengan menerapkan prosedur-prosedur untuk menuju kepada penyelesaian yang di maksud (Amalia et al., 2018). Pernyataan tersebut didukung oleh Sumarmo (2005) mengartikan pemecahan masalah matematis sebagai kegiatan menyelesaikan soal cerita, menyelesaikan soal-soal tidak rutin, menerapkan matematika dalam kehidupan seharihari atau situasi lain, dan membuktikan atau mencipta atau menguji konjektur (Yuliyani et al., 2017).

Yuliyani et al., (2017) mengatakan bahwa pemecahan masalah meliputi pemahaman masalah, perencanaaa pemecahan masalah, menyelesaikan masalah, dan penilaian kembali hasil yang diperoleh. Hal ini sejalan dengan Polva (1957)vang mengemukakan bahwa langkah-langkah pemecahan masalah yaitu memahami masalah, merencanakan strategi pemecahan masalah, menerapkan rencana pemecahan masalah, dan meninjau kembali (Rohman et al., 2022).

Kemampuan pemecahan masalah matematika merupakan suatu usaha penyelesaian persoalan yang ada di dalam matematika (Amalia et al., 2018). Sejalan dengan hal ini Sarini (2019) berpendapat kemampuan pemecahan masalah matematika siswa

merupakan kemampuan siswa untuk meyelesaikan atau menemukan jawaban dari suatu pertanyaan yang terdapat di dalam suatu cerita, teks, dan tugastugas dalam pelajaran matematika (Sari et al., 2022). Dengan demikian kemampuan pemecahan masalah matematis adalah upaya menemukan solusi atau jalan keluar dari suatu permasalahan khususnya dalam pembelajaran matematika.

Kemampuan pemecahan masalah sangat penting dalam pembelajaran matematika, Ruseffendi (dalam Effendi, 2012) mengemukakan bahwa kemampuan pemecahan masalah sangat penting dalam matematika, tidak hanya bagi mereka yang nantinya akan mempelajari atau mendalami matematika, tetapi juga bagi mereka yang akan menerapkannya dalam bidang studi lain dan dalam kehidupan sehari-hari (Kholivah et al., 2020).

Somawati (2018) juga menyatakan bahwa kemampuan pemecahan masalah matematika bagian dari kurikulum matematika yang sangat penting memungkinkan memperoleh karena siswa menggunakan pengalaman pngetahuan dan keterampilan selama proses pembelajaran penyelesaiannya. mendapatkan Siswa akan

pengalaman dari proses pemecahan masalah, pengalaman ini akan meningkatkan kemampuan mereka menjadi kritis, logis, analitis dan kreatif dalam menghadapi masalah (Suarsana et al., 2019). Sejalan dengan hal ini Siwi & Haerudin (2019) mengemukakan bahwa pentingnya pemecahan masalah dalam pengetahuan matematika adalah dapat membantu siswa dalam mengembangkan kemampuannya dan menerapkannya pada berbagai situasi yang sedang terjadi.

b. Indikator Kemampuan Pemecahan Masalah
 Matematis

Beberapa indikator yang dikemukakan oleh ahli sebagai berikut:

Polya (1954) memperkenalkan indikator dalam pemecahan masalah yaitu (Maryono & Saputri, 2019):

- 1) memahami masalah
- 2) merencanakan penyelesaian
- 3) menyelesaikan masalah sesuai dengan rencana
- 4) melakukan pengecekan kembali

Sumarmo dan Hendriana juga mengemukakan indikator pemecahan masalah matematis yaitu (Amam, 2017):

- a. Mengidentifikasi unsur yang diketahui, ditanyakan, dan kecukupan unsur yang diperlukan.
- b. Merumuskan masalah matematis
- c. Menetapkan strategi untuk menyelesaikan masalah.
- d. Menjelaskan atau menginterpretasi hasil penyelesaian masalah.

Indikator pemecahan masalah yang digunakan dalam penelitian ini adalah indikator menurut Sumarmo dan Hendriana (Amam, 2017).

c. Faktor-Faktor Yang Mempengaruhi Kemampuan Pemecahan Masalah Matematis

Menurut Pratiwi et al., (2019) faktor-faktor yang mempengaruhi pemecahan masalah matematis yaitu:

- 1) Inteligensi
- 2) Usia
- 3) Kemampuan siswa dalam membaca
- 4) Kreativitas
- 5) Konsentrasi

- 6) Pengalaman
- 7) Kepercayaan diri.

2. Habits Of Mind

a. Pengertian Habits Of Mind

Menurut Costa dan Kallick (2008:17) habit of mind adalah gabungan dari banyak keterampilan, pengalaman isvarat. masa lalu. kecenderungan (Ridlo et al., 2021). Ramlah & Maya (2018) mengungkapkan bahwa kebiasan berpikir adalah pola kognitif atau kebiasaan diri yang meliputi; menyadari pemikiran sendiri, membuat rencana yang efektif, menyadari menggunakan sumber daya yang dibutuhkan, peka terhadap umpan balik, dan mengevaluasi keefektifan setiap aktivitas. Hendriana et al., (2017) mengatakan kebiasaan berpikir (habits of mind) matematis adalah disposisi matematis esenssial yang perlu dimiliki oleh dan khususnva dikembangkan pada siswa yang mempelajari kemampuan matematis tingkat tinggi (high order mathematical thinking). Habits of mind mencangkup keterampilan dasar seperti berpikir, menyadari meneliti. pola dan hubungan. mendefinisikan, menemukan, berhipotesis, dan menvisualisaikan (Unveren-Bilgiç & Argün, 2018).

Seialan dengan tersebut pernyataan Handayani (2015) mengatakan bahwa apabila dikaitkan dengan pemecahan masalah, habits of mind matematis merupakan suatu kemampuan untuk menjelaskan pemikiran seseorang, dan secara produktif menggunakan pemikiran tersebut untuk menggunakan matematika dalam menyelesaikan masalah (Werdiningsih & Khoerunisa, 2021). Pernyataan tersebut didukung oleh Cuaco (1997) yang menjelaskan kebiasan berpikir matematis sebagai kebiasaan berpikir yang dilakukan oleh menghadapi matematikawan dalam masalah matematis (Hendriana et al., 2017).

Habits of Mind merupakan aspek penting yang menunjang pembelajaran matematika. Secara spesifik, kebiasaan berpikir memiliki dampak yang signifikan terhadap kemampuan siswa untuk mempelajari matematika (Oktaviani & Firmansyah, 2021). Handayani (2015) juga mengungkapkan bahwa kebiasaan berpikir matematis (mathematical habits of mind) merupakan salah satu budaya yang penting untuk dikembangkan dalam lingkungan kelas ketika siswa mempelajari matematika (Werdiningsih & Khoerunisa, 2021).

Pada dasarnya Habits of Mind in Mathematics merupakan sikap penting dan perlu dikuasai pada saat mengerjakan tugas dalam matematika, karena mendukung dan menghasilkan pribadi yang mahir, kreatif, memiliki rasa percaya diri, memiliki tanggung jawab terhadap segala tindakan dan menghasilkan yang mempunyai kemandirian individu berinteraksi bersama orang lain (Sugandi et al., 2021). Hal ini sejalan dengan Hendriana et al., (2017) yang mengungkapkan bahwa siswa yang memiliki habits of mind yang memadai akan terbentuk pribadi yang cakap, mandiri, mempunyai sikap menghargai kegunaan matematika dalam kehidupan, sikap ingin tahu, perhatian, ulet, dan mempunyai minat dalam mempelajari matematika. Yandari et al. (2019) juga mengatakan bahwa habits of mind matematis merupakan sikap yang penting dimiliki, sebab sikap ini sangat mendukung sikap siswa dalam kehidupan menyelesaikan sehari-hari untuk berbagai permasalahan yang dihadapinya (Siregar & Hasanah, 2022).

b. Indikator Habits Of Mind

Bebrapa indikator *habits of mind* menurut ahli sebagai berikut:

Menurut Cuaco (1997) indikator kebiasaan berpikir (habits of mind) diantaranya yaitu (Hendriana et al., 2017):

- 1) Kebiasaan mencari pola
- 2) Kebiasaan bereksperimen
- 3) Kebiasaan menjelaskan
- 4) Kebiasaan menggali
- 5) Kebiasaan menemukan
- 6) Kebiasaan menvisualisasikan
- 7) Kebiasaan menyusun konjektur
- 8) Kebiasaan menebak

Menurut Millman dan Jacobbe (2008) sebagai berikut (Hendriana et al., 2017):

- a. Mengeksplorasi ide-ide matematis
- b. Merefleksi kebenaran jawaban masalah matematis
- c. Mengidentifikasi strategi pemecahan masalah matematika
- d. Bertanya kepada diri sendiri tentang aktivitas matematika yang telah dilakukan
- e. Menformulasi pernyataan matematis

f. Mengonstruksi contoh matematis

Indikator yang digunakan dalam penelitian ini yaitu indikator yang dikemukakan oleh Millman dan Jacobbbe (Hendriana et al., 2017).

3. Self Efficacy

a. Pengertian Self Efficacy

Self-efficacy didefinisikan sebagai "penilaian orang tentang kemampuan mereka untuk mengatur rangkaian dan melaksanakan tindakan yang diperlukan untuk mencapai jenis kinerja yang ditentukan" (Singh & Kumar, 2021). Alwisol (2016) mengatakan bahwa self efficacy adalah persepsi diri, apakah dapat melakukan tindakan yang baik, atau buruk, tepat atau salah, bisa atau tidak bisa mengerjakan sesuatu dengan yang dipersyaratkan. Self Efficacy berhubungan dengan keyakinan diri memiliki kemampuan untuk melakukan tindakan yang diharapkan.

Bandura (1997) mendefinisikan *self efficacy* sebagai keyakinan seorang individu tentang sejauh mana kemampuan dirinya atau tindakan tertentu dalam melaksanakan tugas untuk mencapai hasil tertentu (Ghufron & Risnawita S, 2016). Pernyataan tersebut didukung oleh Maddux (2000) yang

berpendapat *self efficacy* merupakan keyakinan seseorang pada kemampuan yang dimilikinya untuk mengkoordinasikan keterampilan dan kemampuan untuk mecapai tujuan yang diinginkan dalam domain dan keadaan tertentu (Hendriana et al., 2017).

Menurut Sa'adah et al., (2021) self efficacy merupakan proses kognitif yang berupa keputusan atau keyakinan diri dalam melaksanakan tugas untuk mendapatkan hasil yang diinginkan. Baron dan Byrne (2003) mengatakan bahwa efikasi diri adalah keyakinan individu untuk mampu menyelesaikan tugas akademik yang diberikan dan menunjukkan tingkat kemampuan dirinya (Yuliyani et al., 2017). Self efficacy dalam matematika digambarkan sebagai kevakinanan diri dalam menyelesaikan berbagai tugas mulai dari memahami konsep, hingga memecahkan masalah dalam matematika (Masitoh & Fitriyani, 2018). Istilah self efficacy dari beberapa pengertian tersebut dapat disimpulkan bahwa self *efficacy* adalah keyakinan seseorang terhadap kemampuan dirinya dalam mengerjakan tugas untuk mencapai hasil tertentu dan keadaan tertentu dalam matematika.

Self efficacy sangat penting karena seseorang yang yakin dengan kemampuan dirinya akan melaksanakan tugas yang diberikan dengan baik, pantang menyerah ketika ada hambatan. Sejalan dengan hal ini Ghufron & Risnawita S (2016) mengatakan seseorang dengan efikasi diri yang tinggi percaya bahwa mereka mampu melakukan sesuatu untuk mengubah kejadian-kejadian disekitarnya dan akan berusaha lebih untuk mengatasi tantangan yang ada, sedangkan seseorang dengan efikasi diri rendah menganggap dirinya pada dasarnya tidak mampu mengerjakan segala sesuatu yang ada disekitarnya dan akan cenderung mudah menyerah.

Anshari (2017) mengungkapkan bahwa self-efficacy yang dimiliki siswa dalam pemecahan masalah dapat mempengaruhi hasil belajar siswa. Siswa yang mempunyai self-efficacy yang tinggi dapat membuat siswa tersebut juga mempunyai motivasi, keberanian, ketekunan dalam melaksanakan tugas yang diberikan, begitu juga sebaliknya, mempunyai self-efficacy yang rendah akan menjauhkan diri dari tugas-tugas yang sulit dan mudah menyerah saat menghadapi rintangan (Marasabessy, 2020).

Bandura (2002) menyatakan bahwa terdapat empat sumber utama yang mempengaruhi self efficacy yaitu (Alifia & Rakhmawati, 2018):

- 1) Pengalaman memiliki keberhasilan, misalnya dalam menguasai tugas atau mengendalikan lingkungan, kemampuan self efficacy dalam bidang tersebut akan terbangun. Seseorang dapat memiliki self efficacy yang kuat dibutuhkan pengalaman dalam mengatasi rintangan melalui upaya dan ketekunan.
- 2) Pengalaman pengamatan terhadap orang lain di sekitar, dengan melihat orang lain berhasil dengan usaha yang dilakukan, maka dapat meningkatkan self efficacy untuk menguasai suatu kegiatan.
- 3) Persuasi verbal, orang-orang yang berpengaruh dalam hidup dapat memperkuat *self efficacy* sehingga dapat meningkatkan keyakinan bahwa kemampuan yang dimiliki sangat diperlukan untuk sukses.
- 4) Kondisi emosional seperti suasana hati dan stress, serta kondisi fisiologis seperti sakit dan rasa lelah, dapat meredam kemampuan *self efficacy*. Kondisi tersebut diartikan sebagai tanda-tanda kerentanan terhadap kinerja yang buruk

sedangkan kondisi yang positif dapat meningkatkan *self efficacy*.

b. Indikator Self Efficacy

Beberapa indikator *self efficacy* menurut ahli sebagai berikut:

Menurut Brown dkk merumuskan beberapa indikator *self efficacy* yaitu (Yunianti et al., 2016):

- 1) Yakin dapat menyelesaikan tugas tertentu
- Yakin dapat memotivasi diri untuk melakukan tindakan yang diperlukan dalam menyelesaikan tugas
- 3) Yakin bahwa dirinya mampu berusaha dengan keras, gigih dan tekun
- 4) Yakin bahwa diri mampu menghadapi hambatan dan kesulitan
- 5) Yakin dapat menyelesaikan tugas yang memiliki range yang luas ataupun sempit (spesifik)

Menurut Hendriana et al., (2017) indikator *self efficacy* yaitu:

- a. Mampu mengatasi masalah yang dihadapi
- b. Yakin akan keberhasilan dirinya
- c. Berani menghadapi tantangan berani mengambil resiko atas keputusan yang diambilnya
- d. Menyadari kekuatan dan kelemahan dirinya

- e. Mampu berinteraksi dengan orang lain
- f. Tangguh atau tidak mudah menyerah

Indikator *self efficacy* yang digunakan dalam penelitian ini yaitu indikator menurut Hendriana et al., (2017).

4. Hubungan *Habits Of Mind* dan Kemampuan Pemecahan Masalah Matematis

Habits of mind merupakan aspek penting yang menunjang pembelajaran matematika. Secara spesifik, kebiasaan berpikir memiliki dampak yang signifikan siswa untuk mempelajari terhadap kemampuan matematika (Oktaviani & Firmansyah, 2021). Habits of mind sangat menentukan bagaimana seorang siswa dalam menyelesaikan suatu persoalan matematika. Handavani Menurut (2015)kebiasaan berpikir matematis (mathematical habits of mind) merupakan salah satu budaya yang penting untuk dikembangkan dalam lingkungan kelas ketika siswa mempelajari matematika, sehingga mampu menjadikan seseorang pelajar yang unggul (Werdiningsih & Khoerunisa, 2021).

Nurmala et al., (2019) melakukan penelitian yang menunjukkan bahwa *habits of mind* (kebiasaan berpikir) mempengaruhi kemampuan pemecahan masalah siswa. Siswa dengan *habits of mind* yang tinggi dapat

memecahkan masalah dengan tepat. Kemudian siswa yang kurang mampu melaksanakan rencana penyelesaian dan memeriksa kembali jawaban, tergolong dalam siswa yang memiliki habits of mind dengan kategori sedang, sehingga dapat ditarik kesimpulan bahwa terdapat hubungan positif yang signifikan antara habits of mind dan kemampuan pemecahan masalah matematis.

5. Hubungan *Self Efficacy* dan Kemampuan Pemecahan Masalah Matematis

Sa'adah et al., (2021) mendefinisikan self efficacy sebagai proses kognitif yang berupa keputusan atau keyakinan diri dalam melaksanakan tugas untuk mendapatkan hasil yang diinginkan. Self efficacy sangat penting karena seseorang yang yakin dengan kemampuan dirinya akan melaksanakan tugas yang diberikan dengan baik, pantang menyerah ketika ada hambatan.

Anshari (2017) mengungkapkan bahwa self efficacy erat kaitannya dengan kemampuan pemecahan masalah, karena keyakinan siswa dalam menyelesaikan soal akan mempengaruhi hasil belajar siswa (Alifia & Rakhmawati, 2018). Hal ini sejalan dengan penelitian Marasabessy (2020) dimana siswa yang mempunyai self

efficacy yang tinggi dapat membuat siswa tersebut juga mempunyai motivasi, keberanian, ketekunan dalam melaksanakan tugas yang diberikan, begitu juga sebaliknya, mempunyai self efficacy yang rendah akan menjauhkan diri dari tugas-tugas yang sulit dan mudah menyerah saat menghadapi rintangan, sehingga dapat ditarik kesimpulan bahwa terdapat hubungan positif yang signifikan antara self efficacy dan kemampuan pemecahan masalah matematis.

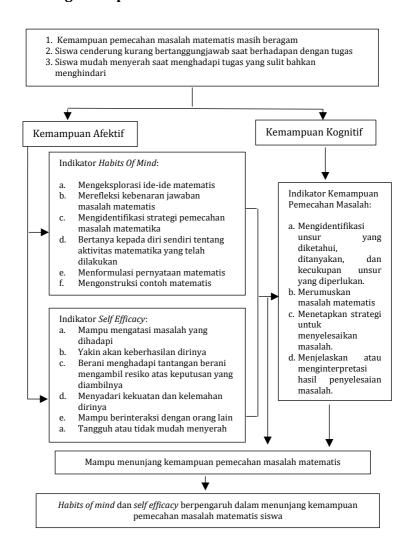
B. Kajian Pustaka

Penelitian yang relevan dengan penelitian yang akan diteliti yaitu sebagai berikut:

Pertama, penelitian dengan judul Pengaruh Habits of Mind (Kebiasaan Berpikir) terhadap Pemecahan Masalah Matematik Siswa SMP pada Journal On Education yang ditulis oleh Nuni Nurmala, Euis Eti Rohaeti, dan Ratna Sariningsih tahun 2019. Penelitian bertujuan unutk mengetahui kemampuan pemecahan masalah, dengan metode penelitian deskriptif kualitatif. Hasil penelitian menyatakan bahwa habits of mind (kebiasaan berpikir) mempengaruhi kemampuan pemecahan masalah siswa. Penelitian ini relevan dengan pustaka yang dikaji dimana terdapat pengaruh yang siginifikan habits of mind siswa terhadap kemampuan pemecahan masalah matematis.

Perbedaaannya penelitian ini menggunakan metode deskriptif kualitatif dan membahas dua variabel, sedangkan penelitian yang dilakukan oleh peneliti menggunakan jenis pendekatan kuantitatif dengan metode survei dan membahas tiga variabel.

Kedua, penelitian dengan judul Pengaruh Habits of Mind dan Resiliensi Matematis terhadap Kemampuan Berpikir Kritis Materi Pola Bilangan Kelas VIII MTS Ma'arif Sukorejo pada Mosharafa: Jurnal Pendidikan Matematika vang ditulis oleh Achmad Zamzamy Ridlo, Sunismi, dan Ettik Rukmigarsari tahun 2021. Tujuan penelitian ini yaitu untuk menganalisis pengaruh habits of mind terhadap kemampuan berpikir kreatif matematis melalui metode pembelajaran improve, dengan metode penelitian kuasi eksperimen. Hasil penelitian menyatakan bahwa terdapat pengaruh habits of mind terhadap kemampuan berpikir kritis matematis peserta didik materi pola bilangan kelas VIII MTS Ma'arif Sukorejo Pasuruan Dapat diketahui besarnya pengaruh Habits Of Mind terhadap kemampuan berpikir kritis matematis adalah 61,6%. Penelitian ini relevan dengan pustaka yang dikaji dimana meneliti tentang pengaruh variabel *habits of mind*. Sementara untuk perbedaannya penelitian ini menggunakan metode penelitian kuantitatif ex post facto sedangkan penelitian


pada penelitian penliti menggunakan jenis pendekatan kuantitatif dengan metode survei.

Ketiga, penelitian dengan judul Pengaruh Self Efficacy Siswa SMP terhadap Pemecahan Masalah pada Materi Aritmetika Sosial pada EDISI: Jurnal Edukasi dan Sains yang ditulis oleh Nunu Husnul Khotimah, Asyifa Khoirunnisa, dan Westi Bilda tahun 2020. Penelitian ini bertujuan untuk mengetahui apakah self efficacy dapat berpengaruh terhadap kemampuan pemecahan masalah, dengan metode penelitian kuantitatif. Hasil penelitian menyatakan bahwa self efficacy berpengaruh terhadap pemecahan masalah siswa. Artinya semakin tinggi self efficacy siswa maka akan semakin tinggi pula kemampuan pemecahan masalah siswa. Penelitian ini relevan dengan pustaka yang dikaji dimana terdapat pengaruh yang siginifikan self efficacy terhadap kemampuan pemecahan masalah matematis. Perbedaan penelitian terdapat pada jumlah variabel yang diteliti. Pada penelitian ini terdapat dua variabel, sedangkan pada peneliti terdapat tiga variabel penelitian.

Keempat, penelitian dengan judul Pengaruh Self Confidence dan Self Efficacy terhadap Kemampuan Pemecahan Masalah Matematis pada Jurnal Penelitian, Pendidikan, dan Pembelajaran yang ditulis Fariyatus Sa'adah, Ettie Rukmigarsari, dan Tri Candra Wulandari tahun 2021. Penelitian ini bertujuan untuk mengetahui pengaruh self confidence dan self efficacy terhadap kemampuan pemecahan masalah matematis siswa pada materi aritmatika kelas VII MTs Darussalam Daun. Hasil penelitian menyatakan bahwa self confidence dan self efficacy berpengaruh terhadap kemampuan pemecahan masalah matematis siswa. Persentase pengaruh secara bersama sama yaitu sebesar 89,2 %. Besar pengaruh self efficacy lebih besar dari pada besar pengaruh self confidence terhadap kemampuan pemecahan masalah matematis siswa. Self efficacy berpengaruh terhadap kemampuan masalah pemecahan matematis siswa. persentase pengaruhnya yaitu sebesar 66%. Jika self efficacy siswa tinggi maka kemampuan pemecahan masalah matematisnya juga tinggi. Penelitian ini relevan dengan pustaka yang dikaji dimana terdapat pengaruh yang siginifikan self efficacy terhadap kemampuan pemecahan masalah matematis. Sementara untuk perbedaannya penelitian ini menggunakan metode penelitian kuantitaif berjenis *ex post facto*, sedangkan pada penelitian peneliti menggunakan jenis penelitian kuantitatif dengan metode survei.

Keempat hasil penelitian di atas, tentu akan menjadi bagian rujukan teoritik dalam pelaksanaan penelitian ini. Namun berbeda dengan penelitian-penelitian sebelumnya, penelitian ini akan memfokuskan pada temuan tentang "Pengaruh *Habits of Mind* dan *Self Efficacy* terhadap Kemampuan Pemecahan Masalah Matematis Siswa Kelas VIII MTs Negeri 05 Cilacap Tahun Pelajaran 2022/2023."

C. Kerangka Berpikir

Gambar 2. 1 Kerangka Berpikir

D. Hipotesis Penelitian

Hipotesis merupakan pernyataan sementara yang menjawab rumusan masalah (Sugiyono, 2013). Hipotesis dalam penelitian ini yaitu:

- 1. *Habits of mind* memiliki pengaruh yang signifikan terhadap kemampuan pemecahan masalah matematis siswa kelas VIII MTs Negeri 05 Cilacap.
- 2. *Self efficacy* memiliki pengaruh yang signifikan terhadap kemampuan kemampuan pemecahan masalah matematis siswa kelas VIII MTs Negeri 05 Cilacap.
- 3. *Habits of mind* dan *self efficacy* secara simultan memiliki pengaruh yang signifikan terhadap kemampuan pemecahan masalah matematis siswa kelas VIII MTs Negeri 05 Cilacap.

BAB III

METODOLOGI PENELITIAN

A. Jenis Penelitian

Penelitian ini merupakan penelitian kuantitatif. Menurut Sugiyono (2013) penelitian kuantitatif adalah penelitian dengan data berupa angka-angka dan analisis menggunakan statistik. Metode yang digunakan dalam penelitian ini adalah metode survei. Penggunaan metode survei bertujuan mengetahui dan mengkaji data dari sampel yang diambil dari populasi, sehingga ditemukan gambaran apakah ada pengaruh habits of mind dan self efficacy terhadap kemampuan pemecahan masalah matematis siswa kelas VIII MTs Negeri 05 Cilacap.

B. Tempat dan Waktu Penelitian

1. Tempat Penelitian

Penelitian ini dilakukan di MTs Negeri 05 Cilacap yang beralamat di Jalan Raya Diponegoro Banjarsari, Banjarsari, Kec. Nusawungu, Kab. Cilacap, Jawa Tengah.

2. Waktu Penelitian

Penelitian ini dilakukan pada semester ganjil tahun pelajaran 2022/2023.

C. Populasi dan Sampel Penelitian

1. Populasi Penelitian

Populasi pada penelitian ini adalah siswa kelas VIII MTs Negeri 05 Cilacap tahun pelajaran 2022/2023. Jumlah kelas VIII di MTs Negeri 05 Cilacap ada 7 kelas yaitu kelas VIII A – VIII G dengan jumlah siswa sebanyak 231 siswa.

Tabel 3. 1 Jumlah Siswa Kelas VIII MTs Negeri 05 Cilacap tahun pelajaran 2022/2023

Kelas VIII	Jumlah Siswa
A	32
В	34
С	34
D	32
E	33
F	34
G	32
TOTAL	231

2. Sampel Penelitian

Penentuan jumlah sampel minimal dalam penelitian ini menggunakan rumus teori Roscoe. Teori Roscoe mengungkapkan bahwa jika dalam penelitian akan digunakan analisis dengan multivariate (misal korelasi atau regresi ganda), maka jumlah anggota sampel minimal 10 kali dari jumlah variabel (Sugiyono, 2013). Dalam penelitian ini terdiri dari 3 variabel, maka

jumlah minimal sampel yang digunakan adalah $3 \times 10 = 30$ responden.

Teknik yang digunakan dalam pengambilan sampel pada penelitian ini yaitu dengan menggunakan cluster random sampling. Menurut Kurniawan & Puspitaningtyas (2016) *cluster random sampling* adalah teknik pengambilan sampel secara acak yang di pilih berdasarkan *cluster* (kelompok). Peneliti menggunakan teknik ini karena akan mengambil sampel dari populasi yang terbagi dalam beberapa kelas (cluster) dan yang dipilih sebagai sampel bukan perorangan melainkan kelompok individu yang menempati kelas tertentu. Sebelum menentukan kelas sampel dalam penelitian, perlu dilakukan analisis tahap awal yaitu uji normalitas, dan homogenitas dari masing-masing kelas pada populasi untuk mengetahui sampel penelitian berdistribusi normal dan berangkat dalam kondisi awal yang sama. Adapun analisisnya sebagai berikut:

a) Uji Normalitas

Uji normalitas tahap awal dalam penelitian ini digunakan untuk mengetahui sebaran data pada suatu populasi apakah berdistribusi normal atau tidak berdistribusi normal. Analisis ini menggunakan uji *kolmogorov-smirnov* dengan bantuan aplikasi

Microsoft Excel. Adapun langkah-langkah uji normalitas dengan menggunakan kolmogorov-smirnov sebagai berikut: (Kadir, 2010)

- 1) Rumusan hipotesis
 - H_0 : data berdistribusi normal
 - H_1 : data berdistribusi tidak normal
- 2) Data diurutkan dari yang terkecil
- 3) Menentukan kp (kumulatif proporsi) $kp = \frac{f_{kum}}{n}$, dimana f_{kum} frekuensi kumulatif dan n adalah banyaknya siswa
- 4) Data ditransformasikan ke skor baku $z_i = \frac{X_i \bar{X}}{s}$
- 5) Menentukan luas kurva Z (Z tabel)
- 6) Menentukan nilai $|kp Z_{tabel}|$
- 7) Menentukan nilai D_0
- 8) Menentukan harga *D*_{tabel}
- 9) Kriteria pengujian

Jika $D_0 \leq D_{tabel}$ maka H_0 diterima

Jika $D_0 > D_{tabel}$ maka H_0 ditolak

Dasar pengambilan keputusan dalam uji normalitas kolmogorov-smirnov yaitu jika nilai $D_0 \le D_{tabel}$ maka H_0 diterima, berarti data tersebut berdistribusi normal, dan jika nilai $D_0 > D_{tabel}$ maka data tersebut berdistribusi tidak normal.

Kelas	$\mathbf{D_0}$	Dtabel	Keterangan
VIII A	0,128	0,240	Normal
VIII B	0,115	0,233	Normal
VIII C	0,127	0,237	Normal
VIII D	0,115	0,240	Normal
VIII E	0,113	0,237	Normal
VIII F	0,144	0,233	Normal
VIII G	0.129	0.237	Normal

Tabel 3. 2 Hasil Uji Normalitas

Hasil uji normalitas populasi $D_0 \leq D_{tabel}$, sehingga populasi berdistribusi normal. Detail perhitungan pada Lampiran 5.

b) Uji Homogenitas

Uji homogenitas adalah suatu cara untuk menguji apakah dua atau lebih kelompok data berasal dari populasi yang sama. Uji homogenitas dalam penelitian ini digunakan untuk mengetahui sebaran data pada suatu populasi apakah berasal dari variansi yang sama. Untuk keperluan pengujian homogenitas data ini digunakan *uji Barlett* dengan bantuan *Microsoft Excel* (Kadir, 2010). Berikut lengkahlangkah uji homogenitas dengan menggunakan *uji Barlett*:

1) Merumuskan hipotesis

$$H_0: \sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2 = \sigma_5^2 = \sigma_6^2 = \sigma_7^2$$
, artinya semua varians homogen

 H_1 : ada varians yang tidak sama

2) Menghitung varians gabungan dari semua sampel

$$S^{2} = \frac{\sum (n_{i}-1)s_{i}^{2}}{\sum (n_{i}-1)}$$

3) Menghitung harga satuan B

$$B = (\log S^2) \cdot \sum (n_i - 1)$$

4) Menghitung χ^2_{hitung}

$$\chi^2 = (\ln 10) \{B - \sum (n_i - 1) \log S_i^2\}$$

- 5) Menentukan χ^2_{tabel}
- 6) Kriteria pengujian

$$\chi^2_{hitung} < \chi^2_{tabel}$$
 maka H_0 diterima

$$\chi^2_{hitung} \ge \chi^2_{tabel}$$
 maka H_1 ditolak

Dasar pengambilan keputusan dalam uji homogenitas dengan uji Barlett dengan derajat kebebasan dk=k-1 (k adalah banyaknya kelas) dan taraf signifikan $\alpha=5\%$ yaitu jika nilai $\chi^2_{hitung} < \chi^2_{tabel}$ maka H_0 , berarti semua sampel mempunyai varians yang sama.

Tabel 3. 3 Hasil Uji Homogenitas

Kelas	χ^2_{hitung}	χ^2_{tabel}	Keterangan
VIII A			
VIII B			
VIII C			
VIII D	12,226	14,067	Homogen
VIII E			
VIII F			
VIII G			

Hasil dari uji homogenitas populasi diperoleh $\chi^2_{hitung} < \chi^2_{tabel,}$ maka data homogen. Detail perhitungan pada Lampiran 6.

Berdasarkan hasil analisis tahap awal ketujuh kelas dinyatakan normal dan homogen. Selanjutnya menggunakan teknik *cluster random sampling* terpilih kelas VIII D dan VIII E sebagai kelas sampel berjumlah 56 siswa.

D. Definisi Operasional Variabel

Pada penelitian ini terdapat dua variabel yaitu variabel bebas (independen variabel) dan variabel terikat (dependen variabel)

1. Variabel Bebas (Independen Variabel)

Variabel independen merupakan variabel yang mempengaruhi variabel dependen (Danuri & Maisaroh, 2019). Dalam penelitian ini yang menjadi variabel bebas (Independen Variabel) adalah *habits of mind* dan *self efficacy* siswa kelas VIII MTs Negeri 05 Cilacap

Indikator variabel bebas pertama yaitu *habits of mind*. Dalam penelitian ini menganut indikator Cuaco (1997) dipilih karena relevan dengan kondisi siswa, indikator kebiasaan berpikir (*habits of mind*) diantaranya yaitu (Hendriana et al., 2017):

- 1) Mengeksplorasi ide-ide matematis
- 2) Merefleksi kebenaran jawaban masalah matematis
- 3) Mengidentifikasi strategi pemecahan masalah matematika
- 4) Bertanya kepada diri sendiri tentang aktivitas matematika yang telah dilakukan
- 5) Menformulasi pernyataan matematis
- 6) Mengonstruksi contoh matematis

Indikator variabel bebas yang kedua yaitu *self efficacy*. Dalam penelitian ini menggunakan indikator menurut Hendriana et al., (2017). Dipilih karena relevan dengan keadaan siswa, indikator *self efficacy* yaitu:

- 1) Mampu mengatasi masalah yang dihadapi
- 2) Yakin akan keberhasilan dirinya
- 3) Berani menghadapi tantanganberani mengambil resiko atas keputusan yang diambilnya
- 4) Menyadari kekuatan dan kelemahan dirinya
- 5) Mampu berinteraksi dengan orang lain
- 6) Tangguh atau tidak mudah menyerah
- 2. Variabel Terikat (Dependen Variabel)

Variabel dependen adalah variabel yang dipengaruhi variabel independen (Danuri & Maisaroh, 2019). Dalam penelitian ini variabel terikatnya adaah

kemampuan pemecahan masalah matematis siswa kelas VIII MTs Negeri 05 Cilacap.

Indikator kemampuan pemecahan masalah matematis dalam penelitian ini menganut menurut Sumarmo dan Hendriana (Amam, 2017) yaitu:

- Mengidentifikasi unsur yang diketahui, ditanyakan, dan kecukupan unsur yang diperlukan.
- 2) Merumuskan masalah matematis.
- 3) Menetapkan strategi untuk menyelesaikan masalah.
- 4) Menjelaskan atau menginterpretasi hasil penyelesaian masalah.

E. Teknik dan Instrumen Pengumpulan Data

1. Angket

Instrumen angket digunakan untuk mendapatkan data habits of mind dan self efficacy pada siswa kelas VIII di MTs Negeri 05 Cilacap, dengan menggunakan skala likert. Pertanyaan maupun pernyataan dalam skala likert disusun berdasarkan pada indikator habits of mind dan self efficacy. Angket diberikan kepada siswa untuk dijawab guna mengetahui habits of mind dan self efficacy pada siswa kelas VIII di MTs Negeri 05 Cilacap. Dalam penelitian ini skala likert menggunakan empat alternatif jawaban yaitu sangat sesuai (SS), sesuai (S),

tidak sesuai (TS), sangat tidak sesuai (STS) (Sugiyono, 2013).

Instrumen angket diuji cobakan kepada kelas uji coba yaitu VIIIA untuk mengetahui validitas dan reliabilitas. Dari hasil uji coba tersebut, dipilih pernyataan angket yang valid dan reliabel kemudian diberikan kepada siswa kelas penelitian yaitu VIIID dan VIIIE di MTs Negeri 05 Cilacap untuk dijawab guna mengetahui habits of mind dan self efficacy siswa kelas VIII MTs Negeri 05 Cilacap.

Berikut cara pemberian skor angket *habits of mind* dan *self efficacy* sebagai berikut:

Tabel 3. 4 Pedoman pemberian skor angket *habits of*mind dan self efficacy

Kriteria	Skor	Keterangan
Favorable	4	SS = Sangat sesuai
(Pernyataan Positif)	3	S = Sesuai
	2	TS = tidak sesuai
	1	STS = sangat tidak sesuai
Unfavorabel	4	STS = sangat tidak sesuai
(Pernyataan	3	TS = tidak sesuai
Negatif)	2	S = Sesuai
	1	SS = Sangat sesuai

Nilai =
$$\frac{skor\ yang\ diperoleh}{jumlah\ skor\ maksimal}\ x\ 100$$

Adapun untuk menentukan kelompok kategori menggunakan ketentuan sebagai berikut: (Sudijono, 2014)

Tabel 3. 5 Pedoman Kategorisasi Angket

Interval	Keterangan
Nilai ≥ Mean + SD	Tinggi
$Mean - SD \le Nilai < Mean + SD$	Sedang
Nilai < Mean + SD	Rendah

2. Tes

Dalam penelitian ini metode tes digunakan untuk mengetahui skor kemampuan pemecahan matematis siswa. Tes dalam penelitian ini yaitu menggunakan soal tes tertulis yang berupa soal uraian yang disusun berdasarkan indikator kemampuan pemecahan masalah matematis siswa. Instrumen tes uraian diujicobakan pada siswa kelas VIIIA untuk mengetahui validitas dan reliabilitas. Dari hasil uji coba tersebut, digunakan untuk mengukur kemampuan pemecahan masalah matematis siswa kelas VIIID dan VIIIE MTs Negeri 05 Cilacap.

Adapun untuk menentukan kelompok kategori menggunakan ketentuan sebagai berikut (Sudijono, 2014):

Tabel 3. 6 Pedoman Kategorisasi Tes

3. Dokumentasi

Dokumentasi dalam penelitian ini digunakan untuk menentukan sampel penelitian. Dokumen dalam penentuan sampel yaitu nilai PTS (Penilaian Tengah Semester) siswa kelas VIII semester ganjil di MTs Negeri 05 Cilacap tahun pelajaran 2022/2023. Data tersebut akan diuji normalitas dan homogenitas.

F. Uji Instrumen Penelitian

1. Uji Validitas

a Validitas Ahli

Sugiyono (2013) memaparkan bahwa setelah instrumen dikonstruksi tentang aspek-aspek yang akan diukur dengan berlandaskan teori, maka langkah selanjutnya adalah dikonsultasikan dengan ahli. Validitas ahli ini digunakan untuk mengecek kelayakan instrumen angket habits of mind dan self efficacy. Validitas ahli dalam instrumen pada penelitian ini Dosen Pendidikan Matematika UIN Walisongo Semarang yaitu Prihadi Kurniawan, M.Sc. adapaun saran dari ahli adalah pernyataan dalam

instrumen perlu direvisi dengan mengganti beberapan item pernyataan yang kurang sesuai dengan indikator instrumen. Detail validitas ahli pada Lampiran 23 dan 24.

b. Validitas Butir

Uji validitas bertujuan untuk mengetahui ketepatan dan kesesuaian instrumen dalam mengukur angket habits of mind dan self efficacy serta tes kemampuan pemecahan masalah. Pengujian validitas butir dalam penelitian ini menggunakan korelasi product moment sebagai berikut:

$$r_{xy} = \frac{N\sum XY - (\sum X)(\sum Y)}{\sqrt{\{n\sum X^2 - (\sum X)^2\}\{N\sum Y^2 - (\sum Y)^2\}}}$$

Keterangan:

 r_{xy} = koefisien korelasi

N = jumlah siswa

 $\sum X$ = jumlah seluruh skor X

 $\sum Y$ = jumlah seluruh skor Y

Pada uji tersebut diperoleh r_{hitung} kemudian dibandingkan dengan r_{tabel} product moment taraf signifikansi 5% dengan uji dua arah. Jika diperoleh $r_{hitung} \geq r_{tabel}$ maka butir soal yang diujikan valid, tetapi jika $r_{hitung} < r_{tabel}$ maka butir soal dinyatakan tidak valid (Anwar, 2009).

Hasil uji coba angket dan tes dilakukan dengan jumlah siswa 32, maka N = 32 pada taraf signifikansi 5% dengan uji 2 sisi maka r_{tabel} = 0,349. Butir soal dinyatakan valid jika $r_{xy} > r_{tabel}$, diperoleh hasil sebagai berikut:

Tabel 3. 7 Hasil Uji Validitas Angket *Habits Of Mind*Tahap 1

D .:	I		1 1 .
Butir	r_{hitung}	r_{tabel}	keterangan
pernyataan			
1	0,499	0,349	Valid
2	0,440	0,349	Valid
3	0,617	0,349	Valid
4	0,541	0,349	Valid
5	0,520	0,349	Valid
6	0,247	0,349	Tidak Valid
7	0,452	0,349	Valid
8	0,296	0,349	Valid
9	0,447	0,349	Valid
10	0,392	0,349	Valid
11	0,160	0,349	Tidak Valid
12	0,307	0,349	Tidak Valid
13	0,391	0,349	Valid
14	0,476	0,349	Valid
15	0,597	0,349	Valid
16	0,591	0,349	Valid
17	0,451	0,349	Valid
18	0,546	0,349	Valid
19	0,491	0,349	Valid
20	0,533	0,349	Valid
21	0,483	0,349	Valid
22	0,191	0,349	Tidak Valid
23	0,375	0,349	Valid
24	0,627	0,349	Valid
25	0,600	0,349	Valid

26	0,323	0,349	Tidak Valid
27	0,236	0,349	Tidak Valid
28	0,586	0,349	Valid
29	0,442	0,349	Valid
30	0,394	0,349	Valid

Berdasarkan Tabel 3.7 diperoleh 23 butir valid dan 7 butir tidak valid. Detail perhitungan pada Lampiran 25.

Hasil uji validitas tersebut masih terdapat pernyataan yang tidak valid, sehingga dilakukan uji validitas tahap 2 sebagai berikut:

Tabel 3. 8 Hasil Uji Validitas Angket *Habits Of Mind*Tahap 2

Butir	r_{hitung}	r_{tabel}	keterangan
pernyataan	Ü		
1	0,508	0,349	Valid
2	0,462	0,349	Valid
3	0,644	0,349	Valid
4	0,609	0,349	Valid
5	0,552	0,349	Valid
6	0,470	0,349	Valid
7	0,512	0,349	Valid
8	0,378	0,349	Valid
9	0,384	0,349	Valid
10	0,556	0,349	Valid
11	0,537	0,349	Valid
12	0,632	0,349	Valid
13	0,477	0,349	Valid
14	0,494	0,349	Valid
15	0,448	0,349	Valid
16	0,499	0,349	Valid
17	0,407	0,349	Valid

18	0,424	0,349	Valid
19	0,638	0,349	Valid
20	0,650	0,349	Valid
21	0,599	0,349	Valid
22	0,494	0,349	Valid
23	0,410	0,349	Valid

Berdasarkan Tabel 3.8 menghasilkan 23 butir pernyataan valid. Hasil analisis validitas butir tahap 2 ini menjadi instrumen peneltian. Detail perhitungan pada Lampiran 25.

Tabel 3. 9 Hasil Uji Validitas *Angket Self Efficacy*Tahap 1

	1		
Butir	r_{hitung}	r_{tabel}	keterangan
pernyataan			
1	0,552	0,349	Valid
2	0,754	0,349	Valid
3	0,498	0,349	Valid
4	0,635	0,349	Valid
5	0,751	0,349	Valid
6	0,434	0,349	Valid
7	0,274	0,349	Tidak Valid
8	0,506	0,349	Valid
9	0,414	0,349	Valid
10	0,668	0,349	Valid
11	0,522	0,349	Valid
12	0,558	0,349	Valid
13	0,468	0,349	Valid
14	0,682	0,349	Valid
15	0,401	0,349	Valid
16	0,153	0,349	Tidak Valid
17	0,391	0,349	Valid
18	0,635	0,349	Valid
19	0,592	0,349	Valid

20	0,632	0,349	Valid
21	0,065	0,349	Tidak Valid
22	0,550	0,349	Valid
23	0,307	0,349	Tidak Valid
24	0,630	0,349	Valid
25	0,633	0,349	Valid
26	0,119	0,349	Tidak Valid
27	0,472	0,349	Valid
28	0,736	0,349	Valid
29	0,382	0,349	Valid
30	0,483	0,349	Valid

Berdasarkan Tabel 3.9 diperoleh 25 butir pernyataan valid dan 5 butir tidak valid. Detail perhitungan pada Lampiran 26.

Hasil analisis uji validitas tahap 1 tersebut masih terdapat pernyataan yang tidak valid, sehingga dilakukkan uji valididtas tahap 2 sebagai berikut:

Tabel 3. 10 Hasil Uji Validitas Angket *Self Efficacy*Tahap 2

Butir	r_{hitung}	r_{tabel}	keterangan
pernyataan			
1	0,520	0,349	Valid
2	0,783	0,349	Valid
3	0,500	0,349	Valid
4	0,646	0,349	Valid
5	0,734	0,349	Valid
6	0,449	0,349	Valid
7	0,456	0,349	Valid
8	0,468	0,349	Valid
9	0,665	0,349	Valid
10	0,545	0,349	Valid
11	0,561	0,349	Valid

12	0,485	0,349	Valid
13	0,679	0,349	Valid
14	0,401	0,349	Valid
15	0,387	0,349	Valid
16	0,620	0,349	Valid
17	0,640	0,349	Valid
18	0,632	0,349	Valid
19	0,553	0,349	Valid
20	0,643	0,349	Valid
21	0,681	0,349	Valid
22	0,471	0,349	Valid
23	0,716	0,349	Valid
24	0,343	0,349	Tidak Valid
25	0,498	0,349	Valid

Berdasarkan Tabel 3.10 diperoleh 24 butir pernyataan valid dan 1 butir tidak valid. Detail perhitungan pada Lampiran 26.

Hasil analisis uji validitas tahap 2 masih terdapat butir pernyataan yang tidak valid, sehingga ilakukan uji validitas tahap 3 sebagai berikut:

Tabel 3. 11 Hasil Uji Validitas *Angket Self Efficacy*Tahap 3

Butir	r_{hitung}	r_{tabel}	keterangan
pernyataan	Ü		
1	0,522	0,349	Valid
2	0,773	0,349	Valid
3	0,486	0,349	Valid
4	0,638	0,349	Valid
5	0,732	0,349	Valid
6	0,465	0,349	Valid
7	0,442	0,349	Valid
8	0,482	0,349	Valid

9	0,659	0,349	Valid
10	0,537	0,349	Valid
11	0,565	0,349	Valid
12	0,490	0,349	Valid
13	0,683	0,349	Valid
14	0,406	0,349	Valid
15	0,400	0,349	Valid
16	0,632	0,349	Valid
17	0,656	0,349	Valid
18	0,631	0,349	Valid
19	0,557	0,349	Valid
20	0,642	0,349	Valid
21	0,679	0,349	Valid
22	0,467	0,349	Valid
23	0,720	0,349	Valid
24	0,479	0,349	Valid

Berdasarkan Tabel 3.11 diperoleh 24 butir pernyataa yang valid. Hasil analisis uji validitas tahap 3 ini digunakan sebagai instrumen penelitian. Detail perhitungan pada Lampiran 26.

Tabel 3. 12 Hasil Uji Validitas Tes Kemampuan Pemecahan Masalah Matematis

Butir	r_{hitung}	r_{tabel}	keterangan
pernyataan			
1	0,774	0,349	Valid
2	0,550	0,349	Valid
3	0,778	0,349	Valid
4	0,863	0,349	Valid
5	0,762	0,349	Valid

Berdasarkan Tabel 3.12 diperoleh hasil semua soal tes dinyatakan valid. Detail perhitungan pada Lampiran 27.

c. Uji Reliabilitas

Uji reliabilitas digunakan untuk mengetahui reliabilitas pada angket habits of mind dan self efficacy serta tes kemampuan pemecahan masalah matematis menggunakan teknik Alpha Cronbach, teknik ini dipilih karena tidak hanya digunakan untuk tes dengan dua pilihan saja tetapi penerapannya lebih luas (Arifin, 2017). Adapun rumus Alpha Cronbach sebagai berikut:

$$r_{11} = \left(\frac{n}{n-1}\right) \left(1 - \frac{\sum s_i^2}{s_t^2}\right)$$

Keterangan:

 r_{11} = reliabilitas

n = jumlah butir soal

 $\sum s_i^2$ = total varians skor masing-masih butir

 s_t^2 = varians total

Pada uji tersebut, diperoleh r_{11} kemudian dibandingkan dengan hasil r_{tabel} dengan taraf signifikansi 5%. Jika diperoleh $r_{11} \ge r_{tabel}$ maka butir soal yang diujikan reliabel (Supardi, 2017).

Hasil perhitungan koefisien reliabilitas pada angket habits of mind diperoleh $r_{11}=0.861$ dengan taraf signifikan $\alpha=5\%$ dan n=23 maka $r_{tabel}=0.396$. Berarti $r_{11}\geq 0.396$ sehingga angket habits of mind reliabel, detail perhitungan pada Lampiran 25. Angket self efficacy diperoleh $r_{11}=0.898$, dengan taraf signifikan $\alpha=5\%$ dan n=24 maka $r_{tabel}=0.388$. Berarti $r_{11}\geq 0.388$ sehingga angket self efficacy reliabel, detail perhitungan pada Lampiran 26. Kemudian untuk tes kemampuan pemecahan masalah matematis diperoleh $r_{11}=0.793$ dengan taraf signifikan taraf signifikan $\alpha=5\%$ dan n=24 maka $r_{tabel}=0.349$. Berarti $r_{11}\geq 0.349$ sehingga tes kemampuan pemecahan masalah matematis reliabel, detail perhitungan pada Lampiran 27.

d. Tingkat Kesukaran

Rumus yang digunakan untuk mengetahui indeks kesukaran butir soal tes kemampuan pemecahan masalah matematis siswa menggunakan rumus sebagai berikut (Arifin, 2017):

(1) Menghitung rata-rata skor tiap butir:

Rata-rata =
$$\frac{jumlah \ skor \ siswa}{jumlah \ siswa}$$

(2) Menghitung tingkat kesukaran

Tingkat kesukaran =
$$\frac{rata - rata}{skor maksimum tiap soal}$$

Kriteria yang digunakan dalam peneliitan ini sebagai berikut (Arifin, 2017):

Tabel 3. 13 Kriteria Tingkat Kesukaran

Besarnya P	Interpretasi
$0.00 \le P \le 0.30$	Sukar
$0.31 \le P \le 0.70$	Sedang
$0.71 \le P \le 1.00$	Mudah

Setelah soal tes valid dan reliabel, selanjutnya dilakukan analisis tingkat kesukaran untuk mengetahui kriteria dari setiap butir soal tes. Hasil perhitungan tingkat kesukaran diperoleh kriteria sebagai berikut:

Tabel 3. 14 Hasil Tingkat Kesukaran Kemampuan
Pemecahan Masalah Matematis

Butir soal	Nilai P	Keterangan
1	0,599	Sedang
2	0,634	Sedang
3	0,478	Sedang
4	0,347	Sedang
5	0,356	Sedang

Dari Tabel 3.14 didapat 5 butir soal dengan kriteria sedang. Detail perhitungan pada Lampiran 28.

e. Daya Pembeda

Daya pembeda soal adalah kemampuan suatu soal untuk membedakan siswa yang berkemampuan tinggi dengan yang berkemampuan rendah. Rumus yang digunakan untuk mengetahui daya pembeda soal tes kemampuan pemecahan masalah matematis adalah sebagai berikut (Arifin, 2017):

$$DP = \frac{\bar{X}KA - \bar{X}KB}{skor\ maks}$$

Keterangan:

DP = Daya Pembeda

 $\bar{X}KA$ = Rata-rata kelompok atas

 $\bar{X}KB = \text{rata-tata kelompok bawah}$

Klasifikasi daya pembeda soal adalah sebagai berikut (Arifin, 2017):

Tabel 3. 15 Kriteria Daya Pembeda

Interval	Kriteria
$0.00 < DP \le 0.20$	Jelek
$0.21 < DP \le 0.40$	Cukup
$0,41 < DP \le 0,70$	Baik
0,71 < DP ≤ 1,00	Baik Sekali

Hasil perhitungan daya beda soal diperoleh sebagai berikut:

Baik Baik

 Butir Soal
 Nilai DP
 Keterangan

 1
 0,457
 Baik

 2
 0,211
 Cukup

 3
 0,467
 Baik

 4
 0,589
 Baik

Tabel 3. 16 Hasil Uji Daya Pembeda Kemampuan Pemecahan Masalah Matematis

Dari Tabel 3.16 didapat butir soal dengan kriteria cukup dan 3 butir soal dengan kriteria baik. Detail perhitungan pada Lampiran 29.

0,656

G. Metode Analisis Data

Teknik analisis data digunakan untuk mengolah data dari hasil suatu penelitian. Penelitian ini menggunakan teknik analisis regresi linear berganda. Penghitungan statistik dalam analisis data penelitian ini menggunakan aplikasi bantuan berupa *Microsoft Excel*. Analisis data ini bertujuan untuk mencari pengaruh antara *habits of mind* dan *self efficacy* terhadap kemampuan pemecahan masalah matematis siswa sesuai dengan hipotesis yang telah diajukan.

1. Uji Asumsi Klasik

Uji asumsi klasik regresi linear berganda meliputi uji normalitas, uji linearitas, uji multikolinieritas, uji autokorelasi dan uji heteroskedastisitas yang digunakan sebagai prasyarat dalam analisis hipotesis regresi berganda. Berikut uji asumsi klasik yaitu:

a. Uji Normalitas

Uji Normalitas ialah suatu tata cara yang dipergunakan untuk melihat apakah nilai suatu residual yang dihasilkan dari regresi berdistribusi normal atau tidak. Model regresi dikatakan baik apabila nilai residual berdistribusi normal. Uji normalitas dalam penelitian ini bertujuan untuk mengetahui normal atau tidaknya distribusi masingmasing variabel penelitian yang meliputi: habits of mind (X_1) , self efficacy (X_2) dan kemampuan pemecahan masalah matematis (Y). Untuk keperluan pengujian normalitas data ini menggunakan uji kolmogorov-smirnov dengan bantuan aplikasi Microsoft Excel.

Dasar pengambilan keputusan dalam uji normalitas kolmogorov-smirnov yaitu jika nilai $D_0 \leq D_{tabel}$ maka nilai residual tersebut berdistribusi normal, dan jika nilai $D_0 > D_{tabel}$ maka nilai residual tersebut berdistribusi tidak normal (Kadir, 2010).

b. Uji Linearitas

Uji linearitas dalam penelitian ini bertujuan untuk mengetahui linearitas antara variabel *habits of*

 $mind(X_1)$ dan $self\ efficacy(X_2)$ terhadap kemampuan pemecahan masalah matematis (Y). Untuk keperluan pengujian linearitas ini menggunakan $test\ for\ linearity$ berbantuan SPSS. Data dapat diuji regresi jika data tersebut linear. Hipotesis:

H₀: regresi linear

H₁: regresi non linear

Dasar pengambilan keputusan dengan melihat nilai signifikansi pada *deviation for linearity*. Jika nilai signifikansi pada *deviation for linearity* > 0,05 maka linear (Purnomo, 2016).

c. Uji Multikolinearitas

Uji multikolinearitas dalam penelitian ini bertujuan untuk mengetahui hubungan antara variabel habits of mind (X_1) dan self efficacy (X_2) . model regresi yang baik tidak terjadi multikolinearitas. Salah satu indikasi terdapat masalah multikolinearitas dapat kita tentukan dengan melihat nilai tolerance dan VIF (Varian *Infloating Factor*). Untuk pengujian multikolinearitas menggunakan bantuan aplikasi Microsoft Excel. Mencari nilai tolerance dapat menggunakan rumus $tolerance = 1 - r^2$, dimana r adalah korelasi antara X_1 dan X_2 . Kemudian untuk mencari nilai VIF dapat menggunakan rumus $\frac{1}{Tolerance}$. Dasar pengambilan keputusan melihat nilai *Variance Inflation Factor* (VIF) < 10 dan *tolerance* > 0,1, berarti tidak terjadi multikolinearitas (Widarjono, 2019).

d. Uji Autokorelasi

Uji autokorelasi dalam penelitian ini bertujuan untuk mengetahui ada tidaknya autokorelasi antara variabel habits of mind (X_1) dan self efficacy (X_2) terhadap kemampuan pemecahan masalah matematis (Y). Model regresi yang baik tidak terjadi autokorelasi. Untuk keperluan pengujian autokorelasi ini digunakan uji durbin Watson dengan bantuan Microsoft Excel. rumus yang digunakan yaitu (Widarjono, 2019).:

$$d = \frac{\sum (e_t - e_{t-1})^2}{\sum (e_t)^2}$$

Keterangan:

d = Durbin-Watson

 e_t = Residual pada pengamatan ke-t

Dasar pengambilan keputusan melihat nilai Durbin Watson. Jika DU (Durbin Uper) < DW (Durbin Watson) < 4-DU artinya tidak terjadi autokorelasi. Jika DW (Durbin Watson) < DL (Durbin Low) atau DW (Durbin Watson) > 4-DL (Durbin Low) artinya terjadi autokorelasi (Widarjono, 2019).

e. Uji Heteroskedastisitas

Uji Heteroskedastisitas adalah suatu tata cara menguji ketidaksamaan varian dari residual untuk semua pengamatan pada model regresi. Model regresi yang baik tidak terjadi heteroskedastisitas. Uji ini bertujuan untuk mengetahui ada tidaknya heteroskedastisitas antara habits of mind (X_1) dan self efficacy (X_2) terhadap kemampuan pemecahan masalah matematis (Y). Untuk keperluan pengujian heteroskedastisitas ini digunakan output Scatterplot dengan bantuan SPSS.

Dasar pengambilan keputusan meihat grafik pada *output Scatterplot*. Jika tidak ada pola yang jelas, seperti titik-titik menyebar diatas dan di bawah angka 0 pada sumbu Y, maka tidak terjadi heteroskedastisitas (Purnomo, 2016).

2. Uji Normalitas

Uji normalitas pada pengujian normalitas tahap akhir langkah-langkahnya sama seperti pengujian data tahap awal. Jika data berdistribusi normal maka dalam uji hipotesis menggunakan analisis statistika parametrik, sedangkan jika data tidak normal maka menggunakan analisis statistika non parametrik.

3. Uji Hipotesis

Uji hipotesis kebenaran dalam penelitian ini menggunakan analisis regresi linear sederhana dan analisis regresi linear berganda dengan bantuan aplikasi *Microsoft Excel* untuk menjawab tiga hipotesis yang telah disebutkan.

a. Pengaruh *Habits of Mind* (X_1) terhadap Kemampuan Pemecahan Masalah Matematis (Y)

1) Persamaan Regresi Sederhana

Analisis regresi linear sederhana adalah analisis berdasarkan pada hubungan sebab akibat satu variabel bebas dengan satu variabel terikat. Persamaan umum regresi linear sederhana yaitu (Hanief & Himawanto, 2017):

 $\hat{Y} = a + hX$

dimana:

 \hat{Y} = Nilai prediksi komunikasi matematis

a = Nilai konstanta

b = Koefisien yang menyatakan besarnya pengaruh habits of mind dengan kemampuan pemecahan masalah matematis

X = Habits of mind

Adapun perhitungan analisis regresi sederhana dapat dihitung dengan rumus sebagai berikut:

$$b = \frac{n[\sum X_i Y] - [\sum X_i][\sum Y]}{n \sum X_i^2 - (\sum X_i)^2}$$
$$a = \frac{\sum Y - (b \sum X_i)}{n}$$

2) Uji Keberatian dan Uji Kelinearan Regresi

Uji keberatian dan kelinearan regresi digunakan untuk melihat keberatian dan kelinearan antara variabel habits of mind (X_1) terhadap kemampuan pemecahan masalah matematis (Y) dengan menggunakan analisis varians, rumusnya sebagai berikut (Hanief & Himawanto, 2017):

• Hitung jumlah kuadrat total

$$JK(T) = \sum Y^2$$

• Hitung jumlah kuadrat Koefisien $JK(a) = \frac{(\sum Y)^2}{n}$

Hitung jumlah kuadrat regresi

$$JK(b|a) = b\left\{\sum XY - \frac{(\sum X)(\sum Y)}{n}\right\}$$

• Hitung jumlah kuadrat residual

$$JK(S) = JK(T) - JK(a) - JK(b|a)$$

• Hitung rata-rata kuadrat regresi

$$S_{reg}^2 = JK(b|a)$$

• Hitung rata-rata kuadrat residual

$$S_{sis}^2 = \frac{JK(S)}{n-2}$$

• Hitung statistik uji F (Uji keberartian)

$$F = \frac{S_{reg}^2}{S_{sis}^2}$$

• Hitung jumlah kuadrat tuna cocok

$$JK_{TC} = JK(S) - JK(G)$$

• Hitung rata rata kuadrat tuna cocok

$$S_{TC}^2 = \frac{JK(TC)}{k-2}$$

• Hitung rata rata kuadrat galat

$$S_G^2 = \frac{JK(G)}{n-k}$$

• Hitung statistik uji F (uji kelinieran)

$$F = \frac{S_{TC}^2}{S_G^2}$$

Hipotesis:

a) Uji Keberatian

 H_0 : Koefisien arah regresi tidak signifikan

 H_1 : Koefisien arah regresi signifikan

Untuk menguji hipotesis taitu dengan statistik F_{hitung} dibandingkan dengan F_{tabel} , menggunakan taraf signifikansi sebesar $\alpha = 5\%$ dengan dk pembilang = 1 serta dk penyebut = n-2, (n merupakan jumlah sampel) untuk mendapatkan nilai F_{tabel} . Jika $F_{hitung} > F_{tabel}$, maka H_0 ditolak berarti terdapat pengaruh yang signifikan (Hanief & Himawanto, 2017).

b) Uji Linearitas

 H_0 : regresi linear

 H_1 : regresi non linear

Untuk menguji hipotesis yaitu dengan statistik F_{hitung} dibandingkan dengan F_{tabel} , menggunakan taraf signifikansi sebesar $\alpha = 5\%$ dengan dk pembilang = k-2 serta dk penyebut = n-k, (k jumlah kelompok berdasarkan data X_1 dan n merupakan jumlah sampel) untuk mendapatkan nilai F_{tabel} . Jika

 $F_{hitung} < F_{tabel}$, maka H_0 diterima berarti regresi linear (Hanief & Himawanto, 2017).

3) Uji Koefisien Determinasi

Dalam penelitian ini uji koefisien determinasi digunakan untuk mengetahui besarnya presentase kontribusi hubungan antara variabel habits of mind (X_1) terhadap kemampuan pemecahan masalah matematis (Y). Untuk menguji koefisien determinasi menggunakan rumus sebagai berikut: (Bustami et al., 2014)

$$KP = \left(r_{xy}\right)^2 \times 100\%$$

dengan,

$$r_{xy} = \frac{n. (\sum XY) - (\sum X)(\sum Y)}{\sqrt{\{n. \sum X^2 - (\sum X)^2\}\{n. \sum Y^2 - (\sum Y)^2\}}}$$

Keterangan:

KP = Besarnya Koefisien korelasi

 r_{xy} = Koefisien korelasi

- b. Pengaruh *Self Efficacy* (X_2) terhadap Kemampuan Pemecahan Masalah Matematis (Y)
 - 1) Persamaan Regresi Sederhana

Analisis regresi linear sederhana adalah analisis berdasarkan pada hubungan sebab akibat satu variabel bebas dengan satu variabel terikat. Persamaan umum regresi linear sederhana yaitu (Hanief & Himawanto, 2017):

$$\hat{Y} = a + bX$$

dimana:

 \hat{Y} = Nilai prediksi komunikasi matematis

a = Nilai konstanta

b = Koefisien yang menyatakan besarn pengaruh self efficacy dengan kemampuan pemecahan masalah matematis

$$X = Self efficacy$$

Adapun perhitungan analisis regresi sederhana dapat dihitung dengan rumus sebagai berikut:

$$b = \frac{n[\sum X_i Y] - [\sum X_i][\sum Y]}{n \sum X_i^2 - (\sum X_i)^2}$$
$$a = \frac{\sum Y - (b \sum X_i)}{n}$$

2) Uji Keberatian dan Uji Kelinearan Regresi

Uji keberatian dan kelinearan regresi digunakan untuk melihat keberatian dan kelinearan antara variabel self efficacy (X_2) terhadap kemampuan pemecahan masalah matematis (Y) dengan menggunakan analisis

varians, rumusnya sebagai berikut (Hanief & Himawanto, 2017):

Hitung jumlah kuadrat total

$$JK(T) = \sum Y^2$$

Hitung jumlah kuadrat Koefisien

$$JK(a) = \frac{(\sum Y)^2}{n}$$

· Hitung jumlah kuadrat regresi

$$JK(b|a) = b\left\{ \sum XY - \frac{(\sum X)(\sum Y)}{n} \right\}$$

Hitung jumlah kuadrat residual

$$JK(S) = JK(T) - JK(a) - JK(b|a)$$

Hitung rata-rata kuadrat regresi

$$S_{reg}^2 = JK(b|a)$$

Hitung rata-rata kuadrat residual

$$S_{sis}^2 = \frac{JK(S)}{n-2}$$

• Hitung statistik uji F (Uji keberartian

$$F = \frac{S_{reg}^2}{S_{sis}^2}$$

Hitung jumlah kuadrat tuna cocok

$$JK_{TC} = JK(S) - JK(G)$$

Hitung rata rata kuadrat tuna cocok

$$S_{TC}^2 = \frac{JK(TC)}{k-2}$$

• Hitung rata rata kuadrat galat

$$S_G^2 = \frac{JK(G)}{n-k}$$

• Hitung statistik uji F (uji kelinieran)

$$F = \frac{S_{TC}^2}{S_C^2}$$

Hipotesis:

a) Uji Keberatian

 H_0 : Koefisien arah regresi tidak signifikan

 H_1 : Koefisien arah regresi signifikan

Untuk menguji hipotesis yaitu dengan statistik F_{hitung} dibandingkan dengan F_{tabel} , menggunakan taraf signifikansi sebesar $\alpha = 5\%$ dengan dk pembilang = 1 serta dk penyebut = n-2, (n merupakan jumlah sampel) untuk mendapatkan nilai F_{tabel} . Jika $F_{hitung} > F_{tabel}$, maka H_0 ditolak berarti terdapat pengaruh yang signifikan (Hanief & Himawanto, 2017).

b) Uji Linearitas

 H_0 : regresi linear

 H_1 : regresi non linear

Untuk menguji hipotesis yaitu dengan statistik F_{hitung} dibandingkan dengan F_{tabel} , menggunakan taraf signifikansi sebesar $\alpha = 5\%$ dengan dk pembilang = k - 2 serta dk penyebut = n - k, (k jumlah kelompok berdasarkan data X_1 dan n merupakan jumlah sampel) untuk mendapatkan nilai F_{tabel} . Jika $F_{hitung} < F_{tabel}$, maka H_0 diterima berarti regresi linear (Hanief & Himawanto, 2017).

3) Uji Koefisien Determinasi

Dalam penelitian ini uji koefisien determinasi digunakan untuk mengetahui besarnya presentase kontribusi hubungan antara variabel *self efficacy* (X_2) terhadap kemampuan pemecahan masalah matematis (Y). Untuk menguji koefisien determinasi menggunakan rumus sebagai berikut: (Bustami et al., 2014)

$$KP = (r_{xy})^2 \times 100\%$$
 dengan,

$$r_{xy} = \frac{n. (\sum XY) - (\sum X)(\sum Y)}{\sqrt{\{n. \sum X^2 - (\sum X)^2\}\{n. \sum Y^2 - (\sum Y)^2\}}}$$

Keterangan:

KP = Besarnya Koefisien korelasi

 r_{xy} = Koefisien korelasi

- c. Pengaruh Habits of Mind (X_1) dan Self Efficacy (X_2) terhadap Kemampuan Pemecahan Masalah Matematis (Y)
 - 1) Persamaan Regresi Ganda

Persamaan regresi linear berganda adalah:(Jaya, 2019)

$$\hat{Y} = a + b_1 X_1 + b_2 X_2$$

Keterangan:

 \widehat{Y} = Nilai prediksi kemampuan peemecahan masalah matematis

a = Nilai konstanta

b = Koefisien regresi yang menunjukkan besarnya pengaruh X_1 dan X_2 terhadap Y,

 X_1 = Hasil angket *habits of mind*

 X_2 = Hasil angket *self efficacy*

Dalam penelitian ini menggunakan analisis regresi ganda untuk mengetahui pengaruh habits of mind (X_1) dan self efficacy (X_2) terhadap kemampuan pemecahan masalah matematis (Y). Perhitungan analisis regresi sederhana pada penelitian ini menggunakan bantuan aplikasi

Microsoft Excel. Rumus yang digunakan untuk menghitung nilai a, b_1 , dan b_2 sebagai berikut (Jaya, 2019):

$$b_{1} = \frac{(\sum x_{2}^{2})(\sum x_{1}y) - (\sum x_{1}x_{2})(\sum x_{2}y)}{(\sum x_{1}^{2})(\sum x_{2}^{2}) - (\sum x_{1}x_{2})^{2}}$$

$$b_{2} = \frac{(\sum x_{1}^{2})(\sum x_{2}y) - (\sum x_{1}x_{2})(\sum x_{1}y)}{(\sum x_{1}^{2})(\sum x_{2}^{2}) - (\sum x_{1}x_{2})^{2}}$$

$$a = \overline{Y} - b_{1}\overline{X_{1}} - b_{2}\overline{X_{2}}$$

2) Uji Keberatian Regresi Ganda

Dalam penelitian ini uji keberatian regresi ganda digunakan untuk mengetahui ada atau tidaknya pengaruh variabel habits of mind (X_1) dan self efficacy (X_2) dengan kemampuan pemecahan masalah matematis (Y).

Hipotesis:

 H_0 : persamaan regresi ganda tidak berarti H_1 : persamaan regresi ganda berarti

Untuk menguji keberatian koefisien menggunakan rumus sebagi berikut (Jaya, 2019):

$$F = \frac{\frac{JK_{reg}}{k}}{\frac{JK_{res}}{(n-k-1)}}$$

dengan,

$$JK_{Reg} = b_1 \sum x_1 y + b_2 \sum x_2 y$$

$$JK_{res} = \sum (Y - \hat{Y})^2$$

Kemudian nilai F_{hitung} dibandingkan dengan nilai F_{tabel} . Jika $F_{hitung} \geq F_{tabel}$, maka regresi berarti dan sebaliknya jika $F_{hitung} < F_{tabel}$, maka regresi ganda tidak berarti.

3) Koefisien Determinasi

Dalam penelitian ini uji koefisien determinasi digunakan untuk mengetahui besarnya presentase kontribusi hubungan antara variabel *habits of mind* (X_1) dan variabel *self efficacy* (X_2) terhadap kemampuan pemecahan masalah matematis (Y). Untuk menguji koefisien determinasi menggunakan rumus sebagai berikut (Jaya, 2019):

$$KP = \left(R_{X_1 X_2 Y}\right)^2 \times 100\%$$
 dengan,

$$R_{X_1 X_2 Y} = \sqrt{\frac{b_1 \sum x_1 y + b_2 \sum x_2 y}{\sum y^2}}$$

Keterangan:

KP = Besarnya koefisien korelasi ganda $R_{X_1X_2Y}$ = Koefisien korelasi ganda

BAB IV

HASIL PENELITIAN DAN PEMBAHASAN

A. Deskripsi hasil penelitian

Dalam penelitian di MTs Negeri 05 Cilacap diperoleh hasil data angket *habits of mind*, angket *self efficacy*, dan hasil tes kemampuan pemecahan masalah matematis siswa. Data penelitian hasil konversi nilai maksimal 100 poin untuk memudahkan dalam pengolahan data. Berikut hasil data yang diperoleh:

Tabel 4. 1 Data *Habits of Mind, Self Efficacy,* dan Kemampuan Pemecahan Masalah Matematis Siswa

No	Kode	Daftar Nilai			
		Habits of	Self	KPMM	
		Mind	Efficacy		
1	R1	65,22	61,46	72,41	
2	R2	69,57	60,42	72,41	
3	R3	57,61	61,46	68,97	
4	R4	71,74	66,67	72,41	
5	R5	63,04	67,71	65,52	
6	R6	77,17	69,79	67,24	
7	R7	48,91	43,75	44,83	
8	R8	68,48	67,71	68,97	
9	R9	56,52	46,88	62,07	
10	R10	60,87	70,83	70,69	
11	R11	65,22	45,83	60,34	
12	R12	68,48	67,71	60,34	
13	R13	69,57	57,29	62,07	
14	R14	51,09	62,50	65,52	
15	R15	81,52	70,83	82,76	
16	R16	45,65	60,42	44,83	

17	R17	65,22	69,79	72,41
18	R18	56,25	51,09	48,28
19	R19	71,74	65,63	68,97
20	R20	55,43	51,04	63,79
21	R21	48,91	51,04	53,45
22	R22	67,39	65,63	67,24
23	R23	47,83	58,33	48,28
24	R24	65,22	59,38	70,69
25	R25	56,52	54,17	65,52
26	R26	59,78	57,29	63,79
27	R27	69,57	62,50	62,07
28	R28	73,91	56,25	68,97
29	R29	56,52	46,88	62,07
30	R30	58,70	53,13	63,79
31	R31	67,39	61,46	58,62
32	R32	63,04	53,13	65,52
33	R33	60,87	52,08	62,07
34	R34	60,87	52,08	51,72
35	R35	67,39	70,83	67,24
36	R36	70,65	63,54	70,69
37	R37	46,74	51,04	44,83
38	R38	57,61	50,00	50,00
39	R39	64,13	57,29	53,45
40	R40	58,70	59,38	63,79
41	R41	67,39	66,67	68,97
42	R42	43,48	46,88	41,38
43	R43	91,30	82,29	87,93
44	R44	58,70	52,08	56,9
45	R45	55,43	57,29	46,55
46	R46	58,70	50,00	51,72
47	R47	59,78	63,54	53,45
48	R48	65,22	68,75	65,52
49	R49	60,87	57,29	62,07
50	R50	60,87	43,75	68,97
51	R51	66,30	62,50	63,79
52	R52	61,96	58,33	53,45
53	R53	70,65	66,67	63,79
54	R54	81,52	78,13	86,21
-	-	-		

55	R55	70,65	58,33	62,07
Jumlah nilai		3463,86	3266,74	3441,40
Rata	-rata	62,98	59,40	62,57
Nilai Tertinggi		91,3	82,29	87,93
Nilai Terendah		43,48	43,75	41,38
Jumlah R	esponden	44		

1. Habits of Mind

Data hasil penyebaran angket *habits of mind* yang berjumlah 23 butir pernyataan kepada 55 responden menunjukkan bahwa nilai rata-rata angket yaitu 62,98 dengan nilai terendah 43,48 dan nilai tertinggi 91,30. Interpretasi hasil angket sebagai berikut:

Tabel 4. 2 Deskriptif Persentasi Angket Habits Of Mind

Interval	Kriteria	Frekuensi	Persentasi
Nilai ≥ 72	Tinggi	5	9%
54 ≤ Nilai < 72	Sedang	43	78%
Nilai < 54	Rendah	7	13%
Jumlah		55	100%

Berdasarkan Tabel 4.2 dapat diketahui bahwa dari 55 siswa diperoleh tingkat *habits of mind* sebagai berikut: 9% siswa memiliki *habits of mind* yang tinggi, 78% siswa memiliki habits of mind sedang, dan 13% siswa memiliki *habits of mind* rendah.

2. Self Efficacy

Data hasil penyebaran angket *self efficacy* yang berjumlah 24 butir pernyataan kepada 55 responden menunjukkan bahwa nilai rata-rata angket yaitu 59,40 dengan nilai terendah 43,75 dan nilai tertinggi 82,29. Interpretasi hasil angket sebagai berikut:

Tabel 4. 3 Deskriptif Persentasi Angket Self Efficacy

Interval	Kriteria	Frekuensi	Persentasi
Nilai ≥ 68	Tinggi	8	14%
51 ≤ Nilai < 68	Sedang	39	70%
Nilai < 51	Rendah	8	14%
Jumlah		55	100%

Berdasarkan Tabel 4.3 dapat diketahui bahwa dari 55 siswa diperoleh tingkat *self efficacy* sebagai berikut: 14% siswa memiliki *self efficacy* tinggi, 70% siswa memiliki *self efficacy* sedang, dan 14% siswa memiliki *self efficacy* rendah.

3. Kemampuan Pemecahan Masalah Matematis

Data hasil penyebaran tes kemampuan pemecahan masalah matematis yang berjumlah 24 butir pernyataan kepada 55 responden menunjukkan bahwa nilai ratarata angket yaitu 62,57 dengan nilai terendah 41,38 dan nilai tertinggi 87,93. Interpretasi hasil angket sebagai berikut:

Tabel 4. 4 Deskriptif Persentasi Tes Kemampuan Pemecahan Masalah Matematis

Interval	Kriteria	Frekuensi	Persentasi
Nilai ≥ 73	Tinggi	3	6%
53 ≤ Nilai < 73	Sedang	42	76%
Nilai < 53	Rendah	10	18%
Jumla	h	55	100%

Berdasarkan Tabel 4.4 dari 55 siswa diperoleh tingkat kemampuan pemecahan masalah matematis sebagai berikut: 6% siswa memiliki kemampuan pemecahan masalah matematis siswa tinggi, 76% siswa memiliki kemampuan pemecahan masalah matematis sedang, dan 18% siswa memiliki kemampuan pemecahan masalah matematis rendah.

B. Hasil Uji Hipotesis

Analisis uji hipotesis menggunakan data hasil angket *habits of mind, angket self efficacy* dan tes kemampuan pemecahan masalah matematis.

1. Uji Asumsi Klasik

a. Uji Normalitas

Hasil uji normalitas dengan menggunakan kolmogorov-smirnov memperoleh nilai $D_0=0,101$ dan $D_{tabel}=0,183$. Karena nilai $D_0 < D_{tabel}$, maka dinyatakan nilia residual berdistribusi normal. Detail perhitungan detail pada Lampiran 30.

b. Linearitas

Hipotesis:

H₀: Model regresi linear

H₁: Model regresi non linear

Berdasarkan tabel Anova, diperoleh nilai sig.deviation for linearity = 0,521. Nilai 0,521 > 0,05

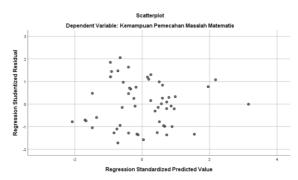
maka H_0 diterima, berarti model persamaan regresi linear. *Output* tabel *anova* dapat dilihat sebagai berikut:

Tabel 4. 5 Output Tabel Anova

			ANOVA Tal	oie			
			Sum of		Mean		
			Squares	df	Square	F	Sig.
Unstandar	Bet	(Combined)	1802.790	51	35.349	1.168	.530
dized	wee	Linearity	.000	1	.000	.000	1.000
Residual *	n	Deviation	1802.790	50	36.056	1.191	.521
Unstandar	Gro	from					
dized	ups	Linearity					
Predicted	With	in Groups	90.800	3	30.267		
Value	Total		1893.589	54			

ANOVA Table

c. Multikolinearitas


Berdasarkan hasil perhitungan diperoleh nilai VIF antara *habits of mind* dan *self efficacy* sebesar 1,900 dan nilai tolerance sebesar 0,526. Karena nilai VIF < 10 dan nilai tolerance > 0,1, maka tidak terjadi multikolinearitas. Detail perhitungan pada Lampiran 31.

d. Autokorelasi

Berdasarkan perhitungan diperoleh nilai Durbin-Watson yaitu 1,643. Nilai DU = 1,641, nilai DL = 1,490 dan nilai 4 - du = 2,359. Jika DU (Durbin Uper) < DW (Durbin Watson) < 4-DU artinya tidak terjadi autokorelasi. Hasil perhitungan diperoleh 1,641 < 1,643 < 2,359, sehingga tidak terjadi autokorelasi. Detail perhitungan pada Lampiran 32.

e. Heteroskedatisistas

Berdasarkan hasil *output Scatterplot* menunjukkan titik-titik diatas dan di bawah angka 0 pada sumbu Y menyebar tidak membentuk pola, sehingga tidak terjadi gejala heteroskedastisitas. *Output Scatterplot* dapat dilihat pada gambar berikut

Gambar 4. 1 Output Scatterplot

Hasil perhitungan dari uji asumsi klasik didapatkan data berditribusi normal, linear, tidak terjadi multikolinearitas, tidak terjadi autokorelasi dan tidak terjadi heteroskedastisitas, sehingga data dapat digunakan untuk analisis regresi linaer berganda.

2. Uji Normalitas

Uji normalitas variabel dengan menggunakan uji kolmogorov smirnov diperoleh hasil sebagai berikut:

Tabel 4. 6 Hasil Uji Normalitas

Variabel	D_0	Dtabel	Keterangan
Habits Of Mind	0,081	0,183	Normal
Self Efficacy	0,076	0,183	Normal
KPMM	0,108	0,183	Normal

Berdasarkan Tabel 4.5 uji normalitas variabel didapat $D_0 < D_{tabel}$, sehingga ketiga variabel berdistribusi normal. Detail perhitungan pada Lampiran 33.

3. Uji Hipotesis

- a. Pengaruh *habits of mind* (X_1) terhadap kemampuan pemecahan matematis (Y)
 - 1) Persamaan Regresi Sederhana

Persamaan regresi linear sederhana adalah (Hanief & Himawanto, 2017):

$$\hat{Y} = a + bX$$

Koefisien perhitungan didapatkan melalui perhitungan sebagai berikut:

$$b = \frac{n[\sum X_1 Y] - [\sum X_1][\sum Y]}{n\sum X_1^2 - (\sum X_1)^2}$$

$$b = \frac{(55 \times 220690,677) - (3464 \times 3441,400)}{(55 \times 222768) - (3464)^2}$$

$$b = 0.856$$

$$a = \frac{\sum Y - (b \sum X_1)}{n}$$

$$a = \frac{3441,400 - (0.856 \times 3464)}{55}$$

$$a = 8.634$$

Dari perhitungan tersebut diperoleh persamaan regresi sederhana yaitu $\hat{Y} = 8,634 + 0,856X_1$. Variabel X_1 menyatakan habits of mind, dan variabel Y menyatakan kemampuan pemecahan masalah. Jika $X_1 = 0$, maka nilai kemampuan pemecahan masalah matematis sebesar 8,634. Detail perhitungan pada Lampiran 34.

2) Uji Keberatian dan Uji Kelinearan

Untuk mempermudah maka dibuatkan tabel anova regresi X_1 terhadap Y. Dari data yang diperoleh hasil skor *habits of mind* terhadap kemampuan pemecahan masalah matematis, didapat data sebagai berikut:

dk JΚ KTF Sumber Variansi Total 55 220733,659 Koefesien (a) 1 215331,527 215331,527 Regresi (b|a) 1 3386,135 3386,135 Residu 53 2015,997 38,038 89,021 25 Tuna Cocook 923,915 36,957 Galat 28 1092,082 39,003 0,948

Tabel 4. 7 Anova Regresi X₁ terhadap Y

Hipotesis:

a) Uji keberatian

 H_0 : Koefisien arah regresi tidak signifikan

 H_1 : Koefisien arah regresi signifikan

diperoleh Hasil perhitungan Hasil perhitungan diperoleh nilai $F_{hitung} = 89,021$ dan $F_{tabel} = 4,02$ dengan taraf signifikansi 5%, dk pembilang = 1 dan dk penyebut = 53. Kemudian nilai F_{hitung} dibandingkan dengan nilai F_{tabel} , maka diperoleh $F_{hitung} > F_{tabel}$. maka H_0 ditolak artinya regresi berarti. Sehingga terdapat pengaruh yang signifikan terhadap habits of mind kemampuan pemecahan masalah. Detail perhitungan pada Lampiran 35.

b) Uji Linearitas

 H_0 : regresi linear

H₁: regresi non linear

Hasil perhitungan diperoleh Hasil perhitungan diperoleh nilai $F_{hitung} = 0.948$ dan $F_{tabel} = 1.91$ dengan taraf signifikansi 5%, dk pembilang = 25 dan dk penyebut = 28. Kemudian nilai F_{hitung} dibandingkan dengan nilai F_{tabel} , maka diperoleh $F_{hitung} < F_{tabel}$, maka H_0 diterima artinya regresi linear. Detail perhitungan pada Lampiran 35.

3) Uji Koefisien Determinasi

$$KP = (r_{xy})^2 \times 100\%$$

 $KP = (0.792)^2 \times 100\% = 62.72\%$

Berdasarkan perhitungan tersebut koefisien determinasi diperoleh = 62,72%artinya persentasi pengaruh habits of mind kemampuan pemecahan terhadap masalah matematis siswa sebesar 62.72%. Detail perhitungan dapat dilihat pada Lampiran 36.

- b. Pengaruh *self efficacy* (X_2) terhadap kemampuan pemecahan masalah matematis (Y)
 - 1) Persamaan Regresi Sederhana

Persamaan regresi linear sederhana adalah (Hanief & Himawanto, 2017):

$$\hat{Y} = a + bX$$

Koefisien perhitungan didapatkan melalui perhitungan sebagai berikut:

$$b = \frac{n[\sum X_2 Y] - [\sum X_2][\sum Y]}{n\sum X_2^2 - (\sum X_2)^2}$$

$$b = \frac{(55 \times 207440,655) - (3267 \times 3441,400)}{(55 \times 198022) - (3267)^2}$$

$$b = 0,761$$

$$a = \frac{\sum Y - (b\sum X_2)}{n}$$

$$a = \frac{3441,400 - (0,761 \times 3267)}{55}$$

$$a = 17,388$$

Dari perhitungan tersebut diperoleh persamaan regresi sederhana yaitu $\hat{Y}=17,388+0,761X_2$. Variabel X_2 menyatakan self efficacy, dan variabel Y menyatakan kemampuan pemecahan masalah. Jika $X_2=0$, maka nilai kemampuan pemecahan masalah matematis sebesar 17,388. Detail perhitungan pada Lampiran 37.

2) Uji Keberatian dan Uji Kelinearan

Untuk mempermudah maka dibuatkan tabel anova regresi X_2 terhadap Y. Dari data yang diperoleh hasil skor *self efficacy* terhadap kemampuan pemecahan masalah matematis, didapat data sebagai berikut:

Tabel 4. 8 Anova Regresi X_2 terhadap Y

Sumber Variansi	dk	JK	KT	F
Total	55	220733,659		
Koefesien (a)	1	215331,527	215331,527	
Regresi (b a)	1	2310,856	2310,856	
Residu	53	3091,277	58,326	39,620
Tuna Cocook	23	911,849	39,646	
Galat	30	2179,428	72,648	0,546

Hipotesis:

a) Uji keberatian

 H_0 : Koefisien arah regresi tidak signifikan

*H*₁: Koefisien arah regresi signifikan

Hasil perhitungan diperoleh Hasil perhitungan diperoleh nilai $F_{hitung}=39,620$ dan $F_{tabel}=4,02$ dengan taraf signifikansi 5%, dk pembilang = 1 dan dk penyebut = 53. Kemudian nilai F_{hitung} dibandingkan dengan nilai F_{tabel} , maka diperoleh $F_{hitung}>F_{tabel}$,

maka H_0 ditolak artinya regresi berarti. Sehingga terdapat pengaruh yang signifikan self efficacy terhadap kemampuan pemecahan masalah. Detail perhitungan pada Lampiran 38.

b) Uji Linearitas

 H_0 : regresi linear

 H_1 : regresi non linear

Hasil perhitungan diperoleh Hasil perhitungan diperoleh nilai $F_{hitung} = 0.948$ dan $F_{tabel} = 1.90$ dengan taraf signifikansi 5%, dk pembilang = 23 dan dk penyebut = 30. Kemudian nilai F_{hitung} dibandingkan dengan nilai F_{tabel} , maka diperoleh $F_{hitung} < F_{tabel}$, maka H_0 diterima artinya regresi linear. Detail perhitungan pada Lampiran 38.

3) Uji Koefisien Determinasi

$$KP = (r_{xy})^2 \times 100\%$$

 $KP = (0.654)^2 \times 100\% = 42.80\%$

Berdasarkan perhitungan tersebut diperoleh koefisien determinasi = 42,80%, artinya persentasi pengaruh *self efficacy* terhadap kemampuan pemecahan masalah matematis siswa sebesar 42,80%. Detail perhitungan dapat dilihat pada Lampiran 39.

- c. Pengaruh habits of mind (X_1) dan self efficacy (X_2) terhadap kemampuan pemecahan masalah matematis (Y)
 - 1) Persamaan Regresi Linear Berganda

Persamaan regresi linear berganda adalah (Jaya, 2019):

$$\hat{Y} = a + b_1 X_1 + b_2 X_2$$

Koefisien persamaan didapatkan melalui perhitungan sebagai berikut:

$$b_{1} = \frac{(\sum x_{2}^{2})(\sum x_{1}y) - (\sum x_{1}x_{2})(\sum x_{2}y)}{(\sum x_{1}^{2})(\sum x_{2}^{2}) - (\sum x_{1}x_{2})^{2}}$$

$$= \frac{(3993,29)(3953,807) - (2954,705)(3037,764)}{(4616,647)(3993,807) - (2954,705)}$$

$$= 0,702$$

$$b_{2} = \frac{(\sum x_{1}^{2})(\sum x_{2}y) - (\sum x_{1}x_{2})(\sum x_{1}y)}{(\sum x_{1}^{2})(\sum x_{2}^{2}) - (\sum x_{1}x_{2})^{2}}$$

$$= \frac{(4616,647)(3037,764) - (2954,705)(3953,807)}{(4616,647)(3993,807) - (2954,705)}$$

$$= 0,241$$

$$a = \overline{Y} - b_{1}\overline{X_{1}} - b_{2}\overline{X_{2}}$$

$$= 62,57 - (0,702)(62,98) - (0,241)(59,40)$$

$$= 4,028$$

Dari perhitungan tersebut diperoleh persamaan regresi ganda yaitu $\hat{Y} = 4,028 + 0,702X_1 + 0,241X_2$. Variabel X_1 menyatakan

habits of mind, variabel X_2 menyatakan self efficacy, dan variabel Y menyatakan kemampuan pemecahan masalah. Jika $X_1 = 0$ dan $X_2 = 0$, maka nilai kemampuan pemecahan masalah matematis sebesar 4,028. Detail dapat dilihat pada Lampiran 40.

2) Uji Keberatian Uji Keberatian Regresi Ganda

$$F = \frac{\frac{JK_{reg}}{k}}{\frac{JK_{res}}{(n-k-1)}}$$

$$F = \frac{\frac{3508,543}{2}}{\frac{1893,589}{52}} = 48,174$$

Hasil perhitungan diperoleh nilai $F_{hitung} = 48,174 \, \mathrm{dan} \, F_{tabel} = 3,18 \, \mathrm{dengan} \, \mathrm{taraf} \, \mathrm{signifikansi}$ 5%, dk pembilang = 2 $\mathrm{dan} \, dk$ penyebut = 52. Kemudian nilai F_{hitung} dibandingkan dengan nilai F_{tabel} , maka diperoleh $F_{hitung} > F_{tabel}$, maka H_0 ditolak artinya regresi berarti. Sehingga terdapat pengaruh yang signifikan $habits \, of \, mind \, \mathrm{dan} \, self \, efficacy \, \mathrm{secara} \, \mathrm{simultan} \, \mathrm{terhadap} \, \mathrm{kemampuan} \, \mathrm{pemecahan} \, \mathrm{masalah}. \, \mathrm{Detail} \, \mathrm{perhitungan} \, \mathrm{pada} \, \mathrm{Lampiran} \, 41.$

3) Uji Koefisien Determinasi

Rumus menghitung koefisien determinasi yaitu:

$$KP = (R_{X_1X_2Y})^2 \times 100\%$$

 $KP = (0.806)^2 \times 100\% = 64.95\%$

Berdasarkan perhitungan tersebut diperoleh koefisien determinasi = 64,95%, artinya persentasi pengaruh *habits of mind* dan *self efficacy* terhadap kemampuan pemecahan masalah matematis siswa sebesar 64,95%. Detail perhitungan dapat dilihat pada Lampiran 42.

C. Pembahasan

 Pengaruh Habits of Mind terhadap Kemampuan Pemecahan Masalah Matematis

Berdasarkan hasil penelitian, habits of mind berpengaruh signifikan terhadap kemampuan pemecahan masalah matematis sebesar 62,72%. Siswa yang memiliki habits of mind tinggi akan meningkatkan kemampuan pemecahan masalah matematisnya, begitu pula sebaliknya siswa yang memiliki habits of mind rendah akan mempengaruhi penurunan kemampuan pemecahan masalah matematisnya. Menurut Sugandi et al., 2021 habits of mind dapat mendukung menghasilkan pribadi yang mahir, kreatif, memiliki rasa percaya diri,

memiliki tanggung jawab terhadap segala tindakan dan menghasilkan individu yang mempunyai kemandirian dan berinteraksi bersama orang lain.

Hasil penelitian ini sejalan dengan yang dilakukan oleh Nurmala et al., (2019) yang menyatakan habits of mind berpengaruh terhadap kemampuan pemecahan masalah siswa, dimana siswa yang kurang dalam habits of mind belum memahami keterkaitan unsur yang diketahui dan ditanyakan serta masih ada kesalahan saat menghitung. Penelitian Ridlo et al., (2021) juga menyatakan bahwa terdapat hubungan yang positif dan signifikan antara habits of mind dengan kemampuan berpikir kritis 61,6% dipengaruhi oleh variabel habits of mind, dan 38,4% dipengaruhi oleh faktor lain.

2. Pengaruh *Self Efficacy* terhadap Kemampuan Pemecahan Masalah Matematis

Berdasarkan hasil penelitian, *self efficacy* berpengaruh secara signifikan terhadap kemampuan pemecahan masalah matematis siswa sebesar 42,80%. Hasil penelitian ini menunjukkan peningkatan *self efficacy* akan meningkatkan kemampuan pemecahan masalah matematis siswa, begitu pula sebaliknya penurunan *self efficacy* maka kemampuan pemecahan masalah matematisnya akan menurun.

Hal ini sesuai dengan Noviyanti et al. (2021) yang menyatakan bahwa selain kemampuan kognitif, siswa iuga memerlukan kemampuan afektif dalam pembelajaran. Anshari (2017) juga menyatakan siswa yang memiliki *self efficacy* tinggi maka akan mempunyai motivasi, keberanian, ketekunan dalam melaksanakan tugas, sebaliknya siswa yang memilki self efficacy rendah mudah menyerah dan menjauhkan diri dari tugas yang sulit (Marasabessy, 2020). Penelitian ini sejalan dengan Sa'adah et al (2021) yang penelitiannya menyatakan bahwa kemampuan pemecahan masalah dipengaruhi oleh self efficacy sebesar 66,2% sedangkan 33,8% dipengaruhi oleh faktor yang lain.

3. Pengaruh *Habits of Mind* dan *Self Efficacy* terhadap Kemampuan Pemecahan Masalah Matematis

Berdasarkan hasil penelitian, habits of mind dan self efficacy berpengaruh signifikan terhadap kemampuan pemecahan masalah matematis siswa sebesar 64,95% dan 35,05% dipengaruhi oleh faktor lain. Rosenberg mengemukakan bahwa komponen afektif akan selalu berhubungan dengan komponen kognitif dan hubungan tersebut dalam keadaan konsisten, jika seseorang mempunyai sikap positif terhadap suatu objek, maka indeks kognitifnya juga akan

tinggi begitu pula sebaliknya (Walgito, 2002). Aspek afektif yang dapat meningkatkan kemampuan pemecahan masalah siswa seperti habits of mind dan self efficacy.

Habits of mind merupakan sikap penting dan perlu dikuasai pada saat mengeriakan tugas dalam matematika, karena mendukung dan menghasilkan pribadi yang mahir, kreatif, memiliki rasa percaya diri, memiliki tanggung jawab terhadap segala tindakan dan menghasilkan individu yang mempunyai kemandirian dan berinteraksi bersama orang lain (Sugandi et al., 2021). Handayani (2015) yang mengatakan bahwa dikaitkan dengan pemecahan apabila masalah. mathematical habits of mind merupakan suatu kemampuan untuk menjelaskan pemikiran seseorang, dan secara produktif menggunakan pemikiran tersebut untuk menggunakan matematika dalam menyelesaikan masalah (Werdiningsih & Khoerunisa, 2021). Anshari (2017) juga mengungkapkan bahwa self-efficacy yang dimiliki siswa dalam pemecahan masalah dapat hasil belajar siswa. mempengaruhi Siswa yang mempunyai self-efficacy yang tinggi dapat membuat siswa tersebut juga mempunyai motivasi, keberanian, ketekunan dalam melaksanakan tugas yang diberikan,

begitu juga sebaliknya, mempunyai *self-efficacy* yang rendah akan menjauhkan diri dari tugas-tugas yang sulit dan mudah menyerah saat menghadapi rintangan (Marasabessy, 2020).

Dengan demikian, semakin baik *habits of mind* dan *self efficacy* siswa dapat meningkatkan kemempuaan pemecahan masalah matematis siswa. Begitu pula sebaliknya, rendahnya *habits of mind* dan *self efficacy* siswa maka kemampuan pemecahan masalah matematis siswa akan mengalami penurunan.

D. Keterbatasan Penelitian

Penelitian yang telah dilakukan secara maksimal ini tidak lepas dari kekurangan. Kekurangan ini disebabkan oleh keterbatasan sebagai berikut:

1. Keterbatasan Tempat Penelitian

Penelitian dilakukan terbatas pada satu yaitu MTs Negeri 05 Cilacap. Mungkin ketika penelitian dilakukan di tempat lain hasilnya berbeda, namun hasil penelitian yang diperoleh tidak jauh berbeda dengan hasil penelitian yang telah dilaksanakan.

2. Keterbatasan Waktu Penelitian

Pelaksanaan penelitian ini waktunya sangat terbatas. Waktu yang dimiliki peneliti hanya berdasarkan kebutuhan terkait penelitian. Meskipun dalam waktu yang sangat terbatas, namun sudah memenuhi syarat penelitian ilmiah.

3. Keterbatasan Objek Penelitian

Pada penelitian ini hanya meneliti tiga variabel yaitu *habits of mind, self efficacy* dan kemampuan pemecahan masalah matematis.

BAB V

PENUTUP

A. Kesimpulan

Berdasarkan analisis data dan pembahasan penelitian terkait " Pengaruh *Habits Of Mind* dan *Self Efficacy* terhadap Kemampuan Pemecahan Masalah Matematis Siswa Kelas VIII MTs Negeri 05 Cilacap", maka diperoleh kesimpulan bahwa:

- 1. Terdapat pengaruh yang signifikan habits of mind terhadap kemampuan pemecahan masalah matematis. Hal ini ditunjukkan oleh nilai $F_{hitung} = 89,021 > F_{tabel} = 4,02$. Besarnya pengaruh ditunjukkan oleh koefisien korelasi r = 0,792 dan koefisien determinasi $r^2 = 0,627$. Hal ini menunjukkan bahwa habits of mind mempengaruhi kemampuan pemecahan masalah mateamtis siswa sebesar 62,72%. Dengan persamaan sederhana $\hat{Y} = 8,634 + 0,792X_1$, berarti jika nilai dari habits of mind bernilai 0 maka nilai dari variabel kemampuan pemecahan masalah matematis sebesar 8,634.
- 2. Terdapat pengaruh yang signifikan self efficacy terhadap kemampuan pemecahan masalah matematis. Hal ini ditunjukkan oleh nilai $F_{hitung} = 39,620 > F_{tabel} = 4,02$. Besarnya pengaruh ditunjukkan oleh koefisien korelasi

- r=0,761 dan koefisien determinasi $r^2=0,428$. Hal ini menunjukkan bahwa *self efficacy* mempengaruhi kemampuan pemecahan masalah matematis siswa sebesar 42,80%. Dengan persamaan sederhana $\hat{Y}=17,388+0,761X_1$, berarti jika nilai dari *self efficacy* bernilai 0 maka nilai dari variabel kemampuan pemecahan masalah matematis sebesar 17,388.
- 3. Terdapat pengaruh yang signifikan *habits of mind* dan *self efficacy* secara simultan terhadap kemampuan pemecahan masalah matematis yang ditunjukkan oleh nilai nilai $F_{hitung} = 48,175 > F_{tabel} = 3,18$. Besar pengaruh ditunjukkan oleh koefisien korelasi r = 0,806 dan koefisien determinasi $r^2 = 0,6495$. Hal ini menunjukkan bahwa *habits of mind* dan *self efficacy* secara simultan mempengaruhi kemampuan pemecahan masalah matematis sebesar 64,95% dan 35,05% dipengaruhi oleh faktor lain. Dengan persamaan $\hat{Y} = 4,028 + 0,702X_1 + 0,241X_2$, artinya jika nilai *habits of mind* dan *self efficacy* bernilai 0, maka nilai kemampuan pemecahan masalah matematis sebesar 4,028.

B. Saran

Berdasarkan dari hasil kajian dan pembahasan, saran yang dapat peneliti sampaikan sebagai berikut:

1. Bagi Peneliti

Berdasarkan hasil penelitian, perlu adanya penelitian lanjutan untuk menyelidiki faktor apa yang lebih berpengaruh secara signifikan terhadap kemampuan pemecahan masalah matematis siswa. Hal ini diperlukan agar manfaat yang diperoleh lebih maksimal.

2. Bagi Guru

Berdasarkan penelitian yang telah dilakukan didapat pengaruh yang signifkan antara habits of mind dan self efficacy terhadap kemampuan pemecahan masalah matematis siswa. Guru hendaknya memperhatikan habis of mind dan self efficacy siswa, hal tersebut dapat membantu karena untuk meningkatkan kemampuan pemecahan masalah matematis.

3. Bagi Siswa

Hasil penelitian menunjukkan pengaruh yang signifikan antara *habits of mind* dan *self efficacy* terhadap kemampuan pemecahan masalah matematis. Siswa hendaknya meningkatkan *habits of mind* dan *self*

efficacy, karena faktor tersebut dalam penelitian ini dapat meningkatkan kemampuan pemecahan masalah matematis siswa.

DAFTAR PUSTAKA

- Alifia, N. N., & Rakhmawati, I. A. (2018). Kajian Kemampuan Self Efficacy Matematis Siswa Dalam Pemecahan Masalah Matematika. *Jurnal Elektronik Pembelajaran Matematika*, 5(1), 44–54.
- Alwisol. (2016). Psikologi Kepribadian Edisi Revisi. UMM Press.
- Amalia, A., Syafitri, L. F., Sari, V. T. A., & Rohaeti, E. E. (2018). Hubungan Antara Kemampuan Pemecahan Masalah Matematik Dengan Self Efficacy Dan Kemandirian Belajar Siswa Smp. *Jurnal Pembelajaran Matematika Inovatif*, 1(5), 887–894.
- Amam, A. (2017). Penilaian Kemampuan Pemecahan Masalah Matematis Siswa Smp. *Teorema*, *2*(1), 39.
- Arifin, Z. (2017). *Evaluasi Pembelajaran Prinsip, Teknik dan Prosedur*. PT Remaja Rosdakarya.
- Bustami, Abdullah, D., & Fadlisyah. (2014). *Statistika Terapannya Pada Bidang Informatika*. Graha Ilmu.
- Ghufron, M. N., & Risnawita S, R. (2016). *Teori-Teori Psikologi*. Ar-Ruzz Media.
- Hanief, Y. N., & Himawanto, W. (2017). *Statistik Pendidikan*. deepublish.
- Hanifah, A. N., Mirna, M., Mulianty, H. R., & Fitriani, N. (2018). Hubungan Antara Kemampuan Berpikir Kritis Matematis Dengan Habits Of Mind Siswa SMK Yang Menggunakan Pendekatan Model Eliciting Activities (MEAs). *JPMI* (Jurnal Pembelajaran Matematika Inovatif), 1(1), 29.
- Hendriana, H., Rohaeti, E. E., & Sumarmo, U. (2017). Hard Skills

- dan Soft Skills Matematika Siswa. PT Refika Aditama.
- Jaya, I. (2019). *Penerapan Statistik Untuk Penelitian Pendidikan*. Prenadamedia Group.
- Kadir. (2010). *Statistika untuk Penelitian Ilmu-Ilmu Sosial*. Rosemata Sampurna.
- Kholivah, I., Suhendri, H., & Leonard. (2020). Pengaruh Efikasi Diri (Self Efficacy) terhadap Kemampuan Pemecahan Masalah Matematika. *Journal of Instructional Development Research*, 1(2), 75–80.
- Kurniawan, A. W., & Puspitaningtyas, Z. (2016). *Metode penelitian kuantitatif.* Pandiva Buku.
- Marasabessy, R. (2020). Kajian Kemampuan Self Efficacy Matematis Siswa Dalam Pemecahan Masalah Matematika. *JARTIKA Jurnal Riset Teknologi Dan Inovasi Pendidikan*, 3(2), 168–183.
- Maryono, I., & Saputri, R. O. (2019). Pengembangan kemampuan pemecahan masalah dan habit of mind matematis mahasiswa melalui teknik self-explanation. *Jurnal Analisa*, 5(2), 152–160.
- Masitoh, L. F., & Fitriyani, H. (2018). Improving Students' Mathematics Self-Efficacy Through Problem Based Learning. *Malikussaleh Journal of Mathematics Learning* (*MJML*), 1(1), 26–30.
- Mawaddah, S., & Anisah, H. (2015). Kemampuan Pemecahan Masalah Matematis Siswa Pada Pembelajaran Matematika dengan Menggunakan Model Pembelajaran Generatif (Generative Learning) di SMP. *EDU-MAT: Jurnal Pendidikan Matematika*, 3(2), 166–175.

- Noviyanti, D., Siswanah, E., & Fitriani, U. (2021). Efektivitas strategi pembelajaran means ends analysis (MEA) terhadap kemampuan pemecahan masalah matematika dan self efficacy. *Edu Sains Jurnal Pendidikan Sains & Matematika*, *9*(1), 10–19.
- Nurmala, N., Rohaeti, E. E., & Sariningsih, R. (2019). Pengaruh Habits of Mind (Kebiasaan Berpikir) Terhadap Pemecahan Masalah Matematik Siswa Smp. *Journal on Education*, 1(2), 163–168.
- Nurseha, S. M., & Apiati, V. (2019). Hubungan Kemampuan Pemecahan Masalah Dengan Self Efficacy Siswa Melalui Pembelajaran Pendidikan Matematika Realistik. Prosiding Seminar Nasional & Call For Papers Program Studi Pendidikan Matematika Universitas Siliwangi, 539–546.
- Oktaviani, F. N., & Firmansyah, D. (2021). Analisis Habits Of Mind Matematis Siswa Madrasah Tsanawiyah. *Prosiding Seminar Nasional Matematika Dan Pendidikan Matematika Sesiomadika 2021*, 2, 55–65.
- Pratiwi, D., Suendarti, M., & Hasbullah. (2019). Pengaruh Kreativitas Belajar dan Kemandirian Belajar Siswa terhadap Kemampuan Pemecahan Masalah Matematika. *JKPM (Jurnal Kajian Pendidikan Matematika)*, 5(1), 117.
- Rahmatiya, R., & Miatun, A. (2020). Analisis Kemampuan Pemecahan Masalah Matematis Ditinjau Dari Resiliensi Matematis Siswa Smp. *Teorema: Teori Dan Riset Matematika*, 5(2), 187.
- Ramlah, & Maya, R. (2018). Implementasi Pendekatan Problem Solving Dalam Pencapaian Kemampuan Berpikir Kreatif

- Matematis Serta Habits Of Mind Siswa MTs. *JPPM (Jurnal Penelitian Dan Pembelajaran Matematika)*, 11(1), 43–44.
- Ridlo, A. Z., Sunismi, & Rukmigarsari, E. (2021). Pengaruh Habit Of Mind dan Resiliensi Matematis Terhadap Kemampuan Berpikir Kritis Materi Pola Bilangan Pada Peserta Didik Kelas VIII MTS MA' Arif Sukorejo. *Jp3*, 16(12), 100–105.
- Risdiantoro, R., Nazilah, N., Aulia, N. I., & Pratiwi, D. S. (2022). Problem Solving Sebagai Strategi Dakwah Pada Remaja Masa Kini. *Al-Ittishol: Jurnal Komunikasi Dan Penyiaran Islam*, *3*(1), 25–35.
- Rohman, A. A., Mahmudah, S. A. M., & Siswanah, E. (2022). Analisis Kemampuan Pemecahan Masalah Matematika Ditinjau Dari Karakteristik Cara Berpikir Siswa Pada Masalah Open Ended. *Delta: Jurnal Ilmiah Pendidikan Matematika*, 10(1), 113–124.
- Rohman, A. A., Sholihah, N., & Maslihah, S. (2020). Analisis Kemampuan Pemecahan Masalah Matematika Berdasarkan Disposisi Matematis Peserta Didik Dan Gender Kelas VII. *Seminar Nasional Pendidikan Matematika*, 1(1), 383–390.
- Sa'adah, F., Rukmigarsari, E., & Wulandari, T. C. (2021). Pengaruh self confidence dan self efficacy terhadap kemampuan pemecahan masalah matematis. *Jurnal Pendidikan, Penelitian Dan Pembelajaran, 16*(12), 83–90.
- Sari, A. A., Simamora, L., Ningsih, R., Matematika, S. P., Pemecahan, K., & Matematika, M. (2022). Pengaruh kecerdasan logis matematis dan efikasi diri terhadap kemampuan pemecahan masalah matematika. *Jurnal Ilmu Pendidikan Dan Sosial (JIPSI)*, 1(2), 190–194.
- Singh, J., & Kumar, P. (2021). Students in Relation To Their Self-

- Efficacy. *International Journal of Business Education and Management Studies (IJBEMS)*, 5(2021), 1–13.
- Siregar, T. J., & Hasanah, R. U. (2022). Pengaruh model pembelajaran group investigation berbantuan aplikasi android terhadap habits of mind matematis mahasiswa. *AXIOM: Jurnal Pendidikan Dan Matematika*, 11(1), 1–10.
- Siwi, N. I., & Haerudin. (2019). Kemampuan Pemecahan Masalah Ditinjau Dari Self Effcacy. *Prosiding Seminar Nasional Matematika Dan Pendidikan Matematika Sesiomadika*, 836–841.
- Somawati, S. (2018). Peran Efikasi Diri (Self Efficacy) terhadap Kemampuan Pemecahan Masalah Matematika. *Jurnal Konseling Dan Pendidikan*, 6(1), 39.
- Suarsana, I. M., Lestari, I. A. P. D., & Mertasari, N. M. S. (2019). The effect of online problem posing on students' problemsolving ability in mathematics. *International Journal of Instruction*, *12*(1), 809–820.
- Sudijono, A. (2014). *Pengantar Statistik Pendidikan*. PT Raja Grafindo Persada.
- Sugandi, A. I., Bernard, M., & Linda, L. (2021). Pendekatan Metakognitif Terhadap Kemampuan Penalaran Matematik Siswa Ditinjau Dari Habits Of Minds. *SJME* (Supremum Journal of Mathematics Education), 5(1), 72–84.
- Sugiyono. (2013). *Metode Penelitian Kuantitatif, Kualitatif, dan RnD*. Alfabeta.
- Supardi. (2017). *Statistika Penelitian Pendidikan*. Pt RajaGrafindoPersada.

- Unveren-Bilgiç, E. N., & Argün, Z. (2018). Examining Prospective Primary School Mathematics Teachers' Algebraic Habits of Mind in the Context of Problem Solving. *International E-Journal of Educational Studies*, 2(4), 64–80.
- Wahyuni, N. P., & Masriyah, M. (2021). Profil Kemampuan Pemecahan Masalah PISA pada Konten Change and Relationship Berdasarkan Taksonomi SOLO. *Jurnal Cendekia: Jurnal Pendidikan Matematika*, 5(3), 2604–2618.
- Werdiningsih, C. E., & Khoerunisa, L. (2021). Pengaruh Habits of Mind dan Kemandirian Belajar Siswa terhadap Kemampuan Berpikir Reflektif Matematis. *JKPM (Jurnal Kajian Pendidikan Matematika*), 7(1), 85.
- Widarjono, A. (2019). *Statistika Terapan Dengan Excel dan SPSS*. UPP STIM YKPN.
- Yuliyani, R., Handayani, S. D., & Somawati, S. (2017). Peran Efikasi Diri (Self-Efficacy) dan Kemampuan Berpikir Positif terhadap Kemampuan Pemecahan Masalah Matematika. *Formatif: Jurnal Ilmiah Pendidikan MIPA*, 7(2), 130–143.
- Yunianti, E., Maxinus Jaeng, & Mustamin. (2016). Pengaruh Model Pembelajaran dan Self-Efficacy Terhadap Hasil Belajar Matematika Siswa SMA Negeri 1 Parigi. *E-Jurnal Mitra Sains*, *4*(1), 8–19.

Lampiran 1 Profil Sekolah

PROFIL SEKOLAH

A. Identitas Sekolah

Nama Sekolah : MTs Negeri 05 Cilacap

Alamat Sekolah : Jl. Diponegoro

Banjarsari Nusawungu,

Cilacap

Nama Kepala Sekolah : Suwarno, S.Pd., M. Sc

B. Visi

"UNGGUL, MODERN, BERAKHLAKUL KARIMAH DAN BERWAWASAN LINGKUNGAN"

C. Misi

- 1. Menumbuhkan penghayatan peserta didik terhadap ajaran islam dan budaya bangsa sehingga menjadi sumber kearifan dalam berfikir dan bertindak:
- 2. Melaksanakan pembelajaran yang efektif dan profesional yang menumbuhkan dan mengembangkan peserta didik meraih prestasi ujian di atas batas minimal lulus:
- Melaksanakan pengelolaan madrasah dengan manajemen partisipatif dengan melibatkan seluruh warga madrasah dan kelompok kepentingan secara transparan dan akuntabel;

- 4. Melaksanakan program bimbingan secara efektif sehingga setiap peserta didik berkembang secara optimal sesuai dengan potensi yang dimiliki;
- 5. Melaksanakan pembelajaran ekstrakurikuler secara efektif sesuai bakat dan minat sehingga setiap peserta didik sehingga setiap peserta didik memiliki keunggulan dalam berbagai: lomba sains, keagamaan, olahrga dan seni;
- 6. Menumbuhkan dan mengembangkan budaya religius, jujur;
- 7. Menanamkan perilaku islami dalam kehidupan dan mandiri dalam setiap aktifitas di lingkungan madrasah;

Lampiran 2 Daftar Nama Peserta Uji Coba

DAFTAR NAMA PESERTA UJI COBA

1 ADELIANA AMANDA PUTRI UC-01 2 AFIFAH KHOIROH AZZAHRA UC-02 3 AJI PURNOMO UC-03 4 ALDI SAPUTRA UC-04 5 ALMIRA CAHYANI PRAYITNO UC-05 6 AMELIA INDAH SULISTYANI UC-06 7 ANISA JULIANTI SARI PUTRI UC-07 8 ARIN FERLITA UC-08 9 BALQIS NABILAH HAKIM UC-09 10 BERLYN VALESKA UC-10 11 DAFFA 'ABIYYI DARVID UC-11 12 DANU UTOMO UC-12 13 DESTIANA EKA PRATIWI UC-13 14 DIANA AYU AMBARWATI UC-14 15 DIANA AYU AMBARWATI UC-15 16 EKA SUHERANI UC-16 17 ELSA SAFIRA UC-17 18 ELSY HUMEIROH UC-18 19 GIGIH ADIL WICAKSANA UC-19 20 JESLIN ARYANINGRUM UC-20 21 LILA LUGITA UC-21	NO	NAMA SISWA	KODE
3 AJI PURNOMO UC-03 4 ALDI SAPUTRA UC-04 5 ALMIRA CAHYANI PRAYITNO UC-05 6 AMELIA INDAH SULISTYANI UC-06 7 ANISA JULIANTI SARI PUTRI UC-07 8 ARIN FERLITA UC-08 9 BALQIS NABILAH HAKIM UC-09 10 BERLYN VALESKA UC-10 11 DAFFA 'ABIYYI DARVID UC-11 12 DANU UTOMO UC-12 13 DESTIANA EKA PRATIWI UC-13 14 DIAN RAHAYU UC-14 15 DIANA AYU AMBARWATI UC-15 16 EKA SUHERANI UC-15 16 EKA SUHERANI UC-15 17 ELSA SAFIRA UC-17 18 ELSY HUMEIROH UC-18 19 GIGIH ADIL WICAKSANA ABDILLAH UC-19 20 JESLIN ARYANINGRUM UC-20 21 LILA LUGITA UC-21 22 NABIL FAJAR AHNAF UC-22 23<	1	ADELIANA AMANDA PUTRI	UC-01
4 ALDI SAPUTRA UC-04 5 ALMIRA CAHYANI PRAYITNO UC-05 6 AMELIA INDAH SULISTYANI UC-06 7 ANISA JULIANTI SARI PUTRI UC-07 8 ARIN FERLITA UC-08 9 BALQIS NABILAH HAKIM UC-09 10 BERLYN VALESKA UC-10 11 DAFFA 'ABIYYI DARVID UC-11 12 DANU UTOMO UC-12 13 DESTIANA EKA PRATIWI UC-13 14 DIAN RAHAYU UC-14 15 DIANA AYU AMBARWATI UC-15 16 EKA SUHERANI UC-15 16 EKA SUHERANI UC-16 17 ELSA SAFIRA UC-17 18 ELSY HUMEIROH UC-18 19 GIGIH ADIL WICAKSANA ABDILLAH UC-19 20 JESLIN ARYANINGRUM UC-20 21 LILA LUGITA UC-21 22 NABIL FAJAR AHNAF UC-22 23 NAJWA MU'AFATUSSHIAMI UC-23	2	AFIFAH KHOIROH AZZAHRA	UC-02
5 ALMIRA CAHYANI PRAYITNO UC-05 6 AMELIA INDAH SULISTYANI UC-06 7 ANISA JULIANTI SARI PUTRI UC-07 8 ARIN FERLITA UC-08 9 BALQIS NABILAH HAKIM UC-09 10 BERLYN VALESKA UC-10 11 DAFFA 'ABIYYI DARVID UC-11 12 DANU UTOMO UC-12 13 DESTIANA EKA PRATIWI UC-13 14 DIAN RAHAYU UC-14 15 DIANA AYU AMBARWATI UC-15 16 EKA SUHERANI UC-16 17 ELSA SAFIRA UC-17 18 ELSY HUMEIROH UC-18 19 GIGIH ADIL WICAKSANA ABDILLAH UC-19 20 JESLIN ARYANINGRUM UC-20 21 LILA LUGITA UC-21 22 NABIL FAJAR AHNAF UC-22 23 NAJWA MU'AFATUSSHIAMI UC-23 24 PUTRI NONITASARI UC-24 25 REFIKA NUR YATINAH UC-26 <t< td=""><td>3</td><td>AJI PURNOMO</td><td>UC-03</td></t<>	3	AJI PURNOMO	UC-03
6 AMELIA INDAH SULISTYANI UC-06 7 ANISA JULIANTI SARI PUTRI UC-07 8 ARIN FERLITA UC-08 9 BALQIS NABILAH HAKIM UC-09 10 BERLYN VALESKA UC-10 11 DAFFA 'ABIYYI DARVID UC-11 12 DANU UTOMO UC-12 13 DESTIANA EKA PRATIWI UC-13 14 DIAN RAHAYU UC-14 15 DIANA AYU AMBARWATI UC-15 16 EKA SUHERANI UC-16 17 ELSA SAFIRA UC-17 18 ELSY HUMEIROH UC-18 19 GIGIH ADIL WICAKSANA ABDILLAH UC-19 20 JESLIN ARYANINGRUM UC-20 21 LILA LUGITA UC-20 21 LILA LUGITA UC-22 23 NAJWA MU'AFATUSSHIAMI UC-23 24 PUTRI NONITASARI UC-24 25 REFIKA NUR YATINAH UC-25 26 SELSA ALIMA PUTRI UC-26	4	ALDI SAPUTRA	UC-04
7 ANISA JULIANTI SARI PUTRI UC-07 8 ARIN FERLITA UC-08 9 BALQIS NABILAH HAKIM UC-09 10 BERLYN VALESKA UC-10 11 DAFFA 'ABIYYI DARVID UC-11 12 DANU UTOMO UC-12 13 DESTIANA EKA PRATIWI UC-13 14 DIAN RAHAYU UC-14 15 DIANA AYU AMBARWATI UC-15 16 EKA SUHERANI UC-15 17 ELSA SAFIRA UC-17 18 ELSY HUMEIROH UC-18 19 GIGIH ADIL WICAKSANA UC-19 20 JESLIN ARYANINGRUM UC-20 21 LILA LUGITA UC-21 22 NABIL FAJAR AHNAF UC-22 23 NAJWA MU'AFATUSSHIAMI UC-23 24 PUTRI NONITASARI UC-24 25 REFIKA NUR YATINAH UC-25 26 SELSA ALIMA PUTRI UC-26 27 SRI TRININGSIH UC-27 28	5	ALMIRA CAHYANI PRAYITNO	UC-05
8 ARIN FERLITA UC-08 9 BALQIS NABILAH HAKIM UC-09 10 BERLYN VALESKA UC-10 11 DAFFA 'ABIYYI DARVID UC-11 12 DANU UTOMO UC-12 13 DESTIANA EKA PRATIWI UC-13 14 DIAN RAHAYU UC-14 15 DIANA AYU AMBARWATI UC-15 16 EKA SUHERANI UC-16 17 ELSA SAFIRA UC-17 18 ELSY HUMEIROH UC-18 19 GIGIH ADIL WICAKSANA ABDILLAH UC-19 20 JESLIN ARYANINGRUM UC-20 21 LILA LUGITA UC-21 22 NABIL FAJAR AHNAF UC-22 23 NAJWA MU'AFATUSSHIAMI UC-23 24 PUTRI NONITASARI UC-24 25 REFIKA NUR YATINAH UC-25 26 SELSA ALIMA PUTRI UC-26 27 SRI TRININGSIH UC-27 28 SURYA AL GHIFARI UC-28 29	6	AMELIA INDAH SULISTYANI	UC-06
9 BALQIS NABILAH HAKIM UC-09 10 BERLYN VALESKA UC-10 11 DAFFA 'ABIYYI DARVID UC-11 12 DANU UTOMO UC-12 13 DESTIANA EKA PRATIWI UC-13 14 DIAN RAHAYU UC-14 15 DIANA AYU AMBARWATI UC-15 16 EKA SUHERANI UC-16 17 ELSA SAFIRA UC-17 18 ELSY HUMEIROH UC-18 19 GIGIH ADIL WICAKSANA UC-19 20 JESLIN ARYANINGRUM UC-20 21 LILA LUGITA UC-21 22 NABIL FAJAR AHNAF UC-22 23 NAJWA MU'AFATUSSHIAMI UC-23 24 PUTRI NONITASARI UC-24 25 REFIKA NUR YATINAH UC-25 26 SELSA ALIMA PUTRI UC-26 27 SRI TRININGSIH UC-27 28 SURYA AL GHIFARI UC-28 29 TABINA EARLEN HASNA UC-29 30	7	ANISA JULIANTI SARI PUTRI	UC-07
10 BERLYN VALESKA UC-10 11 DAFFA 'ABIYYI DARVID UC-11 12 DANU UTOMO UC-12 13 DESTIANA EKA PRATIWI UC-13 14 DIAN RAHAYU UC-14 15 DIANA AYU AMBARWATI UC-15 16 EKA SUHERANI UC-16 17 ELSA SAFIRA UC-17 18 ELSY HUMEIROH UC-18 19 GIGIH ADIL WICAKSANA ABDILLAH UC-19 20 JESLIN ARYANINGRUM UC-20 21 LILA LUGITA UC-21 22 NABIL FAJAR AHNAF UC-22 23 NAJWA MU'AFATUSSHIAMI UC-23 24 PUTRI NONITASARI UC-24 25 REFIKA NUR YATINAH UC-25 26 SELSA ALIMA PUTRI UC-26 27 SRI TRININGSIH UC-27 28 SURYA AL GHIFARI UC-28 29 TABINA EARLEN HASNA UC-29 30 TRI ANGGRAINI UC-30	8	ARIN FERLITA	UC-08
11 DAFFA 'ABIYYI DARVID UC-11 12 DANU UTOMO UC-12 13 DESTIANA EKA PRATIWI UC-13 14 DIAN RAHAYU UC-14 15 DIANA AYU AMBARWATI UC-15 16 EKA SUHERANI UC-16 17 ELSA SAFIRA UC-17 18 ELSY HUMEIROH UC-18 19 GIGIH ADIL WICAKSANA ABDILLAH UC-19 20 JESLIN ARYANINGRUM UC-20 21 LILA LUGITA UC-21 22 NABIL FAJAR AHNAF UC-22 23 NAJWA MU'AFATUSSHIAMI UC-23 24 PUTRI NONITASARI UC-24 25 REFIKA NUR YATINAH UC-25 26 SELSA ALIMA PUTRI UC-26 27 SRI TRININGSIH UC-27 28 SURYA AL GHIFARI UC-28 29 TABINA EARLEN HASNA UC-29 30 TRI ANGGRAINI UC-30 31 WINDI NUR KHOERUNISA UC-31	9	BALQIS NABILAH HAKIM	UC-09
12 DANU UTOMO UC-12 13 DESTIANA EKA PRATIWI UC-13 14 DIAN RAHAYU UC-14 15 DIANA AYU AMBARWATI UC-15 16 EKA SUHERANI UC-16 17 ELSA SAFIRA UC-17 18 ELSY HUMEIROH UC-18 19 GIGIH ADIL WICAKSANA ABDILLAH UC-19 20 JESLIN ARYANINGRUM UC-20 21 LILA LUGITA UC-21 22 NABIL FAJAR AHNAF UC-21 23 NAJWA MU'AFATUSSHIAMI UC-23 24 PUTRI NONITASARI UC-24 25 REFIKA NUR YATINAH UC-25 26 SELSA ALIMA PUTRI UC-26 27 SRI TRININGSIH UC-27 28 SURYA AL GHIFARI UC-28 29 TABINA EARLEN HASNA UC-29 30 TRI ANGGRAINI UC-30 31 WINDI NUR KHOERUNISA UC-31	10	BERLYN VALESKA	UC-10
13 DESTIANA EKA PRATIWI UC-13 14 DIAN RAHAYU UC-14 15 DIANA AYU AMBARWATI UC-15 16 EKA SUHERANI UC-16 17 ELSA SAFIRA UC-17 18 ELSY HUMEIROH UC-18 19 GIGIH ADIL WICAKSANA ABDILLAH UC-19 20 JESLIN ARYANINGRUM UC-20 21 LILA LUGITA UC-21 22 NABIL FAJAR AHNAF UC-22 23 NAJWA MU'AFATUSSHIAMI UC-23 24 PUTRI NONITASARI UC-24 25 REFIKA NUR YATINAH UC-25 26 SELSA ALIMA PUTRI UC-26 27 SRI TRININGSIH UC-27 28 SURYA AL GHIFARI UC-28 29 TABINA EARLEN HASNA UC-29 30 TRI ANGGRAINI UC-30 31 WINDI NUR KHOERUNISA UC-31	11	DAFFA 'ABIYYI DARVID	UC-11
14 DIAN RAHAYU UC-14 15 DIANA AYU AMBARWATI UC-15 16 EKA SUHERANI UC-16 17 ELSA SAFIRA UC-17 18 ELSY HUMEIROH UC-18 19 GIGIH ADIL WICAKSANA ABDILLAH UC-19 20 JESLIN ARYANINGRUM UC-20 21 LILA LUGITA UC-21 22 NABIL FAJAR AHNAF UC-22 23 NAJWA MU'AFATUSSHIAMI UC-23 24 PUTRI NONITASARI UC-24 25 REFIKA NUR YATINAH UC-25 26 SELSA ALIMA PUTRI UC-26 27 SRI TRININGSIH UC-27 28 SURYA AL GHIFARI UC-28 29 TABINA EARLEN HASNA UC-29 30 TRI ANGGRAINI UC-30 31 WINDI NUR KHOERUNISA UC-31	12	DANU UTOMO	UC-12
15 DIANA AYU AMBARWATI UC-15 16 EKA SUHERANI UC-16 17 ELSA SAFIRA UC-17 18 ELSY HUMEIROH UC-18 19 GIGIH ADIL WICAKSANA ABDILLAH UC-19 20 JESLIN ARYANINGRUM UC-20 21 LILA LUGITA UC-21 22 NABIL FAJAR AHNAF UC-22 23 NAJWA MU'AFATUSSHIAMI UC-23 24 PUTRI NONITASARI UC-24 25 REFIKA NUR YATINAH UC-25 26 SELSA ALIMA PUTRI UC-26 27 SRI TRININGSIH UC-27 28 SURYA AL GHIFARI UC-28 29 TABINA EARLEN HASNA UC-29 30 TRI ANGGRAINI UC-30 31 WINDI NUR KHOERUNISA UC-31	13	DESTIANA EKA PRATIWI	UC-13
16 EKA SUHERANI UC-16 17 ELSA SAFIRA UC-17 18 ELSY HUMEIROH UC-18 19 GIGIH ADIL WICAKSANA ABDILLAH UC-19 20 JESLIN ARYANINGRUM UC-20 21 LILA LUGITA UC-21 22 NABIL FAJAR AHNAF UC-22 23 NAJWA MU'AFATUSSHIAMI UC-23 24 PUTRI NONITASARI UC-24 25 REFIKA NUR YATINAH UC-25 26 SELSA ALIMA PUTRI UC-26 27 SRI TRININGSIH UC-27 28 SURYA AL GHIFARI UC-28 29 TABINA EARLEN HASNA UC-29 30 TRI ANGGRAINI UC-30 31 WINDI NUR KHOERUNISA UC-31	14	DIAN RAHAYU	UC-14
17 ELSA SAFIRA UC-17 18 ELSY HUMEIROH UC-18 19 GIGIH ADIL WICAKSANA ABDILLAH UC-19 20 JESLIN ARYANINGRUM UC-20 21 LILA LUGITA UC-21 22 NABIL FAJAR AHNAF UC-22 23 NAJWA MU'AFATUSSHIAMI UC-23 24 PUTRI NONITASARI UC-24 25 REFIKA NUR YATINAH UC-25 26 SELSA ALIMA PUTRI UC-26 27 SRI TRININGSIH UC-27 28 SURYA AL GHIFARI UC-28 29 TABINA EARLEN HASNA UC-29 30 TRI ANGGRAINI UC-30 31 WINDI NUR KHOERUNISA UC-31	15	DIANA AYU AMBARWATI	UC-15
18 ELSY HUMEIROH UC-18 19 GIGIH ADIL WICAKSANA ABDILLAH UC-19 20 JESLIN ARYANINGRUM UC-20 21 LILA LUGITA UC-21 22 NABIL FAJAR AHNAF UC-22 23 NAJWA MU'AFATUSSHIAMI UC-23 24 PUTRI NONITASARI UC-24 25 REFIKA NUR YATINAH UC-25 26 SELSA ALIMA PUTRI UC-26 27 SRI TRININGSIH UC-27 28 SURYA AL GHIFARI UC-28 29 TABINA EARLEN HASNA UC-29 30 TRI ANGGRAINI UC-30 31 WINDI NUR KHOERUNISA UC-31	16	EKA SUHERANI	UC-16
19 GIGIH ADIL WICAKSANA ABDILLAH UC-19 20 JESLIN ARYANINGRUM UC-20 21 LILA LUGITA UC-21 22 NABIL FAJAR AHNAF UC-22 23 NAJWA MU'AFATUSSHIAMI UC-23 24 PUTRI NONITASARI UC-24 25 REFIKA NUR YATINAH UC-25 26 SELSA ALIMA PUTRI UC-26 27 SRI TRININGSIH UC-27 28 SURYA AL GHIFARI UC-28 29 TABINA EARLEN HASNA UC-29 30 TRI ANGGRAINI UC-30 31 WINDI NUR KHOERUNISA UC-31	17	ELSA SAFIRA	UC-17
19 ABDILLAH UC-19 20 JESLIN ARYANINGRUM UC-20 21 LILA LUGITA UC-21 22 NABIL FAJAR AHNAF UC-22 23 NAJWA MU'AFATUSSHIAMI UC-23 24 PUTRI NONITASARI UC-24 25 REFIKA NUR YATINAH UC-25 26 SELSA ALIMA PUTRI UC-26 27 SRI TRININGSIH UC-27 28 SURYA AL GHIFARI UC-28 29 TABINA EARLEN HASNA UC-29 30 TRI ANGGRAINI UC-30 31 WINDI NUR KHOERUNISA UC-31	18	ELSY HUMEIROH	UC-18
21 LILA LUGITA UC-21 22 NABIL FAJAR AHNAF UC-22 23 NAJWA MU'AFATUSSHIAMI UC-23 24 PUTRI NONITASARI UC-24 25 REFIKA NUR YATINAH UC-25 26 SELSA ALIMA PUTRI UC-26 27 SRI TRININGSIH UC-27 28 SURYA AL GHIFARI UC-28 29 TABINA EARLEN HASNA UC-29 30 TRI ANGGRAINI UC-30 31 WINDI NUR KHOERUNISA UC-31	19		UC-19
22 NABIL FAJAR AHNAF UC-22 23 NAJWA MU'AFATUSSHIAMI UC-23 24 PUTRI NONITASARI UC-24 25 REFIKA NUR YATINAH UC-25 26 SELSA ALIMA PUTRI UC-26 27 SRI TRININGSIH UC-27 28 SURYA AL GHIFARI UC-28 29 TABINA EARLEN HASNA UC-29 30 TRI ANGGRAINI UC-30 31 WINDI NUR KHOERUNISA UC-31	20	JESLIN ARYANINGRUM	UC-20
23 NAJWA MU'AFATUSSHIAMI UC-23 24 PUTRI NONITASARI UC-24 25 REFIKA NUR YATINAH UC-25 26 SELSA ALIMA PUTRI UC-26 27 SRI TRININGSIH UC-27 28 SURYA AL GHIFARI UC-28 29 TABINA EARLEN HASNA UC-29 30 TRI ANGGRAINI UC-30 31 WINDI NUR KHOERUNISA UC-31	21	LILA LUGITA	UC-21
24 PUTRI NONITASARI UC-24 25 REFIKA NUR YATINAH UC-25 26 SELSA ALIMA PUTRI UC-26 27 SRI TRININGSIH UC-27 28 SURYA AL GHIFARI UC-28 29 TABINA EARLEN HASNA UC-29 30 TRI ANGGRAINI UC-30 31 WINDI NUR KHOERUNISA UC-31	22	NABIL FAJAR AHNAF	UC-22
25 REFIKA NUR YATINAH UC-25 26 SELSA ALIMA PUTRI UC-26 27 SRI TRININGSIH UC-27 28 SURYA AL GHIFARI UC-28 29 TABINA EARLEN HASNA UC-29 30 TRI ANGGRAINI UC-30 31 WINDI NUR KHOERUNISA UC-31	23	NAJWA MU'AFATUSSHIAMI	UC-23
26SELSA ALIMA PUTRIUC-2627SRI TRININGSIHUC-2728SURYA AL GHIFARIUC-2829TABINA EARLEN HASNAUC-2930TRI ANGGRAINIUC-3031WINDI NUR KHOERUNISAUC-31	24	PUTRI NONITASARI	UC-24
27SRI TRININGSIHUC-2728SURYA AL GHIFARIUC-2829TABINA EARLEN HASNAUC-2930TRI ANGGRAINIUC-3031WINDI NUR KHOERUNISAUC-31	25	REFIKA NUR YATINAH	UC-25
28 SURYA AL GHIFARI UC-28 29 TABINA EARLEN HASNA UC-29 30 TRI ANGGRAINI UC-30 31 WINDI NUR KHOERUNISA UC-31	26	SELSA ALIMA PUTRI	UC-26
29 TABINA EARLEN HASNA UC-29 30 TRI ANGGRAINI UC-30 31 WINDI NUR KHOERUNISA UC-31	27	SRI TRININGSIH	UC-27
30 TRI ANGGRAINI UC-30 31 WINDI NUR KHOERUNISA UC-31	28	SURYA AL GHIFARI	UC-28
31 WINDI NUR KHOERUNISA UC-31	29	TABINA EARLEN HASNA	UC-29
	30	TRI ANGGRAINI	UC-30
32 ZHERA FELISITA AZIZAH UC-32	31	WINDI NUR KHOERUNISA	UC-31
	32	ZHERA FELISITA AZIZAH	UC-32

Lampiran 3 Daftar Nama Peserta Penelitian

DAFTAR NAMA PESERTA PENELITIAN

NO	NAMA SISWA	KODE
1	AFRIZAL MAULDIANSYAH	R1
2	AINA NUR NAFI'AH	R2
3	AIRIN NISA UTAMI	R3
4	ALDI TIAN FERIAWAN	R4
5	ALFAHRI HIDAYAT TULLOH	R5
6	ALIF NUR AZIZ	R6
7	ALVIN RIZQI RAMADHAN	R7
8	ARVEN ALDIYANSYAH SUHARTO	R8
9	ASYFA OKTI PUTRIANINGSIH	R9
10	AUDHINA DWI R.	R10
11	AZHAR HAFIZ ANSHARI	R11
12	BRAYEAN PUJI PARLIANTO	R12
13	BUN YAN MUZAKKY	R13
	DEDE SATRIO HUTOMO RESTU	R14
14	WIJAKSONO	K14
15	DEDY SATRIO	R15
16	DESTALIA PUSPITA	R16
17	DIMAS AGUNG SAPUTRA	R17
18	ELVIANA TUN NURSYAFAROH	R18
19	FAHMI AUFA SOLIH	R19
20	FAJAR BAHARI	R20
21	FELIN NOVIANA	R21
22	FERNI NUR AULIA	R22
23	HILBRAM SEBASTIAN	R23
24	IBNU AHLIS BURHORI	R24
25	IVEN RAYHAN JULIANSAH	R25
26	IZAK ROMANDANI	R26
27	JEKSEN FRENDI ANDIKA	R27
28	KEYLA LUTFI DWI NAFISHA	R28
29	KHASELA NURFATIN NANSYAH	R29
30	LINA OKTIA SAHFANI	R30
31	LINTANG GHIFARI SAEFULLOH	R31

32 LUCVIAN AVRIL HAIKALINO R32 33 LUKI DWI ARYANTI R33 34 MAYSAROH R34 35 NAURAH ISNAENI NURSAFIQAH R35 36 NUR KHOLIS HABIB R36	
34MAYSAROHR3435NAURAH ISNAENI NURSAFIQAHR35	
35 NAURAH ISNAENI NURSAFIQAH R35	
26 MIID VUOLIC HADID D26	
30 NOR KHOLIS HADID K30	
37 NUR OKTAVIA SYIFANI R37	
38 NURJIATI R38	
39 OKTAVIAN RIZKY PAMUNGKAS R39	
40 REFLIN EGI ELDIANO R40	
41 REVAN R41	
42 REVAN NUR ALIF R42	
43 RIDHO SUGIHARTO R43	
44 RIFAN MAHESA R44	
45 RIFANI MOVIANA R45	
46 SAEFUL MUARIF R46	
SALSYA BILLA AIYRA 47 FITRIANSYAH	
48 SARIF HIDAYATULLOH R48	
49 SILFIYA MEILANA R49	
50 TIKA YULIANI R50	
51 VENUSA DILISTANIA R51	
52 VENYATUL KHASANAH R52	
53 WILIANA YOFIANTI R53	
54 YUNI ANGGRAENI R54	
55 ZAZQIYATUS SHOLIAH R55	

Lampiran 4 Daftar Nilai Penilian Tengah Semester

DAFTAR NILAI PTS

NO	VIIIA	VIIIB	VIIIC	VIIID	VIIIE	VIIIF	VIIIG
1	66	44	58	60	58	58	50
2	64	70	60	50	53	52	78
3	58	60	70	55	60	68	65
4	56	52	52	42	50	54	50
5	64	72	58	48	54	54	74
6	62	58	48	42	56	60	44
7	54	56	60	50	54	70	52
8	66	42	64	42	58	64	72
9	68	54	54	50	52	54	68
10	54	60	46	52	56	52	46
11	66	60	50	50	60	48	70
12	40	72	42	54	50	58	67
13	54	44	44	58	62	72	54
14	50	48	54	60	46	50	48
15	60	42	40	48	44	52	54
16	62	52	60	60	62	56	50
17	58	55	72	72	54	64	52
18	64	50	52	65	56	50	45
19	76	44	60	46	64	60	67
20	72	54	62	56	46	46	60
21	70	42	42	58	52	50	46
22	64	52	44	56	46	60	60
23	64	56	52	62	60	53	56
24	40	44	50	54	56	56	65
25	42	70	52	48	42	70	68
26	88	48	42	78	44	54	67
27	52	52	60	60	58	58	44
28	52	54	60	50	52	60	44
29	60	50	60	56	56	55	46
30	48	44	50	70	56	70	63
31	88	60	56	56	54	56	50
32	56	52	60	40	70	58	56
33		48	75		75	54	58
34		72				56	

Lampiran 5 Uji Normalitas Tahap Awal

UJI NORMALITAS TAHAP AWAL VIIIA

Hipotesis

 H_0 = Data berdistribusi normal

 H_1 = Data tidak berdistribusi normal

Kriteria yang digunakan

 H_0 diteima jika $D_O < D_{tabel}$

Pengujian Hipotesis

No	X	$(X-\bar{X})$	$(X-\bar{X})^2$
1	66	5,438	29,566
2	64	3,438	11,816
3	58	-2,563	6,566
4	56	-4,563	20,816
5	64	3,438	11,816
6	62	1,438	2,066
7	54	-6,563	43,066
8	66	5,438	29,566
9	68	7,438	55,316
10	54	-6,563	43,066
11	66	5,438	29,566
12	40	-20,563	422,816
13	54	-6,563	43,066
14	50	-10,563	111,566
15	60	-0,563	0,316
16	62	1,438	2,066

17	58	-2,563	6,566
18	64	3,438	11,816
19	76	15,438	238,316
20	72	11,438	130,816
21	70	9,438	89,066
22	64	3,438	11,816
23	64	3,438	11,816
24	40	-20,563	422,816
25	42	-18,563	344,566
26	88	27,438	752,816
27	52	-8,563	73,316
28	52	-8,563	73,316
29	60	-0,563	0,316
30	48	-12,563	157,816
31	88	27,438	752,816
32	56	-4,563	20,816
Jumlah	1938		3961,875

Rata-Rata
$$\bar{X} = \frac{\sum X}{N} = \frac{1938}{32} = 60,563$$

Standar Deviasi
$$s = \sqrt{\frac{\sum (X - \bar{X})^2}{N - 1}} = \sqrt{\frac{3961,875}{32 - 1}} = 11,305$$

No	X	f_{i}	fkum	kp	Z_i	Z_{tabel}	$ kp - Z_{tabel} $	D_{o}
1	40	2	2	0,063	-1,819	0,034	0,028	
2	42	1	3	0,094	-1,642	0,050	0,043	
3	48	1	4	0,125	-1,111	0,133	0,008	
4	50	1	5	0,156	-0,934	0,175	0,019	
5	52	2	7	0,219	-0,757	0,224	0,006	
6	54	3	10	0,313	-0,580	0,281	0,032	

7	56	2	12	0,375	-0,404	0,343	0,032	
8	58	2	14	0,438	-0,227	0,410	0,027	
9	60	2	16	0,500	-0,050	0,480	0,020	0,128
10	62	2	18	0,563	0,127	0,551	0,012	
11	64	5	23	0,719	0,304	0,619	0,099	
12	66	3	26	0,813	0,481	0,685	0,128	
13	68	1	27	0,844	0,658	0,745	0,099	
14	70	1	28	0,875	0,835	0,798	0,077	
15	72	1	29	0,906	1,012	0,844	0,062	
16	76	1	30	0,938	1,366	0,914	0,024	
17	88	2	32	1,000	2,427	0,992	0,008	

Keterangan:

 f_i = frekuensi

f kum= frekuensi komulatif

kp= komulatif proporsi

$$z_i = \frac{X - \bar{\bar{X}}}{S}$$

 Z_{tabel} = nilai Z_i pada tabel

 $|kp-Z_{tabel}|$ = selisih antara kp dan Z_{tabel}

 D_0 = Nilai Maksimal dari $|kp - Z_{tabel}|$

Untuk $\alpha = 5\%$ diperoleh nilai tabel = 0,239

Karena $D_0 \leq D_{tabel}$, maka data tersebut berdistribusi normal

UJI NORMALITAS TAHAP AWAL VIII B

Hipotesis

 H_0 = Data berdistribusi normal

 $H_1 = Data tidak berdistribusi normal$

Kriteria yang digunakan

 H_0 diteima jika $D_O \leq D_{tabel}$

Pengujian Hipotesis

No	v	$(V \overline{V})$	$(v \bar{v})^2$
No	X	$(X-\bar{X})$	$(X-\bar{X})^2$
1	44	-9,912	98,243
2	70	16,088	258,831
3	60	6,088	37,067
4	52	-1,912	3,655
5	72	18,088	327,184
6	58	4,088	16,714
7	56	2,088	4,361
8	42	-11,912	141,890
9	54	0,088	0,008
10	60	6,088	37,067
11	60	6,088	37,067
12	72	18,088	327,184
13	44	-9,912	98,243
14	48	-5,912	34,949
15	42	-11,912	141,890
16	52	-1,912	3,655
17	55	1,088	1,184
18	50	-3,912	15,302
19	44	-9,912	98,243

20	54	0,088	0,008
21	42	-11,912	141,890
22	52	-1,912	3,655
23	56	2,088	4,361
24	44	-9,912	98,243
25	70	16,088	258,831
26	48	-5,912	34,949
27	52	-1,912	3,655
28	54	0,088	0,008
29	50	-3,912	15,302
30	44	-9,912	98,243
31	60	6,088	37,067
32	52	-1,912	3,655
33	48	-5,912	34,949
34	72	18,088	327,184
Jumlah	1833		2744,735

Rata-Rata
$$\bar{X} = \frac{\sum X}{N} = \frac{1833}{34} = 53,912$$

Standar Deviasi
$$s = \sqrt{\frac{\sum (X - \bar{X})^2}{N - 1}} = \sqrt{\frac{2744,735}{34 - 1}} = 9,120$$

No	X	f_i	fkum	kp	Z_i	Z_{tabel}	kp - Z _{tabel}	D_O
1	42	3	3	0,088	-1,306	0,096	0,008	
2	44	5	8	0,235	-1,087	0,139	0,097	
3	48	3	11	0,324	-0,648	0,258	0,065	
4	50	2	13	0,382	-0,429	0,334	0,048	
5	52	5	18	0,529	-0,210	0,417	0,112	0,115
6	54	3	21	0,618	0,010	0,504	0,114	
7	55	1	22	0,647	0,119	0,547	0,100	

8	56	2	24	0,706	0,229	0,591	0,115	
9	58	1	25	0,735	0,448	0,673	0,062	
10	60	4	29	0,853	0,668	0,748	0,105	
11	70	2	31	0,912	1,764	0,961	0,049	
12	72	3	34	1,000	1,983	0,976	0,024	

Keterangan:

 f_i = frekuensi

f kum= frekuensi komulatif

kp= komulatif proporsi

$$z_i = \frac{X - \bar{\bar{X}}}{S}$$

 Z_{tabel} = nilai Z_i pada tabel

 $|kp - Z_{tabel}|$ = selisih antara kp dan Z_{tabel}

 D_{O} = Nilai Maksimal dari $|kp-Z_{tabel}|$

Untuk $\alpha = 5\%$ diperoleh nilai tabel = 0,233

Karena $D_0 \leq D_{tabel}$, maka data tersebut berdistribusi normal

UJI NORMALITAS TAHAP AWAL VIII C

Hipotesis

 H_0 = Data berdistribusi normal

 $H_1 = Data tidak berdistribusi normal$

Kriteria yang digunakan

 H_0 diterima jika $D_0 \leq D_{tabel}$

Pengujian Hipotesis

No	X	$(X-\bar{X})$	$(X-\bar{X})^2$
1	58	3,182	10,124
2	60	5,182	26,851
3	70	15,182	230,488
4	52	-2,818	7,942
5	58	3,182	10,124
6	48	-6,818	46,488
7	60	5,182	26,851
8	64	9,182	84,306
9	54	-0,818	0,669
10	46	-8,818	77,760
11	50	-4,818	23,215
12	42	-12,818	164,306
13	44	-10,818	117,033
14	54	-0,818	0,669
15	40	-14,818	219,579
16	60	5,182	26,851
17	72	17,182	295,215
18	52	-2,818	7,942
19	60	5,182	26,851

20	62	7,182	51,579
21	42	-12,818	164,306
22	44	-10,818	117,033
23	52	-2,818	7,942
24	50	-4,818	23,215
25	52	-2,818	7,942
26	42	-12,818	164,306
27	60	5,182	26,851
28	60	5,182	26,851
29	60	5,182	26,851
30	50	-4,818	23,215
31	56	1,182	1,397
32	60	5,182	26,851
33	75	20,182	407,306
Jumlah	1938		3961,875

Rata-Rata
$$\bar{X} = \frac{\sum X}{N} = \frac{1809}{33} = 54,818$$

Standar Deviasi
$$s = \sqrt{\frac{\sum (X - \bar{X})^2}{N - 1}} = \sqrt{\frac{2478,909}{33 - 1}} = 8,801$$

No	X	f_i	fkum	kp	Z_i	Z_{tabel}	kp - Z _{tabel}	D_{O}
1	40	1	1	0,030	-1,684	0,046	0,016	
2	42	3	4	0,121	-1,456	0,073	0,049	
3	44	2	6	0,182	-1,229	0,110	0,072	
4	46	1	7	0,212	-1,002	0,158	0,054	
5	48	1	8	0,242	-0,775	0,219	0,023	
6	50	3	11	0,333	-0,547	0,292	0,041	
7	52	4	15	0,455	-0,320	0,374	0,080	0,127
8	54	2	17	0,515	-0,093	0,463	0,052	

9	56	1	18	0,545	0,134	0,553	0,008
10	58	2	20	0,606	0,362	0,641	0,035
11	60	8	28	0,848	0,589	0,722	0,127
12	62	1	29	0,879	0,816	0,793	0,086
13	64	1	30	0,909	1,043	0,852	0,058
14	70	1	31	0,939	1,725	0,958	0,018
15	72	1	32	0,970	1,952	0,975	0,005
16	75	1	33	1,000	2,293	0,989	0,011

Keterangan:

 f_i = frekuensi

f kum= frekuensi komulatif

kp= komulatif proporsi

$$z_i = \frac{X - \bar{X}}{S}$$

 Z_{tabel} = nilai Z_i pada tabel

 $|kp-Z_{tabel}|$ = selisih antara kp dan Z_{tabel}

 D_0 = Nilai Maksimal dari $|kp - Z_{tabel}|$

Untuk $\alpha = 5\%$ diperoleh nilai tabel = 0,237

Karena $D_0 \leq D_{tabel}$, maka data tersebut berdistribusi normal

UJI NORMALITAS TAHAP AWAL VIII D

Hipotesis

 H_0 = Data berdistribusi normal

 $H_1 = Data tidak berdistribusi normal$

Kriteria yang digunakan

 H_0 diteima jika $D_O \leq D_{tabel}$

Pengujian Hipotesis

No	X	$(X-\bar{X})$	$(X-\bar{X})^2$
1	66	5,375	28,891
2	64	-4,625	21,391
3	58	0,375	0,141
4	56	-12,625	159,391
5	64	-6,625	43,891
6	62	-12,625	159,391
7	54	-4,625	21,391
8	66	-12,625	159,391
9	68	-4,625	21,391
10	54	-2,625	6,891
11	66	-4,625	21,391
12	40	-0,625	0,391
13	54	3,375	11,391
14	50	5,375	28,891
15	60	-6,625	43,891
16	62	5,375	28,891
17	58	17,375	301,891
18	64	10,375	107,641
19	76	-8,625	74,391

20	72	1,375	1,891	
21	70	3,375	11,391	
22	64	1,375	1,891	
23	64	7,375	54,391	
24	40	-0,625	0,391	
25	42	-6,625	43,891	
26	88	23,375	546,391	
27	52	5,375	28,891	
28	52	-4,625	21,391	
29	60	1,375	1,891	
30	48	15,375	236,391	
31	88	1,375	1,891	
32	56	-14,625	213,891	
Jumlah	1748		2405,500	

Rata-Rata
$$\bar{X} = \frac{\sum X}{N} = \frac{1748}{32} = 54,625$$

Standar Deviasi
$$s = \sqrt{\frac{\sum (X - \bar{X})^2}{N - 1}} = \sqrt{\frac{2405,500}{32 - 1}} = 8,809$$

No	X	f_i	fkum	kp	Z_i	Z_{tabel}	kp - Z _{tabel}	D_{O}
1	40	1	1	0,031	-1,660	0,048	0,017	
2	42	3	4	0,125	-1,433	0,076	0,049	
3	46	1	5	0,156	-0,979	0,164	0,008	
4	48	3	8	0,250	-0,752	0,226	0,024	
5	50	5	13	0,406	-0,525	0,300	0,106	
6	52	1	14	0,438	-0,298	0,383	0,055	
7	54	2	16	0,500	-0,071	0,472	0,028	
8	55	1	17	0,531	0,043	0,517	0,014	
9	56	4	21	0,656	0,156	0,562	0,094	0,115

10	58	2	23	0,719	0,383	0,649	0,070	
11	60	4	27	0,844	0,610	0,729	0,115	
12	62	1	28	0,875	0,837	0,799	0,076	
13	65	1	29	0,906	1,178	0,881	0,026	
14	70	1	30	0,938	1,745	0,960	0,022	
15	72	1	31	0,969	1,972	0,976	0,007	
16	78	1	32	1,000	2,654	0,996	0,004	

Keterangan:

 f_i = frekuensi

f kum= frekuensi komulatif

kp= komulatif proporsi

$$z_i = \frac{X - \overline{X}}{S}$$

 Z_{tabel} = nilai Z_i pada tabel

 $|kp-Z_{tabel}|$ = selisih antara kp dan Z_{tabel}

 D_0 = Nilai Maksimal dari $|kp - Z_{tabel}|$

Untuk $\alpha = 5\%$ diperoleh nilai tabel = 0,240

Karena $D_0 \leq D_{tabel}$, maka data tersebut berdistribusi normal

UJI NORMALITAS TAHAP AWAL VIII E

Hipotesis

 H_0 = Data berdistribusi normal

 $H_1 = Data tidak berdistribusi normal$

Kriteria yang digunakan

 H_0 diteima jika $D_O \leq D_{tabel}$

Pengujian Hipotesis

NI -	V	(V V)	$(v, \overline{v})^2$
No	X	$(X-\bar{X})$	$(X-\bar{X})^2$
1	58	2,970	8,819
2	53	-2,030	4,122
3	60	4,970	24,698
4	50	-5,030	25,304
5	54	-1,030	1,062
6	56	0,970	0,940
7	54	-1,030	1,062
8	58	2,970	8,819
9	52	-3,030	9,183
10	56	0,970	0,940
11	60	4,970	24,698
12	50	-5,030	25,304
13	62	6,970	48,577
14	46	-9,030	81,546
15	44	-11,030	121,668
16	62	6,970	48,577
17	54	-1,030	1,062
18	56	0,970	0,940
19	64	8,970	80,455

20	46	-9,030	81,546
21	52	-3,030	9,183
22	46	-9,030	81,546
23	60	4,970	24,698
24	56	0,970	0,940
25	42	-13,030	169,789
26	44	-11,030	121,668
27	58	2,970	8,819
28	52	-3,030	9,183
29	56	0,970	0,940
30	56	0,970	0,940
31	54	-1,030	1,062
32	70	14,970	224,092
33	75	19,970	398,789
Jumlah	1816		1650,970

Rata-Rata
$$\bar{X} = \frac{\sum X}{N} = \frac{1816}{33} = 55,030$$

Standar Deviasi
$$s = \sqrt{\frac{\sum (X - \bar{X})^2}{N - 1}} = \sqrt{\frac{1650,970}{33 - 1}} = 7,183$$

No	X	f_i	fkum	kp	Z_i	Z_{tabel}	kp - Z _{tabel}	D_O
1	42	1	1	0,030	-1,814	0,035	0,005	
2	44	2	3	0,091	-1,536	0,062	0,029	
3	46	3	6	0,182	-1,257	0,104	0,077	
4	50	2	8	0,242	-0,700	0,242	0,001	
5	52	3	11	0,333	-0,422	0,337	0,003	
6	53	1	12	0,364	-0,283	0,389	0,025	
7	54	4	16	0,485	-0,143	0,443	0,042	0,113
8	56	6	22	0,667	0,135	0,554	0,113	

9	58	3	25	0,758	0,413	0,660	0,097	
10	60	3	28	0,848	0,692	0,755	0,093	
11	62	2	30	0,909	0,970	0,834	0,075	
12	64	1	31	0,939	1,249	0,894	0,045	
13	70	1	32	0,970	2,084	0,981	0,012	
14	75	1	33	1,000	2,780	0,997	0,003	

Keterangan:

 f_i = frekuensi

f kum= frekuensi komulatif

kp= komulatif proporsi

$$z_i = \frac{X - \bar{X}}{S}$$

 Z_{tabel} = nilai Z_i pada tabel

 $|kp - Z_{tabel}|$ = selisih antara kp dan Z_{tabel}

 D_0 = Nilai Maksimal dari $|kp - Z_{tabel}|$

Untuk $\alpha = 5\%$ diperoleh nilai tabel = 0,237

Karena $D_0 \leq D_{tabel}$, maka data tersebut berdistribusi normal

UJI NORMALITAS TAHAP AWAL VIII F

Hipotesis

 H_0 = Data berdistribusi normal

 $H_1 = Data tidak berdistribusi normal$

Kriteria yang digunakan

 H_0 diteima jika $D_O \leq D_{tabel}$

Pengujian Hipotesis

Tabel Penolong Mencari Rata-Rata dan Standar Deviasi

No	X	$(X-\bar{X})$	$(X-\bar{X})^2$
1	58	0,588	0,346
2	52	-5,412	29,287
3	68	10,588	112,111
4	54	-3,412	11,640
5	54	-3,412	11,640
6	60	2,588	6,699
7	70	12,588	158,464
8	64	6,588	43,405
9	54	-3,412	11,640
10	52	-5,412	29,287
11	48	-9,412	88,581
12	58	0,588	0,346
13	72	14,588	212,817
14	50	-7,412	54,934
15	52	-5,412	29,287
16	56	-1,412	1,993
17	64	6,588	43,405
18	50	-7,412	54,934
19	60	2,588	6,699

20	46	-11,412	130,228
21	50	-7,412	54,934
22	60	2,588	6,699
23	53	-4,412	19,464
24	56	-1,412	1,993
25	70	12,588	158,464
26	54	-3,412	11,640
27	58	0,588	0,346
28	60	2,588	6,699
29	55	-2,412	5,817
30	70	12,588	158,464
31	56	-1,412	1,993
32	58	0,588	0,346
33	54	-3,412	11,640
34	56	-1,412	1,993
Jumlah	1952		1478,235

Rata-Rata
$$\bar{X} = \frac{\sum X}{N} = \frac{1952}{34} = 57,412$$

Standar Deviasi
$$s = \sqrt{\frac{\sum (X - \bar{X})^2}{N - 1}} = \sqrt{\frac{1478,235}{34 - 1}} = 6,693$$

No	X	f_i	fkum	kp	Z_i	Z_{tabel}	kp - Z _{tabel}	D_{O}
1	46	1	1	0,029	-1,705	0,044	0,015	
2	48	1	2	0,059	-1,406	0,080	0,021	
3	50	3	5	0,147	-1,107	0,134	0,013	
4	52	3	8	0,235	-0,809	0,209	0,026	
5	53	1	9	0,265	-0,659	0,255	0,010	
6	54	5	14	0,412	-0,510	0,305	0,107	0,144
7	55	1	15	0,441	-0,360	0,359	0,082	0,111

8	56	4	19	0,559	-0,211	0,416	0,142
9	58	4	23	0,676	0,088	0,535	0,141
10	60	4	27	0,794	0,387	0,651	0,144
11	64	2	29	0,853	0,984	0,838	0,015
12	68	1	30	0,882	1,582	0,943	0,061
13	70	3	33	0,971	1,881	0,970	0,001
14	72	1	34	1,000	2,180	0,985	0,015

Keterangan:

 f_i = frekuensi

f kum= frekuensi komulatif

kp= komulatif proporsi

$$z_i = \frac{X - \bar{X}}{S}$$

 Z_{tabel} = nilai Z_i pada tabel

 $|kp - Z_{tabel}|$ = selisih antara kp dan Z_{tabel}

 D_0 = Nilai Maksimal dari $|kp - Z_{tabel}|$

Untuk $\alpha = 5\%$ diperoleh nilai tabel = 0,233

Karena $D_0 \leq D_{tabel}$, maka data tersebut berdistribusi normal

UJI NORMALITAS TAHAP AWAL VIII G

Hipotesis

 H_0 = Data berdistribusi normal

 H_1 = Data tidak berdistribusi normal

Kriteria yang digunakan

 H_0 diteima jika $D_0 \leq D_{tabel}$

Pengujian Hipotesis

Tabel Penolong Mencari Rata-Rata dan Standar Deviasi

No	X	$(X-\bar{X})$	$(X-\bar{X})^2$
1	50	-7,242	52,453
2	78	20,758	430,877
3	65	7,758	60,180
4	50	-7,242	52,453
5	74	16,758	280,816
6	44	-13,242	175,362
7	52	-5,242	27,483
8	72	14,758	217,786
9	68	10,758	115,725
10	46	-11,242	126,392
11	70	12,758	162,756
12	67	9,758	95,210
13	54	-3,242	10,513
14	48	-9,242	85,422
15	54	-3,242	10,513
16	50	-7,242	52,453
17	52	-5,242	27,483
18	45	-12,242	149,877

19	67	9,758	95,210
20	60	2,758	7,604
21	46	-11,242	126,392
22	60	2,758	7,604
23	56	-1,242	1,544
24	65	7,758	60,180
25	68	10,758	115,725
26	67	9,758	95,210
27	44	-13,242	175,362
28	44	-13,242	175,362
29	46	-11,242	126,392
30	63	5,758	33,150
31	50	-7,242	52,453
32	56	-1,242	1,544
33	58	0,758	0,574
Jumlah	1889		3208,061

Rata-Rata
$$\bar{X} = \frac{\sum X}{N} = \frac{1889}{33} = 57,242$$

Standar Deviasi
$$s = \sqrt{\frac{\sum (X - \bar{X})^2}{N - 1}} = \sqrt{\frac{3208,061}{33 - 1}} = 10,013$$

No	X	f_i	fkum	kp	Z_i	Z_{tabel}	kp - Z _{tabel}	D_O
1	44	3	3	0,091	-1,323	0,093	0,002	
2	45	1	4	0,121	-1,223	0,111	0,010	
3	46	3	7	0,212	-1,123	0,131	0,081	
4	48	1	8	0,242	-0,923	0,178	0,064	
5	50	4	12	0,364	-0,723	0,235	0,129	
6	52	2	14	0,424	-0,524	0,300	0,124	
7	54	2	16	0,485	-0,324	0,373	0,112	0,129

8	56	2	18	0,545	-0,124	0,451	0,095	
9	58	1	19	0,576	0,076	0,530	0,046	
10	60	2	21	0,636	0,275	0,608	0,028	
11	63	1	22	0,667	0,575	0,717	0,051	
12	65	2	24	0,727	0,775	0,781	0,053	
13	67	3	27	0,818	0,975	0,835	0,017	
14	68	2	29	0,879	1,074	0,859	0,020	
15	70	1	30	0,909	1,274	0,899	0,010	
16	72	1	31	0,939	1,474	0,930	0,010	
17	74	1	32	0,970	1,674	0,953	0,017	
18	78	1	33	1,000	2,073	0,981	0,019	

Keterangan:

 f_i = frekuensi

f kum= frekuensi komulatif

kp= komulatif proporsi

$$z_i = \frac{X - \bar{\bar{X}}}{S}$$

 Z_{tabel} = nilai Z_i pada tabel

 $|kp-Z_{tabel}|$ = selisih antara kp dan Z_{tabel}

 D_0 = Nilai Maksimal dari $|kp - Z_{tabel}|$

Untuk $\alpha = 5\%$ diperoleh nilai tabel = 0,237

Karena $D_0 \leq D_{tabel}$, maka data tersebut berdistribusi normal

Lampiran 6 Uji Homogenitas Tahap Awal

UJI HOMOGENITAS TAHAP AWAL

Hipotesis

$$H_0$$
: $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2 = \sigma_5^2 = \sigma_6^2 = \sigma_7^2$

 H_1 : Salah satu tanda = tidak berlaku

Pengujian Hipotesis

Varians gabungan dari semua sampel

$$S^2 = \frac{\sum (n_i - 1)s_i^2}{\sum (n_i - 1)}$$

Harga satuan B

$$B = (\log S^2) \cdot \sum (n_i - 1)$$

 χ^2 dengan menggunakan uji barlett

$$\chi^2 = (\ln 10) \cdot \{B - \sum (n_i - 1) \log s_i^2\}$$

Kriteria yang digunakan

 H_0 diterima jika $\chi^2_{hitung} < \chi^2_{tabel}$

Tabel Penolong Homogenitas

	KELAS						
NO	VIIIA	VIIIB	VIIIC	VIIID	VIIIE	VIIIF	VIIIG
1	66	44	58	60	58	58	50
2	64	70	60	50	53	52	78
3	58	60	70	55	60	68	65
4	56	52	52	42	50	54	50
5	64	72	58	48	54	54	74
6	62	58	48	42	56	60	44
7	54	56	60	50	54	70	52
8	66	42	64	42	58	64	72
9	68	54	54	50	52	54	68
10	54	60	46	52	56	52	46
11	66	60	50	50	60	48	70

12	40	72	42	54	50	58	67
13	54	44	44	58	62	72	54
14	50	48	54	60	46	50	48
15	60	42	40	48	44	52	54
16	62	52	60	60	62	56	50
17	58	55	72	72	54	64	52
18	64	50	52	65	56	50	45
19	76	44	60	46	64	60	67
20	72	54	62	56	46	46	60
21	70	42	42	58	52	50	46
22	64	52	44	56	46	60	60
23	64	56	52	62	60	53	56
24	40	44	50	54	56	56	65
25	42	70	52	48	42	70	68
26	88	48	42	78	44	54	67
27	52	52	60	60	58	58	44
28	52	54	60	50	52	60	44
29	60	50	60	56	56	55	46
30	48	44	50	70	56	70	63
31	88	60	56	56	54	56	50
32	56	52	60	40	70	58	56
33		48	75		75	54	58
34		72				56	
n	32	34	33	32	33	34	33
n – 1	31	33	32	31	32	33	32
s^2	127,80	83,17	77,47	77,60	51,593	44,80	100,25
$(n-1)s^2$	3961,86	2744,74	2478,91	2405,50	1650,97	1478,24	3208,06
$\log s^2$	2,11	1,92	1,89	1,89	1,713	1,65	2,001
n							
$-1(\log s^2)$	65,30	63,36	60,452	58,58	54,80	54,49	64,04

Varians gabungan dari semua sampel

$$s^{2} = \frac{\sum (n_{i}-1)s_{i}^{2}}{\sum (n_{i}-1)}$$

$$s^2 = \frac{17928,28}{224}$$

$$s^2 = 80.04$$

Harga satuan B

$$B = (\log S^2) \cdot \sum (n_i - 1)$$

$$B = (1,90)(224)$$

$$B = 426,34$$

 χ^2 dengan menggunakan uji barlett

$$\chi^2 = (\ln 10) \cdot \{B - \sum (n_i - 1) \log s_i^2\}$$

$$\chi^2 = (2,30) \cdot \{426,34 - 421,03\}$$

$$\chi^2 = 12,23$$

Untuk α = 5 % dengan dk = 4 - 1 = 3 diperoleh χ^2_{tabel} = 14,07

Karena $\chi^2_{hitung} < \chi^2_{tabel}$, maka homogen

Lampiran 7 Kisi-Kisi Angket Habits Of Mind

KISI-KISI ANGKET HABITS OF MIND

Indikator	Nomo Favorable (Pernyataan	Jumlah Item	
	Positif)	(Pernyatan Negatif)	
Mengeksplorasi ide- ide matematis	2,3,5	1,4	5
Merefleksi kebenaran jawaban masalah matematis	10	7,9	3
Mengidentifikasi strategi pemecahan masalah matematis	14	13	2
Bertanya pada diri sendiri tentang aktivitas matematika yang telah dilakukan	15,18,20	16,17,19	6
Memformulasi pernyataan matematis	23	21,24,25	4
Mengonstruksi contoh matematis	28,29,30		3
_	Jumlah	·	23

Penilaian Angket Habits of Mind

Kriteria	Skor	Keterangan	
C	4	SS = Sangat sesuai	
Favorable	3	S = Sesuai	
(Pernyataan	2	TS = Tidak sesuai	
Positif)	1	STS = Sangat tidak sesuai	
11 6	1	SS = Sangat sesuai	
Unfavorable	2	S = Sesuai	
(Pernyataan Negatif)	3	TS = Tidak sesuai	
Negatiij	4	STS = Sangat tidak sesuai	

Lampiran 8 Angket Habits Of Mind

ANGKET HABITS OF MIND

Nama	:
Kelas	:
No. Absen	:
Waktu	:

Petunjuk pengerjaan:

- 1. Baca dan pahami setiap pernyataan di bawah ini dengan teliti.
- 2. Setiap jawaban Anda adalah benar, sehingga jangan terpengaruh jawaban teman.
- 3. Jangan ragu-ragu dalam memilih jawaban, karena hasil dari pengisian angket tidak mempengaruhi nilai Anda
- 4. Berilah tanda ($\sqrt{}$) pada kolom di sebelah kanan pernyataan yang paling sesuai dengan diri Anda. Adapun pilihan jawaban sebagai berikut:

STS = Sangat tidak sesuai

TS = Tidak sesuai

S = Sesuai

SS = Sangat sesuai

Pilihlah jawaban yang sesuai dengan diri Anda!

NO	PERNYATAAN	STS	TS	S	SS
1	Saya tidak ingin mempelajari				
	matematika secara lebih mendalam				
2	Saya belajar matematika walaupun				
	belum saatnya ulangan				
3	Saya meluangkan waktu di rumah				
	untuk belajar matematika				
4	Saya tidak peduli dengan penjelasan				
	matematika yang disampaikan guru				
5	Saya aktif berdiskusi dengan teman				
	saat belajar matematika				

6	Ketika belajar saya tidak memeriksa kembali hasil pekerjaan yang saya peroleh		
7	Saya hanya mempelajari kembali materi pelajaran matematika yang telah diberikan oleh guru ketika ada ulangan matematika		
8	Selalu mengecek ulang jawaban ketika mengerjakan soal matematika		
9	Saya menghindari soal yang mempunyai beragam cara penyelesaian		
10	Saya dapat menerapkan konsep matematika yang telah dijelaskan guru dalam menyelesaikan soal matematika		
11	Saya mengecek kembali hasil ulangan agar kedepannya hasil belajar semakin baik		
12	Saya acuh terhadap nilai matematika yang diperoleh		
13	Saya tidak mempelajari ulang materi matematika yang telah dipelajari di sekolah		
14	Saya membuka catatan untuk mengingat pembelajaran matematika di sekolah		
15	Saya mengumpulkan tugas matematika tanpa memeriksa terlebih dahulu		
16	Mencoba latihan matematika untuk melihat penguasaan materi yang sudah dipelajari		
17	Saya dapat menjawab pertanyaan matematika saat diskusi kelas maupun diskusi kelompok		
18	Apabila guru memberikan tugas, saya mengerjakannya dengan menyalin tugas teman saya		

19	Saya mau untuk mengerjakan soal di depan dan menjelaskan ke teman yang lain	
20	Saya berusaha menjawab jika guru bertanya mengenai materi matematika kepada saya	
21	Saya mampu membuat model matematika dari soal berbentuk uraian dan soal cerita	
22	Dari setiap kegiatan pembelajaran matematika, saya dapat menyimpulkan mengenai materi yang sedang diajarkan	
23	Saya dapat memperoleh pengetahuan dengan mengikuti kegiatan pembelajaran matematika	

$$Nilai = \frac{skor\ yang\ diperoleh}{jumlah\ skor\ maksimal} \times 100$$

Lampiran 9 Kisi-Kisi Angket Self Efficacy

KISI-KISI ANGKET SELF EFFICACY

	Nomo	Jumlah	
Indikator	Favorable Unfavorable (Pernyataan Positif) Negatif)		Item
Mampu mengatasi masalah yang dihadapi	1,4,5 2,3		5
Yakin akan keberhasilan dirinya	6,9,10 8		4
Berani menghadapi tantangan berani mengambil resiko atas keputusan yang diambilnya	11,12,13	14,15	5
Menyadari kekuatan dan kelemahan dirinya	17,19	18,20	4
Mampu berinteraksi dengan orang lain	24,25 22		3
Tangguh atau tidak mudah menyerah	30 27,28		3
	Jumlah		24

Penilaian Angket Penelitian Self Efficacy

Kriteria	Skor	Keterangan
F	4	SS = Sangat sesuai
Favorable	3	S = Sesuai
(Pernyataan	2	TS = Tidak sesuai
Positif)	1	STS = Sangat tidak sesuai
11 6	1	SS = Sangat sesuai
Unfavorable	2	S = Sesuai
(Pernyataan Negatif)	3	TS = Tidak sesuai
Negatiij	4	STS = Sangat tidak sesuai

Lampiran 10 Angket Self Efficacy

ANGKET SELF EFFICACY

Nama	:
Kelas	:
No. Absen	:
Waktu	:

Petunjuk pengerjaan:

- 1. Baca dan pahami setiap pernyataan di bawah ini dengan teliti.
- 2. Setiap jawaban Anda adalah benar, sehingga jangan terpengaruh jawaban teman.
- 3. Jangan ragu-ragu dalam memilih jawaban, karena hasil dari pengisian angket tidak mempengaruhi nilai Anda
- 4. Berilah tanda ($\sqrt{}$) pada kolom di sebelah kanan pernyataan yang paling sesuai dengan diri Anda. Adapun pilihan jawaban sebagai berikut:

STS = Sangat tidak sesuai

TS = Tidak sesuai

S = Sesuai

SS = Sangat sesuai

Pilihlah jawaban yang sesuai dengan diri Anda!

NO	PERNYATAAN	STS	TS	S	SS
1	Saya dapat menemukan				
	alternatif penyelesaian soal				
	matematika saat menjumpai				
	kebuntuan				
2	Saya menunggu jawaban dari				
	teman ketika kesulitan dalam				
	mengerjakan soal matematika				
3	Saya menghindari atau tidak				
	mengerjakan tugas matematika				
	yang kurang dipahami				
4	Saya dapat mengatasi kesulitan				
	belajar matematika sendiri				

5	Saya memiliki cara untuk	
5		
	menyelesaikan setiap soal	
	matematika yang diberikan	
6	Saya merasa tenang ketika	
	menghadapi ulangan matematika	
7	Saya ragu dapat mempelajari	
	materi matematika secara	
	mandiri	
8	Saya yakin akan berhasil dalam	
	ujian matematika yang akan	
	datang	
9	Saya yakin dapat menyelesaikan	
_	tugas matematika yang diberikan	
	dengan baik	
10	Berani menghadapi kritikan atas	
10		
	tugas matematika yang telah saya	
	kerjakan	
11	Saya berani mencoba	
	menyelesaikan soal matematika	
	dengan cara yang berbeda dari	
	contoh yang diberikan oleh guru	
12	Saya bersedia ditunjuk sebagai	
	ketua kelompok dalam	
	pembelajaran matematika	
13	Menghindar dari soal latihan	
	yang berbeda dengan contoh	
	yang diberikan guru	
14	Saya takut untuk mengikuti	
	seleksi siswa berprestasi antar	
	sekolah	
15	Mengetahui materi matematika	
	yang perlu dipelajari ulang	
16	Bingung saat memilih materi	
	mana yang akan ditanyakan	
	kepada guru	
17	Yakin akan memperoleh nilai	
	terbaik dalam ulangan	
	matematika yang akan datang	
<u> </u>	matematika yang akan datang	<u> </u>

18	Merasa ragu dapat menuntaskan		
	tugas matematika yang berat		
19	Merasa ragu-ragu		
	menyampaikan hasil diskusi saat		
	mewakili kelompok matematika		
20	Berani mengemukakan pendapat		
	dalam forum diskusi matematika		
21	Saya merasa senang menjelaskan		
	penyelesaian soal matematika		
	ketika ada teman yang bertanya		
22	Saya mudah lelah ketika		
	mempelajari matematika dalam		
	waktu yang lama		
23	Saya mudah menyerah saat		
	menghadapi soal matematika		
	yang sulit dan rumit		
24	Saya berusaha mencari cara lain		
	ketika menjumpai kesulitan		
	dalam mengerjakan matematika		

$$Nilai = \frac{skor\ yang\ diperoleh}{jumlah\ skor\ maksimal} \times 100$$

Lampiran 11 Kisi-Kisi Soal Tes Kemampuan Pemecahan Masalah Matematis

KISI-KISI SOAL KEMAMPUAN PEMECAHAN MASALAH MATEMATIS

Mata pelajaran : Matematika

Kelas/Semester : VIII (Delapan)/ 1 (Satu)

Bentuk Soal : Uraian

Alokasi Waktu : 80Menit

Materi	Indikator	No.	Bentuk	Indikator
	pembelajaran	Soal	Soal	Kemampuan
				Pemecahan
				Masalah
Pola	3.1.1 Menentukan	1,2,4,5	Uraian	1. Mengidentifikasi
Bilangan	suku ke-n dari pola bilangan 4.1.1 Menyelesaikan masalah yang berkaitan dengan suku ke-n dari			unsur yang diketahui, ditanyakan, dan kecukupan unsur yang diperlukan.
	pola bilangan			

3.1.2	Menentukan jumlah suku	3	2.	Merumuskan masalah
	ke-n dari pola			matematis
	bilangan		3.	Menetapkan dan
4.1.1	Menyelesaikan masalah yang berkaitan dengan jumlah suku ke-n dari		4.	menerapkan strategi untuk menyelesaikan masalah. Menjelaskan atau
	pola bilangan			menginterpretasi hasil penyelesaian masalah.

Lampiran 12 Soal Tes Kemampuan Pemecahan Masalah Matematis

SOAL TES KEMAMPUAN PEMECAHAN MASALAH MATEMATIS

Mata Pelajaran : Matematika

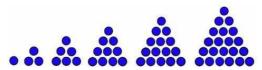
Kelas : VIII

Semester : Genap

Waktu : 80 menit

Petunjuk Umum

1. Bacalah doa sebelum mengerjakan.


- 2. Tulislah identitas anda ke dalam lembar jawaban yang tersedia.
- 3. Bacalah soal-soal di bawah ini dengan teliti.
- 4. Kerjakan secara sistematis, rinci, dan benar pada lembar jawaban yang telah disediakan.
- 5. Jika mengalami kesulitan dalam memahami soal maka tanyakan kepada guru.

Petunjuk Khusus:

- 1. Menuliskan apa yang diketahui dan apa yang ditanyakan.
- 2. Menuliskan rumus-rumus yang akan digunakan.
- 3. Menetapkan strategi dan menyelesaikan masalah secara sistematis
- 4. Menuliskan hasil yang diperoleh sesuai pertanyaan

Soal!

1. Perhatikan gambar pola pada kelereng berikut

Dari gambar diatas tentukan:

- a. Banyaknya kelereng suku ke-13!
- b. Banyaknya kelereng pada suku ke-25!
- 2. Doni bekerja di suatu perusahaan dengan gaji sebesar Rp. 2.000.000,00 per bulan. Setiap tahunnya gaji Pak Doni naik sebesar Rp. 500.000,00. Gaji Pak Doni pada saat 6 tahun bekerja adalah?
- 3. Di dalam sebuah gedung aula disusun kursi dengan dengan barisan paling depan 8 buah. Baris kedua 12 buah, dan baris ketiga 16 buah. Maka jumlah seluruh kursi di dalam gedung aula sampai baris ke-10 adalah?
- 4. Diketahui suku ke-20 dan suku ke-30 dari barisan aritmatika secara berturut-turut adalah 125 dan 185. Tentukan suku ke-25 dari barisan tersebut!
- 5. Pada suatu penelitian terhadap bakteri, awal mula terdapat 10 buah bakteri di dalam wadah. Bakteri berkembangbiak menjadi 2 kali lipat setiap1 jam. Berapa banyaknya bakteri setelah 9 jam ?

Lampiran 13 Pedoman Penskoran Soal Tes Kemampuan Pemecahan Masalah Matematis

PEDOMAN PENSKORAN SOAL TES KEMAMPUAN PEMECAHAN MASALAH MATEMATIS

Skor	Inc	likator Kemampuan Pen	necahan Masalah Matema	tis
	Mengidentifikasi unsur matematika yang ada	Merumuskan masalah matematis	Menerapkan strategi	Menjelaskan atau menginterpretasi hasil penyelesaian masalah
0	Tidak menuliskan unsur yang diketahui dan ditanyakan pada soal	Tidak menuliskan rumus yang digunakan	Tidak menuliskan penyelesaian soal	Tidak menjelaskan atau menginterpretasikan hasil penyelesaian
1	Salah atau kurang dalam menuliskan unsur yang diketahui dan ditanyakan pada soal	Salah dalam menuliskan rumus yang digunakan	Menuliskan penyelesaian masalah tidak benar dan tidak lengkap	Salah dalam menjelaskan atau menginterpretasikan
2	Benar dalam menuliskan unsur yang diketahui dan ditanyakan pada soal	Benar dalam menuliskan rumus yang digunakan	Menuliskan penyelesaikan secara sistematis dan lengkap, tapi salah dalam menuliskan hasil penyelesaian	Menjelaskan atau menginterpretasikan dengan benar
3			Menuliskan hasil penyelesaian dengan	

	benar, tapi tidak sistematis/tidak lengkap	
4	Menuliskan dengan benar, sistematis dan	
	lengkap dalam penyelesaian masalah	

Lampiran 14 Penskoran dan Kunci Jawaban Soal Tes Kemampuan Komunikasi Matematis

KUNCI JAWABAN DAN PENSKORAN TES KEMAMPUAN PEMECAHAN MATEMATIS

No.	Soal	Jawaban	Skor	Kriteria
No. 1.	Perhatikan gambar pola pada kelereng berikut Dari gambar diatas tentukan: a. Banyaknya kelereng pada suku ke-13! b. Banyaknya kelereng pada pola ke-25!	Mengidentifikasi unsur matematika yang ada Diketahui: U1 = 1 U2 = 3 U3 = 6 U4 = 10 U5 = 15 U6 = 20 n1 = 13 n2 = 25 Ditanya: a. Banyak kelereng suku ke-13	Skor 0 1 2	Kriteria Tidak menuliskan unsur yang diketahui dan ditanyakan pada soal Salah atau kurang dalam menuliskan unsur yang diketahui dan ditanyakan pada soal Benar dalam menuliskan unsur yang diketahui dan ditanyakan pada soal
		b. Banyaknya kelereng suku ke-25		
		Merumuskan masalah	0	Tidak menuliskan rumus
		matematis		yang digunakan

a. mencari suku ke-n pola	1	Salah dalam menuliskan
segitiga menggunakan		rumus yang digunakan
rumus	2	Benar dalam menuliskan
2		rumus yang digunakan
segitiga menggunakan		
rumus		
Menerapkan strategi	0	Tidak menuliskan
a. Banyak kelereng suku		penyelesaian soal
ke-13	1	Menuliskan penyelesaian
$U_n = \frac{n(n+1)}{n}$		masalah tidak benar dan
2 13(13+1)		tidak lengkap
$U_{13} = {2}$	2	Menuliskan penyelesaikan
$=\frac{13(14)}{}$		secara sistematis dan
182 182		lengkap, tapi salah dalam
= -2		menuliskan hasil
_		penyelesaian
	3	Menuliskan hasil
		penyelesaian dengan
$U_n = \frac{n(n+1)}{2}$		benar, tapi tidak
2		sistematis/tidak lengkap
	segitiga menggunakan rumus $U_n = \frac{n(n+1)}{2}$ b. mencari suku ke-n pola segitiga menggunakan rumus $U_n = \frac{n(n+1)}{2}$ Menerapkan strategi a. Banyak kelereng suku ke-13 $U_n = \frac{n(n+1)}{2}$ $U_{13} = \frac{13(13+1)}{2}$ $= \frac{13(14)}{2}$ $= \frac{182}{2}$ $= 91$	segitiga menggunakan rumus $U_n = \frac{n(n+1)}{2}$ b. mencari suku ke-n pola segitiga menggunakan rumus $U_n = \frac{n(n+1)}{2}$ Menerapkan strategi a. Banyak kelereng suku ke-13 $U_n = \frac{n(n+1)}{2}$ $U_{13} = \frac{13(13+1)}{2}$ $= \frac{13(14)}{2}$ $= \frac{182}{2}$ $= 91$ b. Banyak kelereng suku ke-25

		$U_{25} = \frac{25(25+1)}{2}$ $= \frac{25(26)}{2}$ $= \frac{650}{2}$ $= 325$	4	Menuliskan dengan benar, sistematis dan lengkap dalam penyelesaian masalah
		Menjelaskan atau menginterpretasi hasil penyelesaian masalah	0	Tidak menjelaskan atau menginterpretasikan hasil penyelesaian
		a. Jadi banyaknya kelereng suku ke-13	1	Salah dalam menjelaskan atau menginterpretasikan
		adalah 91. b. Jadi banyak kelereng suku ke-25 adalah 325.	2	Menjelaskan atau menginterpretasikan dengan benar
2.	Doni bekerja di suatu perusahaan dengan gaji sebesar Rp. 2.000.000,00 per bulan. Setiap tahunnya gaji Pak Doni naik	Mengidentifikasi unsur matematika yang ada U ₁ = Rp. 2.000.000,00	0	Tidak menuliskan unsur yang diketahui dan ditanyakan pada soal
	sebesar Rp. 500.000,00. Gaji Pak Doni pada saat 6 tahun bekerja adalah?	b = Rp. 500.000,00 pertahun	1	Salah atau kurang dalam menuliskan unsur yang

Ditanya: Berapa gaji Pak Doni pada saat 6 tahun bekerja?	2	diketahui dan ditanyakan pada soal Benar dalam menuliskan unsur yang diketahui dan ditanyakan pada soal
Merumuskan masalah matematis	0	Tidak menuliskan rumus yang digunakan
Cara mencari baris ke-n menggunakan rumus	1	Salah dalam menuliskan rumus yang digunakan
Un = a + (n - 1) b	2	Benar dalam menuliskan rumus yang digunakan
Menerapkan strategi Un= $a + (n-1) b$	0	Tidak menuliskan penyelesaian soal
U6 = 2000000 + (6 - 1) 500000 = 2000000 + (5) 500000	1	Menuliskan penyelesaian masalah tidak benar dan tidak lengkap
= 2000000 + 2500000 =4500000	2	Menuliskan penyelesaikan secara sistematis dan lengkap, tapi salah dalam menuliskan hasil penyelesaian
	3	Menuliskan hasil penyelesaian dengan

		Menjelaskan atau menginterpretasi hasil penyelesaian masalah Jadi, gaji Pak Doni pada saat 6 tahun bekerja adalah Rp. 4.500.000,00	0 1 2	benar, tapi tidak sistematis/tidak lengkap Menuliskan dengan benar, sistematis dan lengkap dalam penyelesaian masalah Tidak menjelaskan atau menginterpretasikan hasil penyelesaian Salam dalam menjelaskan atau menginterpretasikan salah Menjelaskan atau menginterpretasikan
3.	Di dalam sebuah gedung aula disusun kursi dengan dengan barisan paling depan 8 buah. Baris kedua 12 buah, dan baris ketiga 16 buah. Maka jumlah	Mengidentifikasi unsur matematika yang ada Diketahui: U ₁ = 8 buah	0	Tidak menuliskan unsur yang diketahui dan ditanyakan pada soal Salah atau kurang dalam
	seluruh kursi di dalam gedung aula sampai baris ke-10 adalah?	U ₂ = 12 buah U ₃ = 16 buah	1	menuliskan unsur yang diketahui dan ditanyakan pada soal

Beda (b) = U2 - U1 = 12 - 8 = 4 Ditanya: Jumlah seluruh kursi di dalam gedung aula sampai baris ke-10 adalah?	2	Benar dalam menuliskan unsur yang diketahui dan ditanyakan pada soal
Merumuskan masalah matematis	0	Tidak menuliskan rumus yang digunakan
Cara mencari jumlah seluruh kursi	1	Salah dalam menuliskan rumus yang digunakan
menggunakan rumus $S_n = \frac{n}{2} (2a + (n - 1) b)$	2	Benar dalam menuliskan rumus yang digunakan
Atau $S_n = \frac{n}{2} (a + U_n)$		
Menerapkan strategi Sn = $\frac{n}{2}$ (2a + (n - 1) b)	0	Tidak menuliskan penyelesaian soal
$S_{10} = \frac{10}{2} (2.8 + (10 - 1) 4)$ $= 5 (16 + (9) 4)$	1	Menuliskan penyelesaian masalah tidak benar dan tidak lengkap
= 5 (16 + 36) = 5 (52)	2	Menuliskan penyelesaikan secara sistematis dan

		T
= 260		lengkap, tapi salah dalam
Atau		menuliskan hasil
$U_n = a + (n-1)^n$	- 1)b	penyelesaian
$U_{10} = 8 + (1)$	0 - 1) 4	Menuliskan hasil
= 8 + (9) 4		penyelesaian dengan
= 44		benar, tapi tidak
$S_n = \frac{n}{2} (a + U)$	n)	sistematis/tidak lengkap
$S_{10} = \frac{z_{10}}{2} (8 +$		Menuliskan dengan benar,
		sistematis dan lengkap
$S_{10} = \frac{10}{2} (52)$		dalam penyelesaian
$S_{10} = \frac{520}{2}$		masalah
$S_{10} = 260$		
Menjelaska	an atau 0	Tidak menjelaskan atau
menginter	pretasi hasil	menginterpretasikan hasil
penyelesai	an masalah	penyelesaian
Jadi, jumlah	seluruh kursi 1	Salah dalam menjelaskan
sampai bar	is ke-10 adalah	atau menginterpretasikan
260 kursi.	2	Menjelaskan atau
		menginterpretasikan
		dengan benar
		3

4.	Diketahui suku ke-20 dan suku ke-30 dari barisan aritmatika secara berturut-turut adalah 125 dan 185. Tentukan suku ke-25 dari barisan tersebut!	Mengidentifikasi unsur matematika yang ada Diketahui: U ₂₀ = 125 U ₃₀ = 185 n = 25 Ditanya: berapa suku ke-	1	Tidak menuliskan unsur yang diketahui dan ditanyakan pada soal Salah atau kurang dalam menuliskan unsur yang diketahui dan ditanyakan pada soal
		25 dari barisan?	2	Benar dalam menuliskan unsur yang diketahui dan ditanyakan pada soal
		Merumuskan masalah matematis	0	Tidak menuliskan rumus yang digunakan
		Rumus yang digunakan adalah	1	Salah dalam menuliskan rumus yang digunakan
		$U_n = a + (n - 1) b$	2	Benar dalam menuliskan rumus yang digunakan
		Menerapkan strategi $U_n = a + (n - 1) b$	0	Tidak menuliskan penyelesaian soal
		$U_{20} \Rightarrow a + (20 - 1) b = 125$ a + 19b = 125(1) $U_{30} \Rightarrow a + (30 - 1) b = 185$	1	Menuliskan penyelesaian masalah tidak benar dan tidak lengkap
		a + 29b = 185(2)	2	Menuliskan penyelesaikan secara sistematis dan

Dari persamaan 1 dan	2 di	lengkap, tapi salah dalam
operasikan dengan	2 41	menuliskan hasil
eliminasi substitusi		penyelesaian
a + 19b = 125	3	Menuliskan hasil
a + 29b = 185		penyelesaian dengan
-10b = -60		benar, tapi tidak
b = 6		sistematis/tidak lengkap
Substitusikan nilai b k	e 4	Menuliskan dengan benar,
salah satu persamaan		sistematis dan lengkap
a + 19b = 125		dalam penyelesaian
a + 19(6) = 125		masalah
a + 114 = 125		musulum
a = 125 - 114		
a = 11		
mencari U ₂₅		
$U_n = a + (n-1) b$		
$U_{25} = 11 + (25 - 1) 6$		
= 11 + (24)6		
= 11 + 144		
= 155		

		Menjelaskan atau menginterpretasi hasil penyelesaian masalah Jadi, suku ke-25 dari brisan tersebut adalah 155.	1 2	Tidak menjelaskan atau menginterpretasikan hasil penyelesaian Salah dalam menjelaskan atau menginterpretasikan Menjelaskan atau menginterpretasikan dengan benar
5.	Pada suatu penelitian terhadap bakteri, awal mula terdapat 10 buah bakteri di dalam wadah. Bakteriberkembangbiak menjadi 2 kali lipat setiap1 jam. Berapa banyaknya bakteri setelah 9 jam ?	Mengidentifikasi unsur matematika yang ada U ₁ = 10 r = 2 n = 6	0	Tidak menuliskan unsur yang diketahui dan ditanyakan pada soal Salah atau kurang dalam menuliskan unsur yang diketahui dan ditanyakan pada soal
			2	Benar dalam menuliskan unsur yang diketahui dan ditanyakan pada soal
		Merumuskan masalah matematis	0	Tidak menuliskan rumus yang digunakan
		Cara mencari banyaknya bakteri	1	Salah dalam menuliskan rumus yang digunakan

$U_n = ar^{n-1}$	2	Benar dalam menuliskan rumus yang digunakan	
Menerapkan strategi $U_n = ar^{n-1}$	0	Tidak menuliskan penyelesaian soal	
$U_9 = 10(2^{9-1})$ = 10. (2 ⁸) = 10 (256) = 2560	1	Menuliskan penyelesaian masalah tidak benar dan tidak lengkap	
	2	Menuliskan penyelesaikan secara sistematis dan lengkap, tapi salah dalam menuliskan hasil penyelesaian	
	3	Menuliskan hasil penyelesaian dengan benar, tapi tidak sistematis/tidak lengkap	
	4	Menuliskan dengan benar, sistematis dan lengkap dalam penyelesaian masalah	
Menjelaskan atau	0	Tidak menjelaskan atau	
menginterpretasi hasil		menginterpretasikan hasil	
penyelesaian masalah		penyelesaian	

	Jadi, banyak bakteri setelah 6 jam adalah 2560	1	Salah dalam Menjelaskan atau menginterpretasikan	
	bakteri	2	Menjelaskan	atau
			menginterpretasikan	
			dengan benar	

Lampiran 15 Kisi-Kisi *Habits Of Mind* Uji Coba

KISI-KISI ANGKET HABITS OF MIND

Indikator	Nomo Favorable (Pernyataan Positif)	Jumlah Item	
Mengeksplorasi ide- ide matematis	2,3,5,6	1,4	6
Merefleksi kebenaran jawaban masalah matematis	8,10	7,9	4
Mengidentifikasi strategi pemecahan masalah matematis	12,14	11,13	4
Bertanya pada diri sendiri tentang aktivitas matematika yang telah dilakukan	15,18,20	16,17,19	6
Memformulasi pernyataan matematis	22,23	21,24,25,26	6
Mengonstruksi contoh matematis	27,28,29,30		4
	Jumlah		30

Penilaian Angket Habits of Mind

Kriteria	Skor	Keterangan	
F	4	SS = Sangat sesuai	
Favorable	3	S = Sesuai	
(Pernyataan	2	TS = Tidak sesuai	
Positif)	1	STS = Sangat tidak sesuai	
11 6	1	SS = Sangat sesuai	
Unfavorable	2	S = Sesuai	
(Pernyataan Negatif)	3	TS = Tidak sesuai	
Negatiij	4	STS = Sangat tidak sesuai	

Lampiran 16 Angket Habits Of Mind Uji Coba

ANGKET HABITS OF MIND

Nama : Kelas : No. Absen : Waktu :

Petunjuk pengerjaan:

- Baca dan pahami setiap pernyataan di bawah ini dengan teliti.
- 2. Setiap jawaban Anda adalah benar, sehingga jangan terpengaruh jawaban teman.
- 3. Jangan ragu-ragu dalam memilih jawaban, karena hasil dari pengisian angket tidak mempengaruhi nilai Anda
- 4. Berilah tanda ($\sqrt{}$) pada kolom di sebelah kanan pernyataan yang paling sesuai dengan diri Anda. Adapun pilihan jawaban sebagai berikut:

STS = Sangat tidak sesuai

TS = Tidak sesuai

S = Sesuai

SS = Sangat sesuai

Pilihlah jawaban yang sesuai dengan diri Anda!

NO	PERNYATAAN	STS	TS	S	SS
1	Saya tidak ingin mempelajari				
	matematika secara lebih mendalam				
2	Saya belajar matematika walaupun				
	belum saatnya ulangan				

3	Saya meluangkan waktu di rumah		
	untuk belajar matematika		
4	Saya tidak peduli dengan penjelasan		
	matematika yang disampaikan guru		
5	Saya aktif berdiskusi dengan teman		
	saat belajar matematika		
6	Mencoba menyelesaikan dengan		
	cara yang berbeda dengan contoh		
	yang diberikan guru		
7	Ketika belajar saya tidak memeriksa		
	kembali hasil pekerjaan yang saya		
	peroleh		
8	Saya mencatat setiap penjelasan		
	matematika yang disampaikan oleh		
	guru agar dapat saya pelajari		
	kembali dirumah		
9	Saya hanya mempelajari kembali		
	materi pelajaran matematika yang		
	telah diberikan oleh guru ketika ada		
- 10	ulangan matematika		
10	Selalu mengecek ulang jawaban		
	ketika mengerjakan soal		
- 11	matematika		
11	Saya tidak mengerjakan soal yang		
10	berbeda dengan contoh guru		
12	Berusaha menemukan solusi yang		
	benar, ketika menghadapi soal		
13	matematika yang sulit		
13	Saya menghindari soal yang mempunyai beragam cara		
14	penyelesaian		
14	Saya dapat menerapkan konsep matematika yang telah dijelaskan		
	guru dalam menyelesaikan soal		
	matematika		
15	Saya mengecek kembali hasil		
13	ulangan agar kedepannya hasil		
	belajar semakin baik		
	belajai selliakili baik		

16 Saya acuh terhada	
matematika yang diperole	
17 Saya tidak mempelajari ul	
matematika yang telah d	ipelajari di
sekolah	
18 Saya membuka catata	
	mbelajaran
matematika di sekolah	
19 Saya mengumpulkan	
_	memeriksa
terlebih dahulu	
20 Mencoba latihan matema	
melihat penguasaan ma	ateri yang
sudah dipelajari	
21 Saya dapat menjawab p	· -
matematika saat disk	
maupun diskusi kelompo	
22 Saya lebih memilih diam I	
meminta siswa mengerja papan tulis, walaup	
papan tulis, walaup mengetahui langkah pe	
dari soal tersebut	niyelesalali
23 Apabila guru memberil	zan tugas
saya mengerjakannya	
menyalin tugas teman say	
24 Saya mau untuk mengerja	
depan dan menjelaskan	
yang lain	
25 Saya berusaha menjawah	iika guru
bertanya mengenai	materi
matematika kepada saya	
26 Saya enggan mengerja	akan soal
latihan matematika	
27 Saya dapat menghubungk	can l
materi pembelajaran n	
dengan sesuatu di dalam	
sehari-hari.	

28	Saya mampu membuat model matematika dari soal berbentuk uraian dan soal cerita		
29	Dari setiap kegiatan pembelajaran matematika, saya dapat menyimpulkan mengenai materi yang sedang diajarkan		
30	Saya dapat memperoleh pengetahuan dengan mengikuti kegiatan pembelajaran matematika		

$$\textit{Nilai} = \frac{\textit{skor yang diperoleh}}{\textit{jumlah skor maksimal}} \times 100$$

Lampiran 17 Kisi-Kisi Angket Self Efficacy Uji Coba

KISI-KISI ANGKET SELF EFFICACY

Indikator	Nomo Favorable (Pernyataan Positif)	Jumlah Item	
Mampu mengatasi masalah yang dihadapi	1,4,5	2,3	5
Yakin akan keberhasilan dirinya	6,9,10	7,8	5
Berani menghadapi tantangan berani mengambil resiko atas keputusan yang diambilnya	11,12,13	14,15	5
Menyadari kekuatan dan kelemahan dirinya	16,17,19	18,20	5
Mampu berinteraksi dengan orang lain	21,24,25,26	22,23	6
Tangguh atau tidak mudah menyerah	29,30	27,28	4
	Jumlah		30

Penilaian Angket Penelitian Self Efficacy

Kriteria	Skor	Keterangan	
F	4	SS = Sangat sesuai	
Favorable	3	S = Sesuai	
(Pernyataan Positif)	2	TS = Tidak sesuai	
rositiij	1	STS = Sangat tidak sesuai	
11 6	1	SS = Sangat sesuai	
Unfavorable	2	S = Sesuai	
(Pernyataan Negatif)	3	TS = Tidak sesuai	
Negatiij	4	STS = Sangat tidak sesuai	

Lampiran 18 Angket Self Efficacy Uji Coba

ANGKET SELF EFFICACY

Nama : Kelas : No. Absen : Waktu :

Petunjuk pengerjaan:

- 1. Baca dan pahami setiap pernyataan di bawah ini dengan teliti.
- 2. Setiap jawaban Anda adalah benar, sehingga jangan terpengaruh jawaban teman.
- 3. Jangan ragu-ragu dalam memilih jawaban, karena hasil dari pengisian angket tidak mempengaruhi nilai Anda
- 4. Berilah tanda ($\sqrt{}$) pada kolom di sebelah kanan pernyataan yang paling sesuai dengan diri Anda. Adapun pilihan jawaban sebagai berikut:

STS = Sangat tidak sesuai

TS = Tidak sesuai

S = Sesuai

SS = Sangat sesuai

Pilihlah jawaban yang sesuai dengan diri Anda!

NO	PERNYATAAN	STS	TS	S	SS
1	Saya dapat menemukan alternatif		_		
	penyelesaian soal matematika saat				
	menjumpai kebuntuan				
2	Saya menunggu jawaban dari teman				
	ketika kesulitan dalam mengerjakan				
	soal matematika				
3	Saya menghindari atau tidak				
	mengerjakan tugas matematika				
4	yang kurang dipahami				
4	Saya dapat mengatasi kesulitan belajar matematika sendiri				
5	Saya memiliki cara untuk				
3	menyelesaikan setiap soal				
	matematika yang diberikan				
6	Saya merasa tenang ketika				
	menghadapi ulangan matematika				
7	Saya merasa khawatir akan gagal				
	dalam menyelesaikan tugas				
	matematika				
8	Saya ragu dapat mempelajari materi				
	matematika secara mandiri				
9	Saya yakin akan berhasil dalam				
	ujian matematika yang akan datang				
10	Saya yakin dapat menyelesaikan				
	tugas matematika yang diberikan				
	dengan baik				
11	Berani menghadapi kritikan atas				
	tugas matematika yang telah saya				
10	kerjakan				
12	Saya berani mencoba				
	menyelesaikan soal matematika				
	dengan cara yang berbeda dari contoh yang diberikan oleh guru				
13	Saya bersedia ditunjuk sebagai				
13	ketua kelompok dalam				
	pembelajaran matematika				
	pombolajaran matematika	l			I

14	Menghindar dari soal latihan yang berbeda dengan contoh yang diberikan guru		
15	Saya takut untuk mengikuti seleksi siswa berprestasi antar sekolah		
16	Saya menyadari kesalahan dalam mengerjakan ulangan matematika yang telah lalu		
17	Mengetahui materi matematika yang perlu dipelajari ulang		
18	Bingung saat memilih materi mana yang akan ditanyakan kepada guru		
19	Yakin akan memperoleh nilai terbaik dalam ulangan matematika yang akan datang		
20	Merasa ragu dapat menuntaskan tugas matematika yang berat		
21	Merasa nyaman berdiskusi tentang dengan teman siapapun itu saat pembelajaran matematika		
22	Merasa ragu-ragu menyampaikan hasil diskusi saat mewakili kelompok matematika		
23	Saya merasa sulit mencari teman untuk diminta bantuan mengatasi kesulitan dalam belajar matematika		
24	Berani mengemukakan pendapat dalam forum diskusi matematika		
25	Saya merasa senang menjelaskan penyelesaian soal matematika ketika ada teman yang bertanya		
26	Ketika ada teman yang bertanya tentang matematika kepada guru saya ikut memikirkan jawabannya		
27	Saya mudah lelah ketika mempelajari matematika dalam waktu yang lama		

28	Saya mudah menyerah saat		
	menghadapi soal matematika yang		
	sulit dan rumit		
29	Ketika ada pekerjaan matematika		
	yang kurang sempurna saya		
	mencoba untuk memperbaiki		
30	Saya berusaha mencari cara lain		
	ketika menjumpai kesulitan dalam		
	mengerjakan matematika		

$$Nilai = \frac{skor\ yang\ diperoleh}{jumlah\ skor\ maksimal} \times 100$$

Lampiran 19 Kisi-Kisi Soal Tes Kemampuan Pemecahan Masalah Matematis Uji Coba

KISI-KISI SOAL KEMAMPUAN PEMECAHAN MASALAH MATEMATIS

Mata pelajaran : Matematika

Kelas/Semester : VIII (Delapan)/ 1 (Satu)

Bentuk Soal : Uraian

Alokasi Waktu : 80 Menit

Materi		Indikator	No.	Bentuk	Indikator
	pembelajaran		Soal	Soal	Kemampuan
					Pemecahan Masalah
Pola	3.1.2	Menentukan	1,2,4,5	Uraian	1. Mengidentifikasi
Bilangan	4.1.2	suku ke-n dari pola bilangan Menyelesaikan masalah yang berkaitan dengan suku ke-n dari pola bilangan			unsur yang diketahui, ditanyakan, dan kecukupan unsur yang diperlukan.

3.	.1.3 Menentukan jumlah suku ke-n dari pola	3	2. Merumuskan masalah matematis
4.	bilangan 1.2 Menyelesaikan masalah yang berkaitan dengan jumlah suku ke-n dari pola bilangan		3. Menetapkan dan menerapkan strategi untuk menyelesaikan masalah. 4. Menjelaskan atau menginterpretasi hasil penyelesaian masalah.

Lampiran 20 Soal Tes Kemampuan Pemecahan Masalah Matematis

SOAL TES KEMAMPUAN PEMECAHAN MASALAH MATEMATIS

Mata Pelajaran : Matematika

Kelas : VIII

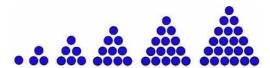
Semester : Genap

Waktu : 80 menit

Petunjuk Umum

1. Bacalah doa sebelum mengerjakan.

- 2. Tulislah identitas anda ke dalam lembar jawaban yang tersedia.
- 3. Bacalah soal-soal di bawah ini dengan teliti.
- 4. Kerjakan secara sistematis, rinci, dan benar pada lembar jawaban yang telah disediakan.
- 5. Jika mengalami kesulitan dalam memahami soal maka tanyakan kepada guru.


Petunjuk Khusus:

- 1. Menuliskan apa yang diketahui dan apa yang ditanyakan.
- 2. Menuliskan rumus-rumus yang akan digunakan.
- 3. Menetapkan strategi dan menyelesaikan masalah secara sistematis.

4. Menuliskan hasil yang diperoleh sesuai pertanyaan

Soal!

1. Perhatikan gambar pola pada kelereng berikut

Dari gambar diatas tentukan:

- a. Banyaknya kelereng suku ke-13!
- b. Banyaknya kelereng pada suku ke-25!
- 2. Pak Doni bekerja di suatu perusahaan dengan gaji sebesar Rp. 2.000.000,00 per bulan. Setiap tahunnya gaji Pak Doni naik sebesar Rp. 500.000,00. Gaji Pak Doni pada saat 6 tahun bekerja adalah...
- 3. Di dalam sebuah gedung aula disusun kursi dengan dengan barisan paling depan 8 buah. Baris kedua 12 buah, dan baris ketiga 16 buah. Maka jumlah seluruh kursi di dalam gedung aula sampai baris ke-10 adalah?
- 4. Diketahui suku ke-20 dan suku ke-30 dari barisan aritmatika secara berturut-turut adalah 125 dan 185. Tentukan suku ke-25 dari barisan tersebut?
- 5. Pada suatu penelitian terhadap bakteri, awal mula terdapat 10 buah bakteri di dalam wadah. Bakteri berkembangbiak menjadi 2 kali lipat setiap1 jam. Berapa banyaknya bakteri setelah 9 jam ?

Lampiran 21 Pedoman Penskoran Soal Tes Kemampuan Pemecahan Masalah Matematis

PEDOMAN PENSKORAN SOAL TES KEMAMPUAN PEMECAHAN MASALAH MATEMATIS

Skor	Inc	likator Kemampuan Pen	necahan Masalah Matema	tis
	Mengidentifikasi unsur matematika yang ada	Merumuskan masalah matematis	Menerapkan strategi	Menjelaskan atau menginterpretasi hasil penyelesaian masalah
0	Tidak menuliskan unsur yang diketahui dan ditanyakan pada soal	Tidak menuliskan rumus yang digunakan	Tidak menuliskan penyelesaian soal	Tidak menjelaskan atau menginterpretasikan hasil penyelesaian
1	Salah atau kurang dalam menuliskan unsur yang diketahui dan ditanyakan pada soal	Salah dalam menuliskan rumus yang digunakan	Menuliskan penyelesaian masalah tidak benar dan tidak lengkap	Salah dalam menjelaskan atau menginterpretasikan
2	Benar dalam menuliskan unsur yang diketahui dan ditanyakan pada soal	Benar dalam menuliskan rumus yang digunakan	Menuliskan penyelesaikan secara sistematis dan lengkap, tapi salah dalam menuliskan hasil penyelesaian	Menjelaskan atau menginterpretasikan dengan benar
3			Menuliskan hasil penyelesaian dengan	

	benar, tapi tidak sistematis/tidak lengkap	
4	Menuliskan dengan benar, sistematis dan lengkap dalam penyelesaian masalah	

Lampiran 22 Penskoran dan Kunci Jawaban Tes Kemampuan Pemecahan Masalah Matematis Uji Coba

KUNCI JAWABAN DAN PENSKORAN TES KEMAMPUAN PEMECAHAN MATEMATIS

No.	Soal	Jawaban	Skor	Kriteria
1.	Perhatikan gambar pola pada kelereng berikut Dari gambar diatas tentukan: c. Banyaknya kelereng pada suku ke- 13! d. Banyaknya kelereng pada pola ke-	Jawaban Mengidentifikasi unsur matematika yang ada Diketahui: $U_1 = 1$ $U_2 = 3$ $U_3 = 6$ $U_4 = 10$ $U_5 = 15$ $U_6 = 20$ $n1 = 13$	0 1 2	Tidak menuliskan unsur yang diketahui dan ditanyakan pada soal Salah atau kurang dalam menuliskan unsur yang diketahui dan ditanyakan pada soal Benar dalam menuliskan unsur yang diketahui dan ditanyakan ditanyakan pada soal
	25!	n2 = 25 Ditanya: c. Banyak kelereng suku ke-13 d. Banyaknya kelereng suku ke-25 Merumuskan masalah matematis	0	Tidak menuliskan rumus yang digunakan

	, ,		
c. mencari suku		Salah dalam mer	
segitiga meng	ggunakan <u>r</u>	rumus yang diguna	kan
rumus	2 I	Benar dalam mer	nuliskan
$U_n = \frac{n(n+1)}{2}$	r	rumus yang diguna	kan
d. mencari suku	-		
segitiga meng	ggunakan		
rumus			
$U_n = \frac{n(n+1)}{2}$			
Menerapkan str	rategi 0 7	Гidak mer	nuliskan
c. Banyak kele	ereng suku p	penyelesaian soal	
ke-13	1 N	Menuliskan peny	elesaian
$U_n = \frac{n(n+1)}{2}$	r	masalah tidak ber	nar dan
2 13(13+1	₁₎ t	tidak lengkap	
$U_{13} = \frac{1}{2}$	² 2 N	Menuliskan penyel	lesaikan
$=\frac{13(14)}{}$	s	secara sistemati:	
$U_{13} = \frac{13(13+1)}{2}$ $= \frac{13(14)}{2}$ $= \frac{182}{2}$		engkap, tapi salah	
= -2	l l r	menuliskan	hasil
= 91		penyelesaian	
d. Banyak kele		Menuliskan	hasil
ke-25			
$U_n = \frac{n(n+1)}{2}$	_	•	_
$U_n = \frac{1}{2}$		oenar, tapi	tidak
	S	sistematis/tidak ler	ngkap

		$U_{25} = \frac{25(25+1)}{2}$ $= \frac{25(26)}{2}$ $= \frac{650}{2}$ $= 325$	4	Menuliskan dengan benar, sistematis dan lengkap dalam penyelesaian masalah
		Menjelaskan atau menginterpretasi hasil penyelesaian masalah	0	Tidak menjelaskan atau menginterpretasikan hasil penyelesaian
		c. Jadi banyaknya kelereng suku ke-13	1	Salah dalam menjelaskan atau menginterpretasikan
		adalah 91. d. Jadi banyak kelereng suku ke-25 adalah 325.	2	Menjelaskan atau menginterpretasikan dengan benar
2.	Pak Doni bekerja di suatu perusahaan dengan gaji sebesar Rp. 2.000.000,00 per bulan. Setiap tahunnya gaji Pak Doni naik	Mengidentifikasi unsur matematika yang ada U ₁ = Rp. 2.000.000,00	0	Tidak menuliskan unsur yang diketahui dan ditanyakan pada soal
	sebesar Rp. 500.000,00. Gaji Pak Doni pada saat 6 tahun bekerja adalah?	b = Rp. 500.000,00 pertahun	1	Salah atau kurang dalam menuliskan unsur yang

Ditanya: Berapa gaji Pak Doni pada saat 6 tahun bekerja?	2	diketahui dan ditanyakan pada soal Benar dalam menuliskan unsur yang diketahui dan ditanyakan pada soal
Merumuskan masalah matematis	0	Tidak menuliskan rumus yang digunakan
Cara mencari baris ke-n menggunakan rumus	1	Salah dalam menuliskan rumus yang digunakan
Un = a + (n - 1) b	2	Benar dalam menuliskan rumus yang digunakan
Menerapkan strategi Un= a + (n - 1) b	0	Tidak menuliskan penyelesaian soal
U6 = 2000000 + (6 - 1) 500000 = 2000000 + (5) 500000	1	Menuliskan penyelesaian masalah tidak benar dan tidak lengkap
= 2000000 + 2500000 =4500000	2	Menuliskan penyelesaikan secara sistematis dan lengkap, tapi salah dalam menuliskan hasil penyelesaian
	3	Menuliskan hasil penyelesaian dengan

		Menjelaskan atau menginterpretasi hasil penyelesaian masalah Jadi, gaji Pak Doni pada saat 6 tahun bekerja adalah Rp. 4.500.000,00	0 1 2	benar, tapi tidak sistematis/tidak lengkap Menuliskan dengan benar, sistematis dan lengkap dalam penyelesaian masalah Tidak menjelaskan atau menginterpretasikan hasil penyelesaian Salam dalam menjelaskan atau menginterpretasikan atau menginterpretasikan salah Menjelaskan atau menginterpretasikan dengan benar
3.	Di dalam sebuah gedung aula disusun	Mengidentifikasi unsur	0	dengan benar Tidak menuliskan unsur
	kursi dengan dengan barisan paling depan 8 buah. Baris kedua 12 buah, dan	matematika yang ada Diketahui:		yang diketahui dan ditanyakan pada soal
	baris ketiga 16 buah. Maka jumlah seluruh kursi di dalam gedung aula sampai baris ke-10 adalah?	$U_1 = 8$ buah $U_2 = 12$ buah $U_3 = 16$ buah	1	Salah atau kurang dalam menuliskan unsur yang diketahui dan ditanyakan pada soal

Beda (b) = U2 - U1 = 12 - 8 = 4 Ditanya: Jumlah seluruh kursi di dalam gedung aula sampai baris ke-10 adalah?	2	Benar dalam menuliskan unsur yang diketahui dan ditanyakan pada soal
Merumuskan masalah matematis	0	Tidak menuliskan rumus yang digunakan
Cara mencari jumlah seluruh kursi	1	Salah dalam menuliskan rumus yang digunakan
menggunakan rumus $S_n = \frac{n}{2} (2a + (n - 1) b)$ Atau $S_n = \frac{n}{2} (a + U_n)$	2	Benar dalam menuliskan rumus yang digunakan
Menerapkan strategi Sn = $\frac{n}{2}$ (2a + (n - 1) b)	0	Tidak menuliskan penyelesaian soal
$S_{10} = \frac{10}{2} (2.8 + (10 - 1) 4)$ $= 5 (16 + (9) 4)$	1	Menuliskan penyelesaian masalah tidak benar dan tidak lengkap
= 5 (16 + 36) = 5 (52)	2	Menuliskan penyelesaikan secara sistematis dan

=	= 260		lengkap, tapi salah dalam
A	Atau		menuliskan hasil
U	$J_n = a + (n-1)b$		penyelesaian
U	$J_{10} = 8 + (10 - 1) 4$	3	Menuliskan hasil
=	= 8 + (9) 4		penyelesaian dengan
=	= 44		benar, tapi tidak
S	$S_n = \frac{n}{2} (a + U_n)$		sistematis/tidak lengkap
	$S_{10} = \frac{10}{2} (8 + 44)$	4	Menuliskan dengan benar,
			sistematis dan lengkap
S	$S_{10} = \frac{10}{2} (52)$		dalam penyelesaian
S	$S_{10} = \frac{520}{3}$		masalah
	2		
	$S_{10} = 260$		
	Menjelaskan atau	0	Tidak menjelaskan atau
n	nenginterpretasi hasil		menginterpretasikan hasil
p	oenyelesaian masalah		penyelesaian
Ja	adi, jumlah seluruh kursi	1	Salah dalam menjelaskan
Sa	ampai baris ke-10 adalah		atau menginterpretasikan
2	260 kursi.	2	Menjelaskan atau
			menginterpretasikan
			dengan benar

4.	Diketahui suku ke-20 dan suku ke-30 dari barisan aritmatika secara berturut-turut adalah 125 dan 185. Tentukan suku ke-25 dari barisan tersebut!	Mengidentifikasi unsur matematika yang ada Diketahui: U ₂₀ = 125 U ₃₀ = 185 n = 25 Ditanya: berapa suku ke-	1	Tidak menuliskan unsur yang diketahui dan ditanyakan pada soal Salah atau kurang dalam menuliskan unsur yang diketahui dan ditanyakan pada soal
		25 dari barisan?	2	Benar dalam menuliskan unsur yang diketahui dan ditanyakan pada soal
		Merumuskan masalah matematis	0	Tidak menuliskan rumus yang digunakan
		Rumus yang digunakan adalah	1	Salah dalam menuliskan rumus yang digunakan
		$U_n = a + (n - 1) b$	2	Benar dalam menuliskan rumus yang digunakan
		Menerapkan strategi $U_n = a + (n - 1) b$	0	Tidak menuliskan penyelesaian soal
		$U_{20} \Rightarrow a + (20 - 1) b = 125$ a + 19b = 125(1) $U_{30} \Rightarrow a + (30 - 1) b = 185$	1	Menuliskan penyelesaian masalah tidak benar dan tidak lengkap
		a + 29b = 185(2)	2	Menuliskan penyelesaikan secara sistematis dan

Dari persamaan 1 dan	2 di	lengkap, tapi salah dalam
operasikan dengan	2 41	menuliskan hasil
eliminasi substitusi		penyelesaian
a + 19b = 125	3	Menuliskan hasil
a + 29b = 185		penyelesaian dengan
-10b = -60		benar, tapi tidak
b = 6		sistematis/tidak lengkap
Substitusikan nilai b k	e 4	Menuliskan dengan benar,
salah satu persamaan		sistematis dan lengkap
a + 19b = 125		dalam penyelesaian
a + 19(6) = 125		masalah
a + 114 = 125		musulum
a = 125 - 114		
a = 11		
mencari U ₂₅		
$U_n = a + (n-1) b$		
$U_{25} = 11 + (25 - 1) 6$		
= 11 + (24)6		
= 11 + 144		
= 155		

		Menjelaskan atau menginterpretasi hasil penyelesaian masalah Jadi, suku ke-25 dari brisan tersebut adalah 155.	1 2	Tidak menjelaskan atau menginterpretasikan hasil penyelesaian Salah dalam menjelaskan atau menginterpretasikan Menjelaskan atau menginterpretasikan dengan benar
5.	Pada suatu penelitian terhadap bakteri, awal mula terdapat 10 buah bakteri di dalam wadah. Bakteriberkembangbiak menjadi 2 kali lipat setiap1 jam. Berapa banyaknya bakteri setelah 9 jam ?	Mengidentifikasi unsur matematika yang ada U ₁ = 10 r = 2 n = 6	0	Tidak menuliskan unsur yang diketahui dan ditanyakan pada soal Salah atau kurang dalam menuliskan unsur yang diketahui dan ditanyakan pada soal
			2	Benar dalam menuliskan unsur yang diketahui dan ditanyakan pada soal
		Merumuskan masalah matematis	0	Tidak menuliskan rumus yang digunakan
		Cara mencari banyaknya bakteri	1	Salah dalam menuliskan rumus yang digunakan

$U_n = ar^{n-1}$	2	Benar dalam menuliskan rumus yang digunakan
Menerapkan strategi $U_n = ar^{n-1}$	0	Tidak menuliskan penyelesaian soal
$U_9 = 10(2^{9-1})$ = 10. (2 ⁸) = 10 (256)	1	Menuliskan penyelesaian masalah tidak benar dan tidak lengkap
= 2560	2	Menuliskan penyelesaikan secara sistematis dan lengkap, tapi salah dalam menuliskan hasil penyelesaian
	3	Menuliskan hasil penyelesaian dengan benar, tapi tidak sistematis/tidak lengkap
	4	Menuliskan dengan benar, sistematis dan lengkap dalam penyelesaian masalah
Menjelaskan atau	0	Tidak menjelaskan atau
menginterpretasi hasil		menginterpretasikan hasil
penyelesaian masalah		penyelesaian

	Jadi, banyak bakteri setelah 6 jam adalah 2560	1	Salah dalam Menjela atau menginterpretas	
	bakteri	2	Menjelaskan	atau
			menginterpretasikan	
			dengan benar	

Lampiran 23 Lembar Validasi Ahli Angket Habits Of Mind

VALIDASI ANGKET HABITS OF MIND

INSTRUMEN VALIDASI ANGKET HABITS OF MIND

Aguala	L	Indikator	Jaw	aban
Aspek	No		Ya	Tidak
Habits Of Mind	1.	Soal nomer 1, 2, 3, 4, 5, 6 sudah mampu mengukur- indikator mengeksplorasi ide-ide matematis	V	
	2.	Soal nomer 7, 8, 9, 10 sudah mampu mengukur indikator merefleksi kebenaran jawaban masalah matematis	V	
	3.	Soal nomer 11, 12, 13, 14 sudah mampu mengukur indikator mengidentifikasi strategi pemecahan masalah matematis		V
	4.	Soal nomer 15, 16, 17, 18, 19, 20 sudah mampu mengukur indikator bertanya pada diri sendiri tentang aktivitas matematika yang telah dilakukan		V
	5.	Soal nomer 21, 22, 23, 24, 25, 26 sudah mampu mengukur indikator memformulasi pernyataan matematis	V	
	6.	Soal nomer 27, 28, 29, 30 sudah mampu mengukur indikator mengonstruksi contoh matematis	/	

Komentar Validator secara umum angket pengukuran habits of mind

- 1. Sord no 6, no. 10, bright letter of strength degree morneyor.

 2. hookator 3,4 dor goal-soly 6/fergateage tellum serve; brigh different termi
 noblectur dem weithet wordent desarge. "Strenger pureceden menter can treatments."

 3. matematic."

 No. 27 6 oservalve dem problector. No. 27 6 30 differente.

 Kesimpulan
- Layak diujicobakan tanpa revisi Layak diujicobakan dengan revisi
 Tidak layak diujicobakan

*) lingkari salah satu

Semarang, 03 September 2022

Validasi Ahli

Prihadi Kurniawan, M.Sc.

Lampiran 24 Lembar Validasi Ahli Angket Self Efficacy

VALIDASI ANGKET SELF EFFICACY

INSTRUMEN VALIDASI ANGKET SELF EFFICACY

Aspek	No	Indikator	Jaw	aban
			Ya	Tidak
Self Efficacy	1.	Soal nomer 1, 2, 3, 4, 5 sudah mampu mengukur indikator mampu mengatasi masalah yang dihadapi		1
	2.	Soal nomer 6, 7, 8, 9, 10 sudah mampu mengukur indikator yakin akan keberhasilan dirinya	V	
4	3.	Soal nomer 11, 12, 13, 14, 15 sudah mampu mengukur indikator berani menghadapi tantangan berani mengambil resiko atas keputusan yang diambilnya	V	
	4.	Soal nomer 16, 17, 18, 19, 20 sudah mampu mengukur indikator menyadari kekuatan dan kelemahan dirinya	V	
	5.	Soal nomer 21, 22, 23, 24, 25, 26 sudah mampu mengukur indikator mampu berinteraksi dengan orang lain	V	
	6.	Soal nomer 27, 28, 29, 30 sudah mampu mengukur indikator tangguh atau tidak mudah menyerah	V	

Komentar Validator secara umum angke	t pengukuran self efficacy
--------------------------------------	----------------------------

1. Soul 3 day 5 perly observed deja anglictor.

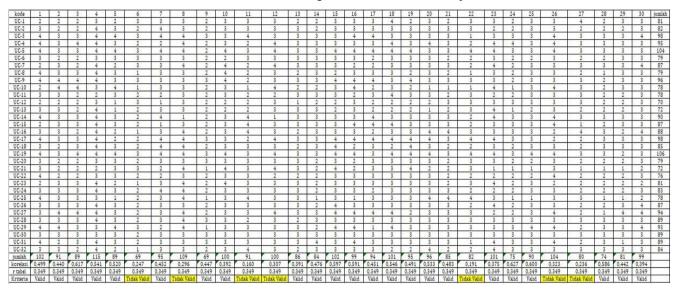
2. Selan in sweet bein.

3

Kesimpulan

Layak diujicobakan tanpa revisi
 Layak diujicobakan dengan revisi
 Tidak layak diujicobakan

*) lingkari salah satu


Semarang, 03 September 2022

Validasi Ahli

Prihadi Kurniawan, M.Sc.

Lampiran 25 Analisis Validitas Butir Variabel Habits Of Mind

Analisis Butir Soal Tahap 1, Variabel Habits Of Mind

Analisis Butir Soal Tahap 2, Variabel Habits Of Mind

UC-1 2 2 2 3 3	Lands.					5	7		- 10	40			**		40	10	- 00	04	- 00		OF.	- 00	- 00	- 00	4
UC-2 3 2 2 4 3 4 4 3 3 3 3 3 3 3 3 3 3 3 3	kode	1	2	3	4			9	10	13	14	15	16	17	18	19	20	21	23	24	25	28	29	30	jumlah 59
UC.4																								3	63
UC-0						_							_											_	
UC-5 4				_	_												_		_	_					76
UC-F 3					_		_	_	_															3	74 79
UC-7																								3	
UC-9 4 4 3 3 3 4 4 3 3 3 2 4 1 3 3 2 4 2 3 2 3 2 3 2 3 2 3 2 3 1 3 3 1 4 3 1 2 1 3 1 1 3 1 1 2 1 1 1 1 1 1 1 1 1																								3	60
UC-10																						3		4	66
UC-10 2				_																		1		3	64
UC-11 3 3 3 2 2 2 3 1 1 1 2 2 1 1 2 2 2 3 3 2 2 2 2																	_	_						3	76
UC-12 2 2 2 2 3 3 1 1 1 2 2 2 1 1 2 2 3 3 2 2 2 2																				_				3	61
UC-13						_																		3	60
UC-14					_	_											_			_				3	50
UC-15 2 3 3 3 4 3 1 2 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3																								3	54
UC-16 3 3 3 2 4 2 3 2 3 2 3 3 3 3 3																								3	73
UC-17							-																	3	68
UC-18 3 2 2 3 4 4 3 4 4 4 4 4 3 4 4 4 4 3 3 4 4 2 3 2 3					_							_	_				_		•					4	67
UC-19 4 4 3 4 4 4 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 3 4 3 2 1 UC-21 3 2 2 3 3 2 2 2 3 3 2 1 1 1 1 1 1 1 1																								3	78
UC-20 3 2 2 3 3 3 3 3 3 3																								3	66
UC-21 3 2 2 2 2 3 3 2 1 4 3 3 2 2 4 2 3 3 3 4 2 2 2 2 2 2 2 2 2																				_				3	81
UC-22																			3			2		3	60
UC-23 2 3 3 3 4 2 3 2 2 3 3 3 3 2 4 2 3 2 2 3 3 3 3								•											1			1		2	51
UC-24 3 3 3 4 3 4 2 3 3 3 2 3 3 2 2 3 3 3 2 2 3 3 3 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3					_			_	_															3	58
UC-25							_																	2	63
UC-26 3 3 3 4 4 3 3 3 2 3 3 4 4 4 4 4 2 3 3 2 3 3 3 2 4 3 3 3 3						3	_	2			2						_	_		2	3	2		3	64
UC-27 3 4 4 4 4 3 3 3 2 3 3 3 4 4 4 4 4 4 4 2 3 3 3 2 2 3 1 1 4 1 1 1 4 1 1 1 4 1					_	1		1			1		_							1	1	1		2	55
UC-28 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3																						2		4	69
UC-30 4 4 4 3 3 3 4 2 1 1 3 8 2 4 4 4 1 1 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3																						1		4	72
UC-30 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3																								3	69
UC-31 4 2 3 4 3 3 3 3 3 4 3 3 3 3 3 4 3 3 3 3																								4	71
UC-32 3 3 2 4 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 3 3						-																		3	69
Tumlah 102 91 89 115 89 95 69 100 86 84 102 99 94 101 95 96 85 101 75 90 74 81 98 95 69 100 86 84 102 99 94 101 95 96 85 101 75 90 74 81 98 95 69 100 86 84 102 99 94 101 95 96 85 101 75 90 74 81 98 95 100 75 90 74 81 98 95 100 98 98 98 98 98 98 98																								3	71
Ecretais 0.508 0.462 0.644 0.609 0.552 0.470 0.512 0.378 0.349 0																								3	65
R tabel 0.349 0.																								99	
Rriteria Valid V																								0,410	
Variansi																								0,349	
Butir 0,5444 0,3942 0,499 0,378 0,6925 0,6764 0,3296 0,3065 0,2863 0,371 0,3508 0,6038 0,5766 0,3942 0,4183 0,5161 0,4264 0,6522 0,5554 0,4153 0,4798 0,5151 0,2 Juniah Variansi Butir 10,663 Variansi Total 64,129 Variansi Cotal 64,129 Var		Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	
Variansi Butr 10,663 Variansi Total 64,129		0,5444	0,3942	0,499	0,378	0,6925	0,6764	0,3296	0,3065	0,2863	0,371	0,3508	0,6038	0,5766	0,3942	0,4183	0,5161	0,4264	0,6522	0,5554	0,4153	0,4798	0,5151	0,2813	64,129
Butir 10,663 Variansi																									
Variansi Total 64,129	Variansi																								
Total 64,129		10,663																							
rii 0,861																									
Kriteria reliabel	Kriteria	reliabel	l l																						

Lampiran 26 Analisis Validitas Butir Variabel Self Efficacy

Analisis Butir Soal Tahap 1, Variabel Self Efficacy

						,																			_						$\overline{}$
kode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29		jumlah
UC-1	3	3	3	3	3	2	2	3	3	3	3	3	2	3	2	4	3	2	3	2	2	2	2	2	3	3	2	1	3	3	78
UC-2	3	2	3	2	3	2	2	2	3	2	3	2	2	2	1	3	3	2	2	3	3	2	2	2	2	3	2	3	3	2	71
UC-3	3	2	3	3	3	2	2	3	2	3	3	3	2	4	2	3	3	3	3	2	4	3	3	3	3	3	2	3	3	3	84
UC-4	3	2	4	3	3	4	3	3	3	3	3	3	3	3	1	3	3	3	3	2	3	3	3	3	3	3	3	2	3	3	87
UC-5	3	4	4	3	4	3	1	3	3	3	3	3	3	4	3	4	4	4	4	3	4	3	3	3	3	3	4	4	3	3	99
UC-6	2	2	3	3	3	2	2	3	2	3	3	3	2	3	3	3	3	2	2	2	3	2	3	2	3	3	3	2	3	2	77
UC-7	3	3	3	3	3	2	1	2	4	3	4	2	3	2	1	4	3	1	4	2	1	2	1	2	3	4	2	2	3	4	77
UC-8	2	2	3	2	2	4	1	1	2	2	3	1	2	2	2	4	3	2	2	2	3	2	2	2	3	3	3	1	2	2	67
UC-9	2	3	3	3	3	3	2	2	3	3	3	2	2	3	3	3	3	3	3	2	3	3	3	3	3	3	3	3	3	3	84
UC-10	2	2	4	3	3	4	3	1	2	3	3	1	1	1	1	3	1	4	- 1	2	3	2	3	1	1	3	1	1	3	3	66
UC-11	2	2	3	2	3	1	2	2	1	2	3	2	2	3	2	3	2	2	2	2	3	2	3	3	2	3	1	2	3	3	68
UC-12	3	3	1	2	3	3	3	2	2	2	4	4	2	3	4	3	3	2	2	1	3	2	1	2	2	3	1	1	3	3	73
UC-13	2	2	2	2	2	2	2	2	2	2	2	2	1	2	3	3	3	2	3	2	2	4	4	2	1	2	2	2	2	2	66
UC-14	2	4	4	3	3	2	2	2	3	3	3	3	2	3	3	2	3	2	2	3	3	3	3	3	3	3	2	3	4	3	84
UC-15	2	3	3	3	2	2	2	3	2	3	3	3	3	3	3	3	3	2	2	3	3	3	4	3	3	3	1	1	4	3	81
UC-16	3	2	2	2	3	4	4	4	1	2	3	2	2	2	3	2	4	3	1	3	3	2	3	2	3	3	2	3	3	3	79
UC-17	3	3	3	2	3	3	2	2	4	3	3	4	1	4	4	4	4	3	3	3	3	2	3	2	2	2	1	4	2	2	84
UC-18	2	2	1	2	1	2	1	2	3	2	2	1	1	3	2	4	3	2	2	2	3	1	3	2	1	3	1	2	3	2	61
UC-19	4	4	3	4	4	4	4	4	4	4	4	3	3	4	3	4	4	4	3	3	4	4	3	3	3	3	4	4	4	4	110
UC-20	2	2	3	3	3	2	2	3	2	3	3	2	2	3	2	3	3	2	2	2	3	2	3	2	3	3	2	2	3	3	75
UC-21	3	1	1	1	2	1	2	3	2	2	2	2	3	2	1	4	4	1	1	1	4	3	2	1	1	3	1	1	2	1	58
UC-22	2	1	3	2	2	2	2	2	2	3	2	2	2	3	3	3	3	3	2	1	3	2	3	2	2	3	2	2	3	1	68
UC-23	2	3	3	3	2	2	1	2	2	2	3	2	2	3	2	3	3	2	2	2	3	3	2	2	2	3	1	1	3	2	68
UC-24	3	2	3	2	3	2	2	2	2	2	3	2	2	2	1	3	3	2	2	2	4	2	3	2	2	3	3	2	3	3	72
UC-25	2	2	3	1	2	1	3	2	2	2	3	2	1	1	1	3	3	1	2	1	4	2	1	1	2	3	4	1	4	3	63
UC-26	2	3	4	3	2	2	2	3	3	3	3	1	1	3	2	3	3	2	2	3	3	3	3	2	3	4	2	3	4	3	80
UC-27	1	1	2	2	1	2	1	2	4	3	3	1	2	2	2	2	3	2	2	2	4	1	1	1	2	3	1	1	2	3	59
UC-28	3	3	3	3	3	3	2	3	3	3	3	2	3	3	3	2	3	3	3	3	2	3	3	2	3	3	2	2	3	3	83
UC-29	3	3	4	2	3	2	2	2	4	4	4	4	3	4	2	4	3	3	3	3	3	3	2	1	2	4	1	3	3	2	86
UC-30	2	4	3	2	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	88
UC-31	2	3	3	1	2	4	3	2	3	3	3	2	3	3	1	3	3	2	1	1	2	3	1	2	3	3	3	1	3	3	72
UC-32	3	2	3	2	3	1	4	4	1	3	3	2	2	3	3	3	3	1	1	2	3	1	4	1	1	3	1	2	4	3	72
jumlah	79	80	93	77	85	78	70	79	82	87	96	73	68	89	72	101	98	75	73	70	97	78	83	67	76	97	66	68	97	86	$\overline{}$
korelasi	0,552	0,754	0,498	0,635	0,751	0,434	0,274	0,506	0,414	0,668	0,522	0,558	0,468	0,682	0,401	0,153	0,391	0,635	0,592	0,632	0,065	0,550	0,307	0,630	0,633	0,119	0,472	0,736	0,382	0,483	$\overline{}$
r tabel	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	$\overline{}$
Kriteria	Valid	Valid	Valid	Valid	Valid	Valid	Tidak Valid	Tidak Valid	Valid	Valid	Valid	Valid	Tidak Valid	Valid	Tidak Valid	Valid	Valid	Tidak Valid	Valid	Valid	Valid	Valid	$\overline{}$								
				•													•														

Analisis Butir Soal Tahap 2, Variabel Self Efficacy

kode	1	2	3	4	5	6	8	9	10	11	12	13	14	15	17	18	19	20	22	24	25	27	28	29	30	jumlah
UC-1	3	3	3	3	3	2	3	3	3	3	3	2	3	2	3	2	3	2	2	2	3	2	1	3	3	65
UC-2	3	2	3	2	3	2	2	3	2	3	2	2	2	1	3	2	2	3	2	2	2	2	3	3	2	58
UC-3	3	2	3	3	3	2	3	2	3	3	3	2	4	2	3	3	3	2	3	3	3	2	3	3	3	69
UC-4	3	2	4	3	3	4	3	3	3	3	3	3	3	1	3	3	3	2	3	3	3	3	2	3	3	72
UC-5	3	4	4	3	4	3	3	3	3	3	3	3	4	3	4	4	4	3	3	3	3	4	4	3	3	84
UC-6	2	2	3	3	3	2	3	2	3	3	3	2	3	3	3	2	2	2	2	2	3	3	2	3	2	63
UC-7	3	3	3	3	3	2	2	4	3	4	2	3	2	1	3	1	4	2	2	2	3	2	2	3	4	66
UC-8	2	2	3	2	2	4	1	2	2	3	1	2	2	2	3	2	2	2	2	2	3	3	1	2	2	54
UC-9	2	3	3	3	3	3	2	3	3	3	2	2	3	3	3	3	3	2	3	3	3	3	3	3	3	70
UC-10	2	2	4	3	3	4	1	2	3	3	1	1	1	1	1	4	1	2	2	1	1	1	1	3	3	51
UC-11	2	2	3	2	3	1	2	1	2	3	2	2	3	2	2	2	2	2	2	3	2	1	2	3	3	54
UC-12	3	3	1	2	3	3	2	2	2	4	4	2	3	4	3	2	2	1	2	2	2	1	1	3	3	60
UC-13	2	2	2	2	2	2	2	2	2	2	2	1	2	3	3	2	3	2	4	2	1	2	2	2	2	53
UC-14	2	4	4	3	3	2	2	3	3	3	3	2	3	3	3	2	2	3	3	3	3	2	3	4	3	71
UC-15	2	3	3	3	2	2	3	2	3	3	3	3	3	3	3	2	2	3	3	3	3	1	1	4	3	66
UC-16	3	2	2	2	3	4	4	1	2	3	2	2	2	3	4	3	1	3	2	2	3	2	3	3	3	64
UC-17	3	3	3	2	3	3	2	4	3	3	4	1	4	4	4	3	3	3	2	2	2	1	4	2	2	70
UC-18	2	2	1	2	1	2	2	3	2	2	1	1	3	2	3	2	2	2	1	2	1	1	2	3	2	47
UC-19	4	4	3	4	4	4	4	4	4	4	3	3	4	3	4	4	3	3	4	3	3	4	4	4	4	92
UC-20	2	2	3	3	3	2	3	2	3	3	2	2	3	2	3	2	2	2	2	2	3	2	2	3	3	61
UC-21	3	1	1	1	2	1	3	2	2	2	2	3	2	1	4	1	1	1	3	1	1	1	1	2	1	43
UC-22	2	1	3	2	2	2	2	2	3	2	2	2	3	3	3	3	2	1	2	2	2	2	2	3	1	54
UC-23	2	3	3	3	2	2	2	2	2	3	2	2	3	2	3	2	2	2	3	2	2	1	1	3	2	56
UC-24	3	2	3	2	3	2	2	2	2	3	2	2	2	1	3	2	2	2	2	2	2	3	2	3	3	57
UC-25	2	2	3	1	2	1	2	2	2	3	2	1	1	1	3	1	2	1	2	1	2	4	1	4	3	49
UC-26	2	3	4	3	2	2	3	3	3	3	1	1	3	2	3	2	2	3	3	2	3	2	3	4	3	65
UC-27	1	1	2	2	1	2	2	4	3	3	1	2	2	2	3	2	2	2	1	1	2	1	1	2	3	48
UC-28	3	3	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3	3	2	3	2	2	3	3	71
UC-29	3	3	4	- 4	3	2	2	4	4	4	4	3	4	2	3	3	3	3	3	1	2	1	3	3	2	71
UC-30	2	4	3	2	3	3	3	3	3	3	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	73
UC-31	2	3	3	1	2	4	2	3	3	3	2	3	3	1	3	2	1	1	3	2	3	3	1	3	3	60
UC-32	3	2	3	2	3	1 70	4	1 00	3	3	2	2	3	3	3	1 77	1 70	2	1 70	1	1	1	2	4	3	55
jumlah	79	80	93	77	85	78	79	82	87	96	73	68	89	72	98	75	73	70	78	67	76	66	68	97	86	\vdash
korelasi	0,520	0,783	0,500	0,646	0,734	0,449	0,456	0,468	0,665	0,545	0,561	0,485	0,679	0,401	0,387	0,620	0,640	0,632	0,553	0,643	0,681	0,471	0,716	0,343	0,498	\vdash
r tabel	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	\vdash
Kriteria	Valid	Tidak Valid	Valid	\vdash																						

Analisis Butir Soal Tahap 3, Variabel Self Efficacy

Landa		-	3	4	5	6	8	9	10	44	10	4.2	4.4	4.5	17	10	10	20	22	2.4	0.5	27	20	20	Secondary 1
kode UC-1	3	3	3	3	3	2	3	3	10 3	3	12	13 2	14	15 2	3	18 2	19	20	22	24	25 3	27	28	30	jumlah 62
		_	3	2	3		_			_	2	2	2	_	3	2	2		_	2	2		3	2	55
UC-2	3	2	3			2	2	3	2	3				1				3	3			2		3	
UC-3	3	2		3	3	2	3	3	3	3	3	3	4	2	3	3	3	2		3	3	3	2		66
UC-4			4	3	3	4	3			3	3		3	1	3		_	-	3					3	69
UC-5	3	4	4	3	4	3	3	3	3	3	3	3	4	3	4	4	4	3	3	3	3	4	4	3	81
UC-6	2	2	3	3	3	2	3	2	3	3	3	2	3	3	3	2	2	2	2	2	3	3	2	2	60
UC-7	3	3	3	3	3	2	2	4	3	4	2	3	2	1	3	1	4	2	2	2	3	2	2	4	63
UC-8	2	2	3	2	2	4	1	2	2	3	1	2	2	2	3	2	2	2	2	2	3	3	1	2	52
UC-9	2	3	3	3	3	3	2	3	3	3	2	2	3	3	3	3	3	2	3	3	3	3	3	3	67
UC-10	2	2	4	3	3	4	1	2	3	3	1	1	1	1	1	4	1	2	2	1	1	1	1	3	48
UC-11	2	2	3	2	3	1	2	1	2	3	2	2	3	2	2	2	2	2	2	3	2	1	2	3	51
UC-12	3	3	1	2	3	3	2	2	2	4	4	2	3	4	3	2	2	1	2	2	2	1	1	3	57
UC-13	2	2	2	2	2	2	2	2	2	2	2	1	2	3	3	2	3	2	4	2	1	2	2	2	51
UC-14	2	4	4	3	3	2	2	3	3	3	3	2	3	3	3	2	2	3	3	3	3	2	3	3	67
UC-15	2	3	3	3	2	2	3	2	3	3	3	3	3	3	3	2	2	3	3	3	3	1	1	3	62
UC-16	3	2	2	2	3	4	4	1	2	3	2	2	2	3	4	3	1	3	2	2	3	2	3	3	61
UC-17	3	3	3	2	3	3	2	4	3	3	4	1	4	4	4	3	3	3	2	2	2	1	4	2	68
UC-18	2	2	1	2	1	2	2	3	2	2	1	1	3	2	3	2	2	2	1	2	1	1	2	2	44
UC-19	4	4	3	4	4	4	4	4	4	4	3	3	4	3	4	4	3	3	4	3	3	4	4	4	88
UC-20	2	2	3	3	3	2	3	2	3	3	2	2	3	2	3	2	2	2	2	2	3	2	2	3	58
UC-21	3	1	1	1	2	1	3	2	2	2	2	3	2	1	4	1	1	1	3	1	1	1	1	1	41
UC-22	2	1	3	2	2	2	2	2	3	2	2	2	3	3	3	3	2	1	2	2	2	2	2	1	51
UC-23	2	3	3	3	2	2	2	2	2	3	2	2	3	2	3	2	2	2	3	2	2	1	1	2	53
UC-24	3	2	3	2	3	2	2	2	2	3	2	2	2	1	3	2	2	2	2	2	2	3	2	3	54
UC-25	2	2	3	1	2	1	2	2	2	3	2	1	1	1	3	1	2	1	2	1	2	4	1	3	45
UC-26	2	3	4	3	2	2	3	3	3	3	1	1	3	2	3	2	2	3	3	2	3	2	3	3	61
UC-27	1	1	2	2	1	2	2	4	3	3	1	2	2	2	3	2	2	2	1	1	2	1	1	3	46
UC-28	3	3	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3	3	2	3	2	2	3	68
UC-29	3	3	4	2	3	2	2	4	4	4	4	3	4	2	3	3	3	3	3	1	2	1	3	2	68
UC-30	2	4	3	2	3	3	3	3	3	3	2	3	3	3	3	3	3	3	3	3	3	3	3	3	70
UC-31	2	3	3	1	2	4	2	3	3	3	2	3	3	1	3	2	1	1	3	2	3	3	1	3	57
UC-32	3	2	3	2	3	1	4	1	3	3	2	2	3	3	3	1	1	2	1	1	1	1	2	3	51
Jumlah	79	80	93	77	85	78	79	82	87	96	73	68	89	72	98	75	73	70	78	67	76	66	68	86	
Korelasi	0,522	0,773	0,486	0,638	0,732	0,465	0,442	0,482	0,659	0,537	0,565	0,490	0,683	0,406	0,400	0,632	0,656	0,631	0,557	0,642	0,679	0,467	0,720	0,479	
R tabel	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	0,349	
Kriteria	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	
Variansi																									
Butir	0,3861	0,7097	0,6683	0,5071	0,4909	0,8992	0,5796	0,7702	0,3377	0,2581	0,7248	0,5	0,628	0,8387	0,3185	0,6845	0,6603	0,4798	0,5766	0,4748	0,5645	0,9637	0,9516	0,4798	110,76
Jumlah																									
Variansi	l <u></u> .																								
Butir	14,453																								
Variansi	l .																								
Total	110,76																								
r11	0,898																								
Kriteria	reliabel																								

Lampiran 27 Analisis Validitas dan Reliabilitas Butir Variabel Kemampuan Pemecahan Masalah Matematis

Analisis Validitas dan Reliabilitas Butir Soal Tes Kemampuan Pemecahan Masalah Matematis

No	Kode	1	2	3	4	5	Jumlah
1	UC-01	2	8	2	1	1	14
2	UC-02	4	6	5	0	1	16
3	UC-03	12	5	8	6	8	39
4	UC-04	12	5	8	6	8	39
5	UC-05	12	7	5	5	8	37
6	UC-06	14	9	7	5	0	35
7	UC-07	13	4	3	0	1	21
8	UC-08	13	9	8	6	0	36
9	UC-09	16	8	5	5	8	42
10	UC-10	2	0	4	0	0	6
11	UC-11	12	4	8	6	8	38
12	UC-12	12	7	2	2	0	23
13	UC-13	2	1	1	1	4	9
14	UC-14	8	4	2	0	0	14
15	UC-15	9	10	3	6	4	32
16	UC-16	13	6	2	1	1	23
17	UC-17	16	7	5	5	8	41
18	UC-18	16	8	0	0	0	24
19	UC-19	12	4	8	6	8	38
20	UC-20	13	10	7	7	6	43
21	UC-21	12	4	8	7	7	38
22	UC-22	12	4	4	3	1	24
23	UC-23	15	10	8	0	2	35
24	UC-24	4	8	5	0	1	18
25	UC-25	8	5	0	0	0	13
26	UC-26	11	8	7	7	8	41
27	UC-27	10	6	1	0	2	19
28	UC-28	12	9	6	6	7	40
29	UC-29	8	4	4	4	1	21
30	UC-30	9	7	2	5	2	25
31	UC-31	18	10	10	10	8	56

32	UC-32	13	6	5	1	1	26
	Jumlah	345	203	153	111	114	
	Korelasi	0,774	0,550	0,778	0,863	0,762	
	R tabel	0,349	0,349	0,349	0,349	0,349	
	Kriteria	Valid	Valid	Valid	Valid	Valid	
	Variansi						
	Butir	17,854	6,555	7,660	8,773	11,480	143,222
	Jumlah						
	Variansi						
	Butir	52,323					
	Variansi						
	Total	143,222					
	r11	0,793					
	R tabel	0,349					
	Kriteria	reliabel		The state of the s		The state of the s	

Lampiran 28 Analisis Tingkat Kesukaran Vaiabel Kemampuan Pemecahan Masalah Matematis

Analisis Tingkat Kesukaran Variabel Kemampuan Pemecahan Masalah Matematis

No	Kode	1	2	3	4	5
1	UC-01	2	8	2	1	1
2	UC-02	4	6	5	0	1
3	UC-03	12	5	8	6	8
4	UC-04	12	5	8	6	8
5	UC-05	12	7	5	5	8
6	UC-06	14	9	7	5	0
7	UC-07	13	4	3	0	1
8	UC-08	13	9	8	6	0
9	UC-09	16	8	5	5	8
10	UC-10	2	0	4	0	0
11	UC-11	12	4	8	6	8
12	UC-12	12	7	2	2	0
13	UC-13	2	1	1	1	4
14	UC-14	8	4	2	0	0
15	UC-15	9	10	3 2	6	4
16	UC-16	13	6		1	1
17	UC-17	16	7	5	5	8
18	UC-18	16	8	0	0	0
19	UC-19	12	4	8	6	8
20	UC-20	13	10	7	7	6
21	UC-21	12	4	8	7	7
22	UC-22	12	4	4	3	1
23	UC-23	15	10	8	0	2
24	UC-24	4	8	5	0	
25	UC-25	8	5	0	0	0
26	UC-26	11	8	7	7	8
27	UC-27	10	6	1	0	2
28	UC-28	12	9	6	6	7
29	UC-29	8	4	4	4	1
30	UC-30	9	7	2	5	2

31	UC-31	18	10	10	10	8
32	UC-32	13	6	5	1	1
Jumlah		345	203	153	111	114
Rata-Rata		10,781	6,344	,344 4,781 3,		3,563
	Skor					
M	aksimal	18	10	10	10	10
Γ	ingkat					
Ke	sukaran	0,599	0,634	0,478	0,347	0,356
K	Kriteria	Sedang	Sedang	Sedang	Sedang	Sedang

Lampiran 29 Analisis Daya Pembeda Vaiabel Kemampuan Pemecahan Masalah Matematis

Analisis Daya Pembeda Butir Soal Variabel Kemampuan Pemecahan Masalah Matematis

	Kelompok Atas										
No	Kode	1	2	3	4	5	Jumlah				
1	UC-31	18	10	10	10	8	56				
2	UC-20	13	10	7	7	6	43				
3	UC-9	16	8	5	5	8	42				
4	UC-17	16	7	5	5	8	41				
5	UC-26	11	8	7	7	8	41				
6	UC-3	12	5	8	6	8	39				
7	UC-4	12	5	8	6	8	39				
8	UC-11	12	4	8	6	8	38				
9	UC-19	12	4	8	6	8	38				
Ju	mlah	122	61	66	59	69	122				
Rata-Rata		13,556	6,778	7,333	6,556	7,667					
Sko	r Maks	18	10	10	10	10					

	Kelompok Bawah										
No	Kode	1	2	3	4	5	Jumlah				
1	UC-29	8	4	4	4	1	21				
2	UC-27	10	6	1	0	2	19				
3	UC-24	4	8	5	0	1	18				
4	UC-2	4	6	5	0	1	16				
5	UC-1	2	8	2	1	1	14				
6	UC-14	8	4	2	0	0	14				
7	UC-25	8	5	0	0	0	13				
8	UC-13	2	1	1	1	4	9				
9	UC-10	2	0	4	0	0	6				
Ju	mlah	48	42	24	6	10	48				
Rata-Rata		5,333	4,667	2,667	0,667	1,111					
Sko	r Maks	18	10	10	10	10					

No. Soal	1	2	3	4	5
DP	0,457	0,211	0,467	0,589	0,656
Kriteria	Baik	Cukup	Baik	Baik	Baik

Lampiran 30 Uji Normalitas Residual

Hipotesis

 H_0 = Data berdistribusi normal

 H_1 = Data tidak berdistribusi normal

Kriteria yang digunakan

Jika $D_0 < D_{tabel}$, maka H_0 diterima

Pengujian Hipotesis

	***		,		Resid-
X1	X2	Y	Ypred	Resid	Resid bar
65,22	61,46	72,41	64,624	7,786	60,350
69,57	60,42	72,41	67,427	4,983	24,656
57,61	61,46	68,97	59,282	9,688	93,523
71,74	66,67	72,41	70,457	1,953	3,748
63,04	67,71	65,52	64,600	0,920	0,815
77,17	69,79	67,24	75,021	-7,781	60,808
48,91	43,75	44,83	48,907	-4,077	16,759
68,48	67,71	68,97	68,419	0,551	0,285
56,52	46,88	62,07	55,003	7,067	49,698
60,87	70,83	70,69	63,829	6,861	46,841
65,22	45,83	60,34	60,857	-0,517	0,286
68,48	67,71	60,34	68,419	-8,079	65,550
69,57	57,29	62,07	66,673	-4,603	21,347
51,09	62,50	65,52	54,956	10,564	111,242
81,52	70,83	82,76	78,325	4,435	19,516
45,65	60,42	44,83	50,636	-5,806	33,904
65,22	69,79	72,41	66,632	5,778	33,189
56,25	51,09	48,28	55,828	-7,548	57,235

71,74	65,63	68,97	70,206	-1,236	1,571
55,43	51,04	63,79	55,241	8,550	72,800
48,91	51,04	53,45	50,663	2,787	7,669
67,39	65,63	67,24	67,153	0,087	0,005
47,83	58,33	48,28	51,662	-3,382	11,556
65,22	59,38	70,69	64,123	6,567	42,900
56,52	54,17	65,52	56,760	8,760	76,436
59,78	57,29	63,79	59,800	3,990	15,780
69,57	62,50	62,07	67,929	-5,859	34,525
73,91	56,25	68,97	69,469	-0,499	0,267
56,52	46,88	62,07	55,003	7,067	49,698
58,70	53,13	63,79	58,040	5,750	32,868
67,39	61,46	58,62	66,148	-7,528	56,925
63,04	53,13	65,52	61,086	4,434	19,505
60,87	52,08	62,07	59,310	2,760	7,523
60,87	52,08	51,72	59,310	-7,590	57,870
67,39	70,83	67,24	68,406	-1,166	1,400
70,65	63,54	70,69	68,937	1,753	3,011
46,74	51,04	44,83	49,140	-4,310	18,726
57,61	50,00	50,00	56,520	-6,520	42,738
64,13	57,29	53,45	62,854	-9,404	88,762
58,70	59,38	63,79	59,546	4,244	17,866
67,39	66,67	68,97	67,403	1,567	2,401
43,48	46,88	41,38	45,849	-4,469	20,126
91,30	82,29	87,93	87,952	-0,022	0,002
58,70	52,08	56,90	57,787	-0,887	0,817
55,43	57,29	46,55	56,747	- 10,197	104,325
58,70	50,00	51,72	57,285	-5,565	31,165
59,78	63,54	53,45	61,307	-7,857	61,998

65,22	68,75	65,52	66,381	-0,861	0,772
60,87	57,29	62,07	60,566	1,504	2,212
60,87	43,75	68,97	57,302	11,668	135,730
66,30	62,50	63,79	65,633	-1,843	3,461
61,96	58,33	53,45	61,581	-8,131	66,400
70,65	66,67	63,79	69,692	-5,902	35,034
81,52	78,13	86,21	80,084	6,126	37,313
70,65	58,33	62,07	67,682	-5,612	31,686
			jumlah	0,946	1893,590
			Rata-rata	0,017	35,066
				Stdev	5,922

			fkum				kp	
No	Resid	f_i	j Kum	kp	Z_i	Z_{tabel}	$-Z_{tabel} $	D_O
1	-10,197	1	1	0,018	-1,725	0,042	0,024	
2	-9,404	1	2	0,036	-1,591	0,056	0,019	
3	-8,131	1	3	0,055	-1,376	0,084	0,030	
4	-8,079	1	4	0,073	-1,367	0,086	0,013	
5	-7,857	1	5	0,091	-1,330	0,092	0,001	
6	-7,781	1	6	0,109	-1,317	0,094	0,015	
7	-7,590	1	7	0,127	-1,285	0,099	0,028	
8	-7,548	1	8	0,145	-1,278	0,101	0,045	
9	-7,528	1	9	0,164	-1,274	0,101	0,062	
10	-6,520	1	10	0,182	-1,104	0,135	0,047	
11	-5,902	1	11	0,200	-1,000	0,159	0,041	
12	-5,859	1	12	0,218	-0,992	0,161	0,058	
13	-5,806	1	13	0,236	-0,983	0,163	0,074	
14	-5,612	1	14	0,255	-0,951	0,171	0,084	
15	-5,565	1	15	0,273	-0,943	0,173	0,100	
16	-4,603	1	16	0,291	-0,780	0,218	0,073	

17	-4,469	1	17	0,309	-0,758	0,224	0,085	0,101
18	-4,310	1	18	0,327	-0,731	0,232	0,095	
19	-4,077	1	19	0,345	-0,691	0,245	0,101	
20	-3,382	1	20	0,364	-0,574	0,283	0,081	
21	-1,843	1	21	0,382	-0,314	0,377	0,005	
22	-1,236	1	22	0,400	-0,212	0,416	0,016	
23	-1,166	1	23	0,418	-0,200	0,421	0,003	
24	-0,887	1	24	0,436	-0,153	0,439	0,003	
25	-0,861	1	25	0,455	-0,148	0,441	0,014	
26	-0,517	1	26	0,473	-0,090	0,464	0,009	
27	-0,499	1	27	0,491	-0,087	0,465	0,026	
28	-0,022	1	28	0,509	-0,007	0,497	0,012	
29	0,087	1	29	0,527	0,012	0,505	0,023	
30	0,551	1	30	0,545	0,090	0,536	0,010	
31	0,920	1	31	0,564	0,152	0,561	0,003	
32	1,504	1	32	0,582	0,251	0,599	0,017	
33	1,567	1	33	0,600	0,262	0,603	0,003	
34	1,753	1	34	0,618	0,293	0,615	0,003	
35	1,953	1	35	0,636	0,327	0,628	0,008	
36	2,760	1	36	0,655	0,463	0,678	0,024	
37	2,787	1	37	0,673	0,468	0,680	0,007	
38	3,990	1	38	0,691	0,671	0,749	0,058	
39	4,244	1	39	0,709	0,714	0,762	0,053	
40	4,434	1	40	0,727	0,746	0,772	0,045	
41	4,435	1	41	0,745	0,746	0,772	0,027	
42	4,983	1	42	0,764	0,839	0,799	0,035	
43	5,750	1	43	0,782	0,968	0,834	0,052	
44	5,778	1	44	0,800	0,973	0,835	0,035	
45	6,126	1	45	0,818	1,032	0,849	0,031	
46	6,567	1	46	0,836	1,106	0,866	0,029	

47	6,861	1	47	0,855	1,156	0,876	0,022	
48	7,067	2	49	0,891	1,190	0,883	0,008	
49	7,786	1	50	0,909	1,312	0,905	0,004	
50	8,550	1	51	0,927	1,441	0,925	0,002	
51	8,760	1	52	0,945	1,476	0,930	0,015	
52	9,688	1	53	0,964	1,633	0,949	0,015	
53	10,564	1	54	0,982	1,781	0,963	0,019	
54	11,668	1	55	1,000	1,967	0,975	0,025	

Keterangan:

 f_i = frekuensi

f kum= frekuensi komulatif

kp= komulatif proporsi

$$z_i = \frac{X - \bar{\bar{X}}}{s^2}$$

 Z_{tabel} = nilai Z_i pada tabel

 $|kp - Z_{tabel}|$ = selisih antara kp dan Z_{tabel}

 D_0 = Nilai Maksimal dari $|kp - Z_{tabel}|$

Untuk $\alpha = 5\%$ diperoleh nilai tabel = 0,183

Karena $D_0 \leq D_{tabel}$, maka nilai residual tersebut berdistribusi normal.

Lampiran 31 Uji Multikolinearitas

No	Kode	X_1	X_2	Y	X_1^2	X_2^2	Y^2	$X_1.Y$	$X_2.Y$	X_1X_2
1	R1	65,22	61,46	72,41	4253,65	3777,33	5243,21	4722,58	4450,32	4008,42
2	R2	69,57	60,42	72,41	4839,98	3650,58	5243,21	5037,56	4375,01	4203,42
3	R3	57,61	61,46	68,97	3318,91	3777,33	4756,86	3973,36	4238,90	3540,71
4	R4	71,74	66,67	72,41	5146,63	4444,89	5243,21	5194,69	4827,57	4782,91
5	R5	63,04	67,71	65,52	3974,04	4584,64	4292,87	4130,38	4436,36	4268,44
6	R6	77,17	69,79	67,24	5955,21	4870,64	4521,22	5188,91	4692,68	5385,69
7	R7	48,91	43,75	44,83	2392,19	1914,06	2009,73	2192,64	1961,31	2139,81
8	R8	68,48	67,71	68,97	4689,51	4584,64	4756,86	4723,07	4669,96	4636,78
9	R9	56,52	46,88	62,07	3194,51	2197,73	3852,68	3508,20	2909,84	2649,66
10	R10	60,87	70,83	70,69	3705,16	5016,89	4997,08	4302,90	5006,97	4311,42
11	R11	65,22	45,83	60,34	4253,65	2100,39	3640,92	3935,37	2765,38	2989,03
12	R12	68,48	67,71	60,34	4689,51	4584,64	3640,92	4132,08	4085,62	4636,78
13	R13	69,57	57,29	62,07	4839,98	3282,14	3852,68	4318,21	3555,99	3985,67
14	R14	51,09	62,5	65,52	2610,19	3906,25	4292,87	3347,42	4095,00	3193,13
15	R15	81,52	70,83	82,76	6645,51	5016,89	6849,22	6746,60	5861,89	5774,06
16	R16	45,65	60,42	44,83	2083,92	3650,58	2009,73	2046,49	2708,63	2758,17

					•					
17	R17	65,22	69,79	72,41	4253,65	4870,64	5243,21	4722,58	5053,49	4551,70
18	R18	56,25	51,09	48,28	3164,06	2610,19	2330,96	2715,75	2466,63	2873,81
19	R19	71,74	65,63	68,97	5146,63	4307,30	4756,86	4947,91	4526,50	4708,30
20	R20	55,43	51,04	63,79	3072,48	2605,08	4069,16	3535,88	3255,84	2829,15
21	R21	48,91	51,04	53,45	2392,19	2605,08	2856,90	2614,24	2728,09	2496,37
22	R22	67,39	65,63	67,24	4541,41	4307,30	4521,22	4531,30	4412,96	4422,81
23	R23	47,83	58,33	48,28	2287,71	3402,39	2330,96	2309,23	2816,17	2789,92
24	R24	65,22	59,38	70,69	4253,65	3525,98	4997,08	4610,40	4197,57	3872,76
25	R25	56,52	54,17	65,52	3194,51	2934,39	4292,87	3703,19	3549,22	3061,69
26	R26	59,78	57,29	63,79	3573,65	3282,14	4069,16	3813,37	3654,53	3424,80
27	R27	69,57	62,5	62,07	4839,98	3906,25	3852,68	4318,21	3879,38	4348,13
28	R28	73,91	56,25	68,97	5462,69	3164,06	4756,86	5097,57	3879,56	4157,44
29	R29	56,52	46,88	62,07	3194,51	2197,73	3852,68	3508,20	2909,84	2649,66
30	R30	58,7	53,13	63,79	3445,69	2822,80	4069,16	3744,47	3389,16	3118,73
31	R31	67,39	61,46	58,62	4541,41	3777,33	3436,30	3950,40	3602,79	4141,79
32	R32	63,04	53,13	65,52	3974,04	2822,80	4292,87	4130,38	3481,08	3349,32
33	R33	60,87	52,08	62,07	3705,16	2712,33	3852,68	3778,20	3232,61	3170,11
34	R34	60,87	52,08	51,72	3705,16	2712,33	2674,96	3148,20	2693,58	3170,11

35	R35	67,39	70,83	67,24	4541,41	5016,89	4521,22	4531,30	4762,61	4773,23
36	R36	70,65	63,54	70,69	4991,42	4037,33	4997,08	4994,25	4491,64	4489,10
37	R37	46,74	51,04	44,83	2184,63	2605,08	2009,73	2095,35	2288,12	2385,61
38	R38	57,61	50	50	3318,91	2500,00	2500,00	2880,50	2500,00	2880,50
39	R39	64,13	57,29	53,45	4112,66	3282,14	2856,90	3427,75	3062,15	3674,01
40	R40	58,7	59,38	63,79	3445,69	3525,98	4069,16	3744,47	3787,85	3485,61
41	R41	67,39	66,67	68,97	4541,41	4444,89	4756,86	4647,89	4598,23	4492,89
42	R42	43,48	46,88	41,38	1890,51	2197,73	1712,30	1799,20	1939,89	2038,34
43	R43	91,3	82,29	87,93	8335,69	6771,64	7731,68	8028,01	7235,76	7513,08
44	R44	58,7	52,08	56,9	3445,69	2712,33	3237,61	3340,03	2963,35	3057,10
45	R45	55,43	57,29	46,55	3072,48	3282,14	2166,90	2580,27	2666,85	3175,58
46	R46	58,7	50	51,72	3445,69	2500,00	2674,96	3035,96	2586,00	2935,00
47	R47	59,78	63,54	53,45	3573,65	4037,33	2856,90	3195,24	3396,21	3798,42
48	R48	65,22	68,75	65,52	4253,65	4726,56	4292,87	4273,21	4504,50	4483,88
49	R49	60,87	57,29	62,07	3705,16	3282,14	3852,68	3778,20	3555,99	3487,24
50	R50	60,87	43,75	68,97	3705,16	1914,06	4756,86	4198,20	3017,44	2663,06
51	R51	66,3	62,5	63,79	4395,69	3906,25	4069,16	4229,28	3986,88	4143,75
52	R52	61,96	58,33	53,45	3839,04	3402,39	2856,90	3311,76	3117,74	3614,13

53	R53	70,65	66,67	63,79	4991,42	4444,89	4069,16	4506,76	4252,88	4710,24
54	R54	81,52	78,13	86,21	6645,51	6104,30	7432,16	7027,84	6735,59	6369,16
55	R55	70,65	58,33	62,07	4991,42	3402,39	3852,68	4385,25	3620,54	4121,01
	Total	3463,86	3266,74	3441,40	222768,03	198022,24	220733,66	220690,68	207440,66	208691,61
	rata-rata	62,98	59,40	62,57	4050,33	3600,40	4013,34	4012,56	3771,65	3794,39

$$r = \frac{n\sum X_1 X_2 - (\sum X_1)(\sum X_2)}{\sqrt{\{n\sum X_1^2 - (\sum X_1)^2\}\{n\sum X_2^2 - (\sum X_2)^2\}}}$$

$$55(208691,61) - (3463,86)(61)$$

$$= \frac{55(208691,61) - (3463,86)(3266,74)}{\sqrt{\{55(222768,03) - (3463,86)^2\}\{55(198022,24) - (3266,74)^2\}}}$$

$$= 0,688$$

$$r^2$$
=0,474

$$Tolerance = 1 - r^2 = 1 - 0.474 = 0.526$$

$$VIF = \frac{1}{Tolerance} = \frac{1}{0.526} = 1,900$$

Karena, $\it VIF < 10$ dan $\it Tolerance > 0,1$ maka dinyatakan tidak terjadi gejala multikolinearitas.

Lampiran 32 Uji Autokorelasi

No	Kode	X_1	X_2	Y	Ŷ	e_t	$e_t - e_{t-1}$	$e_t^{\ 2}$	$(e_t - e_{t-1})^2$
1	R1	65,22	61,46	72,41	64,642	7,768		60,340	
2	R2	69,57	60,42	72,41	67,445	4,965	-2,803	24,653	7,855
3	R3	57,61	61,46	68,97	59,300	9,670	4,705	93,510	22,135
4	R4	71,74	66,67	72,41	70,476	1,934	-7,736	3,739	59,850
5	R5	63,04	67,71	65,52	64,620	0,900	-1,034	0,810	1,068
6	R6	77,17	69,79	67,24	75,041	-7,801	-8,701	60,854	75,708
7	R7	48,91	43,75	44,83	48,919	-4,089	3,712	16,722	13,777
8	R8	68,48	67,71	68,97	68,439	0,531	4,621	0,282	21,349
9	R9	56,52	46,88	62,07	55,017	7,053	6,522	49,750	42,538
10	R10	60,87	70,83	70,69	63,849	6,841	-0,213	46,793	0,045
11	R11	65,22	45,83	60,34	60,871	-0,531	-7,371	0,281	54,334
12	R12	68,48	67,71	60,34	68,439	-8,099	-7,568	65,589	57,277
13	R13	69,57	57,29	62,07	66,690	-4,620	3,479	21,340	12,105
14	R14	51,09	62,5	65,52	54,974	10,546	15,166	111,219	229,995
15	R15	81,52	70,83	82,76	78,346	4,414	-6,132	19,488	37,596

16	R16	45,65	60,42	44,83	50,653	-5,823	-10,238	33,910	104,811
17	R17	65,22	69,79	72,41	66,652	5,758	11,581	33,153	134,122
18	R18	56,25	51,09	48,28	55,843	-7,563	-13,321	57,198	177,445
19	R19	71,74	65,63	68,97	70,225	-1,255	6,308	1,576	39,787
20	R20	55,43	51,04	63,79	55,255	8,535	9,790	72,842	95,844
21	R21	48,91	51,04	53,45	50,678	2,772	-5,763	7,682	33,213
22	R22	67,39	65,63	67,24	67,172	0,068	-2,703	0,005	7,308
23	R23	47,83	58,33	48,28	51,679	-3,399	-3,468	11,555	12,024
24	R24	65,22	59,38	70,69	64,140	6,550	9,949	42,900	98,984
25	R25	56,52	54,17	65,52	56,776	8,744	2,194	76,463	4,816
26	R26	59,78	57,29	63,79	59,817	3,973	-4,771	15,784	22,766
27	R27	69,57	62,5	62,07	67,947	-5,877	-9,850	34,536	97,016
28	R28	73,91	56,25	68,97	69,485	-0,515	5,362	0,265	28,746
29	R29	56,52	46,88	62,07	55,017	7,053	7,569	49,750	57,283
30	R30	58,7	53,13	63,79	58,055	5,735	-1,318	32,889	1,738
31	R31	67,39	61,46	58,62	66,165	-7,545	-13,280	56,933	176,367
32	R32	63,04	53,13	65,52	61,102	4,418	11,964	19,521	143,130
33	R33	60,87	52,08	62,07	59,325	2,745	-1,673	7,535	2,800

34	R34	60,87	52,08	51,72	59,325	-7,605	-10,350	57,837	107,123
35	R35	67,39	70,83	67,24	68,426	-1,186	6,419	1,408	41,199
36	R36	70,65	63,54	70,69	68,956	1,734	2,921	3,007	8,530
37	R37	46,74	51,04	44,83	49,155	-4,325	-6,059	18,706	36,714
38	R38	57,61	50	50	56,535	-6,535	-2,210	42,702	4,883
39	R39	64,13	57,29	53,45	62,871	-9,421	-2,886	88,750	8,329
40	R40	58,7	59,38	63,79	59,563	4,227	13,647	17,866	186,254
41	R41	67,39	66,67	68,97	67,423	1,547	-2,679	2,394	7,179
42	R42	43,48	46,88	41,38	45,863	-4,483	-6,030	20,095	36,362
43	R43	91,3	82,29	87,93	87,976	-0,046	4,436	0,002	19,682
44	R44	58,7	52,08	56,9	57,802	-0,902	-0,855	0,813	0,732
45	R45	55,43	57,29	46,55	56,763	- 10,213	-9,312	104,314	86,707
46	R46	58,7	50	51,72	57,300	-5,580	4,634	31,134	21,470
47	R47	59,78	63,54	53,45	61,325	-7,875	-2,295	62,018	5,269
48	R48	65,22	68,75	65,52	66,401	-0,881	6,994	0,776	48,916
49	R49	60,87	57,29	62,07	60,582	1,488	2,369	2,213	5,612
50	R50	60,87	43,75	68,97	57,315	11,655	10,167	135,839	103,372

51	R51	66,3	62,5	63,79	65,651	-1,861	-13,516	3,464	182,687
52	R52	61,96	58,33	53,45	61,598	-8,148	-6,287	66,395	39,528
53	R53	70,65	66,67	63,79	69,711	-5,921	2,227	35,059	4,961
54	R54	81,52	78,13	86,21	80,107	6,103	12,024	37,247	144,578
55	R55	70,65	58,33	62,07	67,699	-5,629	-11,732	31,681	137,631
								1893,589	3111,546

$$d = \frac{\sum (e_t - e_{t-1})^2}{\sum (e_t)^2} = \frac{3111,546}{893,589} = 1,643$$

Nilai DU = 1,641, nilai DL = 1,490 dan nilai 4 – du = 2,359. Jika DU (Durbin Uper) < DW (Durbin Watson) < 4–DU artinya tidak terjadi autokorelasi. Hasil perhitungan diperoleh 1,641 < 1,643 < 2,359, sehingga tidak terjadi autokorelasi.

Lampiran 33 Uji Normalitas Tahap Akhir

UJI NORMALITAS VARIABEL

Uji Normalitas Variabel *Habits Of Mind* (X_1)

Hipotesis

 H_0 = Data berdistribusi normal

 H_1 = Data tidak berdistribusi normal

Kriteria yang digunakan

Jika $D_0 < D_{tabel}$, maka H_0 diterima

Pengujian Hipotesis

No	X	$(X-\bar{X})$	$(X-\bar{X})^2$
1	65,22	2,241	5,021
2	69,57	6,591	43,438
3	57,61	-5,369	28,829
4	71,74	8,761	76,750
5	63,04	0,061	0,004
6	77,17	14,191	201,377
7	48,91	-14,069	197,944
8	68,48	5,501	30,258
9	56,52	-6,459	41,722

10	60,87	-2,109	4,449
11	65,22	2,241	5,021
12	68,48	5,501	30,258
13	69,57	6,591	43,438
14	51,09	-11,889	141,355
15	81,52	18,541	343,759
16	45,65	-17,329	300,304
17	65,22	2,241	5,021
18	56,25	-6,729	45,283
19	71,74	8,761	76,750
20	55,43	-7,549	56,992
21	48,91	-14,069	197,944
22	67,39	4,411	19,455
23	47,83	-15,149	229,500
24	65,22	2,241	5,021
25	56,52	-6,459	41,722
26	59,78	-3,199	10,235
27	69,57	6,591	43,438
28	73,91	10,931	119,481
29	56,52	-6,459	41,722
30	58,7	-4,279	18,312
31	67,39	4,411	19,455
32	63,04	0,061	0,004

33	60,87	-2,109	4,449
34	60,87	-2,109	4,449
35	67,39	4,411	19,455
36	70,65	7,671	58,840
37	46,74	-16,239	263,714
38	57,61	-5,369	28,829
39	64,13	1,151	1,324
40	58,7	-4,279	18,312
41	67,39	4,411	19,455
42	43,48	-19,499	380,222
43	91,3	28,321	802,064
44	58,7	-4,279	18,312
45	55,43	-7,549	56,992
46	58,7	-4,279	18,312
47	59,78	-3,199	10,235
48	65,22	2,241	5,021
49	60,87	-2,109	4,449
50	60,87	-2,109	4,449
51	66,3	3,321	11,027
52	61,96	-1,019	1,039
53	70,65	7,671	58,840
54	81,52	18,541	343,759
55	70,65	7,671	58,840

Jumlah	3863,860	Jumlah	4616,647
Rata-Rata	$a\bar{X} = \frac{\sum X}{N} = \frac{1}{N}$	$\frac{3863,860}{55} = 62,979$)
Standar I	Deviasi $s^2 =$	I—— = I—	$\frac{16,647}{5-1} = 9,246$

	17		<i>C1</i>				kp	
No	X	f_i	fkum	kp	Z_i	Z_{tabel}	$-Z_{tabel}$	D_O
1	43,48	1	1	0,018	-2,109	0,017	0,001	
2	45,65	1	2	0,036	-1,874	0,030	0,006	
3	46,74	1	3	0,055	-1,756	0,040	0,015	
4	47,83	1	4	0,073	-1,638	0,051	0,022	
5	48,91	2	6	0,109	-1,522	0,064	0,045	
6	51,09	1	7	0,127	-1,286	0,099	0,028	
7	55,43	2	9	0,164	-0,816	0,207	0,043	
8	56,25	1	10	0,182	-0,728	0,233	0,052	
9	56,52	3	13	0,236	-0,699	0,242	0,006	
10	57,61	2	15	0,273	-0,581	0,281	0,008	
11	58,7	4	19	0,345	-0,463	0,322	0,024	
12	59,78	2	21	0,382	-0,346	0,365	0,017	
13	60,87	5	26	0,473	-0,228	0,410	0,063	
14	61,96	1	27	0,491	-0,110	0,456	0,035	
15	63,04	2	29	0,527	0,007	0,503	0,025	
16	64,13	1	30	0,545	0,124	0,550	0,004	0,081
17	65,22	5	35	0,636	0,242	0,596	0,041	

18	66,3	1	36	0,655	0,359	0,640	0,014
19	67,39	4	40	0,727	0,477	0,683	0,044
20	68,48	2	42	0,764	0,595	0,724	0,040
21	69,57	3	45	0,818	0,713	0,762	0,056
22	70,65	3	48	0,873	0,830	0,797	0,076
23	71,74	2	50	0,909	0,947	0,828	0,081
24	73,91	1	51	0,927	1,182	0,881	0,046
25	77,17	1	52	0,945	1,535	0,938	0,008
26	81,52	2	54	0,982	2,005	0,978	0,004
27	91,3	1	55	1	3,063	0,999	0,001

Keterangan:

 f_i = frekuensi

f kum= frekuensi komulatif

kp= komulatif proporsi

$$Z_I = \frac{X - \bar{X}}{S^2}$$

 Z_{tabel} = nilai Z_i pada tabel

 $|kp - Z_{tabel}|$ = selisih antara kp dan Z_{tabel}

 D_0 = Nilai Maksimal dari $|kp-Z_{tabel}|$

Untuk $\alpha = 5\%$ diperoleh nilai tabel = 0,183

Karena $D_0 \leq D_{tabel}$, maka data tersebut berdistribusi normal.

Uji Normalitas Variabel Self Efficacy (X_2)

Hipotesis

 H_0 = Data berdistribusi normal

 H_1 = Data tidak berdistribusi normal

Kriteria yang digunakan

Jika $D_0 < D_{tabel}$, maka H_0 diterima

Pengujian Hipotesis

No	X	$(X-\bar{X})$	$(X-\bar{X})^2$
1	61,46	2,065	4,263
2	60,42	1,025	1,050
3	61,46	2,065	4,263
4	66,67	7,275	52,922
5	67,71	8,315	69,135
6	69,79	10,395	108,050
7	43,75	-15,645	244,775
8	67,71	8,315	69,135
9	46,88	-12,515	156,632
10	70,83	11,435	130,753
11	45,83	-13,565	184,017
12	67,71	8,315	69,135
13	57,29	-2,105	4,432
14	62,5	3,105	9,639
15	70,83	11,435	130,753
16	60,42	1,025	1,050
17	69,79	10,395	108,050
18	51,09	-8,305	68,978
19	65,63	6,235	38,872

20	51,04	-8,355	69,811
21	51,04	-8,355	69,811
22	65,63	6,235	38,872
23	58,33	-1,065	1,135
24	59,38	-0,015	0,000
25	54,17	-5,225	27,303
26	57,29	-2,105	4,432
27	62,5	3,105	9,639
28	56,25	-3,145	9,893
29	46,88	-12,515	156,632
30	53,13	-6,265	39,254
31	61,46	2,065	4,263
32	53,13	-6,265	39,254
33	52,08	-7,315	53,513
34	52,08	-7,315	53,513
35	70,83	11,435	130,753
36	63,54	4,145	17,179
37	51,04	-8,355	69,811
38	50	-9,395	88,271
39	57,29	-2,105	4,432
40	59,38	-0,015	0,000
41	66,67	7,275	52,922
42	46,88	-12,515	156,632
43	82,29	22,895	524,169
44	52,08	-7,315	53,513
45	57,29	-2,105	4,432
46	50	-9,395	88,271
47	63,54	4,145	17,179
48	68,75	9,355	87,511
49	57,29	-2,105	4,432

50	43,75	-15,645	244,775
51	62,5	3,105	9,639
52	58,33	-1,065	1,135
53	66,67	7,275	52,922
54	78,13	18,735	350,990
55	58,33	-1,065	1,135
Jumlah	3266,740	Jumlah	3993,329

Rata-Rata
$$\bar{X} = \frac{\sum X}{N} = \frac{3266,740}{55} = 59,395$$

Standar Deviasi $s = \sqrt{\frac{\sum (X - \bar{X})^2}{N - 1}} = \sqrt{\frac{3993,329}{55 - 1}} = 8,599$

.,	X	C	fkum	,	7		kp	
No		f_{i}	,	kp	Z_i	Z_{tabel}	$-Z_{tabel} $	D_O
1	43,75	2	2	0,036	-1,819	0,034	0,002	
2	45,83	1	3	0,055	-1,577	0,057	0,003	
3	46,88	3	6	0,109	-1,455	0,073	0,036	
4	50	2	8	0,145	-1,093	0,137	0,008	
5	51,04	3	11	0,200	-0,972	0,166	0,034	
6	51,09	1	12	0,218	-0,966	0,167	0,051	
7	52,08	3	15	0,273	-0,851	0,197	0,075	
8	53,13	2	17	0,309	-0,729	0,233	0,076	
9	54,17	1	18	0,327	-0,608	0,272	0,056	
10	56,25	1	19	0,345	-0,366	0,357	0,012	
11	57,29	5	24	0,436	-0,245	0,403	0,033	
12	58,33	3	27	0,491	-0,124	0,451	0,040	
13	59,38	2	29	0,527	-0,002	0,499	0,028	
14	60,42	2	31	0,564	0,119	0,547	0,016	
15	61,46	3	34	0,618	0,240	0,595	0,023	0,076

16	62,5	3	37	0,673	0,361	0,641	0,032	
17	63,54	2	39	0,709	0,482	0,685	0,024	
18	65,63	2	41	0,745	0,725	0,766	0,020	
19	66,67	3	44	0,800	0,846	0,801	0,001	
20	67,71	3	47	0,855	0,967	0,833	0,021	
21	68,75	1	48	0,873	1,088	0,862	0,011	
22	69,79	2	50	0,909	1,209	0,887	0,022	
23	70,83	3	53	0,964	1,330	0,908	0,055	
24	78,13	1	54	0,982	2,179	0,985	0,004	
25	82,29	1	55	1,000	2,662	0,996	0,004	

Keterangan:

 f_i = frekuensi

f kum= frekuensi komulatif

kp= komulatif proporsi

$$Z_i = \frac{X - \bar{X}}{s^2}$$

 Z_{tabel} = nilai Z_i pada tabel

 $|kp - Z_{tabel}|$ = selisih antara kp dan Z_{tabel}

 D_0 = Nilai Maksimal dari $|kp - Z_{tabel}|$

Untuk $\alpha = 5\%$ diperoleh nilai tabel = 0,183

Karena $D_0 \leq D_{tabel}$, maka data tersebut berdistribusi normal

Uji Normalitas Variabel Kemmapuan Pemecahan Masalah Matematis (Y)

Hipotesis

 H_0 = Data berdistribusi normal

 H_1 = Data tidak berdistribusi normal

Kriteria yang digunakan

Jika $D_0 < D_{tabel}$, maka H_0 diterima

Pengujian Hipotesis

No	Y	$(Y - \overline{Y})$	$(X-\bar{Y})^2$
1	72,41	9,839	96,808
2	72,41	9,839	96,808
3	68,97	6,399	40,948
4	72,41	9,839	96,808
5	65,52	2,949	8,697
6	67,24	4,669	21,800
7	44,83	-17,741	314,740
8	68,97	6,399	40,948
9	62,07	-0,501	0,251
10	70,69	8,119	65,920
11	60,34	-2,231	4,977
12	60,34	-2,231	4,977
13	62,07	-0,501	0,251
14	65,52	2,949	8,697
15	82,76	20,189	407,599
16	44,83	-17,741	314,740
17	72,41	9,839	96,808
18	48,28	-14,291	204,230
19	68,97	6,399	40,948
20	63,79	1,219	1,486
21	53,45	-9,121	83,191
22	67,24	4,669	21,800
23	48,28	-14,291	204,230

24	70,69	8,119	65,920
25	65,52	2,949	8,697
26	63,79	1,219	1,486
27	62,07	-0,501	0,251
28	68,97	6,399	40,948
29	62,07	-0,501	0,251
30	63,79	1,219	1,486
31	58,62	-3,951	15,610
32	65,52	2,949	8,697
33	62,07	-0,501	0,251
34	51,72	-10,851	117,742
35	67,24	4,669	21,800
36	70,69	8,119	65,920
37	44,83	-17,741	314,740
38	50	-12,571	158,028
39	53,45	-9,121	83,191
40	63,79	1,219	1,486
41	68,97	6,399	40,948
42	41,38	-21,191	449,055
43	87,93	25,359	643,083
44	56,9	-5,671	32,159
45	46,55	-16,021	256,670
46	51,72	-10,851	117,742
47	53,45	-9,121	83,191
48	65,52	2,949	8,697
49	62,07	-0,501	0,251
50	68,97	6,399	40,948
51	63,79	1,219	1,486
52	53,45	-9,121	83,191
53	63,79	1,219	1,486
54	86,21	23,639	558,807
55	62,07	-0,501	0,251
Jumlah	3441,400	Jumlah	5402,133

Rata-Rata
$$\bar{Y} = \frac{\sum Y}{N} = \frac{3441,400}{55} = 62,571$$

Standar Deviasi
$$s = \sqrt{\frac{\sum (Y - \overline{Y})^2}{N - 1}} = \sqrt{\frac{5402,133}{55 - 1}} = 10,002$$

No	Y	f_i	fkum	kp	Z_i	Z_{tabel}	kp - Z _{tabel}	D_O
1	41,38	1	1	0,018	-2,119	0,017	0,001	
2	44,83	3	4	0,073	-1,774	0,038	0,035	
3	46,55	1	5	0,091	-1,602	0,055	0,036	
4	48,28	2	7	0,127	-1,429	0,077	0,051	
5	50	1	8	0,145	-1,257	0,104	0,041	
6	51,72	2	10	0,182	-1,085	0,139	0,043	
7	53,45	4	14	0,255	-0,912	0,181	0,074	
8	56,9	1	15	0,273	-0,567	0,285	0,013	
9	58,62	1	16	0,291	-0,395	0,346	0,056	
10	60,34	2	18	0,327	-0,223	0,412	0,084	
11	62,07	7	25	0,455	-0,050	0,480	0,025	
12	63,79	6	31	0,564	0,122	0,549	0,015	
13	65,52	5	36	0,655	0,295	0,616	0,039	
14	67,24	3	39	0,709	0,467	0,680	0,029	0,108
15	68,97	6	45	0,818	0,640	0,739	0,079	0,100
16	70,69	3	48	0,873	0,812	0,792	0,081	
17	72,41	4	52	0,945	0,984	0,837	0,108	
18	82,76	1	53	0,964	2,019	0,978	0,015	
19	86,21	1	54	0,982	2,363	0,991	0,009	
20	87,93	1	55	1,000	2,535	0,994	0,006	

Keterangan :

 f_i = frekuensi

f kum= frekuensi komulatif

kp= komulatif proporsi

$$Z_i = \frac{Y - \bar{Y}}{s^2}$$

 Z_{tabel} = nilai Z_i pada tabel

 $|kp - Z_{tabel}|$ = selisih antara kp dan Z_{tabel}

 D_0 = Nilai Maksimal dari $|kp - Z_{tabel}|$

Untuk $\alpha = 5\%$ diperoleh nilai tabel = 0,183

Karena $D_0 \leq D_{tabel}$, maka data tersebut berdistribusi normal.

Lampiran 34 Perhitungan Persamaan Regresi Sederhana X_1 terhadap Y

Perhitungan Persamaan Regresi Sederhana X_1 terhadap Y Model Persamaan Regresi $\hat{Y} = a + bX$

		1		1	ı	1
No	Kode	X	Y	X2	Y2	XY
1	R1	65,22	72,41	4254	5243,208	4722,580
2	R2	69,57	72,41	4840	5243,208	5037,564
3	R3	57,61	68,97	3319	4756,861	3973,362
4	R4	71,74	72,41	5147	5243,208	5194,693
5	R5	63,04	65,52	3974	4292,870	4130,381
6	R6	77,17	67,24	5955	4521,218	5188,911
7	R7	48,91	44,83	2392	2009,729	2192,635
8	R8	68,48	68,97	4690	4756,861	4723,066
9	R9	56,52	62,07	3195	3852,685	3508,196
10	R10	60,87	70,69	3705	4997,076	4302,900
11	R11	65,22	60,34	4254	3640,916	3935,375
12	R12	68,48	60,34	4690	3640,916	4132,083
13	R13	69,57	62,07	4840	3852,685	4318,210
14	R14	51,09	65,52	2610	4292,870	3347,417
15	R15	81,52	82,76	6646	6849,218	6746,595
16	R16	45,65	44,83	2084	2009,729	2046,490
17	R17	65,22	72,41	4254	5243,208	4722,580
18	R18	56,25	48,28	3164	2330,958	2715,750
19	R19	71,74	68,97	5147	4756,861	4947,908
20	R20	55,43	63,79	3072	4069,164	3535,880
21	R21	48,91	53,45	2392	2856,903	2614,240
22	R22	67,39	67,24	4541	4521,218	4531,304
23	R23	47,83	48,28	2288	2330,958	2309,232
24	R24	65,22	70,69	4254	4997,076	4610,402

25	R25	56,52	65,52	3195	4292,870	3703,190
26	R26	59,78	63,79	3574	4069,164	3813,366
27	R27	69,57	62,07	4840	3852,685	4318,210
28	R28	73,91	68,97	5463	4756,861	5097,573
29	R29	56,52	62,07	3195	3852,685	3508,196
30	R30	58,7	63,79	3446	4069,164	3744,473
31	R31	67,39	58,62	4541	3436,304	3950,402
32	R32	63,04	65,52	3974	4292,870	4130,381
33	R33	60,87	62,07	3705	3852,685	3778,201
34	R34	60,87	51,72	3705	2674,958	3148,196
35	R35	67,39	67,24	4541	4521,218	4531,304
36	R36	70,65	70,69	4991	4997,076	4994,249
37	R37	46,74	44,83	2185	2009,729	2095,354
38	R38	57,61	50	3319	2500,000	2880,500
39	R39	64,13	53,45	4113	2856,903	3427,749
40	R40	58,7	63,79	3446	4069,164	3744,473
41	R41	67,39	68,97	4541	4756,861	4647,888
42	R42	43,48	41,38	1891	1712,304	1799,202
43	R43	91,3	87,93	8336	7731,685	8028,009
44	R44	58,7	56,9	3446	3237,610	3340,030
45	R45	55,43	46,55	3072	2166,903	2580,267
46	R46	58,7	51,72	3446	2674,958	3035,964
47	R47	59,78	53,45	3574	2856,903	3195,241
48	R48	65,22	65,52	4254	4292,870	4273,214
49	R49	60,87	62,07	3705	3852,685	3778,201
50	R50	60,87	68,97	3705	4756,861	4198,204
51	R51	66,3	63,79	4396	4069,164	4229,277
52	R52	61,96	53,45	3839	2856,903	3311,762
53	R53	70,65	63,79	4991	4069,164	4506,764
54	R54	81,52	86,21	6646	7432,164	7027,839

55	R55	70,65	62,07	4991	3852,685	4385,246
	Jumlah	3464	3441,400	222768	220733,659	220690,677

Model persamaan regresi $\hat{Y} = a + bX_1$

$$b = \frac{n[\sum X_1 Y] - [\sum X_1][\sum Y]}{n \sum X_1^2 - (\sum X_1)^2}$$

$$b = \frac{(55 \times 220690,677) - (3464 \times 3441,400)}{(55 \times 222768) - (3464)^2}$$

$$b = 0.856$$

$$a = \frac{\sum Y - (b \sum X_1)}{n}$$

$$a = \frac{3441,400 - (0,856 \times 3464)}{55}$$

$$a = 8,634$$

Jadi, diperoleh persamaan regresi linear sederhana yaitu $\hat{Y} = 8,634 + 0,856X_1$

Lampiran 35 Uji Keberatian dan Kelinearan Regresi Sederhana X_1 terhadap Y

Perhitungan Uji Keberatian dan Kelinearan Sederhan
a $X_{\mathbf{1}}$ terhadap Y

Tabel Anova Regresi Linear Sederhana

Sumber Variasi	dk	JK	KT	F
Total	N	$\sum Y^2$	$\sum Y^2$	-
Koefisien (a)	1	JK(a)	JK(a)	
Regresi (b a)	1	JK(b a)	S_{reg}^2	S_{reg}^2
			= JK(b a)	$\overline{S_{sis}^2}$
Residu/sisa	n-2	JK(S)	$S_{sis}^2 = \frac{JK(S)}{n-2}$	
Tuna cocok	k-2	JK(TC)	$S_{TC}^2 = \frac{JK(TC)}{k-2}$	$\frac{S_{TC}^2}{S_G^2}$
Galat	n-k	JK(G)	$S_G^2 = \frac{JK(G)}{n-k}$	

Hipotesis:

1. Uji Keberartian

 H_0 : koefesien arah regresi tidak berarti

 H_1 : koefesien arah regresi berarti

2. Uji Linearitas

 H_0 : regresi linear

 H_1 : regresi non linear

Dengan persamaan regresi $\hat{Y} = a + bX_1$

$$JK(T) = \sum Y^2 = 220733,659$$

$$JK(a) = \frac{(\sum Y)^2}{n} = \frac{(3441,3400)^2}{55} = 215331,527$$

$$JK(b|a) = b \left\{ \sum XY - \frac{(\sum X)(\sum Y)}{n} \right\}$$

$$= 0,856 \left(220690,677 - \frac{(3464 \times 3441,400)}{55} \right) = 3386,135$$

$$JK(S) = JK(T) - JK(a) - JK(b|a)$$

$$= 220733,659 - 215331,527 - 3386,135 = 2015,997$$

$$S_{reg}^2 = JK(b|a) = 3386,135$$

$$S_{sis}^2 = \frac{JK(S)}{n-2} = \frac{2015,977}{55-2} = 38,038$$

$$F = \frac{S_{reg}^2}{S_{sis}^2} = \frac{3386,135}{38,038} = 89,021$$

Tabel penolong untuk menghitung jumlah-jumlah kuadrat

Kode	X_1	Y		n	X_{1}^{2}	Y ²	XY	JK_g
R42	43,48	41,38	1	K1	1891	1712,304	1799,202	0,000
R16	45,65	44,83	1	K2	2084	2009,729	2046,490	0,000
R37	46,74	44,83	1	К3	2185	2009,729	2095,354	0,000
R23	47,83	48,28	1	K4	2288	2330,958	2309,232	0,000
R7	48,91	44,83	2	К5	2392	2009,729	2192,635	37,152
R21	48,91	53,45			2392	2856,903	2614,240	
R14	51,09	65,52	1	К6	2610	4292,870	3347,417	0,000
R20	55,43	63,79	2	К7	3072	4069,164	3535,880	148,609
R45	55,43	46,55			3072	2166,903	2580,267	
R18	56,25	48,28	1	К8	3164	2330,958	2715,750	0,000
R9	56,52	62,07	3	К9	3195	3852,685	3508,196	7,935

	= < = 0		I	1 1	0405	4000.050	1 0500400	1 1
R25	56,52	65,52			3195	4292,870	3703,190	
R29	56,52	62,07			3195	3852,685	3508,196	
R3	57,61	68,97	2	K10	3319	4756,861	3973,362	179,930
R38	57,61	50			3319	2500,000	2880,500	
R30	58,7	63,79	4	K11	3446	4069,164	3744,473	103,287
R40	58,7	63,79			3446	4069,164	3744,473	
R44	58,7	56,9			3446	3237,610	3340,030	
R46	58,7	51,72			3446	2674,958	3035,964	
R26	59,78	63,79	2	K12	3574	4069,164	3813,366	53,458
R47	59,78	53,45			3574	2856,903	3195,241	
R10	60,87	70,69	5	K13	3705	4997,076	4302,900	223,691
R33	60,87	62,07			3705	3852,685	3778,201	
R34	60,87	51,72			3705	2674,958	3148,196	
R49	60,87	62,07			3705	3852,685	3778,201	

		_	_			_		
R50	60,87	68,97			3705	4756,861	4198,204	
R52	61,96	53,45	1	K14	3839	2856,903	3311,762	0,000
R5	63,04	65,52	2	K15	3974	4292,870	4130,381	0,000
R32	63,04	65,52			3974	4292,870	4130,381	
R39	64,13	53,45	1	K16	4113	2856,903	3427,749	0,000
R1	65,22	72,41	5	K17	4254	5243,208	4722,580	110,583
R11	65,22	60,34			4254	3640,916	3935,375	
R17	65,22	72,41			4254	5243,208	4722,580	
R24	65,22	70,69			4254	4997,076	4610,402	
R48	65,22	65,52			4254	4292,870	4273,214	
R51	66,3	63,79	1	K18	4396	4069,164	4229,277	0,000
R22	67,39	67,24	4	K19	4541	4521,218	4531,304	65,429
R31	67,39	58,62			4541	3436,304	3950,402	
R35	67,39	67,24			4541	4521,218	4531,304	

•			-		-		·	
R41	67,39	68,97			4541	4756,861	4647,888	
R8	68,48	68,97	2	K20	4690	4756,861	4723,066	37,238
R12	68,48	60,34			4690	3640,916	4132,083	
R2	69,57	72,41	3	K21	4840	5243,208	5037,564	71,277
R13	69,57	62,07			4840	3852,685	4318,210	
R27	69,57	62,07			4840	3852,685	4318,210	
R36	70,65	70,69	3	K22	4991	4997,076	4994,249	41,624
R53	70,65	63,79			4991	4069,164	4506,764	
R55	70,65	62,07			4991	3852,685	4385,246	
R4	71,74	72,41	2	K23	5147	5243,208	5194,693	5,917
R19	71,74	68,97			5147	4756,861	4947,908	
R28	73,91	68,97	1	K24	5463	4756,861	5097,573	0,000
R6	77,17	67,24	1	K25	5955	4521,218	5188,911	0,000
R15	81,52	82,76	2	K26	6646	6849,218	6746,595	5,951

R54	81,52	86,21			6646	7432,164	7027,839	
R43	91,3	87,93	1	K27	8336	7731,685	8028,009	0,000
Jumlah	3464	3441,40	55,00	27	222768	220733,659	220690,677	1092,082

$$JK_{TC} = JK(S) - JK(G) = 2015,997 - 1092,082 = 923,92$$

$$S_{TC}^2 = \frac{JK(TC)}{k-2} = \frac{923,92}{27-2} = 36,957$$

$$S_G^2 = \frac{JK(G)}{n-k} = \frac{1092,082}{55-27} = 39,003$$

$$F = \frac{S_{TC}^2}{S_G^2} = \frac{36,957}{39,003} = 0,948$$

Sumber Variansi	dk	JK	KT	F
Total	55	220733,659		
Koefesien (a)	1	215331,527	215331,527	
Regresi (b a)	1	3386,135	3386,135	
Residu	53	2015,997	38,038	89,021
Tuna Cocook	25	923,915	36,957	
Galat	28	1092,082	39,003	0,948

1. Uji keberartian

Berdasarkan tabel *ANOVA* di atas diperoleh nilai $F_{hitung} = 89,021$. Kemudian dengan nilai F_{tabel} , dengan taraf signifikansi sebesar 5%, dk pembilang = 1 dan dk penyebut = n-2=55-2=53 diperoleh $F_{tabel}=4,02$. Karena $F_{hitung} > F_{tabel}$, maka arah regresi tersebut berarti.

2. Uji linearitas

Berdasarkan tabel *ANOVA* di atas diperoleh nilai $F_{hitung} = 0,948$. Kemudian dibandingkan dengan nilai F_{tabel} , dengan taraf signifikansi sebesar 5%, dk pembilang = k-2=27-2=25 dan dk penyebut = n-k=55-27=28 diperoleh $F_{tabel}=1,91$. Karena $F_{hitung} < F_{tabel}$, maka regresi tersebut linear.

Lampiran 36 Uji Koefisien Derminasi X_1 terhadap Y

$$KP = \left(r_{xy}\right)^2 \times 100\%$$

dengan,

$$\begin{split} r_{xy} &= \frac{n(\sum XY) - (\sum X)(\sum Y)}{\sqrt{\{n\sum X^2 - (\sum X)^2\}\{n\sum Y^2 - (\sum Y)^2\}}} \\ &= \frac{55(220690,677) - (3464)(3441,400)}{\sqrt{\{55(222768) - (3464)^2\} - \{55(220733,659) - (3441,400)^2\}}} \\ &= 0.792 \end{split}$$

Sehingga didapat:

$$KP = \left(r_{xy}\right)^2 \times 100\%$$

$$KP = (0.792)^2 \times 100\% = 62.72\%$$

Berdasarkan perhitungan tersebut diperoleh koefisien determinasi = 62,72%, artinya persentasi pengaruh *habits of mind* terhadap kemampuan pemecahan masalah matematis siswa sebesar 62,72%.

Lampiran 37 Perhitungan Persamaan Regresi Sederhan
a ${\cal X}_2$ terhadap ${\cal Y}$

Model Persamaan Regresi $\hat{Y} = a + bX$

No	Kode	X	Y	X^2	Y^2	XY
1	R1	61,46	72,41	3777	5243,208	4450,319
2	R2	60,42	72,41	3651	5243,208	4375,012
3	R3	61,46	68,97	3777	4756,861	4238,896
4	R4	66,67	72,41	4445	5243,208	4827,575
5	R5	67,71	65,52	4585	4292,870	4436,359
6	R6	69,79	67,24	4871	4521,218	4692,680
7	R7	43,75	44,83	1914	2009,729	1961,313
8	R8	67,71	68,97	4585	4756,861	4669,959
9	R9	46,88	62,07	2198	3852,685	2909,842
10	R10	70,83	70,69	5017	4997,076	5006,973
11	R11	45,83	60,34	2100	3640,916	2765,382
12	R12	67,71	60,34	4585	3640,916	4085,621
13	R13	57,29	62,07	3282	3852,685	3555,990
14	R14	62,5	65,52	3906	4292,870	4095,000
15	R15	70,83	82,76	5017	6849,218	5861,891
16	R16	60,42	44,83	3651	2009,729	2708,629
17	R17	69,79	72,41	4871	5243,208	5053,494
18	R18	51,09	48,28	2610	2330,958	2466,625
19	R19	65,63	68,97	4307	4756,861	4526,501
20	R20	51,04	63,79	2605	4069,164	3255,842
21	R21	51,04	53,45	2605	2856,903	2728,088
22	R22	65,63	67,24	4307	4521,218	4412,961
23	R23	58,33	48,28	3402	2330,958	2816,172
24	R24	59,38	70,69	3526	4997,076	4197,572
25	R25	54,17	65,52	2934	4292,870	3549,218

26	R26	57,29	63,79	3282	4069,164	3654,529
27	R27	62,5	62,07	3906	3852,685	3879,375
28	R28	56,25	68,97	3164	4756,861	3879,563
29	R29	46,88	62,07	2198	3852,685	2909,842
30	R30	53,13	63,79	2823	4069,164	3389,163
31	R31	61,46	58,62	3777	3436,304	3602,785
32	R32	53,13	65,52	2823	4292,870	3481,078
33	R33	52,08	62,07	2712	3852,685	3232,606
34	R34	52,08	51,72	2712	2674,958	2693,578
35	R35	70,83	67,24	5017	4521,218	4762,609
36	R36	63,54	70,69	4037	4997,076	4491,643
37	R37	51,04	44,83	2605	2009,729	2288,123
38	R38	50	50	2500	2500,000	2500,000
39	R39	57,29	53,45	3282	2856,903	3062,151
40	R40	59,38	63,79	3526	4069,164	3787,850
41	R41	66,67	68,97	4445	4756,861	4598,230
42	R42	46,88	41,38	2198	1712,304	1939,894
43	R43	82,29	87,93	6772	7731,685	7235,760
44	R44	52,08	56,9	2712	3237,610	2963,352
45	R45	57,29	46,55	3282	2166,903	2666,850
46	R46	50	51,72	2500	2674,958	2586,000
47	R47	63,54	53,45	4037	2856,903	3396,213
48	R48	68,75	65,52	4727	4292,870	4504,500
49	R49	57,29	62,07	3282	3852,685	3555,990
50	R50	43,75	68,97	1914	4756,861	3017,438
51	R51	62,5	63,79	3906	4069,164	3986,875
52	R52	58,33	53,45	3402	2856,903	3117,739
53	R53	66,67	63,79	4445	4069,164	4252,879
54	R54	78,13	86,21	6104	7432,164	6735,587
55	R55	58,33	62,07	3402	3852,685	3620,543

3267 3441,400 198022 220733,659 207440,655

Model persamaan regresi $\hat{Y} = a + bX_{12}$

$$b = \frac{n[\sum X_2 Y] - [\sum X_2][\sum Y]}{n\sum X_2^2 - (\sum X_2)^2}$$

$$b = \frac{(55 \times 207440,655) - (3267 \times 3441,400)}{(55 \times 198022) - (3267)^2}$$

$$b = 0.761$$

$$a = \frac{\sum Y - (b \sum X_2)}{n}$$

$$a = \frac{3441,400 - (0,761 \times 3267)}{55}$$

$$a = 17,388$$

Jadi, diperoleh persamaan regresi linear sederhana yaitu $\hat{Y} = 17,388 + 0,761X_1$

Lampiran 38 Uji Keberatian dan Kelinearan Regresi Sederhana X_1 terhadap Y

Tabel Anova Regresi Linear Sederhana

Sumber Variasi	dk	JK	KT	F
Total	N	$\sum Y^2$	$\sum Y^2$	-
Koefisien (a)	1	JK(a)	JK(a)	
Regresi (b a)	1	JK(b a)	$S_{reg}^2 = JK(b a)$	$\frac{S_{reg}^2}{S_{sis}^2}$
Residu/sisa	n-2	JK(S)	$S_{sis}^2 = \frac{JK(S)}{n-2}$	Sis
Tuna cocok	k-2	JK(TC)	$S_{TC}^{2} = \frac{JK(TC)}{k-2}$	$\frac{S_{TC}^2}{S_G^2}$
Galat	n-k	JK(G)	$S_G^2 = \frac{JK(G)}{n-k}$	

Hipotesis:

1. Uji Keberartian

 H_0 : koefesien arah regresi tidak berarti

 H_1 : koefesien arah regresi berarti

2. Uji Linearitas

 H_0 : regresi linear

 H_1 : regresi non linear

Dengan persamaan regresi $\hat{Y} = a + bX_1$

$$JK(T) = \sum Y^2 = 220733,659$$

$$JK(a) = \frac{(\sum Y)^2}{n} = \frac{(3441,3400)^2}{55} = 215331,527$$

$$JK(b|a) = b\left\{ \sum XY - \frac{(\sum X)(\sum Y)}{n} \right\}$$

$$= 0.761 \left(207440,655 - \frac{(3267 \times 3441,400)}{55} \right) = 2310,856$$

$$JK(S) = JK(T) - JK(a) - JK(b|a)$$

$$= 220733,659 - 215331,527 - 3386,135 = 3091,277$$

$$S_{reg}^2 = JK(b|a) = 2310,856$$

$$S_{sis}^2 = \frac{JK(S)}{n-2} = \frac{3091,277}{55-2} = 58,326$$

$$F = \frac{S_{reg}^2}{S_{sis}^2} = \frac{2310,856}{58,326} = 39,620$$

Tabel penolong untuk menghitung jumlah-jumlah kuadrat

Kode	X_1	Y		n	X_1^2	Y ²	XY	JK_g
R7	43,75	44,83	2	K1	1914	2009,729	1961,313	291,370
R50	43,75	68,97			1914	4756,861	3017,438	
R11	45,83	60,34	1	K2	2100	3640,916	2765,382	0,000
R9	46,88	62,07	3	К3	2198	3852,685	2909,842	285,384
R29	46,88	62,07			2198	3852,685	2909,842	
R42	46,88	41,38			2198	1712,304	1939,894	
R38	50	50	2	K4	2500	2500,000	2500,000	1,479
R46	50	51,72			2500	2674,958	2586,000	
R20	51,04	63,79	3	K5	2605	4069,164	3255,842	180,234
R21	51,04	53,45			2605	2856,903	2728,088	
R37	51,04	44,83			2605	2009,729	2288,123	166,428
R18	51,09	48,28	1	К6	2610	2330,958	2466,625	0,000
R33	52,08	62,07	3	K7	2712	3852,685	3232,606	53,561
R34	52,08	51,72			2712	2674,958	2693,578	
R44	52,08	56,9			2712	3237,610	2963,352	

R30	53,13	63,79	2	К8	2823	4069,164	3389,163	1,496
R32	53,13	65,52			2823	4292,870	3481,078	
R25	54,17	65,52	1	К9	2934	4292,870	3549,218	0,000
R28	56,25	68,97	1	K10	3164	4756,861	3879,563	0,000
R13	57,29	62,07	5	K11	3282	3852,685	3555,990	217,602
R26	57,29	63,79			3282	4069,164	3654,529	
R39	57,29	53,45			3282	2856,903	3062,151	
R45	57,29	46,55			3282	2166,903	2666,850	
R49	57,29	62,07			3282	3852,685	3555,990	
R23	58,33	48,28	3	K12	3402	2330,958	2816,172	97,066
R52	58,33	53,45			3402	2856,903	3117,739	
R55	58,33	62,07			3402	3852,685	3620,543	
R24	59,38	70,69	2	K13	3526	4997,076	4197,572	23,805
R40	59,38	63,79			3526	4069,164	3787,850	
R2	60,42	72,41	2	K14	3651	5243,208	4375,012	380,328
R16	60,42	44,83			3651	2009,729	2708,629	
R1	61,46	72,41	3	K15	3777	5243,208	4450,319	103,040
R3	61,46	68,97			3777	4756,861	4238,896	

R31	61,46	58,62			3777	3436,304	3602,785	
R14	62,5	65,52	3	K16	3906	4292,870	4095,000	5,951
R27	62,5	62,07			3906	3852,685	3879,375	
R51	62,5	63,79			3906	4069,164	3986,875	
R36	63,54	70,69	2	K17	4037	4997,076	4491,643	148,609
R47	63,54	53,45			4037	2856,903	3396,213	
R19	65,63	68,97	2	K18	4307	4756,861	4526,501	1,496
R22	65,63	67,24			4307	4521,218	4412,961	
R4	66,67	72,41	3	K19	4445	5243,208	4827,575	37,657
R41	66,67	68,97			4445	4756,861	4598,230	
R53	66,67	63,79			4445	4069,164	4252,879	
R5	67,71	65,52	3	K20	4585	4292,870	4436,359	37,737
R8	67,71	68,97			4585	4756,861	4669,959	
R12	67,71	60,34			4585	3640,916	4085,621	
R48	68,75	65,52	1	K21	4727	4292,870	4504,500	0,000
R6	69,79	67,24	2	K22	4871	4521,218	4692,680	13,364
R17	69,79	72,41			4871	5243,208	5053,494	
R10	70,83	70,69	3	K23	5017	4997,076	5006,973	132,819

R15	70,83	82,76			5017	6849,218	5861,891	
R35	70,83	67,24			5017	4521,218	4762,609	
R54	78,13	86,21	1	K24	6104	7432,164	6735,587	0,000
R43	82,29	87,93	1	K25	6772	7731,685	7235,760	0,000
Iumlah	3267	3441,40	55,00	27,00	198022	220733,659	207440,655	2179,428

$$JK_{TC} = JK(S) - JK(G) = 3091,277 - 2179,428 = 911,85$$

$$S_{TC}^2 = \frac{JK(TC)}{k-2} = \frac{923,92}{27-2} = 39,646$$

$$S_G^2 = \frac{JK(G)}{n-k} = \frac{1092,082}{55-27} = 72,648$$

$$F = \frac{S_{TC}^2}{S_G^2} = \frac{36,957}{39,003} = 0,546$$

Sumber Variansi	dk	JK	KT	F
Total	55	220733,659		
Koefesien (a)	1	215331,527	215331,527	
Regresi (b a)	1	2310,856	2310,856	
Residu	53	3091,277	58,326	39,620
Tuna Cocook	23	911,849	39,646	
Galat	30	2179,428	72,648	0,546

1. Uji keberartian

Berdasarkan tabel *ANOVA* di atas diperoleh nilai $F_{hitung} = 39,620$. Kemudian dengan nilai F_{tabel} , dengan taraf signifikansi sebesar 5%, dk pembilang = 1 dan dk penyebut = n-2=55-2=53 diperoleh $F_{tabel}=4,02$. Karena $F_{hitung} > F_{tabel}$, maka arah regresi tersebut berarti.

2. Uji linearitas

Berdasarkan tabel *ANOVA* di atas diperoleh nilai $F_{hitung} = 0,948$. Kemudian dibandingkan dengan nilai F_{tabel} , dengan taraf signifikansi sebesar 5%, dk pembilang = k-2=25-2=23 dan dk penyebut = n-k=55-25=30 diperoleh $F_{tabel}=1,90$. Karena $F_{hitung} < F_{tabel}$, maka regresi tersebut linear.

Lampiran 39 Uji Koefisien Determinasi X₂ terhadap Y

$$KP = \left(r_{xy}\right)^2 \times 100\%$$

dengan,

$$\begin{split} r_{xy} &= \frac{n(\sum XY) - (\sum X)(\sum Y)}{\sqrt{\{n\sum X^2 - (\sum X)^2\}\{n\sum Y^2 - (\sum Y)^2\}}} \\ &= \frac{55(207440,655) - (3267)(3441,400)}{\sqrt{\{55(198022) - (3267)^2\} - \{55(220733,659) - (3441,400)^2\}}} \\ &= 0.654 \end{split}$$

Sehingga didapat:

$$KP = \left(r_{xy}\right)^2 \times 100\%$$

$$KP = (0.761)^2 \times 100\% = 42.80\%$$

Berdasarkan perhitungan tersebut diperoleh koefisien determinasi = 42,80%, artinya persentasi pengaruh *self efficacy* terhadap kemampuan pemecahan masalah matematis siswa sebesar 42,80%

Lampiran 40 Perhitungan Persamaan Regresi Ganda

Perhitungan Persamaan Regresi Ganda

Model persamaan regresi $\hat{Y} = a + b_1 X_1 + b_2 X_2$

No	Kode	X_1	X_2	Y	X_1^2	X_2^2	Y ²	$X_1.Y$	$X_2.Y$	X_1X_2
1	R1	65,22	61,46	72,41	4253,65	3777,33	5243,21	4722,58	4450,32	4008,42
2	R2	69,57	60,42	72,41	4839,98	3650,58	5243,21	5037,56	4375,01	4203,42
3	R3	57,61	61,46	68,97	3318,91	3777,33	4756,86	3973,36	4238,90	3540,71
4	R4	71,74	66,67	72,41	5146,63	4444,89	5243,21	5194,69	4827,57	4782,91
5	R5	63,04	67,71	65,52	3974,04	4584,64	4292,87	4130,38	4436,36	4268,44
6	R6	77,17	69,79	67,24	5955,21	4870,64	4521,22	5188,91	4692,68	5385,69
7	R7	48,91	43,75	44,83	2392,19	1914,06	2009,73	2192,64	1961,31	2139,81
8	R8	68,48	67,71	68,97	4689,51	4584,64	4756,86	4723,07	4669,96	4636,78
9	R9	56,52	46,88	62,07	3194,51	2197,73	3852,68	3508,20	2909,84	2649,66
10	R10	60,87	70,83	70,69	3705,16	5016,89	4997,08	4302,90	5006,97	4311,42
11	R11	65,22	45,83	60,34	4253,65	2100,39	3640,92	3935,37	2765,38	2989,03
12	R12	68,48	67,71	60,34	4689,51	4584,64	3640,92	4132,08	4085,62	4636,78

			-	-			•	•		
13	R13	69,57	57,29	62,07	4839,98	3282,14	3852,68	4318,21	3555,99	3985,67
14	R14	51,09	62,50	65,52	2610,19	3906,25	4292,87	3347,42	4095,00	3193,13
15	R15	81,52	70,83	82,76	6645,51	5016,89	6849,22	6746,60	5861,89	5774,06
16	R16	45,65	60,42	44,83	2083,92	3650,58	2009,73	2046,49	2708,63	2758,17
17	R17	65,22	69,79	72,41	4253,65	4870,64	5243,21	4722,58	5053,49	4551,70
18	R18	56,25	51,09	48,28	3164,06	2610,19	2330,96	2715,75	2466,63	2873,81
19	R19	71,74	65,63	68,97	5146,63	4307,30	4756,86	4947,91	4526,50	4708,30
20	R20	55,43	51,04	63,79	3072,48	2605,08	4069,16	3535,88	3255,84	2829,15
21	R21	48,91	51,04	53,45	2392,19	2605,08	2856,90	2614,24	2728,09	2496,37
22	R22	67,39	65,63	67,24	4541,41	4307,30	4521,22	4531,30	4412,96	4422,81
23	R23	47,83	58,33	48,28	2287,71	3402,39	2330,96	2309,23	2816,17	2789,92
24	R24	65,22	59,38	70,69	4253,65	3525,98	4997,08	4610,40	4197,57	3872,76
25	R25	56,52	54,17	65,52	3194,51	2934,39	4292,87	3703,19	3549,22	3061,69
26	R26	59,78	57,29	63,79	3573,65	3282,14	4069,16	3813,37	3654,53	3424,80
27	R27	69,57	62,50	62,07	4839,98	3906,25	3852,68	4318,21	3879,38	4348,13
28	R28	73,91	56,25	68,97	5462,69	3164,06	4756,86	5097,57	3879,56	4157,44
29	R29	56,52	46,88	62,07	3194,51	2197,73	3852,68	3508,20	2909,84	2649,66
30	R30	58,70	53,13	63,79	3445,69	2822,80	4069,16	3744,47	3389,16	3118,73

			i	i	Ī	i	•		•	ı
31	R31	67,39	61,46	58,62	4541,41	3777,33	3436,30	3950,40	3602,79	4141,79
32	R32	63,04	53,13	65,52	3974,04	2822,80	4292,87	4130,38	3481,08	3349,32
33	R33	60,87	52,08	62,07	3705,16	2712,33	3852,68	3778,20	3232,61	3170,11
34	R34	60,87	52,08	51,72	3705,16	2712,33	2674,96	3148,20	2693,58	3170,11
35	R35	67,39	70,83	67,24	4541,41	5016,89	4521,22	4531,30	4762,61	4773,23
36	R36	70,65	63,54	70,69	4991,42	4037,33	4997,08	4994,25	4491,64	4489,10
37	R37	46,74	51,04	44,83	2184,63	2605,08	2009,73	2095,35	2288,12	2385,61
38	R38	57,61	50,00	50,00	3318,91	2500,00	2500,00	2880,50	2500,00	2880,50
39	R39	64,13	57,29	53,45	4112,66	3282,14	2856,90	3427,75	3062,15	3674,01
40	R40	58,70	59,38	63,79	3445,69	3525,98	4069,16	3744,47	3787,85	3485,61
41	R41	67,39	66,67	68,97	4541,41	4444,89	4756,86	4647,89	4598,23	4492,89
42	R42	43,48	46,88	41,38	1890,51	2197,73	1712,30	1799,20	1939,89	2038,34
43	R43	91,30	82,29	87,93	8335,69	6771,64	7731,68	8028,01	7235,76	7513,08
44	R44	58,70	52,08	56,90	3445,69	2712,33	3237,61	3340,03	2963,35	3057,10
45	R45	55,43	57,29	46,55	3072,48	3282,14	2166,90	2580,27	2666,85	3175,58
46	R46	58,70	50,00	51,72	3445,69	2500,00	2674,96	3035,96	2586,00	2935,00
47	R47	59,78	63,54	53,45	3573,65	4037,33	2856,90	3195,24	3396,21	3798,42
48	R48	65,22	68,75	65,52	4253,65	4726,56	4292,87	4273,21	4504,50	4483,88

49	R49	60,87	57,29	62,07	3705,16	3282,14	3852,68	3778,20	3555,99	3487,24
50	R50	60,87	43,75	68,97	3705,16	1914,06	4756,86	4198,20	3017,44	2663,06
51	R51	66,30	62,50	63,79	4395,69	3906,25	4069,16	4229,28	3986,88	4143,75
52	R52	61,96	58,33	53,45	3839,04	3402,39	2856,90	3311,76	3117,74	3614,13
53	R53	70,65	66,67	63,79	4991,42	4444,89	4069,16	4506,76	4252,88	4710,24
54	R54	81,52	78,13	86,21	6645,51	6104,30	7432,16	7027,84	6735,59	6369,16
55	R55	70,65	58,33	62,07	4991,42	3402,39	3852,68	4385,25	3620,54	4121,01
Ju	umlah	3463,86	3266,74	3441,40	222768,03	198022,24	220733,66	220690,68	207440,66	208691,61

$$\begin{split} & \sum x_1^2 = \sum X_1^2 - \frac{(\sum X_1)^2}{n} = 222768,03 - \frac{(3463,86)^2}{55} = 4616,647 \\ & \sum x_2^2 = \sum X_2^2 - \frac{(\sum X_2)^2}{n} = 198022,24 - \frac{(3266,74)^2}{55} = 3993,329 \\ & \sum y^2 = \sum Y^2 - \frac{(\sum Y)^2}{n} = 220733,66 - \frac{(3441,40)^2}{55} = 5402,133 \\ & \sum x_1 y = \sum X_1 y - \frac{(\sum X_1)(\sum Y)}{n} = 220690,68 - \frac{(3463,86)(3441,40)}{55} = 3953,807 \\ & \sum x_2 y = \sum X_2 y - \frac{(\sum X_2)(\sum Y)}{n} = 207440,66 - \frac{(3266,74)(3441,40)}{55} = 3037,764 \\ & \sum x_1 x_2 = \sum X_1 X_2 - \frac{(\sum X_1)(\sum X_2)}{n} \\ & \sum x_1 x_2 = 208691,61 - \frac{(3463,86)(3266,74)}{55} = 2954,705 \\ & b_1 = \frac{(\sum x_2^2)(\sum x_1 y) - (\sum x_1 x_2)(\sum x_2 y)}{(\sum x_1^2)(\sum x_2^2) - (\sum x_1 x_2)^2} \\ & b_1 = \frac{(3993,329)(3953,807) - (2954,705)(3037,764)}{(4616,647)(3993,329) - (2954,705)^2} = 0,702 \\ & b_2 = \frac{(\sum x_1^2)(\sum x_2 y) - (\sum x_1 x_2)(\sum x_1 y)}{(\sum x_1^2)(\sum x_2^2) - (\sum x_1 x_2)^2} \\ & b_2 = \frac{(4616,647)(3037,764) - (2954,705)(3953,807)}{(4616,647)(3993,807) - (2954,705)} \\ & b_2 = 0,241 \\ & \overline{X_1} = \frac{\sum X_1}{n} = \frac{3463,86}{55} = 62,98 \\ & \overline{X_2} = \frac{\sum X_2}{n} = \frac{3266,74}{55} = 59,40 \\ & \overline{Y} = \frac{\sum Y}{n} = \frac{3441,40}{55} = 62,57 \end{split}$$

$$a = \overline{Y} - b_1 \overline{X_1} - b_2 \overline{X_2}$$

$$a = 62,57 - (0,702)(62,98) - (0,241)(59,40)$$

$$a = 4,028$$

Sehingga diperoleh persamaan regresi ganda yaitu $\hat{Y} = 4,028 + 0,702X_1 + 0,241X_2$

Lampiran 41 Perhitungan Uji Keberartian Regresi Ganda

Uji Keberatian Regresi Ganda

Hipotesis:

 H_0 : Persamaan regresi ganda tidak berarti

 H_1 : Persamaan regresi ganda berarti

Untuk menguji keberartian koefisien menggunakan rumus sebagai berikut:

$$F = \frac{\frac{JK_{reg}}{k}}{\frac{JK_{res}}{(n-k-1)}}$$

Dengan,

$$JK_{Reg} = b_1 \sum x_1 y + b_2 \sum x_2 y$$
$$JK_{res} = \sum (Y - \hat{Y})^2$$

Tabel Penolong

No	Kode	X_1	X_2	Y	Ŷ	$(Y-\widehat{Y})$	$(Y - \widehat{Y})^2$
1	R1	65,22	61,46	72,41	64,642	7,768	60,340
2	R2	69,57	60,42	72,41	67,445	4,965	24,653
3	R3	57,61	61,46	68,97	59,300	9,670	93,510
4	R4	71,74	66,67	72,41	70,476	1,934	3,739
5	R5	63,04	67,71	65,52	64,620	0,900	0,810
6	R6	77,17	69,79	67,24	75,041	-7,801	60,854
7	R7	48,91	43,75	44,83	48,919	-4,089	16,722
8	R8	68,48	67,71	68,97	68,439	0,531	0,282
9	R9	56,52	46,88	62,07	55,017	7,053	49,750
10	R10	60,87	70,83	70,69	63,849	6,841	46,793

11	R11	65,22	45,83	60,34	60,871	-0,531	0,281
12	R12	68,48	67,71	60,34	68,439	-8,099	65,589
13	R13	69,57	57,29	62,07	66,690	-4,620	21,340
14	R14	51,09	62,5	65,52	54,974	10,546	111,219
15	R15	81,52	70,83	82,76	78,346	4,414	19,488
16	R16	45,65	60,42	44,83	50,653	-5,823	33,910
17	R17	65,22	69,79	72,41	66,652	5,758	33,153
18	R18	56,25	51,09	48,28	55,843	-7,563	57,198
19	R19	71,74	65,63	68,97	70,225	-1,255	1,576
20	R20	55,43	51,04	63,79	55,255	8,535	72,842
21	R21	48,91	51,04	53,45	50,678	2,772	7,682
22	R22	67,39	65,63	67,24	67,172	0,068	0,005
23	R23	47,83	58,33	48,28	51,679	-3,399	11,555
24	R24	65,22	59,38	70,69	64,140	6,550	42,900
25	R25	56,52	54,17	65,52	56,776	8,744	76,463
26	R26	59,78	57,29	63,79	59,817	3,973	15,784
27	R27	69,57	62,5	62,07	67,947	-5,877	34,536
28	R28	73,91	56,25	68,97	69,485	-0,515	0,265
29	R29	56,52	46,88	62,07	55,017	7,053	49,750
30	R30	58,7	53,13	63,79	58,055	5,735	32,889
31	R31	67,39	61,46	58,62	66,165	-7,545	56,933
32	R32	63,04	53,13	65,52	61,102	4,418	19,521
33	R33	60,87	52,08	62,07	59,325	2,745	7,535
34	R34	60,87	52,08	51,72	59,325	-7,605	57,837
35	R35	67,39	70,83	67,24	68,426	-1,186	1,408
36	R36	70,65	63,54	70,69	68,956	1,734	3,007
37	R37	46,74	51,04	44,83	49,155	-4,325	18,706
38	R38	57,61	50	50	56,535	-6,535	42,702
39	R39	64,13	57,29	53,45	62,871	-9,421	88,750
40	R40	58,7	59,38	63,79	59,563	4,227	17,866

41	R41	67,39	66,67	68,97	67,423	1,547	2,394
42	R42	43,48	46,88	41,38	45,863	-4,483	20,095
43	R43	91,3	82,29	87,93	87,976	-0,046	0,002
44	R44	58,7	52,08	56,9	57,802	-0,902	0,813
45	R45	55,43	57,29	46,55	56,763	-10,213	104,314
46	R46	58,7	50	51,72	57,300	-5,580	31,134
47	R47	59,78	63,54	53,45	61,325	-7,875	62,018
48	R48	65,22	68,75	65,52	66,401	-0,881	0,776
49	R49	60,87	57,29	62,07	60,582	1,488	2,213
50	R50	60,87	43,75	68,97	57,315	11,655	135,839
51	R51	66,3	62,5	63,79	65,651	-1,861	3,464
52	R52	61,96	58,33	53,45	61,598	-8,148	66,395
53	R53	70,65	66,67	63,79	69,711	-5,921	35,059
54	R54	81,52	78,13	86,21	80,107	6,103	37,247
55	R55	70,65	58,33	62,07	67,699	-5,629	31,681
						JK RES	1893,589

$$JK_{Reg} = b_1 \sum x_1 y + b_2 \sum x_2 y$$

$$JK_{Reg} = (0,702 \times 3953,807) + (0,241 \times 3037,764) = 3508,543$$

$$JK_{res} = \sum (Y - \hat{Y})^2 = 1893,589$$

$$F = \frac{\frac{JK_{reg}}{k}}{\frac{JK_{res}}{(n-k-1)}}$$

$$F = \frac{\frac{3508,543}{2}}{\frac{1893,589}{52}} = 48,174$$

Dari perhitungan diatas diperoleh nilai $F_{hitung} = 48,174$ kemudian dibandingkan dengan F_{tabel} taraf dignifikansi 5% dk pembilang = 2 dan dk penyebut = 52 didapat $F_{tabel} = 3,18$. Maka nilai $F_{hitung} > F_{tabel}$, sehingga dinyatakan terdapat pengaruh positif yang signifikan antara habits of mind dan self efficacy secara simultan terhadap kemampuan pemecahan masalah matematis.

Lampiran 42 Uji Koefisien Determinasi

Uji Koefisien Determinasi

Rumus yang digunakan sebagai berikut:

$$KP = (R_{X_1 X_2 Y})^2 \times 100\%$$

Dengan,

$$\begin{split} R_{(X_1,X_2)Y} &= \sqrt{\frac{b_1 \sum x_1 y + b_2 \sum x_2 y}{\sum y^2}} \\ R_{(X_1,X_2)Y} &= \sqrt{\frac{(0,702)(3953,807) + (0,241)(3037,764)}{5402,133}} = 0,806 \end{split}$$

sehingga didapat:

$$KP = \left(R_{X_1 X_2 Y}\right)^2 \times 100\%$$

$$KP = (0.806)^2 \times 100\% = 64.95\%$$

Berdasarkan perhitungan tersebut diperoleh koefisien determinasi = 64,95%, artinya persentasi pengaruh *habits of mind* dan *self efficacy* terhadap kemampuan pemecahan masalah matematis siswa sebesar 64,95%.

Lampiran 43 Perhitungan Interval Pengkategorian

No	Habits	Self	KPMM
1	65,22	61,46	72,41
2	69,57	60,42	72,41
3	57,61	61,46	68,97
4	71,74	66,67	72,41
5	63,04	67,71	65,52
6	77,17	69,79	67,24
7	48,91	43,75	44,83
8	68,48	67,71	68,97
9	56,52	46,88	62,07
10	60,87	70,83	70,69
11	65,22	45,83	60,34
12	68,48	67,71	60,34
13	69,57	57,29	62,07
14	51,09	62,5	65,52
15	81,52	70,83	82,76
16	45,65	60,42	44,83
17	65,22	69,79	72,41
18	56,25	51,09	48,28
19	71,74	65,63	68,97
20	55,43	51,04	63,79
21	48,91	51,04	53,45
22	67,39	65,63	67,24
23	47,83	58,33	48,28
24	65,22	59,38	70,69
25	56,52	54,17	65,52
26	59,78	57,29	63,79
27	69,57	62,5	62,07
28	73,91	56,25	68,97

20	F (F 2	46.00	(2.07
29	56,52	46,88	62,07
30	58,7	53,13	63,79
31	67,39	61,46	58,62
32	63,04	53,13	65,52
33	60,87	52,08	62,07
34	60,87	52,08	51,72
35	67,39	70,83	67,24
36	70,65	63,54	70,69
37	46,74	51,04	44,83
38	57,61	50	50
39	64,13	57,29	53,45
40	58,7	59,38	63,79
41	67,39	66,67	68,97
42	43,48	46,88	41,38
43	91,3	82,29	87,93
44	58,7	52,08	56,9
45	55,43	57,29	46,55
46	58,7	50	51,72
47	59,78	63,54	53,45
48	65,22	68,75	65,52
49	60,87	57,29	62,07
50	60,87	43,75	68,97
51	66,3	62,5	63,79
52	61,96	58,33	53,45
53	70,65	66,67	63,79
54	81,52	78,13	86,21
55	70,65	58,33	62,07
jumlah	3463,86	3266,74	3441,40
mean	62,98	59,40	62,57
stdev	9,25	8,60	10,00
	- ,= 3	-,	-,-0

Perhitungan interval pengkategorian habits of mind

Mean + SD =
$$62,98 + 9,25 \approx 72$$

Mean – SD =
$$62,98 - 9,25 \approx 54$$

Sehingga diperoleh,

Interval	Kriteria
Nilai ≥ 72	Tinggi
54 ≤ Nilai < 72	Sedang
Nilai < 54	Rendah

Perhitungan interval pengkategorian self efficacy

Mean + SD =
$$59,40 + 8,60 \approx 68$$

Mean – SD =
$$59,40 - 8,60 \approx 51$$

Sehingga diperoleh,

Interval	Kriteria
Nilai ≥ 68	Tinggi
51 ≤ Nilai < 68	Sedang
Nilai < 51	Rendah

Perhitungan interval pengkategorian Kemampuan Pemecahan Masalah Matematis

Mean + SD =
$$62,57 + 10,00 \approx 73$$

Mean – SD =
$$62,57 - 10,00 \approx 53$$

Sehingga diperoleh,

Interval	Kriteria
Nilai ≥ 73	Tinggi
53 ≤ Nilai < 73	Sedang
Nilai < 53	Rendah

Lampiran 44 Keterangan Validasi Laboratorium Matematika

Validasi Laboratorium Matematika

Jln. Prof. Dr. Hamka Kampus 2 (Gdg. Lab. MIPA Terpadu Lt.3) 🕿 7601295 Fax. 7615387 Semarang 50182

PENELITI : Syifa Nur Azizah NIM : 1808056089

PRODI : Pendidikan Matematika

JUDUL : PENGARUH HABITS OF MIND DAN SELF EFFICACY TERHADAP KEMAMPUAN PEMECAHAN MASALAH MATEMATIS SISWA KELAS VIII MTS NEGERI 05 CILACAP

HIPOTESIS:

- a. Hipotesis Korelasi:
 - ${
 m H_0}$: Tidak ada hubungan yang signifikan antara habits of mind dengan kemampuan pemecahan masalah.
 - H₁: Ada hubungan yang signifikan antara habits of mind dengan kemampuan pemecahan masalah.
 - H₀: Tidak ada hubungan yang signifikan antara self efficacy dengan kemampuan pemecahan masalah.
 - H₁: Ada hubungan yang signifikan antara self efficacy dengan kemampuan pemecahan masalah
 - H₀: Tidak ada hubungan yang signifikan antara habits of mind dan self efficacy dengan kemampuan pemecahan masalah.
 - H₁: Ada hubungan yang signifikan antara habits of mind dan self efficacy dengan kemampuan pemecahan masalah
- b. Hipotesis Model Regresi
 - Ho: Model regresi tidak signifikan
 - H1: Model regresi signifikan
- c. Hipotesis Koefisien Regresi
 - Ho: Koofisien regresi tidak signifikan
 - H₁: Koofisien regresi signifikan

HASIL DAN ANALISIS DATA

Descriptive Statistics

	Mean	Std. Deviation	N
Kemampuan Pemecahan Masalah	62.5709	10.00197	55
Habits of Mind	62.9793	9.24627	55
Self Efficacy	59.3953	8.59945	55

1

Jln. Prof. Dr. Hamka Kampus 2 (Gdg. Lab. MIPA Terpadu Lt.3) 🕿 7601295 Fax, 7615387 Semarang 50182

Correlations

	Correl	ations		
		Kemampuan Pemecahan Masalah	Habits of Mind	Self Efficacy
	Kemampuan Pemecahan Masalah	1.000	.792	.654
Pearson Correlation	Habits of Mind	.792	1.000	.688
	Self Efficacy	.654	.688	1.000
	Kemampuan Pemecahan Masalah	OF-	.000	.000
Sig. (1-tailed)	Habits of Mind	.000		.000
	Self Efficacy	.000	.000	
••*	Kemampuan Pemecahan Masalah	55	55	55
N	Habits of Mind	55	55	55
	Self Efficacy	55	55	55

Keterangan:

Sig. = 0.000 < 0.05, maka H_0 ditolak artinya terdapat hubungan yang signifikan antara habits of mind dengan kemampuan pemecahan masalah.

Sig. = 0.000 < 0.05, maka H_0 ditolak artinya terdapat hubungan yang signifikan antara self efficacy dengan kemampuan pemecahan masalah.

Model Summary

Model	R R Square		Adjusted R Square	Std. Error of the Estimate	
1	.806ª	.649	.636	6.03450	

a. Predictors: (Constant), Self Efficacy, Habits of Mind

Keterangan:

R=0.806 artinya hubungan antara habits of mind dan self efficacy dengan kemampuan pemecahan masalah **Kuat** karena $0.700 \le R \le 0.899$, dan kontribusi habits of mind dan self efficacy dalam mempengaruhi kemampuan pemecahan masalah sebesar 64.9% (R square).

Jln. Prof. Dr. Hamka Kampus 2 (Gdg. Lab. MIPA Terpadu Lt.3) 🕿 7601295 Fax. 7615387 Semarang 50182

ANOVA^a

Mode	el	Sum of Squares	df	Mean Square	F	Sig.
	Regression	3508.543	2	1754.272	48.174	.000b
1	Residual	1893.589	52	36.415		
	Total	5402.133	54		-	

- a. Dependent Variable: Kemampuan Pemecahan Masalah
- b. Predictors: (Constant), Self Efficacy, Habits of Mind

Keterangan:

Sig. = 0.000 < 0.05 maka H₀ ditolak,

artinya model regresi $Y = 4,028 + 0,702 X_1 + 0,241 X_2$ SIGNIFIKAN

Coefficients^a

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
	(Constant)	4.028	6.185		.651	.518
1	Habits of Mind	.702	.122	.649	5.735	.000
	Self Efficacy	.241	.132	.207	1.833	.072

a. Dependent Variable: Kemampuan Pemecahan Masalah

Keterangan

Persamaan Regresi adalah $Y = 4,028 + 0,702 X_1 + 0,241 X_2$

Uji koefisien varaibel (X_1) 0,702: Sig. = 0,000 < 0,05, maka H_0 ditolak, artinya koefisien variabel X_1 SIGNIFIKAN (dalam mempengaruhi variabel Y).

Uji koefisien varaibel (X_2) 0,241: Sig. = 0,072 > 0,05, maka H_0 diterima, artinya koefisien variabel X_2 **TIDAK SIGNIFIKAN** (dalam mempengaruhi variabel Y)

Uji konstanta (4,028): Sig. = 0.518 > 0.05, maka H_0 diterima, artinya konstanta **TIDAK SIGNIFIKAN** (dalam mempengaruhi variabel Y).

Semarang, 26 Desember 2022

Validator

Riska Ayu Ardani, M.Pd. 199307262019032020

Lampiran 45 Surat Permohonan Izin Riset

Surat Permohonan Izin Riset

KEMENTERIAN AGAMA REPUBLIK INDONESIA UNIVERSITAS ISLAM NEGERI WALISONGO SEMARANG

FAKULTAS SAINS DAN TEKNOLOGI Jl.Prof. Dr. Hamka Km. 1 Semarang Telp. 024 76433366 Semarang 50185

E-mail: fst@walisongo.ac.id. Web : Http://fst.walisongo.ac.id Semarang, 30 September 2022

Nomor B.6700/Un.10.8/K/SP.01.08/09/2022

Lamp : Proposal Skripsi Hal : Permohonan Izin Riset

Kepala Sekolah MTs Negeri 05 Cilacap

di tempat

Assalamu'alaikum Wr. Wb.

Diberitahukan dengan hormat dalam rangka penulisan skripsi Prodi Pendidikan Biologi pada Fakultas Sains dan Teknologi UIN Walisongo Semarang, bersama ini kami sampaikan saudara:

Nama : Syifa Nur Azizah NIM : 1808056089

Fakultas/Jurusan : Sains dan Teknologi/Pendidikan Matematika.

Judul Skripsi : Pengaruh Habits of Mind dan Self Efficacy terhadap Kemampuan

Pemecahan Matematis Siswa Kelas VIII MTs Negeri 05 Cilacap.

Dosen Pembimbing: 1. Dr. Hj. Minhayati Saleh, M.Sc

2. Sri Isnani Setyaningsih, M.Hum

Untuk melaksanakan riset di sekolah Bapak/Ibu pimpin yang akan dilaksanakan pada Bulan

Oktober 2022, maka kami mohon berkenan diijinkan mahasiswa dimaksud.

Demikian atas perhatian dan kerjasamanya disampaikan terima kasih.

Wassalamu'alaikum Wr. Wb.

MENTERIA A Dekan

Kharis, SH., MH IP.196910171994031002

1. Dekan Fakultas Sains dan Teknologi UIN Walisongo (sebagai laporan)

2. Arsip

Lampiran 46 Surat Keterangan Penelitian

Surat Keterangan Penelitian

SURAT KETERANGAN MELAKSANAKAN PENELITIAN

NOMOR: 809 /Mts.11.01.05/TL.00/10/2022

Yang bertanda tangan di bawah ini Kepala Madrasah Tsanawiyah Negeri 5 Cilacap menerangkan bahwa:

Nama

: Syifa Nur Azizah

: 1808056089

Tempat/Tanggal Lahir : Cilacap, 4 Juli 2000

Fakultas/Jurusan

: Sains dan Teknologi : Pendidikan Matematika

Jurusan Sekolah

: UIN Walisongo Semarang

Benar-benar melaksanakan penelitian di MTs Negeri 5 Cilacap pada Senin - Senin, 14 - 31 Oktober 2022.

Surat keterangan ini dibuat untuk kepentingan penyusunan Skripsi yang

"Pengaruh Habits of Mind dan Self Efficacy terhadap Kemampuan Pemecahan Matematis Siswa Kelas VIII MTs Negeri 05 Cilacap"

Demikian surat keterangan kami buat untuk dapat dipergunakan sebagaimana mestinya.

INTEGRITAS / PROFESIONALITAS / INOVASI / TANGGUNG JAWAB / KETELADANAN

Lampiran 47 Contoh Hasil Jawaban Uji Coba Hasil Jawaban Angket *Habits of Mind* Uji Coba

	We will be a second of the sec			_		
	njuk pengerjaan:					
3	Baca dan pahani setiap pernyatsan di bawah ini dengan te Setiap jawaban Anda adalah benar, sehingga jangan terpen langan ragu-ragu dalam memilih jawaban, karena hasil tidak mempengaruhi nilai Anda Berilah tanda (v) pada kolom di sebelah kanan pernyata dengan diri Anda- Adapun pilihan jawaban sebagai berikut STS = Sangat tidak sesuai ST = Tidak sesuai ST = Sangat sesuai SS = Sangat sesuai SS = Sangat sesuai	igaruh dari j ian ya	pengis	ian a	ngk	t
Pilih	lah jawaban yang sesuai dengan diri Anda!	1	9	-	1	
NO	PERNYATAAN	STS	TS	3	SS	
1	Saya tidak ingin mempelajari matematika secara lebih mendalam	315	13	3	33	A
2	Saya belajar matematika walaupun belum saatnya ulangan		1			2
3	Saya meluangkan waktu di rumah untuk belajar matematika	-		1		3
4	Saya tidak peduli dengan penjelasan matematika yang disampaikan	1				a
-	guru	4				
5	Saya aktif berdiskusi dengan teman saat belajar matematika Mencoba menyelesaikan dengan cara yang berbeda dengan contoh					- 37
.41	menepha menyeresaikan dengan cara yang berbeda dengan cantah	_		/		3
	vang diherikan guru		1	/		- 37
7	yang diberikan guru Ketika belajar saya tidak memeriksa kembali hasil pekerlaan yang saya peroleh		\ \	/		3
8	yang diberikan guru Ketika belajar saya tidak memeriksa kembali hasil pekerlaan yang saya peroleh Saya mencatat setiap penjelasan matematika yang disampaikan oleh guru agar dapat saya pelalari kembali dirumah		-	1		32
8	yang diberikan guri Ketika belajar saya tidak memeriksa kembali hasil pekeriaan yang saya peroleh Saya inencatat setiap penjelasan matematika yang disampaikan oleh guru agar dapat saya pelajari kembali dicumah Saya hanya mempelajari kembali materi pelajaran matematika yang telah diberikan oleh guru ketika ada olangan matematika		-			32 3
9	yang diberikan guru Ketika belajar saya tidak memeriksa kembali hasil pekerlaan yang saya peroleh Saya mencatat setiap penjelasan matematika yang disampaikan oleh guru agar dapat saya pelajari kembali dirumah Saya hanya mempelajari kembali materi pelajaran matematika yang telah diberikan oleh guru ketika ada ulangan matematika selalu mengereke ulang jawaban ketika mengerikakan soal matematika selalu mengereke ulang jawaban ketika mengerikakan soal matematika		~			32 3 3 3
8 9 10 11	yang diberikan guri Ketika belajar saya tidak memeriksa kembali hasil pekerlaan yang saya peroleh Saya mencatat setiap penjelasan matematika yang disampaikan oleh guru agar dapat saya pelajari kembali dicumah Saya hanya mempelajari kembali materi pelajaran matematika yang telah diberikan oleh guru ketika ada ulangan matematika Selalu mengecek ulang jawaban ketika mengerjakan soal matematika Saya tidak mengeriakan soal yang berbeda dengan contrib guru		~	1		32 3 3
9 10 11 12	yang diberikan guru Ketika belajar saya tidak memeriksa kembali hasil pekerjaan yang saya peroleh. Saya mencatat setiap penjelasan matematika yang disampalikan oleh guru agar dapat saya pelajari kembali dirumah. Saya hanya mempelajari kembali materi pelajaran matematika yang telah diberirikan oleh guru ketika ada ulangan matematika. Selalu mengecek ulang jawaban ketika mengerjakan soal matematika. Saya tidak mengerjakan soal yang berbeda dengan contoh guru Berusaha menemukan solojus yang berbeda dengan contoh guru Berusaha menemukan solojus yang berbeda dengan contoh guru pelarusah menemukan solojus yang berak perkika menghadan soal.		\ \	1		32 3 3 3 3 3 3 3 3 3
8 9 10 11 12	yang diberikan guri Ketika belajar saya tidak memeriksa kembali hasil pekeriaan yang saya peroleh Saya mencatat setiap penjelasan matematika yang disampatikan oleh guru agar dapat saya pelajari kembali dirumah Saya hanya mempelajari kembali materi pelajaran matematika yang telah diberikan oleh guru ketika ada ulangan matematika Selalu mengecek ulang jawabari ketika mengerjakan soal matematika Saya tidak mengerjakan soal yang berbada dengan contoh guru Berusaha menemukan solusi yang benar, ketika menghadapi soal matematika yang sulit.		\ \ \ \ \	1		32 3 3 3 3 3 3
8 9 10 11 12 13 14	yang diberikan guri Ketika belajar saya tidak memeriksa kembali hasil pekeriaan yang saya peroleh Saya mencatat setiap penjelasan matematika yang disampaikan oleh gura agar dapat saya pelajari kembali dirumah Saya hanya mempelajari kembali materi pelajaran matematika yang telah diberikan oleh guri ketika ada ulangan matematika Selalu mengecek ulang jawaban ketika mengerjakan soal matematika Seya tidak mengerjakan soal yang berbed dengan contoh guru Berusaha menemukan solusi yang benar, ketika menghadapi soal matematika yang sulit Saya menghindari soal yang mempunyai beragam cara penyelesajan Saya dapat meneraphan konsep matematika yang telah tiladakan seminan		\ \	1		32 3 3 3 3 3 3 3
8 9 10 11 12 13 14	yang diberikan guri Ketika belajar saya tidak memeriksa kembali hasil pekeriaan yang saya peroleh Saya mencatat setiap penjelasan matematika yang disampaikan oleh guru agar dapat saya pelajari kembali dirumah Saya hanya mempelajari kembali materi pelajaran matematika yang telah diberikan oleh guru ketika ada ulangan matematika Selalu mengecek ulang jawaban ketika mengerjakan soal matematika Saya tidak mengerjakan soal yang berbeda dengan contoh guru Berusaha menemukan solusi yang benar, ketika menghadapi soal matematika yang sulit Saya menghindari soal yang mempunyai beragam cara penyelesajan Saya dapat menerapkan konsep matematika yang telah dijelaskan guru dalam menyelesaikan soal matematika		\ \ \ \ \	1	<i>y</i>	32 3 3 3 3 3 3
8 9 10 11 12 13 14 15 15	yang diberikan guri Ketika belajar saya tidak memeriksa kembali hasil pekeriaan yang saya peroleh. Saya inencatat setiap penjelasan matematika yang disampaikan oleh guru agar dapat saya pelajari kembali direumah. Saya hanya mempelajari kembali materi pelajaran matematika yang telah diberikan oleh guru ketika da ulangan matematika selalu mengecek ulang jawaban ketika mengerjakan soal matematika. Saya tidak mengerjakan soal yang berbeda dengan contoh guru Berusah menemukan solusi yang benar, ketika menghadapi soal Berusaha menemukan solusi yang benar, ketika menghadapi soal Saya menghindari soal yang mempunyai beragam cara penyelesalan Saya dapat menerapkan konse matematika yang telah dijelaskan guru dalam menyelesalkan soal matematika ung kedenannya hasil helajar-saya menghedek kembali hasil ulangan agar kedenannya hasil helajar-saya mengekek kembali hasil ulangan agar kedenannya hasil helajar-		\ \ \ \ \	1	1	32 3 3 3 3 3 3
8 9 10 11 12 13 14 15 1	yang diberikan guri Ketika belajar saya tidak memeriksa kembali hasil pekeriaan yang saya peroleh Saya mencatat setiap penjelasan matematika yang disampaikan oleh guru agar dapat saya pelalari kembali dirumah Saya hanya mempelajari kembali dirumah Saya hanya mempelajari kembali materi pelajaran matematika yang telah diberikan oleh guru ketika ada ulangan matematika Selalu mengecek ulang jawaban ketika mengerjakan soal matematika Saya tidak mengerjakan soal yang berbeda dengan contoh guru Berusaha menemukan solusi yang benar, ketika menghadapi soal matematika yang sulit Saya menghindari soal yang mempunyai beragam cara penyelesaian saya matematika yang sulit Saya menghindari soal yang mempunyai beragam cara penyelesaian saya matematika yang telah dijelaskan guru dalam menyelesaikan soal mematika		\ \ \ \ \	1	1	32 3 3 3 3 3 3 3
8 9 10 11 12 13 14 15 16 15 16	yang diberikan guri Ketika belajar saya tidak memeriksa kembali hasil pekeriaan yang saya peroleh. Saya inencatat setiap penjelasan matematika yang disampaikan oleh guru agar dapat saya pelajari kembali direumah. Saya hanya mempelajari kembali materi pelajaran matematika yang telah diberikan oleh guru ketika da ulangan matematika selalu mengecek ulang jawaban ketika mengerjakan soal matematika. Saya tidak mengerjakan soal yang berbeda dengan contoh guru Berusah menemukan solusi yang benar, ketika menghadapi soal Berusaha menemukan solusi yang benar, ketika menghadapi soal Saya menghindari soal yang mempunyai beragam cara penyelesalan Saya dapat menerapkan konse matematika yang telah dijelaskan guru dalam menyelesalkan soal matematika ung kedenannya hasil helajar-saya menghedek kembali hasil ulangan agar kedenannya hasil helajar-saya mengekek kembali hasil ulangan agar kedenannya hasil helajar-	~	\ \ \ \ \	1	✓	32 3 3 3 3 3 3

18 Saya membuka catatan untuk mengingat pembelajaran matematika di sekolah 19 Saya mengumpulkan tugas matematika tanpa memeriksa terlebih dahulu 20 Mencoba latihan matematika untuk melihat penguasaan materi yang sudah dipelajari 21 Saya dapat menjawab pertanyaan matematika saat diskusi kelas maupun diskusi kelompok 22 Saya lebih memilih diam Ketika guru memita siswa mengerjakan soal di papan tulis, walaupun saya mengerahul langkah penyelesalan dari soal tersebut 23 Apabila guru memberikan tugas, saya mengerjakannya dengan menyalin tugas teman saya 24 Saya mau untuk mengerjakan soal di depan dan menjelaskan ke teman yang lain 25 Saya berusaha menjawab jika guru bertanya mengenai materi matematika kepada saya 26 Saya enggan mengerjakan soal latihan matematika dengan sesuatu di dalam kehidupan sehari-hari. 28 Saya mampu membuat model matematika dari soal berbentuk uralan dan soal cerita 29 Dari setiap kegiatan pembelajaran matematika, saya dapat menyimpulkan mengenai materi yang sedang disjarkan 30 Saya dapat menpenai materi yang sedang disjarkan 30 Saya dapat memperai materi yang sedang disjarkan 30 Saya dapat memperai materi yang sedang disjarkan	3 3 3 1 4 3
19 Saya mengumpulkan tugas matematika tanpa memeriksa terlebih dahulu	3 3 1 4
20 Mencoba latihan matematika untuk melihat penguasaan materi yang sudah dipelajari 21 Saya dapat menjawab pertanyaan matematika saat diskusi kelas maupun diskusi kelompok 22 Saya lebih memilih diam Ketika guru meminta siswa mengerjakan soal di papan tulis, walaupun saya mengetahui langkah penyelesaian dari soal tersebut 23 Apabila guru memberikan tugas, saya mengerjakannya dengan menyangian tugas teman saya 24 Saya mau untuk mengerjakan soal di depan dan menjelaskan ke teman yang lain 25 Saya berusaha menjawab jika guru bertanya mengenai materi matematika kepada saya 26 Saya enggan mengerjakan soal alitihan matematika 27 Saya angam engerjakan soal latihan matematika 27 Saya angam mengerjakan soal latihan matematika 28 Saya angam mengerjakan soal latihan matematika 29 Dari setiap kegiatan pembelajaran matematika, saya dapat menyimpulkan mengenai materi yang sedang diajarkan 30 Saya dapat mengeroleh pengetahuan deagan mengikuti kegiatan	3 3 1
23 Saya dapat menjawab pertanyaan matematika saat diskusi kelas maupun diskusi kelompok 22 Saya lebih memilih diam Ketika guru meminta siswa mengerjakan soal di papan tulis, walaupun saya mengetahui langkah penyelesaian dari soal tersebut 23 Apabila guru memberikan tugas, saya mengerjakannya dengan mengalin tugas teman saya 24 Saya mau untuk mengerjakan soal di depan dan menjelaskan ke teman yang lain 25 Saya berusaha menjawab jika guru bertanya mengenai materi matematika kepada saya 26 Saya engaan mengerjakan soal latihan matematika 27 Saya dapat menghubungkan materi pembelajaran matematika dengan sesuatu di dalam kehidupan sehari-hari. 28 Saya manpu membuat model matematika dari soal berbentuk uraian dan soal cerita 29 Dari setiap kegiatan pembelajaran matematika, saya dapat menyimpulkan mengenai materi yang sedang diajarkan 30 Saya dapat memperoleh pengetahuan dengan mengikuti kegiatan	3
23 Saya dapat menjawab pertanyaan matematika saat diskusi kelas manpun diskusi kelompok 24 Saya lebih memilih diam Ketika guru meminta siswa mengerjakan soal di papan tulis, walaupun saya mengetahui langkah penyelesaian dari soal tersebut 25 Apabila guru memberikan tugas, saya mengerjakannya dengan menyain tugas teman saya 26 Saya mau untuk mengerjakan soal di depan dan menjelaskan ke teman yang lain 25 Saya berusaha menjawab jika guru bertanya mengenai materi matematika kepada saya 26 Saya enggan mengerjakan soal latihan matematika 27 Saya dapat menghubungkan materi pembelajaran matematika dengan sesuatu di dalam kehidupan sebari-hari. 28 Saya mampu membuat model matematika dari soal berbentuk uralan dan soal cerita 29 Dari setiap kegiatan pembelajaran matematika, saya dapat menyimpulkan mengenai materi yang sedang disjarkan menyimpulkan mengenai materi yang sedang disjarkan 30 Saya dapat memperoleh pengetahuan dengan mengikuti kegiatan	1
22 Saya lebih memilih diam Ketika guru meminta siswa mengerjakan soal di papan tulis, walaupun saya mengetahui langkah penyelesaian dari soal tersebut 23 Apabila guru memberikan tugas, saya mengerjakannya dengan menyalin tugas teman saya 24 Saya mau untuk mengerjakan soal di depan dan menjelaskan ke teman yang lain 25 Saya berusaha menjawab jika guru bertanya mengenai materi matematika kepada saya 26 Saya enggan mengerjakan soal latihan matematika 27 Saya dapat menghubungkan materi pembelajaran matematika dengan sesuatu di dalam kehidupan sehari-hari 28 Saya mampu membuat model matematika dari soal berbentuk uralan dan soal cerita 29 Dari setiap kegiatan pembelajaran matematika, saya dapat menyimpulkan mengenai materi yang sedang disjarkan 30 Saya dapat memperoleh pengetahuan dengan mengikuti kegiatan	
23 Apabila guru memberikan tugas, saya mengerjakannya dengan menyalin tugas teman saya 24 Saya manu untuk mengerjakan soal di depan dan menjelaskan ke teman yang lain 25 Saya berusaha menjawab jika guru bertanya mengenai materi matematika kepada saya 26 Saya enggan mengerjakan soal latihan matematika 27 Saya dapat menghubungkan matern pembelajaran matematika dengan sesuatu di dalam kehidupan sehari-hari. 28 Saya mampu membuat model matematika dari soal berbentuk uraian dan soal cerita 29 Dari setiap kegiatan pembelajaran matematika, saya dapat menyimpulkan mengenai materi yang sedang diajarkan menyimpulkan mengenai materi yang sedang diajarkan saya dapat memperoleh pengetahuna dengan mengikuti kegiatan	
24 Saya mau untuk mengerjakan soal di depan dan menjelaskan ke teman yang lain 25 Saya berusaha menjawab jika guru bertanya mengenai materi matematika kepada saya 26 Saya dapat menghubungkan materi pembelajaran matematika dengan sengenjakan soal latihan matematika dengan sengenjakan soal latihan matematika dengan senatu di dalam kehidupan sehari-hari. 28 Saya mampu membuat model matematika dari soal berbentuk uraian dan soal cerita 29 Dari setiap kegiatan pembelajaran matematika, saya dapat menyimpuikan mengenai materi yang sedang diajarkan menyimpuikan mengenai materi yang sedang diajarkan dapat memperoleh pengetahun dengan mengikuti kegiatan	3
25 Saya berusaha menjawab jika guru bertanya mengenai materi matematika kepada saya Saya enggan mengerjakan soal latihan matematika 27 Saya dapat menghubungkan materi pembelajaran matematika dengan sesuatu di dalam kehidupan sehari-hari. 28 Saya mampu membuat model matematika dari soal berbentuk uralan dan soal cerita egiatan pembelajaran matematika, saya dapat menyimpuikan mengenai materi yang sedang diajarkan menyimpuikan mengenai materi yang sedang diajarkan 30 Saya dapat memperoleh pengetahuna dengan mengikuti kegiatan	
Saya enggan mengerjakan soal latihan matematika Saya enggan mengerjakan soal latihan matematika dengan sesuatu di dalam kehidupan sehari-hari	3
Saya dapat menghubungkan materi pembelajaran matematika dengan sesuatu di dalam kehidupan sehari-hari. Saya mampu membuat model matematika dari soal berbentuk uralan dan soal cerita. Dari setiap kegiatan pembelajaran matematika, saya dapat menyimpuikan mengenai materi yang sedang disjarkan. Saya dapat memperoleh pengetahuan dengan mengikuti kegiatan.	14
28 Saya mampu membuat model matematika dari soal berbentuk uralan dan soal cerita 29 Dari setiap kegiatan pembelajaran matematika, saya dapat menyimpulkan mengenai materi yang sedang disjarkan 30 Saya dapat memperoleh pengetahuan dengan mengikuti kegiatan	2.
29 Dari setiap kegiatan pembelajaran matematika, saya dapat menyimpulkan mengenai materi yang sedang disjarkan 30 Saya dapat memperoleh pengetahuan dengan mengikuti kegiatan	3
30 Saya dapat memperoleh pengetahuan dengan mengikuti kegiatan	1
решуевара ан пысстыка	
	,

Hasil Jawaban Angket Self Efficacy Uji Coba

ANGKET SELF EFFICACY

: Winds Mur khoerunisa

: VIII & (8A) Kelas : 31 No. Absen : 80 Menit Waktu

Petunjuk pengerjaan:

 Baca dan pahami setiap pernyataan di bawah ini dengan teliti.
 Setiap jawaban Anda adalah benar, sehingga jangan terpengaruh jawaban teman.
 Jangan ragu-ragu dalam memilih jawaban, karena hasil dari pengisian angket tidak mempengaruhi nilai Anda

4. Berilah tanda (v) pada kolom di sebelah kanan pernyataan yang paling sesuai dengan diri Anda, Adapun pilihan jawaban sebagai berikut:

STS = Sangat tidak sesuai TS = Tidak sesuai

S = Sesuai

SS = Sangat sesuai

Pilihlah jawaban yang sesuai dengan diri Anda!

NO	PERNYATAAN	STS	TS	S	SS
1	Saya dapat menemukan alternatif penyelesaian soal matematika saat menjumpai kebuntuan		/		
2	Saya menunggu jawaban dari teman ketika kesulitan dalam		/	- 4	
3	Saya menghindari atau tidak mengerjakan tugas matematika yang		1		
4	Saya danat mengatasi kesulitan belajar matematika sendiri	~			
5	Saya memiliki cara untuk menyelesaikan setiap soal matematika yang diberikan		1		
6	Sava merasa tenang ketika menghadapi ulangan matematika	V			
7	Saya merasa khawatir akan gagal dalam menyelesaikan tugas matematika		1		
8	Saya ragu dapat mempelajari materi matematika secara mandiri			Y	
9	Saya yakin akan berhasil dalam ujian matematika yang akan datang			~	
10	Saya yakin dapat menyelesaikan tugas matematika yang diberikan dengan baik			1	
11	Berani menghadapi kritikan atas tugas matematika yang telah saya kerjakan			1	
12	Saya berani mencoba menyelesaikan soal matematika dengan cara yang berbeda dari contoh yang diberikan oleh guru		/		
13	Saya bersedia ditunjuk sebagai ketua kelompok dalam pembelajaran matematika			1	
14	Menghindar dari soal latihan yang berbeda dengan contoh yang diberikan guru		1		
15	Saya takut untuk mengikuti seleksi siswa berprestasi antar sekolah				V
16	Saya menyadari kesalahan dalam mengerjakan ulangan matematika yang telah lalu			1	

17	Mengetahui materi matematika yang perlu dipelajari ulang			/	
18	Mengetanui maenilih materi mana yang akan ditanyakan kepada guru Yakin akan memperoleh nilai terbaik dalam ulangan matematika yang			1	
19	akan datang	~			
20	Moraga ragu dapat menuntaskan tugas matematika yang berat				V
21	Merasa nyaman berdiskusi tentang dengan teman siapapun itu saat		1		
22	pembelajaran matematika Merasa ragu-ragu menyampaikan hasil diskusi saat mewakili				H
	kelompok matematika		/		
23	Saya merasa sulit mencari teman untuk diminta bantuan mengatasi kesulitan dalam belajar matematika	1			V
24	Berani mengemukakan pendapat dalam forum diskusi matematika		1		
25	Saya merasa senang menjelaskan penyelesaian soal matematika ketika			1	
26	ada teman yang bertanya Ketika ada teman yang bertanya tentang matematika kepada guru saya				
	ikut memikirkan jawabannya			/	
27	Saya mudah lelah ketika mempelajari matematika dalam waktu yang lama		1		
28	Saya mudah menyerah saat menghadapi soal matematika yang sulit				1
	dan rumit				~
29	Ketika ada pekerjaan matematika yang kurang sempurna saya mencoba untuk memperbaiki			1	
30				1	

Hasil Jawaban Tes Kemampuan Pemecahan Masalah Matematis Uji Coba

Nama Windi Nur Khoerunisa	
Kelas VIII A (OA)	
Noabsen 31	
- Industrial St	
1. a.) Diketahui :	
U1 = 1 U4 = 10 2	
U1 = 3 U5 = 15	
Ux = 6 46 = 21	
Ditanya:	
Rumus suku ke-n	
Jawab:	
Pola tersebut termasuk pola segitiga	
un=1 n(n+1) 2	(18)
2	
U15 = 1 13 (13+1)	
2 4	
U13 = 1 13. W7	
2	
U13 = 91	
Jadi. Pola bilangun ke 13 adalah 91, 2	
B.) Diketahui:	
U1 = 1 Uu = 10	
Uz = 3 Us = 15	
U3 = 6 U6 = 21	
Ditanya:	
Banyal-nya kelereng pada suku ke-25	
Jawab:	
Pola tersebut termasuk pola segitiga	
911 = - 11 (11+1) 2	
2	
U25 = 1 25 (25 +1)	

```
425 = 1 25.26 13
   425 = 325
   Jadi, banyaknya kelereng pada suku ke-25 adalah 325/ 2
2. Diketahui =
    9: 2.000.000,00
   Un : 6
   b: 500.000,00
    Ditanya:
   Gaji pak Doni pada saat 6 tahun bekerja
    Jawab =
    Dengan cara barisan aritmatika
   Un = a + (n-1) b 2
    U6 = 2.000.000,00 + (6-1) 500.000,00
    46 = 2.000.000,00 + 5. 500.000,00
    46 = 2.000.000,00 + 2.500.000,00
    Ub = Rp. 4.500.000,00
    Jadi, gaji pak Doni Selama 6 tahun beterja odalah Pp. 4.500.000,002
3 - Diketahui :
    9:8
    b:4 (12-8) 2
    Un : 10
    Ditanya :
    Jumlah seluruh kursi sampail baris ke-10
    Tawab :
     Dengan cara deret aritmatika
   * Un = a + (n-1) b a
    410 = 8+ (10-1)4
    U10 = 8+9.4
```

```
410 = 8 + 36
  410 = 44 11
 * Sn = \frac{\pi}{2} (a + Un) 2
                                  (10)
   510 = 10 (8+44)
  510 = 5.52
   510 = 260 //
   Jadi, Jumlah seluruh kursi pada baris ke-10 adalah 260/1 2
4. Diketahui :
   Suker ke-20 = 125
   Suku ke - 30 = 185
   Ditanya:
   Menetukan suku ke-zs dari barisan tersebut
   Jawab:
   U20 → Un = a + (n-1) b 2 430 → 430 = (125 + 19b) + (n-1) b
                                 430= (125+19b)+(30-) b
         420 = 9+ (20-1)b
                                     185 = 175 + 19b + 30b - b
          125 = a + 19 b
           a = 125 + 19b
                                     185 = 125 + 10 b
                                     10b = 105 - 125
                                     10b = 60
                                     b = 60/10
           a = 125 + 19b
                                     b = 6/1 (10)
            0=125 +19.6
            9 = 125 + 114
            a = 11/1
    Maka
                               425 = 155/1
Jadi, suku ke-25 dari barisan
   Un = a + (n-1) b &
   425 = 11 + (25-1)6
                               174 adalah 155 z
   425= 11+ 24.6
   425 = 11 + 144
```

Diketahui =	
Q = 10	
b = 2 2	
] u _n = 9	
Ditanya =	
Berapa banyaknya bakteri sekelah 9 ja	ım
Jawab:	(E)
Dengan cara barisan geometri	
Un = a.r n-1 2	
Uq = 10.29-1	
11 11 78	a productive
Ug = 10.256	
ug = 2.560	
	The state of the s

Lampiran 48 Contoh Hasil Jawaban Hasil Jawaban Angket *Habits of Mind*

Nar Kel	WIND SOUNDING					
No.	Absen ; 29					
Wa	ktu 3					_
Pet	unjuk pengerjaan:					
3.	Baca dan pahami setiap pernyataan di bawah ini dengan teliti. Setiap jawaban Anda adalah benar, sehingga jangan terpengaruh Jangan ragu-ragu dalam memilih jawaban, karena hasil dar mempengaruhi nilai Anda Berilah tanda (4) pada kolom di sebelah kanan pernyataan yang Anda. Adapun pilihan jawaban sebagai berikut: STS = Sangat tidak sesuai	i pen	gisia	ang	gket tic	
	TS = Tidak sesuai S = Sesuai SS = Sangat sesuai					
Pili	hlah jawaban yang sesuai dengan diri Anda!					
NO	PERNYATAAN Saya tidak ingin mempelajari matematika secara lebih mendalam	STS	TS	5	SS	q
2	Saya belajar matematika walaupun belum saatnya ulangan				V	4
3	Saya meluangkan waktu di rumah untuk belajar matematika	. /	V			A
4	Saya tidak peduli dengan penjelasan matematika yang disampaikan guru Saya aktif berdiskusi dengan teman saat belajar matematika	~	-	V		
6	Ketika belajar saya tidak memeriksa kembali hasil pekerjaan yang saya		V			
7	peroleh Saya hanya mempelajari kembali materi pelajaran matematika yang telah diberikan oleh guru ketika ada ulangan matematika		V			
8	Selalu mengecek ulang jawaban ketika mengerjakan soal matematika	-		1	V	9
9	Saya menghindari soal yang mempunyai beragam cara penyelesalan Saya dapat menerapkan konsep matematika yang telah dijelaskan guru dalam menyelesalkan soal matematika	~			-V	7
11	Saya mengecek kembali hasil ulangan agar kedepannya hasil belajar semakin baik Saya acuh terhadap nilai matematika yang diperoleh	V	-		V	
13	Saya tidak mempelajari ulang materi matematika yang telah dipelajari di	V				4
14	Saya membuka catatan untuk mengingat pembelajaran matematika di sekolah Saya mengumpulkan tugas matematika tanpa memeriksa terlebih dahulu		V	-	V	43
16	Mencoba latihan matematika untuk melihat penguasaan materi yang				V	
17	Saya dapat menjawab pertanyaan matematika saat diskusi kelas maupun diskusi kelompok Apabila guru memberikan tugas, saya mengerjakannya dengan menyalir		-		V	-
19	tugas teman saya Saya mau untuk mengerjakan soal di depan dan menjelaskan ke temat	V	-		V	1
20	yang lain Saya berusaha menjawab jika guru bertanya mengenal mater matematika kepada saya				V	1
21	Saya mampu membuat model matematika dari soal berbentuk uralan da soal cerita			1	/	
22	Dari setiap kegiatan pembelajaran matematika, saya dapi menyimpulkan mengenai materi yang sedang diajarkan Saya dapat memperoleh pengetahuan dengan mengikuti kegiata			1	1	7
23	pembelajaran matematika	1				
Vila	$= \frac{skor\ yang\ diperoleh}{jumlah\ skor\ maksimal} \times 100$					

Hasil Jawaban Angket Self Efficacy

ANGKET SELF EFFICACY

: Ridho sugmono Nama

: VIII E Kelas

No. Absen : 24

Waktu

Petunjuk pengerjaan:

- 1. Baca dan pahami setiap pernyataan di bawah ini dengan teliti.
- 2. Setiap jawaban Anda adalah benar, sehingga jangan terpengaruh jawaban teman.
- 3. Jangan ragu-ragu dalam memilih jawaban, karena hasil dari pengisian angket tidak mempengaruhi nilai Anda
- 4. Berilah tanda $(\sqrt{\ })$ pada kolom di sebelah kanan pernyataan yang paling sesuai dengan diri Anda. Adapun pilihan jawaban sebagai berikut:
 - STS = Sangat tidak sesuai
 - TS = Tidak sesuai
 - S = Sesuai
 - SS = Sangat sesuai

Pilihlah jawaban yang sesuai dengan diri Anda!

NO	PERNYATAAN	STS	TS	S	SS
1	Saya dapat menemukan alternatif penyelesaian soal matematika saat menjumpai kebuntuan			V	
2	menjumpa kecuntuan Saya menunggu jawaban dari teman ketika kesulitan dalam mengerjakan soal matematika	V			
3	Saya menghindari atau tidak mengerjakan tugas matematika yang kurang dipahami		V		
4	Saya dapat mengatasi kesulitan belajar matematika sendiri		0		-
5	Saya memiliki cara untuk menyelesaikan setiap soal matematika yang diberikan				V
6	Saya merasa tenang ketika menghadapi ulangan matematika			V	~
7	Saya ragu dapat mempelajari materi matematika secara mandiri			V	-
В	Saya yakin akan berhasil dalam ujian matematika yang akan datang			V	
9	Saya yakin dapat menyelesaikan tugas matematika yang diberikan dengan baik			V	
10	Berani menghadapi kritikan atas tugas matematika yang telah saya keriakan				V
11	Saya berani mencoba menyelesaikan soal matematika dengan cara yang berbeda dari contoh yang diberikan oleh guru				V
12	Saya bersedia ditunjuk sebagai ketua kelompok dalam pembelajaran matematika		V		
13	Menghindar dari soal latihan yang berbeda dengan contoh yang diberikan guru	V			
14	Saya takut untuk mengikuti seleksi siswa berprestasi antar sekolah	~	-	-	. /
15	Managtahui materi matematika yang perlu dipelajari ulang		V	-	V
16	Discussion exact memilib materi mana yang akan ditanyakan kepada guru		V	-	
17	Yakin akan memperoleh nilai terbaik dalam ulangan matematika yang		V	V	
18	Merasa ragu dapat menuntaskan tugas matematika yang berat	-	V	-	-
19	Merasa ragu-ragu menyampaikan hasil diskusi saat mewakili kelompok matematika			V	
20	Berani mengemukakan pendapat dalam forum diskusi matematika		-	V	
21	Saya merasa senang menjelaskan penyelesaian soai matematika ketika				V
22	lama	V			
23	rumit	-	V		
24	Saya berusaha mencari cara lain ketika menjumpai kesulitan dalam mengerjakan matematika				V

Hasil Jawaban Tes Kemampuan Pemecahan Masalah Matematis

No.:	Date:
moma: Ridho sogiharto	
Kelas: VIII E	
NO Absen: 24	The first the state of the stat
1.a. n=2 n(n+1) 2	
13=41.13(13+1)	
===1.13(1/4)	V MODING
Jiveta	hui sunu ne 13 adalah 20
= 13×7	M. M.
=91	(14)
b. n= 2.0 (n+1) 2	
N25= 12 - 25 (25+1)	
= 172 (26)	wi sulu ke 25 adalah:32
7. Es Cool = Jinetan	in some he 25 adalah:32
= 25 × 13	
= 325	
2. divetahui	C ()
U1 = 2.000.000	
b=600.000 2	
0=6	
ditonga = U6?	
jawal	
U600=2.000.000 + (6-1),500.0	000
= 2-000-000+(5).500-000	4 VE RI TAS
= 2-000-000 + 2500-000 = 4.	500-000
divetami Gasi Pau Doni si	eloma 6th = 4.500.000

No.:	Date:
1	divetahui
	11- a h= 1/2-1/1
	1/2 100 = 12 = 12 0 (10) Idian
	diverani boris ne 10 a dalah = 200 26
	Sawat
	5n= 2 (atun) 2 U10=8+ (10-1).4
	SID=15 (8+99) = 8+(9)-4
	= 8+36=44
	= (0C50) = 202122
	2 20 21 22
	= \$520
	= 280 260
-	diuctanvi
	Wa= \$ U20= at(n-1).b=125
	= af (20-1).6=125
	= at 196 = 125
	U30= a+ (n-1).6=18185
	: 0+(20-1)-6=185
	: at 230-1).6=185 at 296=185
	ditaly som & difanga sum ners?
	Cliniqusi
	at 196=1125 K
	at 196=1125 at 296=185 At 296=185
	0-106=-60 at 29.6=185
CONT	6=-66 =6 a+ 179=185
CHAT	Stay positive and be Happy Q= 185-179

	Date: 120
11 + (25-1) · 6 2 = 11 + (25-1) · 6 2 = 11 + (25-1) · 6 2 = 11 + (24-1) · 6 4 = 11 + (44-15-5) 5. Dikerahvi V1 = 10 (=2 2 0=9 Jitanya Ug? Un= a(a-1) Ug= 10.28 = 10.128 = [.180	divetativi suuv ve 25 adalah=1575 5 divetativi bantar nta bautarisetelaha jon adalah=1,280

Lampiran 49 Dokumentasi Penelitian

Dokumentasi

(Kelas Uji Coba Penelitian)

(Kelas Sampel Penelitian)

(Pra Penelitian)

Lampiran 50 Tabel F

Tabel F

itik Persentase Distribusi F untuk Probabilita = 0,05

df untuk penyebut						-	df untul	pembil	ang (N1)						
(N2)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1
1	161	199	216	225	230	234	237	239	241	242	243	244	245	245	24
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.40	19.41	19.42	19.42	19.4
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.76	8.74	8.73	8.71	8.7
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.94	5.91	5.89	5.87	5.8
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.70	4.68	4.66	4.64	4.6
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.03	4.00	3.98	3.96	3.9
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.60	3.57	3.55	3.53	3.5
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.31	3.28	3.26	3.24	3.3
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.10	3.07	3.05	3.03	3.0
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.94	2.91	2.89	2.86	2.1
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.82	2.79	2.76	2.74	2.
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.72	2.69	2.66	2.64	2.6
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.63	2.60	2.58	2.55	2.5
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.57	2.53	2.51	2.48	2.4
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.51	2.48	2.45	2.42	2.4
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.46	2.42	2.40	2.37	2.
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.41	2.38	2.35	2.33	2.
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.37	2.34	2.31	2.29	2.
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.34	2.31	2.28	2.26	2.
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.31	2.28	2.25	2.22	2.
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.28	2.25	2.22	2.20	2.
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.26	2.23	2.20	2.17	2.
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.24	2.20	2.18	2.15	2.
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.22	2.18	2.15	2.13	2.
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.20	2.16	2.14	2.11	2.
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.18	2.15	2.12	2.09	2.
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.17	2.13	2.10	2.08	2.
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.15	2.12	2.09	2.06	2.
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.14	2.10	2.08	2.05	2.
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.13	2.09	2.06	2.04	2.
31	4.16	3.30	2.91	2.68	2.52	2.41	2.32	2.25	2.20	2.15	2.11	2.08	2.05	2.03	2.
32	4.15	3.29	2.90	2.67	2.51	2.40	2.31	2.24	2.19	2.14	2.10	2.07	2.04	2.01	1.
33	4.14	3.28	2.89	2.66	2.50	2.39	2.30	2.23	2.18	2.13	2.09	2.06	2.03	2.00	1.
34	4.13	3.28	2.88	2.65	2.49	2.38	2.29	2.23	2.17	2.12	2.08	2.05	2.02	1.99	1.
35	4.12	3.27	2.87	2.64	2.49	2.37	2.29	2.22	2.16	2.11	2.07	2.04	2.01	1.99	1.
36	4.11	3.26	2.87	2.63	2.48	2.36	2.28	2.21	2.15	2.11	2.07	2.03	2.00	1.98	1.
37	4.11	3.25	2.86	2.63	2.47	2.36	2.27	2.20	2.14	2.10	2.06	2.02	2.00	1.97	1.
38	4.10	3.24	2.85	2.62	2.46	2.35	2.26	2.19	2.14	2.09	2.05	2.02	1.99	1.96	1.
39	4.09	3.24	2.85	2.61	2.46	2.34	2.26	2.19	2.13	2.08	2.04	2.01	1.98	1.95	1.3
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.04	2.00	1.97	1.95	1.3
41	4.08	3.23	2.83	2.60	2.44	2.33	2.24	2.17	2.12	2.07	2.03	2.00	1.97	1.94	1.
42	4.07	3.22	2.83	2.59	2.44	2.32	2.24	2.17	2.11	2.06	2.03	1.99	1.96	1.94	1.
43	4.07	3.21	2.82	2.59	2.43	2.32	2.23	2.16	2.11	2.06	2.02	1.99	1.96	1.93	1.9
44	4.06	3.21	2.82	2.58	2.43	2.31	2.23	2.16	2.10	2.05	2.01	1.98	1.95	1.92	1.5
45	4.06	3.20	2.81	2.58	2.42	2.31	2.22	2.15	2.10	2.05	2.01	1.97	1,94	1.92	1.

Titik Persentase Distribusi F untuk Probabilita = 0,05

df untuk		df untuk pembilang (N1)													
penyebut (N2)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
46	4.05	3.20	2.81	2.57	2.42	2.30	2.22	2.15	2.09	2.04	2.00	1.97	1.94	1.91	1.89
47	4.05	3.20	2.80	2.57	2.41	2.30	2.21	2.14	2.09	2.04	2.00	1.96	1.93	1.91	1.88
48	4.04	3.19	2.80	2.57	2.41	2.29	2.21	2.14	2.08	2.03	1.99	1.96	1.93	1.90	1.88
49	4.04	3.19	2.79	2.56	2.40	2.29	2.20	2.13	2.08	2.03	1.99	1.96	1.93	1.90	1.88
50	4.03	3.18	2.79	2.56	2.40	2.29	2.20	2.13	2.07	2.03	1.99	1.95	1.92	1.89	1.87
51	4.03	3.18	2.79	2.55	2.40	2.28	2.20	2.13	2.07	2.02	1.98	1.95	1.92	1.89	1.87
52	4.03	3.18	2.78	2.55	2.39	2.28	2.19	2.12	2.07	2.02	1.98	1.94	1.91	1.89	1.86
53	4.02	3.17	2.78	2.55	2.39	2.28	2.19	2.12	2.06	2.01	1.97	1.94	1.91	1.88	1.86
54	4.02	3.17	2.78	2.54	2.39	2.27	2.18	2.12	2.06	2.01	1.97	1.94	1.91	1.88	1.86
55	4.02	3.16	2.77	2.54	2.38	2.27	2.18	2.11	2.06	2.01	1.97	1.93	1.90	1.88	1.85
56	4.01	3.16	2.77	2.54	2.38	2.27	2.18	2.11	2.05	2.00	1.96	1.93	1.90	1.87	1.85
57	4.01	3.16	2.77	2.53	2.38	2.26	2.18	2.11	2.05	2.00	1.96	1.93	1.90	1.87	1.85
58	4.01	3.16	2.76	2.53	2.37	2.26	2.17	2.10	2.05	2.00	1.96	1.92	1.89	1.87	1.84
59	4.00	3.15	2.76	2.53	2.37	2.26	2.17	2.10	2.04	2.00	1.96	1.92	1.89	1.86	1.84
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.95	1.92	1.89	1.86	1.84
61	4.00	3.15	2.76	2.52	2.37	2.25	2.16	2.09	2.04	1.99	1.95	1.91	1.88	1.86	1.83
62	4.00	3.15	2.75	2.52	2.36	2.25	2.16	2.09	2.03	1.99	1.95	1.91	1.88	1.85	1.83
63	3.99	3.14	2.75	2.52	2.36	2.25	2.16	2.09	2.03	1.98	1.94	1.91	1.88	1.85	1.83
64	3.99	3.14	2.75	2.52	2.36	2.24	2.16	2.09	2.03	1.98	1.94	1.91	1.88	1.85	1.83
65	3.99	3.14	2.75	2.51	2.36	2.24	2.15	2.08	2.03	1.98	1.94	1.90	1.87	1.85	1.82
66	3.99	3.14	2.74	2.51	2.35	2.24	2.15	2.08	2.03	1.98	1.94	1.90	1.87	1.84	1.82
67	3.98	3.13	2.74	2.51	2.35	2.24	2.15	2.08	2.02	1.98	1.93	1.90	1.87	1.84	1.82
68	3.98	3.13	2.74	2.51	2.35	2.24	2.15	2.08	2.02	1.97	1.93	1.90	1.87	1.84	1.82
69	3.98	3.13	2.74	2.50	2.35	2.23	2.15	2.08	2.02	1.97	1.93	1.90	1.86	1.84	1.81
70	3.98	3.13	2.74	2.50	2.35	2.23	2.14	2.07	2.02	1.97	1.93	1.89	1.86	1.84	1.81
71	3.98	3.13	2.73	2.50	2.34	2.23	2.14	2.07	2.01	1.97	1.93	1.89	1.86	1.83	1.81
72	3.97	3.12	2.73	2.50	2.34	2.23	2.14	2.07	2.01	1.96	1.92	1.89	1.86	1.83	1.81
73 74	3.97	3.12	2.73	2.50	2.34	2.23	2.14	2.07	2.01	1.96	1.92	1.89	1.86	1.83	1.81
75	3.97	3.12	2.73	2.49	2.34	2.22	2.14	2.07	2.01	1.96	1.92	1.88	1.85	1.83	0.00000000
76	3.97	3.12	2.72	2.49	2.34	2.22	2.13	2.06	2.01	1.96	1.92	1.88	1.85	1.82	1.80
77	3.97	3.12	2.72	2.49	2.33	2.22	2.13	2.06	2.00	1.96	1.92	1.88	1.85	1.82	1.80
78	3.96	3.11	2.72	2.49	2.33	2.22	2.13	2.06	2.00	1.95	1.91	1.88	1.85	1.82	1.80
79	3.96	3.11	2.72	2.49	2.33	2.22	2.13	2.06	2.00	1.95	1.91	1.88	1.85	1.82	1.79
80	3.96	3.11	2.72	2.49	2.33	2.21	2.13	2.06	2.00	1.95	1.91	1.88	1.84	1.82	1.79
81	3.96	3.11	2.72	2.48	2.33	2.21	2.12	2.05	2.00	1.95	1.91	1.87	1.84	1.82	1.79
82	3.96	3.11	2.72	2.48	2.33	2.21	2.12	2.05	2.00	1.95	1.91	1.87	1.84	1.81	1.79
83	3.96	3.11	2.71	2.48	2.32	2.21	2.12	2.05	1.99	1.95	1.91	1.87	1.84	1.81	1.79
84	3.95	3.11	2.71	2.48	2.32	2.21	2.12	2.05	1.99	1.95	1.90	1.87	1.84	1.81	1.79
85	3.95	3.10	2.71	2.48	2.32	2.21	2.12	2.05	1.99	1.94	1.90	1.87	1.84	1.81	1.79
86	3.95	3.10	2.71	2.48	2.32	2.21	2.12	2.05	1.99	1.94	1.90	1.87	1.84	1.81	1.78
87	3.95	3.10	2.71	2.48	2.32	2.20	2.12	2.05	1.99	1.94	1.90	1.87	1.83	1.81	1.78
88	3.95	3.10	2.71	2.48	2.32	2.20	2.12	2.05	1.99	1.94	1.90	1.86	1.83	1.81	1.78
89	3.95	3.10	2.71	2.47	2.32	2.20	2.11	2.04	1.99	1.94	1.90	1.86	1.83	1.80	1.78
90	3.95	3.10	2.71	2.47	2.32	2.20	2.11	2.04	1.99	1.94	1.90	1.86	1.83	1.80	1.78

Lampiran 51 Tabel t

Tabel t

Titik Persentase Distribusi t (df = 1 - 40)

Pr	0.25	0.10	0.05	0.025	0.01	0.005	0.001
df	0.50	0.20	0.10	0.050	0.02	0.010	0.002
1	1.00000	3.07768	6.31375	12.70620	31.82052	63.65674	318.30884
2	0.81650	1.88562	2.91999	4.30265	6.96456	9.92484	22.32712
3	0.76489	1.63774	2.35336	3.18245	4.54070	5.84091	10.21453
4	0.74070	1.53321	2.13185	2.77645	3.74695	4.60409	7.17318
5	0.72669	1.47588	2.01505	2.57058	3.36493	4.03214	5.89343
6	0.71756	1.43976	1.94318	2.44691	3.14267	3.70743	5.20763
7	0.71114	1.41492	1.89458	2.36462	2.99795	3.49948	4.78529
8	0.70639	1.39682	1.85955	2.30600	2.89646	3.35539	4.50079
9	0.70272	1.38303	1.83311	2.26216	2.82144	3.24984	4.29681
10	0.69981	1.37218	1.81246	2.22814	2.76377	3.16927	4.14370
11	0.69745	1.36343	1.79588	2.20099	2.71808	3.10581	4.02470
12	0.69548	1.35622	1.78229	2.17881	2.68100	3.05454	3.92963
13	0.69383	1.35017	1.77093	2.16037	2.65031	3.01228	3.85198
14	0.69242	1.34503	1.76131	2.14479	2.62449	2.97684	3.78739
15	0.69120	1.34061	1.75305	2.13145	2.60248	2.94671	3.73283
16	0.69013	1.33676	1.74588	2.11991	2.58349	2.92078	3.68615
17	0.68920	1.33338	1.73961	2.10982	2.56693	2.89823	3.64577
18	0.68836	1.33039	1.73406	2.10092	2.55238	2.87844	3.61048
19	0.68762	1.32773	1.72913	2.09302	2.53948	2.86093	3.57940
20	0.68695	1.32534	1.72472	2.08596	2.52798	2.84534	3.55181
21	0.68635	1.32319	1.72074	2.07961	2.51765	2.83136	3.52715
22	0.68581	1.32124	1.71714	2.07387	2.50832	2.81876	3.50499
23	0.68531	1.31946	1.71387	2.06866	2.49987	2.80734	3.48496
24	0.68485	1.31784	1.71088	2.06390	2.49216	2.79694	3.46678
25	0.68443	1.31635	1.70814	2.05954	2.48511	2.78744	3.45019
26	0.68404	1.31497	1.70562	2.05553	2.47863	2.77871	3.43500
27	0.68368	1.31370	1.70329	2.05183	2.47266	2.77068	3.42103
28	0.68335	1.31253	1.70113	2.04841	2.46714	2.76326	3.40816
29	0.68304	1.31143	1.69913	2.04523	2.46202	2.75639	3.39624
30	0.68276	1.31042	1.69726	2.04227	2.45726	2.75000	3.38518
31	0.68249	1.30946	1.69552	2.03951	2.45282	2.74404	3.37490
32	0.68223	1.30857	1.69389	2.03693	2.44868	2.73848	3.36531
33	0.68200	1.30774	1.69236	2.03452	2.44479	2.73328	3.35634
34	0.68177	1.30695	1.69092	2.03224	2.44115	2.72839	3.34793
35	0.68156	1.30621	1.68957	2.03011	2.43772	2.72381	3.34005
36	0.68137	1.30551	1.68830	2.02809	2.43449	2.71948	3.33262
37	0.68118	1.30485	1.68709	2.02619	2.43145	2.71541	3.32563
38	0.68100	1.30423	1.68595	2.02439	2.42857	2.71156	3.31903
39	0.68083	1.30364	1.68488	2.02269	2.42584	2.70791	3.31279
40	0.68067	1.30308	1.68385	2.02108	2.42326	2.70446	3.30688

Titik Persentase Distribusi t (df = 41 - 80)

Pr				0.0		0.0	0.071
	0.25	0.10	0.05	0.025	0.01	0.005	0.001
df	0.50	0.20	0.10	0.050	0.02	0.010	0.002
41	0.68052	1.30254	1.68288	2.01954	2.42080	2.70118	3.30127
42	0.68038	1.30204	1.68195	2.01808	2.41847	2.69807	3.29595
43	0.68024	1.30155	1.68107	2.01669	2.41625	2.69510	3.29089
44	0.68011	1.30109	1.68023	2.01537	2.41413	2.69228	3.28607
45	0.67998	1.30065	1.67943	2.01410	2.41212	2.68959	3.28148
46	0.67986	1.30023	1.67866	2.01290	2.41019	2.68701	3.27710
47	0.67975	1.29982	1.67793	2.01174	2.40835	2.68456	3.27291
48	0.67964	1.29944	1.67722	2.01063	2.40658	2.68220	3.26891
49	0.67953	1.29907	1.67655	2.00958	2.40489	2.67995	3.26508
50	0.67943	1.29871	1.67591	2.00856	2.40327	2.67779	3.26141
51	0.67933	1.29837	1.67528	2.00758	2.40172	2.67572	3.25789
52	0.67924	1.29805	1.67469	2.00665	2.40022	2.67373	3.25451
53	0.67915	1.29773	1.67412	2.00575	2.39879	2.67182	3.25127
54	0.67906	1.29743	1.67356	2.00488	2.39741	2.66998	3.24815
55	0.67898	1.29713	1.67303	2.00404	2.39608	2.66822	3.24515
56	0.67890	1.29685	1.67252	2.00324	2.39480	2.66651	3.24226
57	0.67882	1.29658	1.67203	2.00247	2.39357	2.66487	3.23948
58	0.67874	1.29632	1.67155	2.00172	2.39238	2.66329	3.23680
59	0.67867	1.29607	1.67109	2.00100	2.39123	2.66176	3.23421
60	0.67860	1.29582	1.67065	2.00030	2.39012	2.66028	3.23171
61	0.67853	1.29558	1.67022	1.99962	2.38905	2.65886	3.22930
62	0.67847	1.29536	1.66980	1.99897	2.38801	2.65748	3.22696
63	0.67840	1.29513	1.66940	1.99834	2.38701	2.65615	3.22471
64	0.67834	1.29492	1.66901	1.99773	2.38604	2.65485	3.22253
65	0.67828	1.29471	1.66864	1.99714	2.38510	2.65360	3.22041
66	0.67823	1.29451	1.66827	1.99656	2.38419	2.65239	3.21837
67	0.67817	1.29432	1.66792	1.99601	2.38330	2.65122	3.21639
68	0.67811	1.29413	1.66757	1.99547	2.38245	2.65008	3.21446
69	0.67806	1.29394	1.66724	1.99495	2.38161	2.64898	3.21260
70	0.67801	1.29376	1.66691	1.99444	2.38081	2.64790	3.21079
71	0.67796	1.29359	1.66660	1.99394	2.38002	2.64686	3.20903
72	0.67791	1.29342	1.66629	1.99346	2.37926	2.64585	3.20733
73	0.67787	1.29326	1.66600	1.99300	2.37852	2.64487	3.20567
74	0.67782	1.29310	1.66571	1.99254	2.37780	2.64391	3.20406
75	0.67778	1.29294	1.66543	1.99210	2.37710	2.64298	3.20249
76	0.67773	1.29279	1.66515	1.99167	2.37642	2.64208	3.20096
77	0.67769	1.29264	1.66488	1.99125	2.37576	2.64120	3.19948
78	0.67765	1.29250	1.66462	1.99085	2.37511	2.64034	3.19804
79	0.67761	1.29236	1.66437	1.99045	2.37448	2.63950	3.19663
80	0.67757	1.29222	1.66412	1.99006	2.37387	2.63869	3.19526

Lampiran 52 Tabel R

Tabel r

	Ting	gkat signifi	kansi untu	k uji satu a	rah				
df = (N-2)	0.05	0.025	0.01	0.005	0.000				
$\mathbf{ai} = (\mathbf{N} - 2)$	Tingkat signifikansi untuk uji dua arah								
	0.1	0.05	0.02	0.01	0.0				
1	0.9877	0.9969	0.9995	0.9999	1.000				
2	0.9000	0.9500	0.9800	0.9900	0.99				
3	0.8054	0.8783	0.9343	0.9587	0.99				
4	0.7293	0.8114	0.8822	0.9172	0.97				
5	0.6694	0.7545	0.8329	0.8745	0.95				
6	0.6215	0.7067	0.7887	0.8343	0.92				
7	0.5822	0.6664	0.7498	0.7977	0.89				
8	0.5494	0.6319	0.7155	0.7646	0.87				
9	0.5214	0.6021	0.6851	0.7348	0.84				
10	0.4973	0.5760	0.6581	0.7079	0.82				
11	0.4762	0.5529	0.6339	0.6835	0.80				
12	0.4575	0.5324	0.6120	0.6614	0.78				
13	0.4409	0.5140	0.5923	0.6411	0.76				
14	0.4259	0.4973	0.5742	0.6226	0.74				
15	0.4124	0.4821	0.5577	0.6055	0.72				
16	0.4000	0.4683	0.5425	0.5897	0.70				
17	0.3887	0.4555	0.5285	0.5751	0.69				
18	0.3783	0.4438	0.5155	0.5614	0.67				
19	0.3687	0.4329	0.5034	0.5487	0.66				
20	0.3598	0.4227	0.4921	0.5368	0.65				
21	0.3515	0.4132	0.4815	0.5256	0.640				
22	0.3438	0.4044	0.4716	0.5151	0.62				
23	0.3365	0.3961	0.4622	0.5052	0.61				
24	0.3297	0.3882	0.4534	0.4958	0.60				
25	0.3233	0.3809	0.4451	0.4869	0.59				
26	0.3172	0.3739	0.4372	0.4785	0.58				
27	0.3115	0.3673	0.4297	0.4705	0.579				
28	0.3061	0.3610	0.4226	0.4629	0.570				
30	0.3009	0.3350	0.4158	0.4556	0.56				
31	0.2913	0.3440	0.4032	0.4421	0.54				
33	0.2826	0.3338	0.3916	0.4337	0.53				
34	0.2826	0.3338	0.3862	0.4238	0.52				
35	0.2746	0.3246	0.3802	0.4238	0.51				
36	0.2709	0.3240	0.3760	0.4132	0.513				
37	0.2673	0.3160	0.3700	0.4076	0.50				
38	0.2638	0.3120	0.3665	0.4026	0.50				
39	0.2605	0.3081	0.3621	0.3978	0.49				
40	0.2573	0.3044	0.3578	0.3932	0.48				
41	0.2542	0.3008	0.3536	0.3887	0.48				
42	0.2512	0.2973	0.3496	0.3843	0.47				
43	0.2483	0.2940	0.3457	0.3801	0.47				
44	0.2455	0.2907	0.3420	0.3761	0.469				
45	0.2429	0.2876	0.3384	0.3721	0.46				
46	0.2403	0.2845	0.3348	0.3683	0.460				
47	0.2377	0.2816	0.3314	0.3646	0.45				
48	0.2353	0.2787	0.3281	0.3610	0.45				
49	0.2329	0.2759	0.3249	0.3575	0.44				
50	0.2306	0.2732	0.3218	0.3542	0.44				

Lampiran 53 Tabel Durbin Watson

Tabel Durbin-Watson (DW) $\alpha = 5\%$

	k=1		k=2		k=3		k=	-4	k=5		
n	dL	dU	dL K-	dU	dL K-	dU	dL K-	dU	dL dU		
6	0.6102	1.4002									
7	0.6996	1.3564	0.4672	1.8964							
8	0.7629	1.3324	0.5591	1.7771	0.3674	2.2866					
9	0.8243	1.3199	0.6291	1.6993	0.4548	2.1282	0.2957	2.5881			
10	0.8791	1.3197	0.6972	1.6413	0.5253	2.0163	0.3760	2.4137	0.2427	2.8217	
11	0.9273	1.3241	0.7580	1.6044	0.5948	1.9280	0.4441	2.2833	0.3155	2.6446	
12	0.9708	1.3314	0.8122	1.5794	0.6577	1.8640	0.5120	2.1766	0.3796	2.5061	
13 14	1.0097	1.3404	0.8612 0.9054	1.5621	0.7147 0.7667	1.8159	0.5745 0.6321	2.0943	0.4445 0.5052	2.3897	
15	1.0450	1.3605	0.9054	1.5432	0.7667	1.7700	0.6852	1.9774	0.5620	2.2959	
16	1.1062	1.3709	0.9820	1.5386	0.8572	1 7277	0.7340	1.9351	0.6150	2.1567	
17	1.1330	1.3812	1.0154	1.5361	0.8968	1.7101	0.7790	1.9005	0.6641	2.1041	
18	1.1576	1.3913	1.0461	1.5353	0.9331	1.6961	0.8204	1.8719	0.7098	2.0600	
19	1.1804	1.4012	1.0743	1.5355	0.9666	1.6851	0.8588	1.8482	0.7523	2.0226	
20	1.2015	1.4107	1.1004	1.5367	0.9976	1.6763	0.8943	1.8283	0.7918	1.9908	
21	1.2212	1.4200	1.1246	1.5385	1.0262	1.6694	0.9272	1.8116	0.8286	1.9635	
22	1.2395	1.4289	1.1471	1.5408	1.0529	1.6640	0.9578	1.7974	0.8629	1.9400	
23	1.2567	1.4375	1.1682	1.5435	1.0778	1.6597	0.9864	1.7855	0.8949	1.9196	
24	1.2728	1.4458	1.1878	1.5464	1.1010	1.6565	1.0131	1.7753	0.9249	1.9018	
25 26	1.2879	1.4537 1.4614	1.2063 1.2236	1.5495 1.5528	1.1228	1.6540 1.6523	1.0381	1.7666 1.7591	0.9530 0.9794	1.8863 1.8727	
27	1.3022	1.4614	1.2236	1.5528	1.1432	1.6523	1.0836	1.7527	1.0042	1.8608	
28	1.3284	1.4759	1.2553	1.5596	1.1805	1.6503	1.1044	1.7473	1.0042	1.8502	
29	1.3405	1.4828	1.2699	1.5631	1.1976	1.6499	1.1241	1.7426	1.0497	1.8409	
30	1.3520	1.4894	1.2837	1.5666	1.2138	1.6498	1.1426	1.7386	1.0706	1.8326	
31	1.3630	1.4957	1.2969	1.5701	1.2292	1.6500	1.1602	1.7352	1.0904	1.8252	
32	1.3734	1.5019	1.3093	1.5736	1.2437	1.6505	1.1769	1.7323	1.1092	1.8187	
33	1.3834	1.5078	1.3212	1.5770	1.2576	1.6511	1.1927	1.7298	1.1270	1.8128	
34	1.3929	1.5136	1.3325	1.5805	1.2707	1.6519	1.2078	1.7277	1.1439	1.8076	
35	1.4019	1.5191	1.3433	1.5838	1.2833	1.6528	1.2221	1.7259	1.1601	1.8029	
36 37	1.4107	1.5245	1.3537	1.5872	1.2953	1.6539	1.2358	1.7245	1.1755	1.7987	
38	1.4190	1.5297 1.5348	1.3635 1.3730	1.5904	1.3068	1.6550 1.6563	1.2489 1.2614	1.7233	1.1901	1.7950 1.7916	
39	1.4347	1.5346	1.3821	1.5969	1.3283	1.6575	1.2734	1.7225	1.2176	1.7886	
40	1.4421	1.5444	1.3908	1.6000	1.3384	1.6589	1.2848	1.7209	1.2305	1.7859	
41	1.4493	1.5490	1.3992	1.6031	1.3480	1.6603	1.2958	1.7205	1.2428	1.7835	
42	1.4562	1.5534	1.4073	1.6061	1.3573	1.6617	1.3064	1.7202	1.2546	1.7814	
43	1.4628	1.5577	1.4151	1.6091	1.3663	1.6632	1.3166	1.7200	1.2660	1.7794	
44	1.4692	1.5619	1.4226	1.6120	1.3749	1.6647	1.3263	1.7200	1.2769	1.7777	
45	1.4754	1.5660	1.4298	1.6148	1.3832	1.6662	1.3357	1.7200	1.2874	1.7762	
46	1.4814	1.5700	1.4368	1.6176	1.3912	1.6677	1.3448	1.7201	1.2976	1.7748	
47	1.4872	1.5739 1.5776	1.4435 1.4500	1.6204	1.3989	1.6692	1.3535	1.7203	1.3073	1.7736	
49	1.4928	1.5813	1.4564	1.6257	1.4064	1.6708 1.6723	1.3619 1.3701	1.7206 1.7210	1.3167 1.3258	1.7725 1.7716	
50	1.5035	1.5849	1.4625	1.6283	1.4206	1.6739	1.3779	1.7214	1.3346	1.7708	
51	1.5086	1.5884	1.4684	1.6309	1.4273	1.6754	1.3855	1.7214	1.3431	1.7701	
52	1.5135	1.5917	1.4741	1.6334	1.4339	1.6769	1.3929	1.7223	1.3512	1.7694	
53	1.5183	1.5951	1.4797	1.6359	1.4402	1.6785	1.4000	1.7228	1.3592	1.7689	
54	1.5230	1.5983	1.4851	1.6383	1.4464	1.6800	1.4069	1.7234	1.3669	1.7684	
55	1.5276	1.6014	1.4903	1.6406	1.4523	1.6815	1.4136	1.7240	1.3743	1.7681	
56	1.5320	1.6045	1.4954	1.6430	1.4581	1.6830	1.4201	1.7246	1.3815	1.7678	
57	1.5363	1.6075	1.5004	1.6452	1.4637	1.6845	1.4264	1.7253	1.3885	1.7675	
58 59	1.5405	1.6105	1.5052 1.5099	1.6475	1.4692	1.6860	1.4325	1.7259	1.3953	1.7673	
60	1.5446	1.6134 1.6162	1.5099	1.6497 1.6518	1.4745	1.6875 1.6889	1.4385	1.7266 1.7274	1.4019 1.4083	1.7672 1.7671	
61	1.5524	1.6189	1.5144	1.6540	1.4797	1.6889	1.4443	1.7274	1.4083	1.7671	
62	1.5562	1.6216	1.5232	1.6561	1.4896	1.6918	1.4554	1.7288	1.4206	1.7671	
63	1.5599	1.6243	1.5274	1.6581	1.4943	1.6932	1.4607	1.7296	1.4265	1.7671	
64	1.5635	1.6268	1.5315	1.6601	1.4990	1.6946	1.4659	1.7303	1.4322	1.7672	
65	1.5670	1.6294	1.5355	1.6621	1.5035	1.6960	1.4709	1.7311	1.4378	1.7673	
66	1.5704	1.6318	1.5395	1.6640	1.5079	1.6974	1.4758	1.7319	1.4433	1.7675	
67	1.5738	1.6343	1.5433	1.6660	1.5122	1.6988	1.4806	1.7327	1.4486	1.7676	
68	1.5771	1.6367	1.5470	1.6678	1.5164	1.7001	1.4853	1.7335	1.4537	1.7678	
69	1.5803	1.6390	1.5507	1.6697	1.5205	1.7015	1.4899	1.7343	1.4588	1.7680	
70	1.5834	1.6413	1.5542	1.6715	1.5245	1.7028	1.4943	1.7351	1.4637	1.7683	

DAFTAR RIWAYAT HIDUP

A. Identitas Diri

Nama : Syifa Nur Azizah

NIM : 1808056089

TTL : Cilacap, 04 Juli 2000

Alamat Rumah : Danasri Lor RT 01/RW 06 Kec. Nusawungu,

Kab. Cilacap

Email : syifanurazizah771@gmail.com

B. Riwayat Pendidikan

- 1. MI Negeri Sikanco
- 2. MTs Darussalam Nusawungu
- 3. MA Negeri 03 Cilacap
- 4. UIN Walisongo Semarang

Semarang, Desember 2022

Peneliti

Syifa nur Azizah

NIM. 1808056089