EFEKTIVITAS MODEL DISCOVERY LEARNING BEBANTUAN GEOGEBRA TERHADAP KEMAMPUAN BERPIKIR KRITIS DAN MOTIVASI BELAJAR PADA MATERI DIMENSI TIGA MAN 2 KOTA SEMARANG

SKRIPSI

Diajukan Untuk Memenuhi Salah Satu syarat Memperoleh Gelar Sarjana Strata Satu (S.1) Dalam Ilmu Pendidikan Matematika

Disusun oleh:

Choirul Aini Mustaghfiroh (2008056009)

PROGAM STUDI PENDIDIKAN MATEMATIKA

FAKULTAS SAINS DAN TEKNOLOGI

UNIVERSITAS ISLAM NEGERI WALISONGO SEMARANG

2023

ii

PERNYATAAN KEASLIAN

Yang bertandatangan dibawah ini

Nama

: Choirul Aini Mustaghfiroh

NIM

: 2008056009

Progam Studi : Pendidikan Matematika

Menyatakan bahwa skripsi yang berjudul:

Efektivitas Model Discovery Learning Berbantuan Geogebra Terhadap Kemampuan Berpikir Kritis dan Motivasi Belajar Pada Materi dimensi Tiga MAN 2 Kota Semarang

Secara keseluruhan adalah hasil penelitian/karya saya sendiri, kecuali bagian tertentu yang di rujuk sumbernya.

Semarang, 22 Desember 2023

Choirul Aini Mustaghfiroh

NIM 2008056009

KEMENTERIAN AGAMA

UNIVERSITAS ISLAM NEGERI WALISONGO FAKULTAS SAINS DAN TEKNOLOGI

Jl. Prof. Dr. Hamka Ngaliyan Semarang Telp.024-7601295 Fax.7615387

PENGESAHAN

Naskah skripsi berikut ini:

Judul : Efektivitas Model Pembelajaran Discovery Learning Berbantuan Geogebra terhadap Kemampuan Berpikir Kritis dan Motivasi Belajar

pada Materi dimensi Tiga MAN 2 Kota Semarang

Penulis : Choirul Aini Mustaghfiroh

: 2008056009

Jurusan : Pendidikan Matematika

Telah diujikan dalam sidang tugas akhir oleh Dewan Penguji Fakultas Sains dan Teknologi UIN Walisongo dan dapat diterima sehagai salah satu syarat memperoleh gelar sarjana dalam Ilmu Pendidikan Matematika.

Semarang, 28 Desember 2023

DEWAN PENGUII

Ketus,

Sekretaris.

Siti Maslibah, M. St.

NIP: 19770606112011012004

Ulliya Fitriani, S.Pd.I., M. Pd.

NIP: 198708082023212055

Penguli 1,

Penguji II,

NIP: 198107152005012008

duji suwarno,M.Pd.

NIP: 199310092009031013

Pembimbing,

Ulliya Fitriani, S.Pd.L, M. Pd.

NIP: 198708082023212055

NOTA DINAS

Semarang, 22 Desember 2023

Yth. Dekan Fakultas Sains dan Teknologi

UIN Walisongo Semarang

Assalamu'alaikum. wr.wb.

Dengan ini diberitahukan bahwa saya telah melakukan bimbingan, arahan dan koreksi naskah skripsi dengan:

Judul : Efektivitas Model Discovery Learning

Berbasis Geogebra terhadap Kemampuan Berpikir Kritis dan Motivasi Balajar pada

Materi Dimensi Tiga MAN 2 Kota

Semarang

Penulis : Choirul Aini Mustaghfiroh

NIM : 2008056009

Program Studi : Matematika

Saya memandang bahwa naskah skripsi tersebut sudah dapat diajukan kepada Fakultas Sains dan Teknologi UIN Walisongo untuk diajukan dalam Sidang *Munaqasyah*.

Wassalamu'alaikum wr.wb.

Pembimbing

Ulliya Fitriani, M.Pd.

NIP.

iii

ABSTRAK

Judul : Efektivitas Model Discovery Learning
Berbasis Geogebra terhadap Kemampuan
Berpikir Kritis dan Motivasi Balajar pada
Materi Dimensi Tiga MAN 2 Kota Semarang

Peneliti : Choirul Aini Mustaghfiroh

NIM : 2008056009

Penelitian ini didasarkan pada rendahnya kemampuan berpikir kritis dan motivasi belajar siswa kelas XII MAN 2 Kota Semarang khususnya pada materi dimensi tiga. Tujuan dari penelitian ini adalah untuk mengetahui keefektifan model discoverv learning berbantuan geogebra terhadap kemampuan berpikir kritis dan motivasi belajar siswa pada materi dimensi tiga MAN 2 Kota Semarang tahun ajaran 2023/2024. Penelitian ini merupakan penelitian kuantitatif dengan eksperimen berdesain posttest only control desain dengan teknik cluster random sampling. Sampel penelitian vang digunakan adalah XII MIPA 6 sebagai kelas eksperimen dan XII MIPA 5 sebagai kelas kontrol. Data penelitian dikumpulkan dengan metode tes dan angket yang kemudian dianalisis menggunakan statistik uji-t.

Berdasarkan analisis tahap akhir diperoleh hasil rata-rata kemampuan berpikir kritis kelas eksperimen 74,58 dan kelas kontrol 38,20 dari uji t $t_{hitung}=11,75 > t_{tabel}=1,99 \ dan \ \mu_1 \neq$ independent μ_2 , maka H_0 ditolak dan H_1 diterima artinya terdapat perbedaan kemampuan berpikir kritis kelas eksperimen dan kelas kontrol. Untuk motivasi belajar di peroleh nilai rata-rata kelas eksperimen 80,10 dan kelas kontrol 74,34, dengan nilai $t_{hitung} = 2,571 > t_{tabel} = 2,001, \mu_1 \neq \mu_2$, maka H_0 ditolak dan H_1 diterima artinya rata-rata motivasi belajar kelas eksperimen dengan menggunakan model pembelajaran discovery learning berbantuan geogebra lebih baik dari pada rata-rata kelas kontrol. Disimpulkan bahwa model discovery learning berbantuan geogebra efektif terhadap kemampuan berpikir kritis dan motivasi belajar siswa pada materi dimensi tiga.

Kata Kunci : model *discovery learning* kemampuan berpikir kritis, motivasi belajar, geogebra

MOTTO

Tidak ada yang tidak mungkin selagi kita mau berusaha

KATA PENGANTAR

Bismillahirrahmairrahim. Segala puji bagi Allah yang Maha Pengasih dan Maha Penyayang, yang telah melimpahkan rahmat serta taufiq dan hidayah-Nya sehingga peneliti dapat menyelesaikan tugas akhir ini untuk memenuhi salah satu syarat untuk memperoleh gelar Strata Satu (S.1) Fakultas Sains dan Teknologi Universitas Islam Negeri (UIN) Walisongo Semarang. Sholawat serta salam senantiasa tercurah limpahkan kepada junjungan mulia Nabi Muhammad SAW yang telah membawa kita dari zaman kegelapan menuju zaman yang kita rasakan saat ini.

Dalam penyusunan skripsi ini, peneliti banyak mendapatkan arahan, bimbingan, dan saran-saran dari berbagai pihak sehingga penyusunan tugas akhir ini dapat terselesaikan dengan baik. Untuk itu penulis menyampaikan terima kasih kepada:

- Prof. Dr. Nizar, M.Ag selaku Plt Rektor UIN Walisongo Semarang
- 2. Dr. Ismail M. Ag. selaku Dekan Fakultas Sains dan Teknologi UIN Walisongo Semarang
- 3. Yulia Romadiastri, M.Sc selaku Ketua Program Studi Pendidikan Matematika UIN Walisongo Semarang

- 4. Ulliya, M.Pd selaku pembimbing tugas akhir peneliti yang telah bersedia meluangkan waktu, tenaga, dan pikirannya untuk memberikan bimbingannya dalam menyusun tugas akhir ini.
- 5. Ariska Kurnia Rachmawati, M.Sc. selaku Dosen Wali peneliti.
- 6. Segenap bapak/ibu dosen, pegawai dan seluruh civitas akademika di lingkungan UIN Walisongo Semarang khususnya di program studi pendidikan matematika.
- 7. Kepala Madrasah Drs. H. Junaedi,M.Pd. dan Diah Ira Rahmawati, S.Pd selaku guru pengampu matematika yang telah memberikan kesempatan kepada peneliti untuk melakukan penelitian tugas akhir di MAN 2 Kota Semarang.
- 8. Kedua orang tua tercinta, Bapak Muhroni dan Ibu Satemah (Almh). Kakak tersayang mba Ning, mas Arifin dan mas Firin, serta ponakan tercinta mas Arka dan dek Arsya. Terimakasih atas doa yang selalu di panjatkan serta kasih sayang dan dukungannya kepada peneliti.
- 9. Calon suami mas Sholikhul Huda yang telah menemani dan mensuport dari awal masuk kuliah hingga saat ini.

10. Diri sendiri yang telah berjuang dan menikmati setiap proses yang melelahkan ini, terimakasih sudah mau bertahan dan tidak menyerah.

11. Seluruh pihak yang andil membantu penyusunan tugas akhir ini yang tidak bisa di tuliskan seluruhnya oleh peneliti.

Semoga Allah SWT membalas kebaikan dan jasajasanya, tanpa jasa-jasa tersebut peneliti tidak dapat menyelesaikan tugas akhir ini.

Semarang, 22 Desember 2023

Peneliti

Choirul Aini Mustaghfiroh

NIM 2008056009

DAFTAR ISI

ABSTI	RAK	v
мотт	·O	vii
КАТА	PENGANTAR	viii
DAFT	AR ISI	xi
DAFT	AR GAMBAR	xiii
DAFT	AR TABEL	xiv
DAFT	AR LAMPIRAN	xvi
BAB I	PENDAHULUAN	1
A.	Latar Belakang	1
В.	Identifikasi Masalah	11
C.	Pembatasan Permasalahan	11
D.	Rumusan Masalah	11
E.	Tujuan Penelitian	11
F.	Manfaat Penelitian	12
BAB l	II LANDASAN PUSTAKA	14
A.	Deskripsi Teori	14
В.	Kajian Penelitian yang Relevan	31
C.	Kerangka Berpikir	36
D. Por	Hipotesis Penelitian dan/atau Pertanyaa nelitian	
	III METODE PENELITIAN	
	Jenis Penelitian	
л.	Jenis i chelluali	30

В.	Tempat dan Waktu Penelitian	40
C.	Populasi dan Sampel Penelitian	40
D. [Pefinisi Operasional Variabel	41
E.	Teknik dan Instrumen Pengumpulan Data	42
F.	Validitas dan Rehabilitas Instrumen	44
G.	Teknik Analisis Data	48
BAB I\	/ DESKRIPSI DAN ANALISIS DATA	65
A.	Deskripsi Hasil Penelitian	65
В.	Analisis Data	66
C.	Hasil dan Pembahasan	103
D.	Keterbatasan Penelitian	112
BAB V	SIMPULAN DAN SARAN	114
A.	Simpulan	114
В.	Saran	115
DAFT/	AR PUSTAKA	116

DAFTAR GAMBAR

Gambar 2. 1 Media Geogebra	. 25
Gambar 2. 2 Kerangka Berpikir	36

DAFTAR TABEL

Tabel 2. 1 KD dan IPK 27
Tabel 3. 1 Desain Penelitian 39
Tabel 3. 2 Penskoran Angket Motivasi Belajar 43
Tabel 3. 3 Kriteria Koefisien Korelasi Reliabilitas 46
Tabel 3. 4 Kriteria Tingkat Kesukaran 47
Tabel 3. 5 Kriteria Indeks Daya pembeda 47
Tabel 4. 1 Data Siswa Kelas XII MIPA65 Tabel 4. 2 Hasil Uji Validitas Angket Motivasi Belajar66 Tabel 4. 3 Uji Validitas Instrument Tes Awal
Kemampuan Berpikir Kritis Tahap I70 Tabel 4. 4 Uji Validitas intrumen tes awal kemampuan
berpikir kritis tahap II
berpikir kritis Tahap I73
Tabel 4. 6 Uji Validitas intrumen Posttest kemampuan berpikir kritis tahap II73
Tabel 4. 7 Hasil uji Kriteria Tingkat Kesukaran Intrumen Tes Awal
Tabel 4. 8 Hasil uji Kriteria Tingkat Kesukaran Intrumen Tes Awal Valid78
Tabel 4. 9 Hasil Uji Analisis Tingkat Kesukaran Soal Postest
Tabel 4. 10 Hasil Uji Analisis Tingkat Kesukaran Soal Postest valid
Tabel 4. 11 Kriteria Daya Pembeda Soal Tes Awal tahap 1

Tabel 4. 12 Kriteria Daya Pembeda Soal Tes Awal	
Valid	81
Tabel 4. 13 Kriteria Daya Beda Soal Posttest Tahaj	1 82
Tabel 4. 14 Kriteria Daya Beda Soal Posttest Valid	83
Tabel 4. 15 Hasil Analisis Uji Normalitas Tahap Aw	val85
Tabel 4. 16 Tabel Penolong Uji Homogenitas Taha	р
Awal	86
Tabel 4. 17 Tabel Penolong Uji Kesamaan Rata-rat	a.89
Tabel 4. 18 Data Uji Normalitas Motivasi Belajar	
Tahap Akhir	92
Tabel 4. 19 Tabel Penolong Uji Homogenitas	93
Tabel 4. 20 Uji T-Test Motivasi Belajar Siswa	95
Tabel 4. 21 Data Uji Normalitas Tahap Akhir	98
Tabel 4. 22 Tabel Homogenitas tahap akhir	99
Tabel 4. 23 Uji T-Test Kemampuan Berpikir Kritis	100

DAFTAR LAMPIRAN

Lampiran 1 Hasil Wawancara Pra Penelitian 12	4
Lampiran 2 Profil Sekolah12	7
Lampiran 3 Jadwal Kegiatan Penelitian12	8
Lampiran 4 Daftar Nama Siswa Uji Coba Angket13	0
Lampiran 5 Daftar Nama Siswa Uji Coba Tes Awal 13	2
Lampiran 6 Daftar Nama Siswa Uji Coba Posttest Berpikir	
Kritis13	4
Lampiran 7 Daftar Nama Siswa Kelas XII MIPA 1 13	6
Lampiran 8 Daftar Nama Siswa Kelas XII MIPA 2 13	8
Lampiran 9 Daftar Nama Siswa Kelas XII MIPA 3 14	0
Lampiran 10 Daftar Nama Siswa Kelas XII MIPA 4 14	2
Lampiran 11 Daftar Nama Siswa Kelas XII MIPA 5 14	4
Lampiran 12 Daftar Nama Siswa Kelas XII MIPA 6 14	6
Lampiran 13 Kisi- Kisi Instrumen Angket14	8
Lampiran 14 Intrumen Angket Motivasi Belajar 14	9
Lampiran 15 Pedoman Penskoran Uji Coba Angket 15	3
Lampiran 16 Analisis Uji Validitas Instrumen Angket	
Motivasi Belajar15	4
Lampiran 17 Perhitungan Angket Motivasi Belajar 15	5
Lampiran 18 Tabel Perhitungan uji Reliabilitas Angket	
Motivasi Belajar15	7
Lampiran 19 Perhitungan uji Reliabilitas angket Motivasi	
Belajar 15	8
Lampiran 20 Kisi-Kisi Uji Coba Tes Awal 15	9
Lampiran 21 Lembar uji Coba Tes Awal 16	8
Lampiran 22 Kunci Jawaban dan Penskoran Uji Coba 17	0
Lampiran 23 Analisis Butir Soal Intrumen Tes Awal	
validitas Tahap 119	8
Lampiran 24 Analisis Butir Soal Intrumen Tes Awal	
validitas Tahan 2	9

Lampiran 25 Perhitungan validitas Soal Uji Coba Tes Awal
Lampiran 26 Tabel Perhitungan Uji reliabilitas Tes Awal
Tahap 1
Lampiran 27 Tabel Perhitungan Uji reliabilitas Tes Awal
Tahap 2
Lampiran 28 Perhitungan Uji Reliabilitas Tes Awal 204
Lampiran 29 Tabel Perhitungan Uji Kesukaran Tes Awal
Tahap 1
Lampiran 30 Uji Kesukaran Tes Awal Tahap 2 206
Lampiran 31 Perhitungan Uji Kesukaran Tes Awal 207
Lampiran 32 Tabel Perhitungan Uji Daya Beda Soal Tes
Awal Tahap 1
Lampiran 33 Tabel Perhitungan Uji Daya Beda Soal Tes
Awal Tahap 2
Lampiran 34 Perhitungan Uji daya Beda Soal Tes Awal 210
Lampiran 35 Lembar Soal Tes Awal211
Lampiran 36 Kunci Jawaban dan Penskoran Tes Awal 213
Lampiran 37 Kisi-Kisi Uji Coba Posttest
Lampiran 38 Lembar Uji Coba Post-Test245
Lampiran 39 Kunci Jawaban Uji Coba Posttest 250
Lampiran 40 Analisis Perhitungan Uji Validitas Intrumen
Posttest Tahap 1
Lampiran 41 Analisis Perhitungan Uji Validitas Intrumen
Posttest Tahap 2
Lampiran 42 Perhitungan Uji Validitas Intrumen Posttest . 293
Lampiran 43 Analisis Perhitungan Uji Reliabilitas
Intrumen Posttest Tahap 1
Lampiran 44 Analisis Perhitungan Uji Reliabilitas
Intrumen Posttest Tahap 2

Lampiran 45 Perhitungan Uji Reliabilitas Intrumen Posttest
Lampiran 46 Analisis Kesukaran Soal Intrumen Posttest
Tahap 1
Lampiran 47 Analisis Kesukaran Soal Intrumen Posttest
Tahap 2
Lampiran 48 Perhitungan Kesukaran Soal Intrumen
Posttest
Lampiran 49 Analisis Daya Beda Soal Intrumen Posttest
Tahap 1
Lampiran 50 Analisis Daya Beda Soal Intrumen Posttest
Tahap 2
Lampiran 51 Perhitungan Daya Beda Soal Intrumen
Posttest302
Lampiran 52 Lembar Soal Posttest303
Lampiran 53 Kunci Jawaban dan Penskoran Posttest 308
Lampiran 54 Daftar Nilai Tes Awal Kelas XII MIPA 1 346
Lampiran 55 Daftar Nilai Tes Awal Kelas XII MIPA 2 347
Lampiran 56 Daftar Nilai Tes Awal Kelas XII MIPA 3 348
Lampiran 57 Daftar Nilai Tes Awal Kelas XII MIPA 4 349
Lampiran 58 Daftar Nilai Tes Awal Kelas XII MIPA 5 350
Lampiran 59 Daftar Nilai Tes Awal Kelas XII MIPA 6 351
Lampiran 60 Uji Normalitas Tahap Awal Kelas XII MIPA 1 352
Lampiran 61 Uji Normalitas Tahap Awal Kelas XII MIPA 2 353
Lampiran 62 Uji Normalitas Tahap Awal Kelas XII MIPA 3 354
Lampiran 63 Uji Normalitas Tahap Awal Kelas XII MIPA 4 355
Lampiran 64 Uji Normalitas Tahap Awal Kelas XII MIPA 5
356
Lampiran 65 Uji Normalitas Tahap Awal Kelas XII MIPA 6
357

Lampiran 66 Uji Homogenitas Tahap Awal Kelas XII	MIPA
	358
Lampiran 67 Uji Kesamaan Rata-rata Tahap Awal Ke	elas XII
MIPA	359
Lampiran 68 Rencana Pelaksanaan Pembelajaran 1.	363
Lampiran 69 Rencana Pelaksanaan Pembelajaran 2.	388
Lampiran 70 Rencana Pelaksanaan Pembelajaran	416
Lampiran 71 Daftar Nama Kelas Eksperimen	442
Lampiran 72 Daftar Nama Kelas Kontrol	443
Lampiran 73 Nilai Motivasi Belajar Siswa Kelas Kon	
	444
Lampiran 74 Nilai Motivasi Belajar Siswa Kelas	
Eksperimen	445
Lampiran 75 Uji Normalitas Nilai Motivasi Belajar k	elas
Kontrol	
Lampiran 76 Uji Normalitas Nilai Motivasi Belajar	
Eksperimen	447
Lampiran 77 Uji Homogenitas Nilai Motivasi Belajar	· Kelas
Eksperimen dan Kontrol	448
Lampiran 78 Uji T-Test Nilai Motivasi Belajar Kelas	
Eksperimen dan Kontrol	449
Lampiran 79 Nilai Posttest Kelas Kontrol	450
Lampiran 80 Nilai Posttest Kelas Eksperimen	452
Lampiran 81 Uji Normalitas Nilai Posttest Kelas Kor	ıtrol
	454
Lampiran 82 Uji Normalitas Nilai Posttest Kelas	
Eksperimen	455
Lampiran 83 Uji Homogenitas Nilai Posttest Kelas	
Eksperimen dan Kontrol	456
Lampiran 84 Uji Perbedaan Rata-rata	457
Lampiran 85 Dokumentasi Penelitian	460

Lampiran 86 Dokumentasi Uji	. 465
Lampiran 87 Dokumentasi Uji Coba	. 466
Lampiran 88 Jawaban Test Awal	. 468
Lampiran 89 Jawaban Posttest	. 469
Lampiran 90 Jawaban Posttest	. 471
Lampiran 91 Surat Penunjukan Dosen Pembimbing	. 475
Lampiran 92 Surat Izin Pra Riset	. 476
Lampiran 93 Surat Izin Riset Sekolah	. 477
Lampiran 94 surat Penunjukan Dosen Pembimbing	. 478
Lampiran 95 Daftar Riwayat Hidup	. 479

BABI

PENDAHULUAN

A. Latar Belakang

Berdasarkan Undang- Undang Republik Indonesia No. 20 Tahun 2003. Pendidikan adalah usaha sadar dan terencana untuk mewujudkan suasana belajar dan proses pembelajaran agar peserta didik secara aktif mengembangkan potensi dirinya untuk memiliki kekuatan spiritual keagamaan, pengendalian akhlak mulia serta ketrampilan yang kecerdasan. diperlukan dirinya, masyarakat, bangsa dan Negara (Indonesia, 2003). Banyak hal yang mempengaruhi peserta didik dalam pembelajaran diantaranya adalah suasana belajar dan proses pembelajaran (Agustini & Wardani, 2022). Pendidikan juga menjadi salah satu tolak ukur kemajuan Negara, Suatu Negara akan maju apabila pendidikannya juga maju (Tampubolon et al., 2022). Kemudian diperkuat dengan pasal 31 ayat 1 yang bahwa setiap warga negara menyatakan berhak mendapatkan pengajaran. Al-qur'an surat Al-Mujadalah ayat 11

لَّاتُهَا الَّذِيْنَ أَمَثُواْ إِذَا قِيْلَ لَكُمْ تَفَسَّحُواْ فِي الْمَجْلِسِ فَافْسَحُواْ يَفْسَح اللهُ لَكُمُّ وَإِذَا قِيْلَ انْشُزُوْا فَانْشُرُوْا يَرْفَعِ اللهُ الَّذِيْنَ أَمَنُوْا مِنْكُمُّ وَالَّذِيْنَ أُونُوا الْعِلْمَ دَرَجْتُ وَاللهُ بِمَا تَعْمَلُونَ خَبِيْرٌ Artinya: " Allah akan meninggikan orang-orang yang beriman dan orang orang yang berilmu pengetahuan beberapa derajat"

Pendidikan adalah salah satu upaya memberantas kebodohan dan kemiskinan (Pristiwanti et al., 2022). Pendidikan juga merupakan segala hal yang memberikan pengaruh positif pada pertumbuhan individu yang berasal dari pengalaman belajar sepanjang hidup (Pristiwanti et al., 2022). Semakin berkembangnya zaman pendidikan dituntut untuk mengembangkan teknologi sehingga dapat menghasilkan sumber daya manusia yang berkualitas dan modern yang mampu berpikir kritis, sistematis, kreatif, dan mampu memecahkan masalah (Dores et al., 2020).

Kurikulum 2013 memiliki tuntutan penting diantaranya adalah tuntutan untuk melahirkan generasi yang terampil berpikir kritis agar mampu membentuk pribadi yang berkualitas. Hal tersebut juga tercantum dalam penyampaian Kemendikbud RI (Kemendikbud, 2018) bahwa salah satu tujuan kurikulum 2013 adalah untuk melatih kemampuan berpikir kritis siswa melalui proses pembelajaran. Ketrampilan berpikir kritis adalah satu dari sekian ketrampilan penting sebagai bekal untuk berpikir jernih dan cerdas dalam menerima informasi maupun pengetahuan berdasarkan bukti pendukung

(Muttaqien et al., 2021). Berdasarkan hasil penelitian internasional PISA 2018 matematika siswa masih tergolong rendah (F. Lestari et al., 2019). Dalam penelitian (Irawan & Rahardjo, 2017) menyatakan bahwa hasil ratarata aspek kemampuan berpikir kritis matematis siswa berada di angka 44,87% masih dibawah 50%.

Kemampuan berpikir kritis termasuk dalam kategori kemampuan tingkat tinggi(Novtiar & Aripin, 2017) . Kemampuan berpikir kritis membantu siswa untuk lebih akurat dalam berpikir dalam menentukan keterkaitan sesuatu dengan yang lainnya (Novtiar & Aripin, 2017). Seorang siswa sangat membutuhkan kemampuan berpikir kritis ini karena dengan adanya berpikir kritis siswa mampu menyelesaikan persoalan matematika (Siagian et al., 2021). Ketika siswa terbiasa untuk berpikir kritis maka mereka akan memiliki minat pada banyak hal untuk menyelesaikan masalah dengan langkah lain (Fadillah & Hasanah, 2023).

Motivasi merupakan hal yang menjadi pendorong semangat dan yang memberikan arahan kepada siswa menuju tujuan pembelajaran . Dalam (Faradisa, 2018) Suparman mengatakan bahwa motivasi belajar menumbuhkan rasa tekun dan rajin belajar siswa dalam belajar. Berikut beberapa fungsi dari motivasi belajar

yaitu pendorong untuk mencapai tujuan, menentukan arah tujuan, menyeleksi setiap hal yang dilakukan, sehingga seseorang yang termotivasi belajar akan senantiasa selektif dalam mencapai tujuan.

Rendahnya kemampuan berpikir kritis siswa juga terjadi di MAN 2 Kota Semarang. Hal ini dinyatakan dalam wawancara yang dilakukan penulis dengan guru matematika MAN 2 Kota Semarang yaitu Rahma Diah Ira, S.Pd. yang menyatakan bahwa kemampuan berpikir kritis siswa MAN 2 Kota Semarang juga tergolong masih kurang. Hal ini dapat dibuktikan dari nilai rata-rata tes awal 54,97 dalam Arikunto (2013) kriteria presentasi nilainya $80\% \le SB \le 100\% =$ herikut sebagai sangat baik, $66\% \le B < 80\% = Baik$, $56\% \le C <$ $66\% = cukup, 40\% \le K < 56\% = Kurang$, selain siswa juga menemukan masalah pada kemampuan berpikir kritis siswa di materi turunan yang menjadi materi tes awal, peserta didik dalam menyelesaikan masalah soal masih tergolong kurang baik. siswa memiliki kesulitan dalam memahami, menalar soal mengidentifisi soal materi turunan hal ini dapat dilihat dari jawaban siswa menegenai materi turunan yang tidak sesuai dengan perintah soal, serta malas untuk mencari hal-hal yang dibutuhkan dalam menyelesaikan masalah turunan sehingga siswa kesulitan untuk berpikir logis dari sebuah permasalahan seperti mencari rumus-rumus paten turunan dan mengembangkannya. Sehingga, akibatnya siswa tidak dapat memonitoring aktivitas kognitifnya dalam menyelesaikan permasalahan.

Wawancara yang dilakukan peneliti mengenai motivasi belajar siswa masih tergolong rendah, guru menyatakan siswa sering kali tidak memiliki kesadaran diri untuk mengerjakan soal yang tidak di input nilainya, sering kali merasa sudah menyerah dan menyatakan matematika sulit padahal belum mencoba, ada beberapa siswa yang saling bersaing nilai adapula yang pasrah dengan nilai yang didapat,siswa juga mudah menyerah dalam menyelesaikan masalah yang mereka anggap sulit, selain itu kurangnya rasa bersaing dalam menggapai prestasi.

Dari beberapa hal tersebut dapat dilihat bahwa motivasi belajar siswa masih tergolong rendah. Ketidaksesuaian antara fakta dengan yang diharapkan saat ini menjadi latar belakang penulis dalam menuliskan penelitian ini.

Faktor yang mempengaruhi berpikir kritis siswa diantaranya ketidak fokusan dan kurangnya konsentrasi siswa dalam mengikuti pembelajaran yang di sampaikan oleh guru, tidak menariknya siswa terhadap pembelajaran yang berlangsung (Dores et al., 2020). Selain itu, Faktor lain yang mempengaruhi adalah kecemasan, kondisi fisik, interaksi dan perkembangan intelektual (Racmatika et al., 2021).

Faktor yang mempengaruhi motivasi belajar siswa terbagi menjadi 2 yaitu faktor internal dan eksternal, faktor internal antara lain konsisi fisik, kemampuan siswa, cita-cita dan lan sebagainya. Sedangkan faktor eksternal yaitu faktor yang bersumber dari luar seperti fasilitas kelas, metode dan media pembelajaran, dan kondisi sekitar lingkungan belajar (R. Rahmawati, 2016).

pembelajaran Discovery Learning Penerapan adalah salah satu solusi permasalahan tersebut, karena salah satu faktor yang mempengaruhi kemampuan berpikir kritis dan motivasi belajar adalah sama sama berkaitan dengan kondisi kelas yang diantaranya yaitu (Anjarwati metode pembelajaran al.. 2022). et Pembelajaran discovery learnina merupakan pembelajaran penemuan yang melibatkan siswa aktif dalam pembelajaran (Abi et al., 2018). Selain itu, discovery *learning* juga merupakan model vang memiliki karakteristik saintifik bertujuan untuk vang

meningkatkan kemampuan berpikir kritis (Pratiwi, 2014).

Penelitian yang dilakukan oleh (Putri et al., 2017) menyatakan bahwa motivasi belajar siswa meningkat secara signifikan karena adanya model pembelajaran discovery learning. Selain model pembelajaran siswa juga membutuhkan media pembelajaran agar pembelajaran tidak terkesan membosankan dan menunjang motivasi belajar siswa .Motivasi belajar ini akan berpengaruh positif apabila disediakan di lingkungan yang tepat sehingga siswa dapat belajar secara maksimal. Kurangnya motivasi belajar siswa ini juga terjadi di MAN 2 Kota Semarang didukung oleh wawancara yang dilakukan peneliti.

Dalam penelitian yang berjudul "pengaruh model discovery learning terhadap motivasi belajar dan hasil belajar fisika siswa MAN Bondowoso" menjelaskan tentang hubungan erat menegenai motivasi belajar dengan model pembelajaran, Berkaitan dengan permasalahan yang terjadi, untuk meningkatkan motivasi dan memaksimalkan pencapaian hasil belajar siswa, guru memilih model pembelajaran yang sesuai dengan tujuan pembelajaran dan didasarkan bahwa setiap siswa mempunyai kemampuan dan taraf berpikir yang berbeda-

beda, sehingga pemilihan model pembelajaran yang tepat mempengaruhi akan keberhasilan siswa dalam pembelajaran. Selain itu, penelitian yang dilakukan oleh rachelia arwani dan Agustina tyas (2023) menjelaskan keunggulan yang dimiliki tentang oleh model pembelajaran discovery learning. model discovery learning ini memiliki serangkaian tahap pembelajaran penemuan terstruktur sehingga siswa dapat lebih mengingat, memahami, menerapkan dan menganalisis materi yang dipelajari. Wenning (2010) menyatakan bahwa tahap pembelajaran yang sistematis, akan membantu siswa mengembangkan kemampuan berpikir secara mandiri daripada pembelajaran yang hanya mendengarkan atau membaca saja.

Permasalahan – permasalahan tersebut yang dijumpai di MAN 2 Kota Semarang membutuhkan solusi. Solusi yang dapat menjawab permasalahan diatas yaitu dengan menerapkan pembelajaran mengacu pada keaktifan siswa sehingga dapat menjadikan siswa aktif dalam belajar sekaligus meningkatkan kemampuan berpikir kritis siswa, selain itu juga dibutuhkan media pembelajaran yang menunjang motivasi belajar siswa. Dalam materi dimensi tiga ini media yang tepat yaitu software *geogebra*. Salah satu solusi yang ditawarkan

peneliti adalah dengan menerapkan model pembelajaran yang sesuai dengan kebutuhan siswa khususnya pada salah satu materi yang baru dikenal yaitu dimensi tiga. model pembelajaran yang sesuai adalah model *discovery learning*.

Sebagai pendukung model discovery learning, maka dibutuhkan juga media pembelajaran agar siswa mudah memahami materi. Penerapan model discovery learning berbantuan Media pembelajaran akan lebih menarik dan menumbuhkan motivasi belaiar siswa. Fungsi media pembelajaran adalah untuk membantu keefektifan kegiatan pembelajaran dan penyampaian materi pembelajaran (Wahid, 2018). Salah satu media pembelajaran pendukung model discovery learning untuk kemampuan berpikir kritis dan motivasi belajar siswa pada materi dimensi tiga dengan lebih cepat dan mudah. Suatu penelitian yang telah dilakukan oleh (Subagio, Lilik; Karnasih, 2021) dalam jurnal pendidikan matematika raflesia dengan judul meningkatkan motivasi belajar siswa dengan menerapkan model *discovery learning* dan *problem based learning* berbantuan geogebra menyatakan bahwa pembelajaran dengan menggunakan media pembelajaran geogebra dapat meningkatkan motivasi belajar siswa dan pemahaman konsep sehingga

memuncukan kemampuan berpikir kritis siswa khususnya dalam pembelajaran matematika (Subagio, Lilik; Karnasih, 2021).

Berdasarkan uraian diatas, akan diadakan sebuah penelitian yang dengan judul "EFEKTIVITAS MODEL DISCOVERY LEARNING BERBANTUAN GEOGEBRA TERHADAP KEMAMPUAN BERPIKIR KRITIS DAN MOTIVASI BELAJAR PADA MATERI DIMENSI TIGA MAN 2 KOTA SEMARANG"

B. Identifikasi Masalah

Berdasarkan latar belakang diatas, maka indentifikasi masalah yang muncul sebagai berikut:

- 1) Siswa kesulitan dalam berpikir kritis
- Motivasi belajar siswa rendah serta kurang aktif dalam pembelajaran

C. Pembatasan Permasalahan

Berdasarkan identifikasi masalah tersebut, maka penelitian ini dibatasi terhadap kemampuan berpikir kritis dan motivasi belajar dalam materi dimensi tiga pada siswa kelas XII MIPA di Man 2 Kota Semarang.

D. Rumusan Masalah

Berdasarkan latar belakang, maka rumusan masalah dalam peneitian ini adalah,

- 1. Apakah model *discovery learning* berbantuan geogebra efektif terhadap kemampuan berpikir kritis siswa pada materi dimensi tiga?
- **2.** Apakah model *discovery learning* berbantuan geogebra efektif terhadap motivasi belajar siswa pada materi dimensi tiga ?

E. Tujuan Penelitian

Dari rumusan masalah yang sudah dijelaskan diatas, maka tujuan dari penulisan ini yaitu sebagai berikut :

- 1. Untuk mengetahui efektivitas model *discovery learning* berbantuan geogebra terhadap kemampuan berpikir siswa pada materi dimensi tiga
- 2. Untuk mengetahui efektivitas model *discovery learning* berbantuan geogebra terhadap motivasi belajar siswa pada materi dimensi tiga

F. Manfaat Penelitian

Manfaat yang diharapkan dari pelaksanaan penelitian ini adalah sebagai berikut:

1. Manfaat Teoritis

Secara teoritis diharapkan penelitian ini dapat bermanfaat sebagai sumber informasi dalam menjawab permasalahan – permasalahan yang terjadi dalam pembelajran terutama dalam meningkatkan kemampuan berpikir kritis dan motivasi belajar siswa pada materi dimensi tiga berbantuan geogebra.

2. Manfaat Praktis

a) Bagi Guru

Membantu dalam melakukan pembelajaran, penelitian ini sebagai referensi untuk menerapkan teknologi geogebra dalam mengajarkan materi dimensi tiga untuk meningkatkan kemampuan berpikir kritis dan motivasi belajar siswa.

b) Bagi Siswa

Membantu siswa dalam memahami materi dimensi tiga dengan teknologi geogebra yang canggih dan lebih nyata . sehingga dapat meningkatan kemampuan berpikir kritis dan motivasi belajar siswa .

c) Bagi Peneliti

Manfaat bagi peneliti yaitu dapat memberikan pengalaman penggunaan geogebra dalam rangka meningkatkan kemampuan berpikir kritis dan motivasi belajar siswa , selain itu juga memberikan pengalaman dan informasi bagi peneliti untuk lebih kreatif dalam menyusun rencana pembelajaran sehingga pembelajaran berjalan secara optimal.

BAB II

LANDASAN PUSTAKA

A. Deskripsi Teori

1. Efektivitas

a) Pengertian

Efektivitas Pembelajaran adalah proses pembelajaran yang ditujukan untuk memudahkan siswa dalam mempelajari pembelajaran yang dianggap sulit . keefektivan pembelajaran berhubungan erat dengan proses serta sarana penunjang pembelajaran. Efektivitas pembelajaran juga sebagai tolak ukur atau standar yang meghubungkan antara tahap pembelajaran dengan tingkat keberhasilannya (Aliana et al., 2021).

b) Indikator Efektivitas

Penelitian ini dilaksanakan untuk mengetahui apakah model pembelajaran dan media pembelajaran tersebut efektif diterapkan. Menurut (Hamzah et al., 2022) indikator keefektivan meliputi:

- 1) Hasil belajar secara keseluruhan
- Tanggapan siswa setelah melakukan kegiatan pembelajaran
- Alokasi waktu yang digunakan pada saat pembelajaran

Selain itu juga ada beberapa indikator menurut (Abdul Kadir, 2020) sebagai berikut:

- 1) Kemampuan guru dalam mengelola pembelajaran
- 2) Aktivitas siswa dalam pembelajaran
- 3) Hasil pembelajaran siswa tuntas secara klasikal
- 4) Respon siswa positif dalam pembelajaran

 Dari beberapa indikator tersebut dapat di ambil
 indikator sebagai berikut:
- 1) Hasil belajar matematika siswa
- 2) Aktivitas siswa dalam proses pembelajaran matematika
- 3) Keterlaksanaan pembelajaran
- 4) Respon siswa terhadap proses pembelajaran

c) Faktor-Faktor

Menurut Rahmawati (2019) Faktor-faktor yang mempengaruhi efektivitas pembelajaran

- Pendidik
- Peserta didik
- Model dan metode pembelajaran
- Suasana dan keadaan kelas

2. Teori Belajar

a. Teori Belajar Vigotsky

Vigotsky menyatakan bahwa belajar adalah proses yang melibatkan dua elemen penting. Pertama, belajar merupakan proses secara biologi sebagai proses dasar; kedua, proses secara psikososial sebagai proses yang lebih tinggi dan esensinya berkaitan dengan sosial budaya. Vigotsky sangat menekankan pentingnya peran interaksi sosial bagi perkembangan belajar seseorang. Vigotsky percaya bahwa belajar dimulai ketika seorang anak dalam perkembangan zone proximal, yaitu suatu tingkat yang dicapai oleh seorang anak ketika ia melakukan perilaku sosial (Baharuddin dan Wahyuni, 2015).

Penelitian ini menggunakan teori Vigotsky karena dalam penelitian ini, siswa ketika belajar ditugaskan untuk berdiskusi, menyelesaikan masalah dan menyimpulkan hasil pekerjaannya secara bersamasama.

b. Teori Belajar Jerome S.Bruner

Bruner mengusulkan teorinya yang disebut Free Discovery Learning. Menurut teori ini proses belajar akan berjalan dengan baik dan kreatif jika guru memberikan kesempatan kepada siswa untuk menemukan suatu aturan (konsep, teori, definisi, dan sebagainya) melalui contoh-contoh yang menggambarkan/mewakili aturan menjadi vang sumbernya.

Bruner mengungkapkan bahwa dalam proses belajar siswa akan melewati tiga tahapan perkembangan kognitif, yaitu (Thobroni, 2015):

1) Tahap Enaktif

Seseorang melakukan aktivitas-aktivitas dalam upayanya untuk memahami lingkungan sekitarnya. Suatu tahap pembelajaran ketika materi pembelajaran yang bersifat abstrak dipelajari siswa dengan menggunakan benda-benda konkret. Dengan demikian. pembelajaran topik tersebut direpresentasikan atau diwujudkan dalam bentuk benda-benda nyata.

2) Tahap Ikonik

Suatu tahap pembelajaran ketika materi pembelajaran yang bersifat abstrak dipelajari siswa dengan menggunakan ikon, gambar, atau diagram yang menggambarkan kegiatan nyata dengan bendabenda konkret atau Sesutu yang lebih nyata.

3) Tahap Simbolik

Seseorang telah mampu memiliki ide-ide abstrak yang dipengaruhi oleh kemampuannya dalam berbahasa dan logika.

Penelitian ini menggunakan teori Burner karena siswa diberikan kesempatan untuk berpikir secara kritis dan mandiri dengan memanfaatkan sumber belajar yang telah tersedia sehingga tercipta pembelajaran yang bermakna dan guru hanya berperan sebagai fasilitatornya.

c. Teori Belajar Edgar Dale

Edgar Dale mengungkapkan bahwa hasil belajar seseorang diperoleh mulai dari pengalaman langsung (konkret), kemudian melalui bahan tiruan, dan sampai pada lambang verbal (abstrak). Semakin ke atas semakin abstrak media penyampaian pesan itu (Zainiyati, 2017).

Penelitian ini menggunakan Teori Dale karena dalam proses pembelajaran, siswa disediakan suatu media pembelajaran berupa software geogebra yang dapat membantu siswa dalam proses berpikir kritis . Materi yang abstrak akan lebih mudah dipahami jika menggunakan bantuan media pembelajaran.

3. Kemampuan Berpikir Kritis

a) Pengertian Berpikir Kritis

Menurut Muhammad Nasir, Buhaerah, Asdar Dollo (2018) Berpikir kritis adalah kemampuan seseorang dalam proses intelektualnya untuk menjelaskan suatu kosep, pemecahan masalah, dan mengambil keputusan yang dapat dipertanggung jawabkan kebenarannya. Menurut Ennis (dalam (Zakiah & Lestari, 2019))

berpikir kritis merupakan berfokus dan memutuskan sesuatu yang diyakini melalui proses berpikir reflektif. Menurut Redecker (dalam (Zakiah & Lestari, 2019)) berpikir kritis yaitu kemampuan mengakses, menganalisis, mensintesis informasi yang dibelajarkan, dilatihkan dan dikuasai.

b) Indikator-Indikator Berpikir Kritis

Indikator dalam kemampuan berpikir kritis menurut Facione (2015) adalah sebagai berikut:

- 1) *Interpretation*, yaitu kemampuan untuk memahami dan memaknai permasalahan
- 2) *Analisys*, yaitu kemampuan untuk mengidentifikasi permasalahan.
- 3) *Evalution*, yaitu kemampuan untuk merepresentasi ulang permasalahan sehingga dapat berpikir logika.
- 4) Inference, yaitu kemampuan untuk mencari hal-hal yang dibutuhkan untuk menarik kesimpulan
- 5) *Explanation*, yaitu kemampuan untuk memberikan alasan logis dalam sebuah permasalahan.
- 6) *Self regulation*, yaitu kemampuan untuk memonitoring aktivitas kognitif seseorang dalam menyelesaikan permasalahan.

Faruddin Faiz (2012) juga mengemukakan beberapa indikator berpikir kritis , yaitu :

- 1) Mampu merumuskan pokok-pokok permasalahan
- 2) Mampu mengungkap fakta yang dibutuhkan dalam menyelesaikan suatu masalah
- 3) Mampu memilih argument yang logis, akurat dan relevan
- 4) Mampu mendeteksi bias berdasarkan sudut pandang yang berbeda
- 5) Mampu menentukan akibat dari suatu pernyataan yang diambil sebagai suatu Keputusan.

Berdasarkan indikator diatas keadaan siswa MAN 2 Kota semarang yang telah di jelaskan di latar belakang peneliti mengambil indikator dari Facione (2015) yaitu Interpretation, Analisys, Evalution , Inference, Explanation, Self regulation.

c) Faktor-Faktor Berpikir Kritis

Menurut (Dores et al., 2020) Faktor yang mempengaruhi berpikir kritis siswa diantaranya : ketidak fokusan dan kurangnya konsentrasi siswa dalam mengikuti pembelajaran yang di sampaikan oleh guru, tidak menariknya siswa terhadap pembelajaran yang berlangsung. Selain itu, Faktor yang mempengaruhinya

adalah kecemasan, kondisi fisik, interaksi dan perkembangan intelektual (Racmatika et al., 2021).

4. Motivasi Belajar

a) Pengertian Motivasi Belajar

Menurut Terry dalam(Nasution, 2018) motivasi adalah keinginan individu yang mendorongnya untuk melakukan suatu kegiatan. Menurut Risk dalam (Nasution, 2018). Motivasi belajar usaha yang disadari oleh pihak guru untuk menimbulkan keinginan pada diri siswa yang menunjang aktivitas kea rah tujuan belajar. Motivasi belajar adalah sebuah keinginan yang muncul dalam diri seseorang untuk menggerakkan, mengungkapkan dan memfokuskan dirinya pada sesuatu yang berkaitan dengan belajar (Subagio, Lilik; Karnasih, 2021).

b) Indikator-Indikator Motivasi Belajar

Menurut Wahyudin Nur Nasution (2018) Indikator

- indikator motivasi belajar sebagai berikut :
- 1) Kesadaran diri dan keinginan untuk belajar
- 2) tekun berusaha dan bekerja keras
- 3) Pantang menyerah untuk lebih baik
- 4) Berani bersaing untuk menggapai prestasi Uno dalam (Hayati, 2020) juga mengemukakan beberapa indikator motivasi belajar yaitu:

- 1) Adanya hasrat dan keinginan berhasil
- 2) Adanya dorongan dan kebutuhan dalam belajar
- 3) Adanya harapan dan cita- cita masa depan
- 4) Adanya penghargaan dalam belajar
- 5) Adanya kegiatan yang menarik dalam belajar
- 6) Adanya lingkungan belajar yang kondusif, sehingga memungkinkan siswa dapat belajar dengan baik

Berdasarkan indikator diatas serta permasalahan yang ada di MAN 2 Kota Semarang, penelitian ini mengambil indikator dari Wahyudin Nur Nasution (2018), yaitu: Kesadaran diri dan keinginan untuk belajar, tekun berusaha dan bekerja keras, Pantang menyerah untuk lebih baik, Berani bersaing untuk menggapai prestasi.

c) Faktor-Faktor Motivasi Belajar

Menurut (R. Rahmawati, 2016) Faktor yang mempengaruhi motivasi belajar siswa terbagi menjadi 2 yaitu :

- 1) faktor internal antara lain konsisi fisik, kemampuan siswa , cita-cita dan lan sebagainya.
- faktor eksternal yaitu faktor yang bersumber dari luar seperti fasilitas kelas, metode dan media pembelajaran, dan kondisi sekitar lingkungan belajar.

5. Model Pembelajaran Discovery Learning

Menurut Hosnan (2014) *Discovery Learning* adalah model pembelajaran dimana siswa dapat aktif untuk menemukan pembelajarannya sendiri dan mengembangkannya sehingga siswa memiliki hasil yang dapat diingat dan tahan lama dalam pikiran. Langkah – langkah model pembelajaran *Discovery Learning* menurut Hosnan (2014) mengemukakan:

1) Stimulus

Pada tahap ini guru memberikan rangsangan berupa mengamati, mendengarkan ataupun membaca sebuah persoalan

2) Identifikasi masalah

Siswa diberi kesempatan memilih persoalan yang menurut mereka menarik, dan guru memberi arahan kepada siswanya.

3) Pengumpulan data

Siswa di berikan kesempatan untuk mencari data dan informasi yang dibutuhkan dalam penyelesaian masalah.

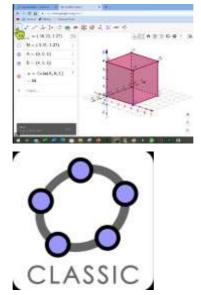
4) Pengolahan Data

Hasil dari pengumpulan data di analisis dan dicari yang paling relevan dengan permasalahan yang dihadapi

5) Pembuktian

Berdasarkan pengolahan data dari informasi yang ada, dinyatakan bahwa hipotesis terbukti relevan atau tidak.

6) Penarikan Kesimpulan


Dari hasil pembuktian siswa dapat menarik kesimpulan dari hsil penelitian yang telah dilakukan.

Menurut Darmawan dan Diin (2018) kelebihan model pembelajaran *discovery learning* sebagai berikut:

- Membantu siswa mengetahui konsep dasar dan ide ide dasar
- 2. Membantu siswa menemukan solusi masalahnya sendiri
- 3. Membantu mengembangkan ingatan pada siswa
- 4. Meningkatkan ketrampilan siswa dan kognitif siswa Menurit Marisya dan Sukma (2020) Kelemahan model pembelajaran *discovery learning* sebagai berikut:
- 1. Kurang bersungguh-sungguhnya siswa belajar sehingga masih bingung dengan pembelajaran penemuan, namun dalam penelitian ini peneliti memberikan media pembelajaran sehingga siswa menjadi lebih tertarik dengan pembelajaran.
- 2. Membutuhkan waktu yang cukup lama dalam pembelajaran, namun dengan adanya media geogebra akan membantu siswa sehingga waktunya akan efisien.

6. Geogebra

Menurut (Arbain & Shukor, 2015) Geogebra adalah salah satu aplikasi software yang dinamis untuk pembelajaran matematika yang mengkombinasikan antara geometri, aljabar dan kalkulus . Dalam pengaplikasiannya geogebra ini akan menunjukan seakan-akan siswa melihat media itu nyata dan dapat terlihat berbagai sisi manapun serta terliat jelas bagian ruang yang ada pada bangun ruang sehingga diharapkan akan mempermudah siswa dalam memahami konsep sehingga akan meningkatkan kemampuan berpikir kritis siswa.

Gambar 2. 1 Media Geogebra

Menurut Rahma dan Surya (2023) kelebihan Geogebra sebagai berikut :

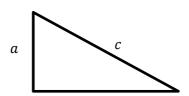
- Dapat menggambarkan lukisan geometri yang nyata dan teliti.
- 2. Fasilitas animasi yang dimiliki geogebra membuat yang melihat seolah olah mengalami pengaaman visual
- 3. Dapat dijadikan sebagai pembuktian lukisan geometri yang benar
- 4. Membantu dalam mengenal sifat sifat yang berlaku pada objek geometri

Menurut Rahmah dan Surya (2023) kelemahan media geogebra

- Kurang maksimalnya penggunaan geogebra karena tidak semua siswa memiliki computer/laptop. Namun, penggunaan geogebra dapat dilaksanakan di lab komputer sekolah.
- 2. Siswa akan mengandalkan software geogebra secara terus menerus. Namun, software ini dalam penerapan ini hanya berperan sebagai pembantu , sehingga rumus manual tetap diterapkan
- 3. Kreativitas siswa dalam mengembangkan rumus kurang. Namun, bayangan siswa dalam materi dimensi tiga sangat real dan dapat terbayangkan jelas

7. Tinjauan Materi Dimensi Tiga Tabel 2. 1 KD dan IPK

Kompetensi Dasar	Indikator Pecapaian Kompetensi		
3.1 Mendeskripsikan jarak	3.1.1	Mengidentifikasi kedudukan titik,	
dalam ruang (antar		garis , dan bidang	
titik,titik ke garis, dan	3.1.2	Mengidentifikasi jarak antar titik	
titik ke bidang)		dalam ruang	
	3.1.3	Mengidentifikasi jarak dari titik ke	
		garis dalam ruang	
	3.1.4	Mengidentifikasi jarak dari titik ke	
		bidang dalam ruang	
	3.1.5	1.5 Mengidentifikasi jarak garis yang	
		saling sejajar	
	3.1.6	Mengidentifikasi jarak dua bidang	
		yang sejajar	
4.1 Menentukan jarak dalam	4.1.1	Menentukan jarak antar titik	
ruang (antar titik,titik ke		dalam ruang	
garis, dan titik ke bidang)	4.1.2	Menyelesaikan masalah yang	
		berkaitan dengan jarak antar titik	
		dalam ruang	


4.1.3	Menyelesaikan masalah yang
	berkaitan dengan jarak dari titik
	ke garis dalam ruang
4.1.4	Menyelesaikan masalah yang
	berkaitan dengan jarak dari titik
	ke bidang dalam ruang
4.1.5	Menyelesaikan masalah yang
	berkaitan dengan jarak garis yang
	saling sejajar
4.1.6	Menyelesaikan masalah yang
	berkaitan dengan jarak bidang
	yang saling sejajar

a. Materi Dimensi Tiga

1. Definisi Dimensi Tiga

Dimensi tiga adalah imu yang mempelajari elemenelemen pada bangun ruang seperti ukuran, titik, jarak , dan sudut.

Dalam mempeajari materi ini kita harus tahu terlebih dahulu rumus pythagoras yaitu :

b

$$c^2 = b^2 + a^2$$

Keterangan:

c = sisi miring

b = sisi tegak

a = sisi alas

- 2. Rumus Dimensi Tiga Mencari Jarak
 - Mencari jarak antar titik

Yaitu dengan menggabungkan dua titik koordinat

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

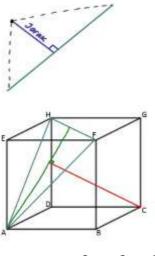
keterangan:

d = jarak antar titik

 x_1 = koordinat x titik 1

 x_2 =koordinat x titik 2

 y_1 = koordinat y titik 1


 y_2 = koordinat y titik 2

Untuk mencari jarak kita ambil jarak paling dekat

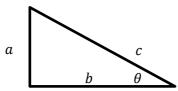
• Mencari jarak titik dengan garis atau bidang

Cara menetukan jarak terdekat adalah dengan mencari garis dari titik ke garis yang membentuk siku-siku

Untuk mencari jarak titik ke garis menggunakan rumus pytagoras

 $c^2 = b^2 + a^2$

keterangan:


c = sisi miring

b = sisi tegak

 α = sisi alas

3. Rumus Dimensi Tiga Mencari Besar Sudut Besar sudut dalam dimensi tiga bisa di tentukan engan fungsi trigonomotri seperti $sin\theta$, $cos\theta$, $tan\theta$.

Pada segitiga siku- siku berlaku:

$$sin\theta = rac{depan}{miring} = rac{a}{c}$$
 $cos\theta = rac{samping}{miring} = rac{b}{c}$
 $tan\theta = rac{depan}{samping} = rac{a}{b}$

B. Kajian Penelitian yang Relevan

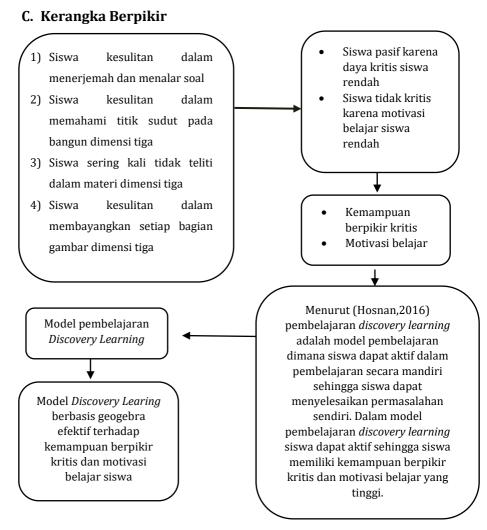
Sebagai bahan pertimbangan dalam penelitian ini, peneliti mempelajari dan mengkaji beberapa penelitian yang berkaitan dengan penelitian ini. Hal ini dilakukan untuk menghindari persamaan objek dan sebagai bahan acuan kerangka teoritik pada penelitian ini.

Adapun penelitian-penelitian tersebut adalah sebagai berikut:

 Penelitian Citra Fuji Geovani Tampubolon, Suprapto Manurung, Ropinus Sidabutar dalam Journal Of Matematics Education and Science tahun (2022) yang berjudul "Pengaruh Model *Discovery Learning* Terhadap Kemampuan Berpikir Kritis Matematis Siswa Pada Materi Pola Bilangan di Kelas VIII SMP Negeri 5 Pematangsianar" (Tampubolon et al., 2022).

Hasil penelitian menunjukan bahwa terdapat perbedaan yang signifikan model pembelajaran discovery learning terhadap kemampuan berfikir kritis matematis siswa pada materi pola bilangan di kelas VIII SMP Negeri 5 Pematangsiantar. Perbedaan penelitian tersebut dengan penelitian vang dilakukan penulis adalah dari segi tujuannya. Peneliti tersebut memiliki tujuan untuk mengetahui pengaruh model discovery learning terhadap kemampuan berpikir kritis matematis siswa pada materi pola bilangan, sedangkan penelitian yang akan dilakukan bertujuan untuk mengetahui efektivitas model discovery learning berbantuan geogebra terhadap kemampuan berpikir kritis dan motivasi belajar siswa. Selain itu pada penelitian tersebut peneliti tidak menggunakan media pembelajaran vang mendukung model *discovery* learning, sehingga dalam penelitian yang akan di inisiatif lakukan . penulis memeiliki untuk menambahkan suatu model pembelajaran, karena pembelajaran diharapkan dengan media akan memuculkan kemampuan berikir kritis siswa.

 Penelitian yang dilakukan Devita Anjarwati, Dadang Juandi, Elah Nurlaelah, dan Aan Hasanah pada Jurnal Cendekia: Jurnal Pendidikan Matematika tahun (2022) yang memiliki judul "Pengaruh Model *Discovery Learning* Berbantuan Geogebra Terhadap Kemampuan Berpikir Kritis Matematis Siswa" (Anjarwati et al., 2022).


Hasil penelitian menunjukkan adanya berbedaan yang drastis model pembelajaran discovery learning berbantuan geogebra terhadap kemampuan berpikir dibandingkan kritis matematis siswa dengan pembelajaran model konvensional. penerapan Perbedaan penelitian tersebut dengan penelitian yang akan dilakukan adalah dari segi tujuannya. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh model *discovery learning* berbantuan terhadap kemampuan berpikir kritis matematis siswa, sedangkan penelitian yang akan dilakukan memiliki tujuan untuk mengetahui efektivitas model discovery learning berbasis geogebra terhadap kemampuan berpikir kritis dan motivasi belajar siswa. Selain itu, pada penelitian tersebut, peneliti tidak menyebutkan materi yang digunakan dalam model discovery learning, sedangkan dalam penelitian yang akan dilakukan penulis menyebutkan materi yang akan digunakan dalam model discovery learning yaitu dimensi tiga . Pada penelitian tersebut peneliti juga tidak meneliti mengenai afektif yang muncul sedangkan penelitian

- yang akan datang meneliti juga kemampuan afektif yang muncul yaitu motivasi belajar.
- 3. Penelitian yang dilakukan oleh Tota Martaida dkk dalam IOSR Journal of Research & Method in Education tahun (2017) dengan judul "The Effects of Discovery Learning Model on Student's Critical Thinking and Cognitive Ability in Junior High School" (Martaida et al., 2017).

Hasil penelitian tersebut adalah kemampuan thinking kognitif critical dan siswa dengan menggunakan model discovery learning lebih baik daripada kemampuan critical thinking dan kognitif didik kemampuan peserta dengan menggunakan pembelajaran konvensional. Atas dasar tersebut, maka pada penelitian yang sudah dilakukan, peneliti memilih menggunakan model *discovery* learning. Akan tetapi dalam penelitian yang dilakukan, peneliti memilih untuk mengambil variabel terikat berupa kemampuan berpikir kritis konsep dan motivasi belajar siswa. Selain itu, penulis juga menggunakan media pembelajaran berupa media geogebra , karena dengan berbantuan media pembelajaran kemampuan berpikir kritis siswa akan lebih meningkat.

4. Penelitian yang dilakukan oleh Rinniwati Sinaga dkk dalam Journal of Mathematics Education and Applied tahun (2022) yang berjudul "Efektivitas Pendekatan Open-Ended Dengan Model *STAD (Student Teams Achievement Divisions)* Terhadap Kemampuan Berpikir Kritis Matematis Siswa Pada Materi Sistem Persamaan Linear Dua Variabel (SPLDV) kelas VIII SMP Gajah Mada Medan T.P. 2022/2023"(Sinaga, 2022).

Hasil dari penelitian ini menunjukan bahwa bahwa pembelajaran dengan pendekatan Open-Ended dengan model STAD (Student Team Achievement Divisions) efektif terhadap kemampuan berpikir kritis matematis siswa pada materi sistem persamaan linear dua variabel kelas VIII SMP Gajah Mada Medan T.P 2022/2023. Pada penelitian tersebut peneliti menyatakan bahwa penelitian yang dilakukan hanya terbatas pada materi SPLDV saja, kemudian pendekatan Open-Ended dengan Model STAD (Student Teams Achievement Divisions) yang dilakukan hanya terbatas untuk kemampuan berpikir kritis saja. Selain itu dalam penelitian tersebut tidak ada media pembelajaran yang mendukung, maka penelitian yang akan dilakukan penulis memiliki inisiatif untuk menggunakan media pembelajaran karena diharapkan meningkatkan kemampuan berpikir kritis siswa.

Gambar 2. 2 Kerangka Berpikir

D. Hipotesis Penelitian dan/atau Pertanyaan Penelitian

Berdasarkan kajian teori dan kerangka berpikir yang telah di paparkan diatas, dapat dirumuskan hipotesis sebagai berikut:

- Model discovery learning berbantuan geogebra efektif terhadap kemampuan berpikir kritis siswa kelas XII MAN 2 Kota Semarang.
- 2. Model pembelajaran *discovery learning* berbantuan geogebra efektif terhadap motivasi belajar siswa kelas XII MAN 2 Kota Semarang.

Penelitian ini di katakan efektif apabila:

- 1. Penelitian ini dikatakan efektif jika kemampuan berpikir kritis siswa dengan menggunakan model discovery learning berbantuan geogebra lebih baik dibandingkan dengan model pembelajaran yang di gunakan guru pengampu.
- 2. Penelitian ini dikatakan efektif jika motivasi belajar siswa dengan menggunakan model *discovery learning* berbantuan geogebra lebih baik dibandingkan dengan model pembelajaran yang di gunakan guru pengampu.

BAB III

METODE PENELITIAN

A. Jenis Penelitian

Jenis penelitian yang diterapkan adalah pendekatan kuantitatif. Metode ini disebut kuatitatif karena menggunakan analisis statistik. Penelitian yang bersifat statistik dan positivisme merupakan pengertian dari penelitian kuantitatif (Sugiyono, 2018b).

Penelitian ini digolongkan kedalam desain penelitian *True Experimental Design*. Menurut Sugiyono (2017) dikatakan *true-experimental* (benar- benar ekperimen), karena dalam design ini, hal yang mempengaruhi dari luar seperti variable luar akan di kontrol oleh peneliti. Dengan hal tersebut maka kualitas pelaksanaan rancangan penelitian dapat dihasilkan tinggi. Ciri utama dari design *true-experimental* adalah pengambilan sampel secara random dari populasi tertentu yang digunakan sebagai kelas eksperimen dan kontrol.

Rancangan eksperimen yang diterapkan yaitu menggunakan bentuk *Posttest only control group design*, pemilihan kelompok dilakukan secara acak. Kedua kelompok akan dipilih secara acak, dan seluruh populasi akan menjalani tes awal untuk menilai kondisi awal dan mendeteksi apakah terdapat Distingsi atau perbedaan antara kelompok eksperimen dan kelompok kontrol, tes awal dikatakan baik

apabila skor kelompok eksperimen dan kontrol tidak jauh berbeda (Sugiyono, 2018a). Dalam pengambilan kelas eksperimen dan kelas kontrol akan dipilih dengan metode pengambilan menggunakan sampel acak cluster random berkelompok atau sampling, Kelas mendapatkan perlakuan eksperimen akan khusus. mengikuti sementara kelas kontrol akan metode pembelajaran yang biasa diterapkan oleh guru pengampu.

Adapun pola design penelitian ini menurut Sugiyono (2017) adalah:

Tabel 3. 1 Desain Penelitian

Posttest only control group design

Eksperim	en R ₁	X	O_1		
Kontrol	R_2	С	O_2		

Keterangan:

 R_1 =Kelas ekperimen

 R_2 =Kelas Kontrol

 O_1 = Pengukuran posttest kemampuan berpikir kritis dan motivasi belajar siswa kelas eksperimen

 ${\cal O}_2$ = Pengukuran posttest kemampuan berpikir kritis dan motivasi belajar siswa kelas eksperimen

X =Perlakuan terhadap kelas eksperimen menggunakan model *Discovery Learning* berbantuan geogebra

C =Kontrol terhadap perlakuan

B. Tempat dan Waktu Penelitian

1. Tempat penelitian

Penelitian ini dilakukan di Madrasah Aliyah Negeri (MAN) 2 Kota Semarang, yang berlokasi di Jalan Bangetayu Raya No.1, Bangetayu Kulon, Kecamatan Genuk, Kota Semarang, Jawa Tengah 50115.

2. Waktu penelitian

Penelitian ini dilaksanakan pada saat semester ganjil tahun pelajaran 2023/2024.

C. Populasi dan Sampel Penelitian

1. Populasi Penelitian

Populasi pada penelitian ini adalah peserta didik kelas XII MAN 2 Kota Semarang yang terdiri dari lima kelas MIPA.

2. Sampel Penelitian

Sampel dalam penelitian ini melibatkan siswa kelas XII MIPA 5 dan XII MIPA 6, di mana kelas MIPA 6 berperan sebagai kelompok eksperimen, sementara kelas MIPA 5 berfungsi sebagai kelompok kontrol. Pengambilan sampel dilakukan menggunakan metode pemilihan sampel dalam bentuk *cluster random sampling* atau secara acak.

Pendekatan ini dipilih karena tidak ada perbedaan yang signifikan antara kelas populasi dalam hal distribusi normal, homogenitas, dan kesamaan rata-rata.

D. Definisi Operasional Variabel

- Variabel Bebas (Independent Variable)
 Variable bebas pada penelitian ini adalah model Discovery Learning berbantuan geogebra.
- Variabel Terikat (Dependent Variable)
 Variable terikat pada penelitian ini adalah kemampuan berpikir kritis dan motivasi belajar.

Indikator dalam kemampuan berpikir kritis menurut Facione (2015) adalah sebagai berikut:

- 1.) *Interpretation*, yaitu kemampuan untuk memahami dan memaknai permasalahan.
- 2) *Analisys*, yaitu kemampuan untuk mengidentifikasi permasalahan.
- 3) *Evalution*, yaitu kemampuan untuk merepresentasi ulang permasalahan sehingga dapat di piker logika.
- 4) *Inference*, yaitu kemapuan untuk mencari hal-hal yang dibutuhkan untuk menarik kesimpulan
- 5) *Explanation*, yaitu kemampun untuk memberikan alasan logis dalam sebuah permasalahan.

6) *Self regulation*, yaitu kemampuan untuk memantau atau memonitoring kegiatan kognitif seseorang dalam menyelesaikan permasalahan.

Menurut Wahyudin Nur Nasution (2018) Indikator-indikator dalam Motivasi belajar diantaranya:

- 1) Kesadaran diri dan keinginan untuk belajar
- 2) Tekun berusaha dan bekerja keras
- 3) Pantang menyerah untuk lebih baik
- 4) Berani bersaing untuk menggapai prestasi

E. Teknik dan Instrumen Pengumpulan Data

Ada beberapa metode atau teknik pengumpulan data yang digunkan dalam penelitian ini, diantaranya:

1) Angket

Menurut Sugiyono (2018a) Angket adalah teknik pengumpulan data dimana responden di berikan kesempatan untuk menjawab seperangkat pertanyaan yang diberikan.

Metode angket pada penelitian ini di gunakan untuk mengumpulkan data motivasi belajar kelas eksperimen. Penyusunan angket di dasarkan dengan penggunaan model discovery learning berbasis Geogebra dan indikator motivasi belajar serta penyataan untuk mengetahui motivasi belajar siswa.

Dalam penelitian ini model angket yang di gunakan adalah angket berbentuk skala Likert yaitu angket yang didalamnya telah di berikan pertanyaan dan jawaban responden di berikan pilihan antara sangat setuju, setuju, tidak setuju dan sangat tidak setuju.

Tabel 3. 2 Penskoran Angket Motivasi Belajar

Jawaban	Skor	Skor	
	Pernyataan	Pernyataan	
	Positif	Negatif	
Sangat Setuju	4	1	
Setuju	3	2	
Tidak Setuju	2	3	
Sangat Tidak	1	4	
Setuju			

2) Tes

Menurut Supardi (2017) Tes adalah suatu metode untuk mengukur pengetahuan, sikap, ketrampilan, kemampuan, intelegensia, kecerdasan, atau bakat yang dimiliki individu atau kelompok dengan menggunakan beberapa petanyaan dan pernyataan atau latihan. Permasalahan ini diberikan kepada kelas eksperimen dan kelas kontrol. Hal tersebut diberikan untuk mengetahui tingkat kemampuan berpikir kritis dan motivasi belajar pada materi dimensi tiga sebelum atau sesudah menggunakan model discovery

learning berbantuan geogebra. Kelas yang menjadi objek penelitian akan diberikan tes berupa tes awal dan posttest. Dikatakan efektif apabila penelitian ini terdapat peningkatan kemampuan berpikir kritis dan Motivasi Belajar peserta didik dilihat nilai rata-rata tes kemampuan berpikir kritis dan motivasi belajar matematika yang menggunakan model *discovery learning* berbantuan geogebra lebih tinggi dibandingkan dengan nilai rata-rata tes kemampuan pada metode berpikir kritis dan motivasi belajar matematika dengan model yang biasa digunakan oleh guru pengampu .

F. Validitas dan Rehabilitas Instrumen

1. Kemampuan berpikir kritis

Analisis instrument penelitian dilakukan untuk mengevaluasi kualitas pertanyaan yang diujikan. Beberpa tahap yang harus di ujikan anatar lain: Uji Validitas, Uji Reliabilitas, Tingkat Kesukaran, dan Daya Beda.

a. Uji Validitas

Adapun rumus untuk menguji validitas dalam penelitian ini adalah sebagai berikut (Sudijono, 2015):

$$r_{xy} = \frac{N \sum XY - (\sum X)(\sum Y)}{\sqrt{[N \sum X^2 - (\sum X)^2] [N \sum Y^2 - (\sum Y)^2]}}$$

Keterangan:

 r_{xy} = koefisien korelasi antara variable x dan variabel

y

N = banyaknya peserta didik

 $\sum X = \text{jumlah skor item}$

 $\sum Y = \text{jumlah skor total}$

 $\sum YZ$ = jumlah perkalian X dan Y

Hasil r_{XY} yang diperoleh di bandingan dengan r_{tabel} yang derajat bebasnya = (n-2) dengan taraf signifikansi 5%. Instrumen dikatakan valid jika $r_{XY} > r_{tabel}$.

b. Uji Reliabilitas

Uji reliabilitas pada penelitian ini menggunakan uji *Alpha Cronbach* (Sudijono, 2015) dengan rumus sebagai berikut:

$$r_{11} = \left(\frac{n}{n-1}\right) \left(1 - \frac{\sum_{i=1}^{2} s_{i}^{2}}{s_{t}^{2}}\right)$$

keterangan:

 r_{11} = koefisien relibilitas tes

n = banyaknya butir item yang dikeluarkan dalam tes

1= bilangan konstanta

 $\sum s_i^2$ = jumlah varian skor dari tiap-tiap butir item

 s_t^2 = varians total

Kriteria reliabilitas intrumen dapat dilihat pada tabel 3.3

Tabel 3. 3 Kriteria Koefisien Korelasi Reliabilitas

Koefisien	Korelasi	Interpretasi
Korelasi		Reliabilitas
$0.90 \le r \le 1.00$	Sangat tinggi	Sangat tetap
$0.70 \le r < 0.90$	Tinggi	Tetap
$0.40 \le r < 0.70$	Sedang	Cukup tetap
$0.20 \le r < 0.40$	Rendah	Tidak tetap
r < 0,20	Sangat rendah	Sangat tidak
		tetap

(Lestari & Yudhanegara, 2017)

c. Tingkat Kesukaran

Angka indeks kesukaran soal dapat diperoleh dengan menggunakan rumus yang dikemukakan oleh Anas Sudijono (2015):

$$P = \frac{X}{SMI}$$

Keterangan:

P: Angka indeks kesukaran

 $ar{X}$: Rata-rata jawaban peserta didik pada suatu butir soal

SMI : Skor maksimum suatu butir soal

Indeks kesulitan pertanyaan akan diinterpretasikan, seperti yang dijelaskan oleh Robert L. Thordike dan Elisabeth Hagen dalam buku mereka yang berjudul "Measurement and Evaluation in Psychology and

Education" (Sudijono, 2015) mengemukakan sebagai berikut:

Tabel 3. 4 Kriteria Tingkat Kesukaran

Besar P	Interpretasi	
$0.00 < TK \le 0.30$	Sukar	
$0.30 < TK \le 0.70$	Cukup (Sedang)	
TK > 0.70	Mudah	

d. Daya Pembeda

Untuk menilai seberapa baik angka indeks diskriminasi kemampuan siswa tinggi, sedang, dan rendah (Lestari dan Yudhanegara, 2017). dilakukan uji daya pembeda dengan mengaplikasikan rumus daya beda (Sudijono, 2015) sebagai berikut:

$$D = \frac{X_A - X_B}{SMI}$$

Keterangan:

D: angka indeks daya beda item soal

 X_A : rata-rata skor jawaban kelompok atas

 X_B : rata-rata skor jawaban kelompok bawah

SMI: skor maksimum yang di peroleh suatu soal

Tabel 3. 5 Kriteria Indeks Daya pembeda

Besarnya angka	Klarifikasi	Interperetasi
indeks diskriminasi		
item (D)		
$0.00 < DB \le 0.20$	Poor	Jelek
$0.20 < DB \le 0.40$	Satisfactory	Sedang
$0,40 < DB \le 0,70$	Good	Baik
DB > 0,70	Excellent	Sangat Baik

Kriteria soal yang akan digunakan untuk mengetahui kemampuan berpikir kritis siswa adalah Rentang $20 < DB \le 0,40$ diartikan sebagai tingkat sedang, sementara rentang $0,40 < DB \le 0,70$ diartikan sebagai tingkat baik.

G. Teknik Analisis Data

1.) Teknik Analisis Data Awal (*Tes Awal*)

Dalam melihat kondisi awal sama atau tidak, maka di gunakan analisis tahap awal pada kemampuan berpikir kritis dan motivasi belajar.

Analisis data pada tahap awal bertujuan untuk menilai apakah beberapa kelas populasi memiliki kondisi awal yang serupa atau tidak. Analisis ini menggunakan nilai tes awal kemampuan berpikir kritis dan motivasi belajar baik di kelas eksperimen maupun di kelas kontrol, pengujian ini mencakup:

a) Uji Normalitas

Untuk mengetahui kelas berdistribusi normal atau tidak maka diperlukan uji normalitas, sehingga terlihat kemampuan berpikir kritis dan motivasi belajar siswa kelas XII MIPA 1-6 apakah berdistribusi normal atau tidak pada nilai tes awal.

Rumus yang digunakan adalah $Chi - Kuadrat(X^2)$ hipotesis yang digunakan sebagai berikut:

 H_0 = data berdistribusi normal

 H_1 = data tidak berdistribusi normal

Langkah-langkah pengujian normalitas terdiri dari:

- a) Merapikan data dan menghitung rentang, yaitu selisih antara nilai maksimum dan minimum.
- b) Menentukan jumlah kelas interval (k)

$$.k = 1 + 3.3 \log n$$

c) Menentukan banyaknya kelas interval

$$P = \frac{Rentang}{banyak \ kelas \ interval}$$

- d) Menyusun tabel data dengan mengelompokkan ke dalam kelas interval.
- e) Menghitung nilai rata-rata dan deviasi standar atau simpangan baku

$$\bar{x} = \frac{\sum x_i}{\sum f_i} \operatorname{dan} S = \sqrt{\frac{n \sum x_t^2 - (\sum x_i)^2}{n(n-1)}}$$

f) Menghitung nilai z_i ari masing-masing batas menggunakan rumus :

$$z_i = \frac{x_i - \bar{x}}{N}$$
 untuk $i = 1, 2, 3, ..., m$

- g) Mengubah harga z ke luar area kurva normal dengan memanfaatkan tabel
- h) Menghitung frekuensi yang diharapkan berdasarkan kurva dengan:

 $Chi - Kuadrat(X^2)$

$$X^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

Keterangan:

 X^2 = Chi-Kuadrat

 O_i = frekuensi yang di perolrh dari data penelitian E_i = Frekuensi yang diharapkan

k= banyaknya kelas

- i) Memmbandingkan harga Chi Kuadrat dengan tabel Chi Kuadrat dengan tafaf signifikasi 5%
- j) Menarik kesimpulan, jika $X_{hitung}^2 < X_{tabel}^2$ maka H_o diterima artinya data populasi berdistribusi normal. Jika $X_{hitung}^2 \ge X_{tabel}^2$ maka H_o ditolak artinya data populasi tidak berdistribusi normal dengan taraf signifikansi 5% dan dk-(k-1).

b) Uji Homogenitas

Uji homogenitas dimaksudkan untuk menguji apakah data yang diteliti memiliki karakter yang sama atau tidak (Nuryadi et al., 2017). Dalam penelitian ini akan

menggunakan uji Barlett. Langkah-langkah uji Barlett adalah sebagai berikut:

- Menghitung derajat kebebasan (dk) masingmasing kelompok
- 2) Menghitung varians (s) masing-masing kelompok
- 3) Menghitung besarnya $\log S^2$ untuk masing masing kelompok
- 4) Menghitung besarnya $dk.\log S^2$ untuk masing-masing kelompok.
- 5) Menentukan varians gabungan semua

$$S_{gab}^2 = \frac{\sum dk S_i^2}{\sum dk}$$

Dengan $\sum dk (log S_{gab}^2)$

Menghitung nilai B (nilai Barlett) dengan rumus $B=\sum dk (log S_{qab}^2)$

- 6) Menentukan $logS_{qab}^2$
- 7) Menentukan nilai B(Barlett) dengan $B = \sum dk (log S_{qab}^2)$
- 8) Menentukan nilai dengan statistic chi kuadrat $X^2 = (ln10)[B \sum dk(logS_i^2]$
- 9) Menetukan X_{tabel}^2 dengan dk = n 1 = 6 1 = 5, diperoleh $X_{tabel}^2 = 11,070$

Hipotesis:

$$H_0$$
: $\sigma_1^2 = \sigma_2^2 = \dots = \sigma_6^2$ (variansi homogen)

$$H_1: \sigma_1^2 \neq \sigma_2^2 \neq \cdots \neq \sigma_6^2$$
 (variansi tidak homogen)

Kriteria pengujian sebagai berikut:

Jika $X_{hitung}^2 \ge X_{tabel(1-a;db=n-1)}^2$, maka H_0 di tolak dan jika $X_{hitung}^2 < X_{tabel(1-a;db=n-1)}^2$, maka H_0 di terima.

c) Uji Kesamaan Rata-rata

Untuk menilai rata-rata dari seluruh populasi pada tahap awal, dilakukan uji kesamaan rata-rata. Data yang digunakan adalah nilai pretest yang telah diuji normalitas dan homogenitas. Uji kesamaan rata-rata pada tahap awal dalam penelitian ini menggunakan uji ANOVA satu arah (one way ANOVA) yang dikemukakan oleh Lestari & Yudhanegara (2017) Langkah-langkah uji kesamaan rata-rata meliput:

1. Merumuskan hipotesis, yakni:

 H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$, tidak terdapat perbedaan kemampuan berpikir kritis antar populasi.

 H_1 : Minimal atauu jika setidaknya satu tanda sama dengan tidak terpenuhi, menunjukkan adanya perbedaan dalam kemampuan berpikir kritis antara populasi. Berikut hasil perhitungan uji kesamaan rata-rata..

2. Mencari Jumlah kuadrat antar kelompok (JK_A) Rumusnya,

$$(JK_A) = \left(\sum_{i=1}^k \frac{(\sum X_i)^2}{n_i}\right) - \frac{(\sum X_T)^2}{n_T}$$

3. Menentukan jumlah kuadrat dalam kelompok (JK_D)

$$(JK_D) = \sum_{i=1}^{k} \left(\sum X_i^2 - \frac{(\sum X_i)^2}{n_i} \right)$$

4. Menentukan jumlah kuadrat total (JK_T)

$$(JK_T) = \sum X_T^2 - \frac{\left(\sum X_T\right)^2}{n_T}$$

5. Menentukan derajat kebebasan (d_k)

$$dk_A = k - 1$$
$$dk_D = n_T - k$$
$$dk_T = n_T - 1$$

6. Menentukan rata-rata jumlah kuadrat

$$RJK_A = \frac{JK_A}{dk_A}$$

$$RJK_D = \frac{JK_D}{dk_D}$$

7. Menentukan F_{hitung}

$$F_{hitung} = \frac{RJK_A}{RJK_D}$$

8. Menenetukan nilai kritis

$$F_{tabel} = F_{(a)(dk_A)(dk_D)}$$

9. Kriteria pengujiannya

Jika nilai $F_{hitung} < F_{tabel}$, maka H_0 diterima, sehinga pada taraf keperayaan 95% tidak ada perbedaan kemmapuan berpikir kritis

2.) Teknik Analisis Data Akhir (Posttest)

Analisis pada tahap akhir dilakukan untuk mengidentifikasi perbedaan dalam nilai rata-rata antara kelas eksperimen dan kelas kontrol.

- 1. Kemampuan Berpikir Kritis
- a) Uji Normalitas

Langkah-langkah uji normalitas.

Rumusnya adalah $Chi-Kuadrat(X^2)$ hipotesisnya sebagai berikut :

 H_0 = data berdistribusi normal

 H_1 = data tidak berdistribusi normal

Langkah-langkah uji normalitas adalah

sebagai berikut:

- 1) Membuat data menjadi runtut dan menentukan rentang yaitu data terbesar dikurangi data terkecil
- 2) Menentukan banyaknya kelas interval (k)

$$k = 1 + 3.3 \log n$$

3) Menentukan panjang kelas interval (P)

$$P = \frac{Rentang}{Banyak \ kelas \ interval}$$

- 4) Membuat tabulasi data kedalam interval kelas
- 5) Menghitung rata-rata dan simpangan baku

$$\bar{x} = \frac{\sum x_i}{\sum f_i} \operatorname{dan} S = \sqrt{\frac{n \sum x_t^2 - (\sum x_i)^2}{n(n-1)}}$$

6) Menghtung nilai z_i dari setiap batas dengan rumus:

$$z_i = \frac{x_i - \bar{x}}{N}$$
 untuk $i = 1, 2, 3, ..., n$

- 7) Mengubah harga z menggunakan tabel
- 8) Menghitung frekuensi harapan berdasarkan kurva dengan:

$$Chi - Kuadrat(X^2)$$

$$X^2 = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i}$$

Keterangan:

$$X^2 = Chi - Kuadrat$$

 O_i = frekuensi yang diperolrh dari data penelitian

 E_i = frekuensi yang diharapkan

k = banyaknya kelas interval

- 9) Membandingkan harga *Chi Kuadrat* dengan tabel *Chi Kuadrat* dengan taraf signifikansi 5%
- 10) Menarik kesimpulan, jika $X_{hitung}^2 < X_{tabel}^2$ maka H_o diterima artinya data populasi berdistribusi normal. Jika $X_{hitung}^2 \ge X_{tabel}^2$ maka H_o ditolak artinya data populasi tidak berdistribusi normal dengan taraf signifikan 5% dan dk-(k-1).

b) Uji Homogenitas

Uji homogenitas digunakan untuk mengetahui apakah data yang diteliti memiliki karakter yang sama atau tidak. Karena data yang berdistribusi normal pada tahap akhir ini ada dua data maka uji yang digunakan yaitu uji F Hipotesis yang digunakan adalah

 $H_0: \sigma_1^2 = \sigma_2^2$, kedua varians homogen

 $H_1: \sigma_1^2 \neq \sigma_2^2$, , kedua varians tidak homogen Kriteria yang digunakan adalah jika $F_{hitung} \geq F_{tabel}$, maka H_0 ditolak dan jika $F_{hitung} < F_{tabel}$ maka H_0 diterima. Rumus yang digunakan yaitu:

$$F_{hitung} = \frac{varians\ terbesar}{varians\ terkecil}$$

c) Uji Perbedaan Dua Rata-rata

Uji ini menggunakan data nilai posttest kemampuan berpikir kritis kelas eksperimen dan kontrol.

Dalam tahap ini, pengujian hipotesis menggunakan rumus uji t-test Lestari dan Yudhanegara (2015) Langkah-langkah pengujian ini adalah:

1. Menentukan hipotesis:

 $H_0: \mu_1=\mu_2$, Tidak terdapat perbedaan ratarata nilai kelompok eksperimen dengan ratarata kelompok kontrol

 $H_0: \mu_1 \neq \mu_2$, Terdapat perbedaan rata-rata nilai kelompok eksperimen dengan rata-rata nilai kelompok kontrol.

Keterangan:

 μ_1 : kelas eksperimen

 μ_2 : kelas control

- 2. Menentukan a = 5 %
- 3. Menentukan kriteria hipotesis yaitu H_0 diterima jika $t_{hitung} > t_{1-a}$ dengan t_{1-a} diperoleh dari tabel distribusi t dengan derajat kebebasan dk = n1 + n2 2 dan tingkat signifikansi (1–a), untuk nilai-nilai t lainnya, hipotesis nol (H0) ditolak.

Adapun rumus yang digunakan apabila $\sigma_1 = \sigma_2$ yaitu:

$$t = \frac{X_1 - X_2}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Dengan

$$s = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

Keterangan:

t = Uji kesamaan rata-rata

 X_1 = Rata-rata kelompok pertama

 \bar{X}_2 = Rata-rata kelompok kedua

s = Varians

 S_1^2 = Varians kelompok pertama

 S_2^2 = Varians kelompok kedua

 n_1 = Jumlah sampel kelompok pertama

 n_2 = Jumlah sampel kelompok kedua

Jika $\sigma_1 \neq \sigma_2$, maka rumus yang digunakan yaitu :

$$t' = \frac{X_1 - X_2}{\sqrt{\left(\frac{{S_1}^2}{n_1}\right) + \left(\frac{{S_2}^2}{n_2}\right)}}$$

Dalam hal ini, H_0 ditolak jika :

$$t' \ge \frac{w_1 t_1 + w_2 t_2}{w_1 w_2}$$

$$w_1 = \frac{{s_1}^2}{n_1}$$
, $w_2 = \frac{{s_2}^2}{n_2}$, $t_1 = t_{(1-a)(n_1-1)}$ dan

 $t_2=t_{(1-a)(n_2-1)}$ Peluang untuk daftar distribusi t adalah (1-a) sedangkan dk-nya masing-masing (n_1-1) dan (n_2-1) .

2. Motivasi Belajar

a. Analisis Uji coba Instrumen Angket Motivasi Belajar Analisis instrumen yang digunakan untuk mengetahui kelayakan instrument angket yang akan digunakan untuk megukurmotivasi belajar antara lain:

1) Uji Validitas

Uji validitas digunakan untuk mengetahui kelayakan instrummen. Rumus yang digunakan adalah *korelasi product moment* . yaitu rumus uji validitas (Sudjono,2015) . Langkah langkahnya sama dengan langkah langkah uji validalitas yang telah diuraikan pada analisis ujicoba instrument kemampuan berpikir kritis. Instrument dikatakan valid jika $r_{XY} > r_{tabel}$.

2) Uji Reliabilitas

Uji reliabilitas digunakan untuk mengetahui reliabilitas instrumen angket. Rumus uji reliabilitas yang digunakan sama dengan rumus uji reliabilitas pada uji coba instrumen tes kemampuan berpikir kritis.

dengan rumus sebagai berikut:

$$r_{11} = \left(\frac{n}{n-1}\right) \left(1 - \frac{\sum_{i=1}^{2} s_{i}^{2}}{s_{t}^{2}}\right)$$

b. Analisis Data Angket Motivasi Belajar

Analisis ini digunakan untuk menguji hasil angket motivasi belajar. Adapun tahap analisis dan rumus nya yaitu sebagai berikut:

1) Uji Normalitas

Uji normalitas digunakan untuk menilai apakah skor motivasi belajar pada kelas eksperimen sebelum dan setelah menerapkan pembelajaran dengan model discovery learning berbantuan geogebra memiliki distribusi normal atau tidak. Rumus yang digunakan adalah $Chi-Kuadrat(X^2)$ hipotesis yang digunakan sebagai berikut:

 H_0 = data berdistribusi normal

 H_1 = data tidak berdistribusi normal

Langkah-langkah uji normalitas adalah sebagai berikut:

- a) Mengatur data dan menetapkan rentang dengan cara mengurangkan data tertinggi dengan data terendah
- b) Menentukan banyaknya kelas interval (k)

$$k = 1 + 3.3 \log n$$

c) Menentukan banyaknya kelas interval (P)

$$P = \frac{Rentang}{Banyak \ kelas \ interval}$$

- d) Membuat tabulasi data kedalam interval kelas
- e) Menghitung rata-rata dan simpangan baku

$$\bar{x} = \frac{\sum x_i}{\sum f_i} \operatorname{dan} S = \sqrt{\frac{n \sum x_t^2 - (\sum x_i)^2}{n(n-1)}}$$

f) Menghtung nilai z_i dari setiap batas dengan rumus:

$$z_i = \frac{x_i - \bar{x}}{N}$$
 untuk $i = 1, 2, 3, ..., n$

- g) Mengubah harga z menjadi luar daerah kurva normal dengan menggunakan table
- h) Menghitung frekuensi harapan berdasarkan kurva dengan:

Chi – Kuadrat
$$(X^2)$$

$$X^2 = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{F}$$

Keterangan:

$$X^2 = Chi - Kuadrat$$

 O_i = frekuensi yang diperolh dari data penelitian

 E_i = frekuensi yang diharapkan

k = banyaknya kelas interval

- i) Membandingkan harga Chi Kuadrat dengan tabel Chi Kuadrat dengan taraf signifikansi
 5%
- j) Menarik kesimpulan, jika $X_{hitung}^2 < X_{tabel}^2$ maka H_o diterima artinya data populasi berdistribusi normal. Jika $X_{hitung}^2 \ge X_{tabel}^2$ maka H_o ditolak artinya data populasi tidak berdistribusi normal dengan alfa 5% dan dk-(k-1).

2) Uji Homogenitas

Uji homogenitas digunakan untuk mengetahui apakah data yang diteliti memiliki karakter yang sama atau tidak. Karena data yang berdistribusi normal pada tahap akhir ini ada dua data maka uji yang digunakan yaitu uji F Hipotesis yang digunakan adalah

 $H_0: \ \sigma_1^2 = \sigma_2^2$, kedua varians homogen $H_1: \ \sigma_1^2 \neq \sigma_2^2$, , kedua varians tidak homogen Kriteria yang digunakan adalah jika $F_{hitung} \geq F_{tabel}$, maka H_0 ditolak dan jika $F_{hitung} < F_{tabel}$ maka H_0 diterima. Rumus yang digunakan yaitu:

$$F_{hitung} = \frac{varians\ terbesar}{varians\ terkecil}$$

3) Uji T-test

Uji t-test dalam penelitian ini digunakan untuk mengetahui perbedaan rata-rata kemampuan berpikir kritis kelas kontrol dan kelas eksperimen. Menurut Lestari dan Yudhanegara (2015) Hipotesis yang digunakan adalah sebagai berikut: $H_0: \mu_1 = \mu_2$, Tidak terdapat perbedaan rata-rata nilai kelompok eksperimen dengan rata-rata kelompok kontrol

 $H_0: \mu_1 \neq \mu_2$, Terdapat perbedaan rata-rata nilai kelompok eksperimen dengan rata-rata nilai kelompok kontrol.

Langkah-langkahnya yaitu:

a) Merumuskan hipotesis

Hipotesis dari uji ini adalah sebagai berikut:

 $H_0: \mu_1=\mu_2$, Tidak terdapat perbedaan ratarata nilai motivasi belajar kelompok eksperimen dengan rata-rata kelompok kontrol $H_0: \mu_1 \neq \mu_2$, Terdapat perbedaan rata-rata nilai motivasi belajar kelompok eksperimen dengan rata-rata nilai kelompok kontrol.

Keterangan:

 μ_1 = rata – rata kelas setelah perlakuan μ_2 = rata – rata kelas setelah perlakuan

- b) Menentukan a = 5 %
- c) Menentukan kriteria penerimaan hipotesis yaitu H_0 diterima jika $t_{hitung} > t_{1-a}$ dengan t_{1-a} didapat dari daftar distribusi t dengan $dk = (n_1 + n_2 2)$ dan peluang (1-a), untuk hargaharga t lainnya H_0 ditolak.

Adapun rumus yang digunakan apabila $\sigma_1 = \sigma_2$ yaitu:

$$t = \frac{X_1 - X_2}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Dengan

$$s = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

Keterangan:

t = Uji kesamaan rata-rata

 X_1 = Rata-rata kelompok pertama

 \bar{X}_2 = Rata-rata kelompok kedua

s = Varians

 S_1^2 = Varians kelompok pertama

 S_2^2 = Varians kelompok kedua

 n_1 = Jumlah sampel kelompok pertama

 n_2 = Jumlah sampel kelompok kedua

BAB IV

DESKRIPSI DAN ANALISIS DATA

A. Deskripsi Hasil Penelitian

Penelitian ini dilakukan di Madrasah Aliyah Negeri 2 Kota Semarang dengan menerapkan true eksperimental design. Pengambilan sampel dilakukan secara acak dengan menggunakan Posttest only control design. Dari seluruh populasi siswa. dua kelas dipilih secara menggunakan metode cluster random sampling. Penelitian ini dimulai pada tanggal 24 Juli - 12 Agustus 2023. Populasi dalam penelitian ini terdiri dari siswasiswa kelas XII MIPA di MAN 2 Kota Semarang pada tahun ajaran 2023/2024, yang terbagi dalam lima kelas, yaitu XII MIPA 1, XII MIPA 2, XII MIPA 3, XII MIPA 4, XII MIPA 5, dan XII MIPA 6. Jumlah keseluruhan siswa adalah 216, dan rinciannya dapat ditemukan dalam Tabel 4.1.

Tabel 4. 1 Data Siswa Kelas XII MIPA

Kelas	Jumlah Siswa
XII MIPA 1	36
XII MIPA 2	36
XII MIPA 3	36
XII MIPA 4	36
XII MIPA 5	36

XII MIPA 6	36

B. Analisis Data

1. Analisis Instrumen Penelitian

Instrumen yang digunakan dalam penelitian ini menggunakan angket motivasi belajar, tes awal, dan posttest. Dalam pengambilan data nilai motivasi belajar dan kemmapuan berpikir kritis diperlukan intrumen yang baik dan layak, oleh karena itu intrumen tersebut terlebih dahulu di uji cobakan pada kelas uji coba yaitu kelas XII tahun sebelumnya, sehingga didapatkan intrumen yang baik dan layak digunakan dalam penelitian ini. Adapun analisis instrument adalah sebagai berikut:

- a) Instrumen Angket Motivasi Belajar
- 1) Uji validitas

Tabel 4. 2 Hasil Uji Validitas Angket Motivasi Belajar

No.	r_{xy}	r_{tabel}	Keterangan
1.	0,410199	0,361	Valid
2.	0,432992	0,361	Valid
3.	0,391912	0,361	Valid
4	0,416308	0,361	Valid
5.	0,583738	0,361	Valid
6.	0,55449	0,361	Valid

7.	0,477214	0,361	Valid
8.	0,42728	0,361	Valid
9.	0,472209	0,361	Valid
10.	0,421705	0,361	Valid
11.	0,446254	0,361	Valid
12.	0,427739	0,361	Valid
13.	0,52015	0,361	Valid
14.	0,711008	0,361	Valid
15.	0,456085	0,361	Valid
16.	0,43606	0,361	Valid
17.	0,664519	0,361	Valid
18.	0,763787	0,361	Valid
19.	0,425436	0,361	Valid
20	0,396372	0,361	Valid
21.	0,392263	0,361	Valid
22.	0,567004	0,361	Valid
23.	0,681136	0,361	Valid
24.	0,50442	0,361	Valid

Berdasarkan tabel 4.2 analisis soal angket pada taraf signifikasi 5% dan df= 30-2 diperoleh r_{tabel} = 0,361. Hasil analisis validitas item soal angket bahwa seluruh butir angket soal Valid karena $r_{xy} > r_{tabel}$.

Berikut adalah contoh perhitungan uji validitas butir angket nomor 1

$$r_{xy} = \frac{n\sum XY - \sum X\sum Y}{\sqrt{(n\sum X^2 - (\sum X)^2)(n\sum Y^2 - (\sum Y)^2)}}$$

$$= \frac{(30)(7750) - (103)(2240)}{\sqrt{((30)(365) - (10609))((30)(169094) - (5017600)}}$$

$$= \frac{232500 - 230720}{\sqrt{((10950) - (10609))((5072820) - (5017600)}}$$

$$= \frac{1780}{\sqrt{(341)(55220)}}$$

$$= \frac{1780}{\sqrt{18830020}}$$

$$= \frac{1780}{4339,35}$$

$$= 0.410$$

Butir angket dikatakan valid apabila $r_{xy} > r_{tabel}$. Pada taraf signifikansi 5% dengan N=30 diperoleh $r_{tabel} = 0,361$. Karena $r_{xy} = 0,410 \ge 0,361$ maka dapat disimpulkan bahwa butir angket tersebut valid. Perhitungan selengkapnya terkait uji validitas angket motivasi belajar. Setelah diperoleh semua butir angket motivasi belajar telah valid, maka langkah selanjutnya adalah uji reliabilitas.

2) Uji Reliabilitas

Uji di tujukan untuk mengetahui Tingkat konsistensi intrumen. Uji reliabilitas pada penelitian

ini menggunakan uji alpha cronchbach dengan rumus Alpha (Sudijono, 2015):

$$r_{11} = \left(\frac{n}{n-1}\right) \left(1 - \frac{\sum_{i}^{2} s_{i}^{2}}{s_{t}^{2}}\right)$$

$$= \left(\frac{24}{24-1}\right) \left(1 - \frac{10,83}{61,35}\right)$$

$$= \left(\frac{24}{23}\right) (1 - (0,1765))$$

$$= (1,043)(0,8235)$$

$$= 0,859$$

Berdasarkan perhitungan untuk angket motivasi belajar $r_{11}=0.859$ dan $r_{tabel}=0.361$. Karena $r_{hitung}>r_{tabel}$ maka setiap item soal tersebut reliabel.

Berdasarkan uji validitas dan reliabilitas 24 pernyataan angket dinyatakan valid dan reliabel sehingga dapat digunkaan untuk mengukur motivasi belajar yaitu nomor 1, 2, 3, 4, 5, 6,7 ,8, 9, 10, 12, 13, 14,15, 16, 17, 18, 19, 20, 21,22, 23, 24.

b) Intrumen Tes

a) Uji Validitas

Pengujian ini bertujuan untuk menentukan apakah suatu pernyataan dalam soal ujian valid atau tidak. Pernyataan yang dianggap tidak valid akan dieliminasi, sementara pernyataan yang dianggap valid akan tetap digunakan. Uji validitas pada penelitian ini peneliti menggunakan korelasi koefisien $product\ moment$, uji tes awal dilakukan dengan melibatkan 30 peserta dan postest dilaksanakan dengan jumlah 30 peserta. Hasil yang diperoleh kemudian di bandingkan dengan harga r $product\ moment$, dengan taraf signifikansi 5%. Jika $r_{xy} < r_{tabel}$ maka instrumen valid, dan jika $r_{xy} < r_{tabel}$ maka instrumen tidak valid. Uji validitas seluruh butir soal tes awal ada pada tabel 4.3

Tabel 4. 3 Uji Validitas Instrument Tes Awal Kemampuan Berpikir Kritis Tahap I

No.	r_{xy}	r_{tabel}	Keterangan
1.	0,28398	0,349	Tidak Valid
2.	0,341496	0,349	Tidak Valid
3.	0,726842	0,349	Valid
4.	0,908635	0,349	Valid
5.	0,786217	0,349	Valid
6.	0,858101	0,349	Valid
7.	0,736878	0,349	Valid

Berdasarkan tabel 4.3 analisis soal tes awal pada taraf signifikasi 5% dan df= 32-2 diperoleh $r_{tabel}=0,349.$ Hasil analisis validitas item soal bahwa 5 butir soal Valid

karena $r_{xy} > r_{tabel}$ dan 2 butir soal Tidak Valid karena $r_{xy} < r_{tabel}$.

Berdasarkan hasil uji validitas pada tahap I yang menunjukkan dua butir soal tidak valid, dilakukan uji validitas tahap II dengan mengeliminasi butir soal yang tidak valid pada tahap I (Sanjaya, 2012). Berikut adalah analisis validitas pada tahap II.

Tabel 4. 4 Uji Validitas intrumen tes awal kemampuan berpikir kritis tahap II

No.	r_{xy}	r_{tabel}	Keterangan
3.	0,783381	0,349	Valid
4.	0,881136	0,349	Valid
5.	0,807201	0,349	Valid
6.	0,850512	0,349	Valid
7.	0,796126	0,349	Valid

Berdasarkan tabel 4.4 analisis soal tes awal tahap kedua pada taraf signifikasi 5% dan df= 32-2 diperoleh $r_{tabel}=0.349$. Hasil analisis validitas soal tes awal kemampuan berpikir kritis menunjukkan semua butir soal dinyatakan valid. Berikut adalah contoh perhitungan uji validitas butir soal pretest nomor 3

$$r_{xy} = \frac{n\sum XY - \sum X\sum Y}{\sqrt{(n\sum X^2 - (\sum X)^2)(n\sum Y^2 - (\sum Y)^2)}}$$

$$= \frac{(32)(3775) - (123)(844)}{\sqrt{((32)(589) - (15129))((32)(26212) - (712336))}}$$

$$= \frac{120800 - 103812}{\sqrt{((18846) - (15129))((838784) - (712336))}}$$

$$= \frac{16988}{\sqrt{(3719)(126448)}}$$

$$= \frac{16988}{\sqrt{470260112}}$$

$$= \frac{16988}{21685,48}$$

$$= 0,783$$

Butir soal tes awal dikatakan valid apabila $r_{xy} \ge r_{tabel}$. Pada taraf signifikansi 5% dengan N=32 diperoleh $r_{tabel} = 0.349$. Karena $r_{xy} = 0.783381 \ge 0.349$ maka dapat disimpulkan bahwa butir soal tes awal tersebut valid. Perhitungan selengkapnya terkait uji validitas tahap kedua terdapat pada lampiran 24.

Analisis validitas seluruh butir soal postest literasi matematis bisa dilihat pada tabel 4.5:

Tabel 4. 5 Uji validitas intrumen posttest kemampuan berpikir kritis Tahap I

No.	r_{xy}	r_{tabel}	Keterangan
1.	-0,0852618	0,361	Tidak Valid
2.	0,75362178	0,361	Valid
3.	0,753956	0,361	Valid
4.	0,614242	0,361	Valid
5.	0,599074	0,361	Valid
6.	0,530091	0,361	Valid

Berdasarkan tabel 4.5 analisis soal angket pada taraf signifikasi 5% dan df= 32-2 diperoleh $r_{tabel}=0,349$. Hasil analisis validitas item soal bahwa 5 butir soal Valid karena $r_{xy}>r_{tabel}$ dan 1 butir soal Tidak Valid karena $r_{xy}< r_{tabel}$.

Berdasarkan hasil uji validitas pada tahap I yang menunjukkan satu butir soal yang tidak valid, dilakukan uji validitas tahap II dengan menghapus butir soal yang tidak valid pada tahap I (Sanjaya, 2012). Berikut adalah analisis validitas pada tahap II

Tabel 4. 6 Uji Validitas intrumen Posttest kemampuan berpikir kritis tahap II

No.	r_{xy}	r_{tabel}	Keterangan
1.	0,632419	0,361	Valid

2.	0,865701	0,361	Valid
3.	0,588887	0,361	Valid
4.	0,720363	0,361	Valid
5.	0,691244	0,361	Valid

Berdasarkan tabel 4.6 analisis soal tes awal pada taraf signifikasi 5% dan df= 32-2 diperoleh $r_{tabel}=0,361$. Hasil analisis validitas soal posttest kemampuan berpikir kritis menunjukkan semua butir soal dinyatakan valid. contoh perhitungan uji validitas butir soal postest nomor 2.

$$r_{xy} = \frac{n\sum XY - \sum X\sum Y}{\sqrt{(n\sum X^2 - (\sum X)^2)(n\sum Y^2 - (\sum Y)^2)}}$$

$$= \frac{(30)(13792) - (299)(1257)}{\sqrt{((30)(3509) - (89401))((30)(60219) - (1580049)}}$$

$$= \frac{413760 - 375843}{\sqrt{((105270) - (89401))((1806570) - (1580049)}}$$

$$= \frac{37917}{\sqrt{(15869)(226512)}}$$

$$= \frac{37917}{\sqrt{3594661749}}$$

$$= \frac{37917}{59955,49}$$

$$= 0.632$$

Butir soal postest dikatakan valid apabila $r_{xy} \ge r_{tabel}$. Pada taraf signifikansi 5% dengan N=32 diperoleh $r_{tabel} = 0.361$. Karena $r_{xy} = 0.632419 \ge 0.361$ maka dapat disimpulkan bahwa butir angket tersebut valid. Perhitungan selengkapnya terkait uji validitas tahap kedua terdapat pada lampiran 41.

b) Uji Reliabilitas

Uji reliabilitas digunakan untuk menilai tingkat konsistensi instrumen. Uji reliabilitas pada penelitian ini menggunakan uji Alfa Cronbach dengan rumus sebagai berikut:

Instrumen dikatakan reliabel apabila $r_{hitung} > r_{tabel}$. Berdasarkan perhitungan untuk tes awal kemampuan berpikir kritis $r_{11} = 0,863$ dan $r_{tabel} = 0,349$. Karena $r_{hitung} > r_{tabel}$ maka setiap item soal tersebut reliabel. Berdasarkan perhitungan untuk posttest kemampuan berpikir kritis $r_{11} = 0,739$ dan $r_{tabel} = 0,361$. Karena $r_{hitung} > r_{tabel}$ maka setiap item soal tersebut reliabel.

$$r_{11} = \left(\frac{5}{5-1}\right) \left(1 - \frac{\sum_{i}^{2} s_{i}^{2}}{s_{t}^{2}}\right)$$

$$= \left(\frac{5}{5-1}\right) \left(1 - \frac{11,45222}{68,51222}\right)$$

$$= \left(\frac{5}{4}\right) (1 - (0,1671)$$

$$= (1,25)(0,8329)$$

$$= 0,863$$

$$r_{11} = \left(\frac{5}{5-1}\right) \left(1 - \frac{\sum_{i}^{2} s_{i}^{2}}{s_{t}^{2}}\right)$$

$$= \left(\frac{5}{5-1}\right) \left(1 - \frac{102,8788}{251,69}\right)$$

$$= \left(\frac{5}{4}\right) (1 - (0,408))$$

$$= (1,25)(0,591)$$

$$= 0,739$$

Berdasarkan uji validitas dan uji reliabilitas instrumen tes awal yang terdiri dari total 7 butir soal, terdapat 5 butir soal yang dianggap valid dan 2 butir soal yang dianggap tidak valid, sedangkan instrumen postest yang terdiri dari 6 butir soal, 5 butir soal dianggap valid, sedangkan 1 butir soal dianggap tidak valid, sehingga terdapat 5 butir soal tes awal yang dapat digunakan untuk mengukur kemampuan berpikir kritis siswa yaitu butir soal nomor 3,4,5,6, dan 7 sedangkan untuk instrumen postest terdapat 5 butir soal yang dapat digunakan untuk mengukur kemampuan berpikir kritis siswa yaitu butir soal nomor 2,3,4,5, dan 6

c) Analisis Tingkat Kesukaran

Uji tingkat kesukaran yaitu suatu bilangan yang menyatakan derajat kesukaran suatu butir soal. Hasil analisis tingkat kesukaran butir soal pretest dengan menggunakan kriteria tingkat kesukaran instrumen pada tabel 3.3 diperoleh hasil pada tabel 4.7

Tabel 4. 7 Hasil uji Kriteria Tingkat Kesukaran Intrumen Tes Awal

No.	Skor	Tingkat	Keterangan
	Kesukaran		
1.	0,295139		Sukar
2.	0,618056		Sedang
3.	0,320313		Sedang
4.	0,6		Sedang
5.	0,302083		Sedang
6.	0,427083		Sedang
7.	0,429688		Sedang

Berdasarkan informasi dari Tabel 4.4, ditemukan bahwa tingkat kesulitan butir soal nomor 1 dari total 7 butir soal pretest termasuk dalam kategori sulit. Hal ini dapat dilihat dari nilai tingkat kesulitan butir soal tersebut yang berada dalam rentang $0.00 < TK \le 0.30$. Sedangkan 6 dari 7 butir soal pretest yaitu 2.3.4.5.6.7 termasuk dalam kategori sedang, karena nilai tingkat kesukaran butir soal tersebut berada pada interval $0.30 < TK \le 0.70$.

Tabel 4. 8 Hasil uji Kriteria Tingkat Kesukaran Intrumen Tes Awal Valid

No.	Skor Tingkat	Keterangan
	Kesukaran	
3.	0,320313	Sedang
4.	0,6	Sedang
5.	0,302083	Sedang
6.	0,427083	Sedang
7.	0,429688	Sedang

Berdasarkan pada Tabel 4.8, dapat diketahui bahwa 5 butir soal memiliki tingkat kesulitan kriteria yang berada pada tingkat sedang. Perhitungan selengkapnya terdapat pada lampiran 30. Berikut adalah contoh perhitungan tingkat kesukaran butir soal nomor 3:

$$TK = \frac{rata - rata \ skor \ item}{skor \ maksimal \ yang \ diterapkan}$$
$$= \frac{3,84375}{12}$$
$$= 0.320$$

Tingkat kesukaran butir soal nomor 3 diperoleh nilai 0,320313 yang berdasarkan kriteria tingkat kesukaran instrumen pada tabel 3.3 maka soal nomor 3 mempunyai tingkat kesukaran sedang. Perhitungan selengkapnya terdapat pada lampiran 30.

Hasil analisis tingkat kesukaran butir soal postest terdapat pada tabel 4.9:

Tabel 4. 9 Hasil Uji Analisis Tingkat Kesukaran Soal Postest

No.	Skor Tingkat Kesukaran	Keterangan
1.	0,405556	Sedang
2.	0,683333	Sedang
3.	0,7	Sedang
4.	0,658333	Sedang
5.	0,277778	Sukar
6.	0,683333	Sedang

Berdasarkan tabel 4.9 dihasilkan bahwa tingkat kesukaran 5 dari 6 butir soal pretest yaitu 1,2,3,4,6 termasuk dalam kategori sedang, karena nilai tingkat kesukaran butir soal tersebut berada pada interval $0,30 < TK \le 0,7$. Sedangkan 1 dari 6 butir soal pretest yaitu nomor 5 termasuk dalam kategori sukar, karena nilai tingkat kesukaran butir soal tersebut berada pada interval $0,00 < TK \le 0,30$.

Tabel 4. 10 Hasil Uji Analisis Tingkat Kesukaran Soal Postest valid

No.	Skor Tingkat Kesukaran	Keterangan
2.	0,553	Sedang
3.	0,546	Sedang

4.	0,391	Sedang
5.	0,366	Sedang
6.	0,474	Sedang

Berdasarkan tabel 4.10 diketahui bahwa terdapat 5 butir soal dengan kriteria sedang.

Perhitungan selengkapnya terdapat pada lampiran 47. Berikut adalah contoh perhitungan tingkat kesukaran butir soal nomor 2:

$$TK = \frac{rata - rata \ skor \ item}{skor \ maksimal \ yang \ diterapkan}$$
$$= \frac{9,966667}{18}$$
$$= 0,553$$

Tingkat kesukaran butir soal postest nomor 2 diperoleh nilai 0,553333 yang berdasarkan kriteria tingkat kesukaran instrumen pada tabel 3.3 maka soal nomor 2 mempunyai tingkat kesukaran sedang. Perhitungan selengkapnya terdapat pada lampiran 47.

d) Analisis Daya Pembeda

Uji daya pembeda soal digunakan untuk mengetahui kemampuan butir soal tersebut membedakan siswa yang mempunyai kemampuan tinggi , kemampuan sedang dengan siswa yang berkemampuan rendah. Berdasarkan kriteria indeks daya pembeda instrumen

pada tabel 3.4 diperoleh analisis daya beda butir soal pretest seluruhnya pada tabel 4.11:

Tabel 4. 11 Kriteria Daya Pembeda Soal Tes Awal tahap 1

No.	Daya Pembeda	Keterangan
1.	0,069444	Jelek
2.	0,083333	Jelek
3.	0,25	Sedang
4.	0,433333	Baik
5.	0,416667	Baik
6.	0,458333	Baik
7.	0,53125	Baik

Berdasarkan tabel 4.11 diperoleh bahwa semua soal memiliki daya pembeda yang berbeda-beda yaitu "jelek" pada nomor 1 dan 2 yang terletak pada interval $0 < DB \le 0,2$. "sedang" pada nomor 3 yang terletak pada interval $0,2 < DB \le 0,4$. "baik" pada nomor 4,5,6,7 yang terletak pada interval $0,4 < DB \le 0,7$.

Tabel 4. 12 Kriteria Daya Pembeda Soal Tes Awal Valid

No.	Daya Pembeda	Keterangan
3.	0,28125	Sedang
4.	0,441667	Baik
5.	0,416667	Baik
6.	0,444444	Baik

7.	0,53125	Baik

Berdasarkan tabel 4.12 diperoleh hasil 4 butir soal berkriteria daya pembeda baik dan satu butir soal berkriteria sedang, perhitungan selengkapnya terdapat pada lampiran 33. Berikut adalah contoh perhitungan daya beda butir soal pretest nomor 3.

$$DP = \frac{\bar{x}kA - \bar{x}k}{skor\ maksimum}$$
$$= \frac{5,5 - 2,125}{12}$$
$$= \frac{3,375}{12}$$
$$= 0.281$$

Berdasarkan kriteria indeks daya pembeda instrumen pada tabel 3.4 soal nomor 3 memiliki daya pembeda sedang, perhitungan selengkapnya terdapat pada lampiran 35.

Analisis daya pembeda butir soal postest seluruhnya terdapat pada tabel 4.13.

Tabel 4. 13 Kriteria Daya Beda Soal Posttest Tahap 1

No.	Daya Beda	Keterangan
1.	0,125	Jelek
2.	0,402778	Baik
3.	0,597222	Baik

4.	0,241667	Sedang
5.	0,446429	Baik
6.	0,506944	Baik

Berdasarkan tabel 4.7 diperoleh bahwa semua soal memiliki daya pembeda yang berbeda-beda yaitu "baik" pada nomor 2,3,5,6, yang terletak pada interval 0,4 < $DB \le 0,7$. "sedang" 0,2 $< DB \le 0,4$ "jelek" pada nomor 1 yang terletak pada interval 0,0 $< DB \le 0,2$.

Tabel 4. 14 Kriteria Daya Beda Soal Posttest Valid

No.	Daya Beda	Keterangan
2.	0,347222	Sedang
3.	0,604167	Baik
4.	0,283333	Sedang
5.	0,428571	Baik
6.	0,548611	Baik

Berdasarkan tabel 4.14 diperoleh hasil 5 butir soal, 3soal berkriteria daya pembeda baik, dan 2 soal berkriteria sedang perhitungan selengkapnya terdapat pada lampiran 43. Berikut adalah contoh perhitungan daya beda butir soal postest nomor 2

$$DP = \frac{\bar{x}kA - \bar{x}k}{skor\ maksimum}$$
$$= \frac{13,75 - 7,5}{18}$$

$$= \frac{6,25}{18}$$
$$= 0.347$$

Berdasarkan kriteria indeks daya pembeda instrumen pada tabel 3.4 soal nomor 2 memiliki daya pembeda sedang, perhitungan selengkapnya terdapat pada lampiran 50.

Berdasarkan hasil uji validitas, uji reliabilitas, tingkat kesukaran soal dan daya pembeda soal diperoleh 5 butir soal yang dijadikan sebagai soal tes awal yaitu 3,4,5,6,7 dan diperoleh 5 butir soal yang dijadikan sebagai soal postest yaitu 2,3,4,5,6.

2. Analisis Data Awal

Analisis data tahap awal pada penelitian ini menggunakan data nilai tes awal siswa. Analisis ini dilakukan untuk menentukan sampel dari semua populasi kelas XII MIPA MAN 2 Kota Semarang berasal dari kondisi awal yang sama atau tidak. Analisis data tahap awal dalam penelitian ini meliputi uji normalitas, uji homogenitas dan uji kesamaan rata-rata.

a) Uji Normalitas

Uji normalitas digunakan untuk mengetahui apakah data berasal dari populasi yang berdistribusi normal atau berada dalam sebaran normal. Uji yang digunakan adalah Uji Chi-Kuadrat. hipotesis yang digunakan sebagai berikut:

 H_0 = data berdistribusi normal

 H_1 = data tidak berdistribusi normal

Kriteria pengujian yang digunakan dalam uji chi-kuadrat ini sebagai berikut: $X_{hitung}^2 < X_{tabel}^2$ maka H_o diterima artinya data populasi berdistribusi normal. Jika $X_{hitung}^2 \geq X_{tabel}^2$ maka H_o ditolak artinya data populasi tidak berdistribusi normal dengan taraf signifikan 5% dan dk-(k-1).. Analisis uji normalitas tahap awal seluruhnya terdapat pada tabel 4.15

Tabel 4. 15 Hasil Analisis Uji Normalitas Tahap Awal

Kelas	X^2_{hitung}	X ² _{tabel}	Keterangan
MIPA 1	5,248845	7,814728	Normal
MIPA 2	7,746332	9,487729	Normal
MIPA 3	6,554264	7,814728	Normal
MIPA 4	7,001053	9,487729	Normal
MIPA 5	7,429584	7,814728	Normal
MIPA 6	7,443564	7,814728	Normal

Berdasarkan tabel 4.15 enam kelas tersebut dinyatakan berdistribusi normal, karena $X_{hitung}^2 < X_{tabel}^2$.

Perhitungan selengkapnya terdapat pada lampiran 60 sampai dengan lampiran 65.

b) Uji Homogenitas

Uji homogenitas dalam penelitian ini digunakan untuk mengetahui apakah data motivasi belajar kelas eksperimen dan kontrol memiliki varians yang sama (homogen) atau tidak. Hipotesis:

$$H_0$$
: $\sigma_1^2 = \sigma_2^2 = \dots = \sigma_6^2$ (variansi homogen)

$$H_1: \sigma_1^2 \neq \sigma_2^2 \neq \cdots \neq \sigma_6^2$$
 (variansi tidak homogen)

Kriteria pngujian sebagai berikut:

Jika
$$X_{hitung}^2 \ge X_{tabel(1-a;db=n-1)}^2$$
, maka H_0 di tolak dan jika $X_{hitung}^2 < X_{tabel(1-a;db=n-1)}^2$, maka H_0 di terima. Untuk data selengkapnya bisa dilihat pada tabel 4.16

Tabel 4. 16 Tabel Penolong Uji Homogenitas Tahap Awal

Kelas	XII	XII	XII	XII	XII	XII
	MIPA	MIPA	MIPA	MIPA	MIPA	MIPA
	1	2	3	4	5	6
dk	33	29	30	36	31	31
S^2	81,004	108,70	89,093	125,,8	116,34	137,02
		4		96	5	9

$logS^2$	1,908	2,036	1,949	2,100	2,056	2,136
dklogS	62,980	59,051	58,495	73,500	64,038	66,241
dkS ²	2673,1	3152,4	2672,8	4406,3	3606,7	4247,9
	43	31	11	72	02	21

Perhitungan homogenitasnya:

1) Varians gabungan dari semua sampel

$$S_{gab}^{2} = \frac{\sum dk S_{i}^{2}}{\sum dk}$$

$$S_{gab}^{2} = \frac{20579,38}{189}$$

$$S_{gab}^{2} = 109,83$$

2) Nilai Barlett

$$B = \sum dk \, (log S_{gab}^2)$$

$$B = 189 (log 109,83)$$

$$B = 385,7022$$

3) Uji Barlett dengan nilai statistic chi-kuadrat

$$X^{2} = (ln10) \left[B - \left(\sum dk \, log S_{i}^{2} \right) \right]$$
$$X^{2} = (ln10) [385,7022 - 384,3073]$$
$$X^{2} = 3,211$$

Berdasarkan perhitungan tersebut diperoleh varians gabungan sebesar 109,838 dengan harga satuan B sebesar 385,7022 sehingga $X_{hitung}^2 = 3,211$, dengan taraf signifikansi 5% dan dk=6-1 diperoleh $X_{tabel}^2 = 11,0705$. Karena $X_{hitung}^2 < X_{tabel}^2$ maka dapat disimpulkan bahwa H_o diterima yang artinya kelas XII MIPA 1, XII MIPA 2, XII MIPA 3, XII MIPA 4, XII MIPA 5, XII MIPA 6 berasal dari populasi dengan kemampuan awal yang sama (homogen). Perhitungan selengkapnya terdapat pada lampiran 66.

c) Uji Kesamaan rata-rata

Uji kesamaan rata-rata ini digunakan untuk menguji apakah ada kesamaan rata-rata antar populasi. Data yang digunakan adalah nilai tes awal yang telah diuji normalitas dan homogenitas. Uji kesamaan rata-rata pada tahap awal dalam penelitian ini menggunakan uji ANOVA satu jalan (one way ANOVA) dengan hipotesis penelitian:

 H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$, tidak terdapat perbedaan kemampuan berpikir kritis antar populasi. H_1 : minimal terdapat satu tanda sama dengan yang tidak terpenuhi, terdapat perpedaan kemampuan berpikir kritis antar populasi. Berikut adalah hasil perhitungan uji kesamaan rata-rata.

	XII MIPA 1		XII MIPA 2		XII MIPA 3		XII MIPA 4		XII MIPA 5		XII MIPA 6	
∑Xi	1887,30		1695,24		1811,11		1974,60		1682,54		1663,49	
(∑Xi) ²	3561907,28		2873832,20		3280123,46		3899057,70		2830939,78		2767205,85	
Σx	10714,29											
∑x²	114795918,37											
n	34		30		31		36		32		32	
Σn/N	195											
∑(Xi) ²		107435,12		98946,84		108483,25		112713,53		92073,57		90723,10
∑x ² T	610375,41											
JKA	919,0114874											
JKT	21678,39215											
JKD	20759,38067											
RJKA	183,8022975											
RJKD	109,8379929											
Fhitung	1,673394538											

Tabel 4. 17 Tabel Penolong Uji Kesamaan Rata-rata

1. Mencari Jumlah kuadrat antar kelompok (JK_A)

F tabel 2,261892421

$$(JK_A) = \left(\sum_{i=1}^k \frac{(\sum X_i)^2}{n_i}\right) - \frac{(\sum X_T)^2}{n_T}$$

$$JK_A = (104761,97 + 95794,40 + 105810,43 + 108307,15 + 88466,86 + 86475,18) - (588697,01)$$

$$JK_A = 919,01$$

2. Menentukan jumlah kuadrat dalam kelompok (JK_D)

$$(JK_D) = \sum_{i=1}^{k} \left(\sum X_i^2 - \frac{(\sum X_i)^2}{n_i} \right)$$

$$JK_D = (21678,39) - (919,01)$$

$$JK_D = 20759,38$$

3. Menentukan jumlah kuadrat total (JK_T)

$$(JK_T) = \sum X_T^2 - \frac{(\sum X_T)^2}{n_T}$$

$$JK_T = (610375,41) - (588697,01)$$

 $JK_T = 21678,38$

4. Menentukan derajat kebebasan (d_k)

$$dk_A = k - 1 = 6 - 1 = 5$$

 $dk_D = n_T - k = 195 - 6 = 189$
 $dk_T = n_T - 1 = 195 - 1 = 194$

5. Menentukan rata-rata jumlah kuadrat

$$RJK_{A} = \frac{JK_{A}}{dk_{A}}$$

$$RJK_{A} = \frac{919,01}{5}$$

$$RJK_{A} = 183,802$$

$$RJK_{D} = \frac{JK_{D}}{dk_{D}}$$

$$RJK_{D} = \frac{20759,38}{189}$$

$$RJK_{D} = 109,837$$

6. Menentukan F_{hitung}

$$F_{hitung} = \frac{RJK_A}{RJK_D}$$

$$F_{hitung} = \frac{183,802}{109,837}$$

$$F_{hitung} = 1,673$$

7. Menenetukan nilai kritis

$$F_{tabel} = F_{(a)(dk_A)(dk_D)}$$

 $F_{tabel} = F_{(0,05)(5)(189)}$

$$F_{tabel} = 2,261$$

Karena nilai $F_{hitung} < F_{tabel}$, maka enam kelas ini memiliki rata-rata yang sama dan dapat dikatakan tidak terdapat perbedaan rata rata dari keenam kelas ini.

- 3. Analisis Data Tahap Akhir
- a. Analisis untuk Motivasi Belajar
- 1) Uji Normalitas

Uji normalitas tahap akhir pada penelitian ini bertujuan untuk memperoleh data kemampuan motivasi belajar siswa sebelum dan sesudah perlakuan berdistribusi normal atau tidak dengan menggunakan rumus uji Liliefors. Hipotesis yang digunakan yaitu:

 H_0 = data berdistribusi normal

 H_1 = data tidak berdistribusi normal

Tabel 4. 18 Data Uji Normalitas Motivasi Belajar Tahap Akhir

Kelas	Rata-rata	t hitung	t _{tabel}	Ket
Kontrol	74,34028	4,6140	7,8147	Normal
Eksperimen	80,10	6,8549	7,8147	Normal

angket motivasi belajar kelas kontrol model pembelajaran konvesional diperoleh rata-rata skor sebesar 74,34028 dan $t_{hitung} = 4,614 \text{ serta}$ $t_{tabel} = 7,8147$ dengan taraf signifikansi 5%, sedangkan data angket motivasi belajar kelas eksperimen diperoleh rata-rata skor sebesar 80,10 dan $t_{hitung} = 6,8549$ serta $t_{tabel} = 7,8147$ dengan taraf signifikansi 5%. Masingmasing data mempunyai $t_{hitung} < t_{tabel}$ yang artinya data kelas eksperimen dan kontrol berdistribusi normal. Perhitungan selengkapnya dapat dilihat pada lampiran 75 dan 76.

Berdasarkan tabel 4.18 diperoleh data bahwa data

b. Uji Homogenitas

Uji homogenitas dalam penelitian ini digunakan untuk mengetahui apakah data motivasi belajar kelas eksperimen dan kelas kontrol memiliki varians yang sama (homogen) atau tidak. Hipotesis yang digunakan adalah

 $H_0: \sigma_1^2 = \sigma_2^2$, kedua varians homogen

 $H_1: \sigma_1^2 \neq \sigma_2^2$, , kedua varians tidak homogen Kriteria yang digunakan adalah jika $F_{hitung} \geq F_{tabel}$, maka H_0 ditolak dan jika $F_{hitung} < F_{tabel}$ maka H_0 diterima. Rumus yang digunakan yaitu:

$$F_{hitung} = \frac{varians \ terbesar}{varians \ terkecil}$$
$$= \frac{97,68244}{53,01749}$$
$$= 1.842456$$

Untuk data selengkapnya bisa dilihat pada tabel 4.19

Tabel 4. 19 Tabel Penolong Uji Homogenitas

Kelas	N	Varian	F_{hitung}	F_{tabel}	Ket
		S			
Kontrol	30	52,202	1,842456	1,8608	Homogen
		3			
Eksperi	30	88,378			
men		02			

Berdasarkan tabel 4.19 dapat dilihat terdapat dua data yaitu data kelas kontrol dan kelas eksperimen dengan jumlah masing-masing 30 dan 30 siswa sehingga diperoleh varians data kelas kontrol sebesar 52,2023 dan varians data kelas eksperimen sebesar 88,37802 sehingga diperoleh nilai $F_{hitung}=1,842456$ dengan taraf signifikansi 5%, d_k pembilang=30-1=29 dan d_k penyebut=30-1=29 diperoleh $F_{tabel}=1,8608$. karena $F_{hitung} < F_{tabel}$ maka H_0 diterima.

Artinya tidak terdapat perbedaan varians antara data kelas kontrol dan data kelas eksperimen atau kedua data tersebut homogen. Perhitungan selengkapnya dapat dilihat pada lampiran 77.

c. Uji T-Test

Uji ini ditujukan untuk mengetahui perbedaan rata-rata motivasi belajar kelas kontrol dan kelas eksperimen. Hipotesis yang digunakan adalah sebagai berikut:

 $H_0: \mu_1=\mu_2$, Tidak terdapat perbedaan rata-rata nilai motivasi belajar kelompok eksperimen dengan rata-rata kelompok kontrol

 $H_0: \mu_1 \neq \mu_2$, Terdapat perbedaan rata-rata nilai motivasi belajar kelompok eksperimen dengan rata-rata nilai kelompok kontrol.

Tabel 4. 20 Uji T-Test Motivasi Belajar Siswa

Perhitungan		t_{hit}	t_{tab}	Ket
Skor	96	2,571	2,007	H ₀ di tolak
maksimal				
angket				
motivasi				
belajar				
Rata-rata	80,104			
Eksperimen				
Rata-rata	74,340			
Kontrol				
Simpangan	9,883			
Baku				
eksperimen				
Simpangan	7,281			
baku Kontrol				
Varians	97,682			
Eksperimen				
Varians	53,017			
Kontrol				

Berikut adalah perhitungan dari uji t-test independent motivasi belajar:

$$t_{hitung} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{(n_1 - 1)xS_1^2 + (n_2 - 1)xS_2^2}{n_1 + n_2 - 2}}x(\frac{1}{n_1} + \frac{1}{n_2})}$$

$$= \frac{5,764}{\sqrt{\frac{(29)(97,682) + (29)(53,017)}{58}}x(\frac{1}{30} + \frac{1}{30})}$$

$$= \frac{5,764}{\sqrt{\frac{2832,778 + 1537,493}{58}}x(\frac{1}{30} + \frac{1}{30})}$$

$$= \frac{5,764}{\sqrt{(75,3495)}x(0,0666)}$$

$$= \frac{5,764}{\sqrt{5,023}}$$

$$= \frac{5,764}{2,241}$$

$$= 2,571$$

Berdasarkan tabel 4.20 diketahui bahwa angket motivasi belajar yang diberikan kepada siswa berjumlah 24 pernyataan dengan skor maksimal setiap pernyataan berjumlah 4 sehingga skor maksimal keseluruhan angket yaitu 96. Pada tabel 4.3 memperlihatkan bahwa Hasil uji t-test diperoleh nilai t_{hitumg} =2,571 taraf signifikansi 5% d_k = 30 – 1 diperoleh t(29;0,05) =

2,007 karena $t_{hitung} > t_{tabel}$, maka H_0 ditolak dan H_1 diterima artinya rata-rata motivasi belajar siswa eksperimen dengan menggunakan pembelajaran discovery learning lebih baik daripada rata-rata kelas kontrol. Perhitungan selengkapnya dapat dilihat pada lampiran 78.

Jadi dapat disimpulkan bahwa model pembelajaran discovery learning berbantuan geogebra efektif terhadap motivasi belajar siswa kelas XII MAN 2 Kota Semarang pada materi dimensi tiga tahun ajaran 2023/2024.

b. Analisis untuk kemampuan Berpikir Kritis

Setelah dilakukan perlakuan berupa model pembelajaran discovery learning pada kelas eksperimen dan metode konvensional pada kelas kontrol, kemudian siswa pada kedua kelas tersebut diberikan soal postest. Hasil data nilai postest kemudian dilakukan analisis yaitu analisis data tahap akhir berupa uji normalitas, uji homogenitas, uji perbedaan rata-rata.

1) Uji Normalitas

Uji normalitas tahap akhir pada penelitian ini bertujuan untuk memperoleh data kemampuan motivasi belajar siswa sebelum dan sesudah perlakuan berdistribusi normal atau tidak dengan menggunakan rumus uji Liliefors. Hipotesis yang digunakan yaitu: H_0 = data berdistribusi normal H_1 = data tidak berdistribusi normal

Tabel 4. 21 Data Uji Normalitas Tahap Akhir

Kelas	T_{hitung}	T_{tabel}	Ket
Eksperimen	9,15945907	9,48772904	Normal
(XII MIPA			
6)			
Kontrol	5,4386701	9,48772904	Normal
(XII MIPA			
5)			

Berdasarkan tabel 4.21 dapat diketahui bahwa kelas eksperimen (XII MIPA 6) diperoleh $T_{hitung} = 9,15945907 \, dan$ $T_{tabel} = 9,48772904$ dengan taraf signifikansi 5%. Pada kelas kontrol (VII A) diperoleh $T_{hitung} = 5,4386701 \text{ dan } T_{tabel} = 9,487729$ dengan taraf signifikansi 5%. Masingmasing data mempunyai $T_{hituna} < T_{tabel}$ yang artinya data pada kelas eksperimen (VII B) dan kelas kontrol (VII A) berdistribusi normal. Perhitungan selengkapnya dapat dilihat pada lampiran 81 dan 82.

2) Uji Homogenitas

Uji homogenitas digunakan untuk mengetahui apakah data yang diteliti memiliki karakter yang sama

atau tidak. Karena data yang berdistribusi normal pada tahap akhir ini ada dua data maka uji yang digunakan yaitu uji F Hipotesis yang digunakan adalah

 $H_0: \sigma_1^2 = \sigma_2^2$, kedua varians homogen

 $H_1: \sigma_1^2 \neq \sigma_2^2$, , kedua varians tidak homogen Kriteria yang digunakan adalah jika $F_{hitung} \geq F_{tabel}$, maka H_0 ditolak dan jika $F_{hitung} < F_{tabel}$ maka H_0 diterima. Rumus yang digunakan yaitu:

$$F_{hitung} = rac{varians\ terbesar}{varians\ terkecil}$$

$$= rac{188,1044}{137,6654}$$

$$= 1.366487$$

Untuk data selengkapnya bisa dilihat pada tabel 4.22

Tabel 4. 22 Tabel Homogenitas tahap akhir

Kelas	N	Varian	F_{hitung}	F_{tabel}	Ket
		S			
Eksperi	32	137,6	1,366	1,7878	Homoge
men		564	487		n
Kontrol	32	188,1			
		044			

Berdasarkan tabel 4.22 dapat dilihat terdapat dua data yaitu data kelas eksperimen dan kelas kontrol dengan jumlah masing-masing 34 dan 34 siswa sehingga diperoleh varians data Eksperimen sebesar 137,6564 dan varians data Kontrol sebesar 188,1044 sehingga diperoleh nilai $F_{hitung}=1,366$ dengan taraf signifikansi 5%, d_k pembilang=34-1=33 dan d_k penyebut g=34-1=33 diperoleh g=34-1

Artinya tidak terdapat perbedaan varians antara data eksperimen dan sesudah perlakuan atau kedua data tersebut homogen. Perhitungan selengkapnya dapat dilihat pada lampiran 83.

3) Uji T-Test

Uji ini digunakan untuk mengetahui perbedaan rata-rata kemampuan berpikir kritis kelas kontrol dan kelas eksperimen. Hipotesis yang digunakan adalah sebagai berikut:

 $H_0: \ \mu_1=\mu_2$, Tidak terdapat perbedaan rata-rata nilai kelompok eksperimen dengan rata-rata kelompok kontrol

 $H_0: \mu_1 \neq \mu_2$, Terdapat perbedaan rata-rata nilai kelompok eksperimen dengan rata-rata nilai kelompok kontrol.

Tabel 4. 23 Uji T-Test Kemampuan Berpikir Kritis

Perhitungan		T_{hit}	T_{tab}	Ket
Skor	90	11,750	1,996	H ₀ di tolak
maksimal				
angket				
kemampuan				
berpikir				
kritis				
Rata-rata	74,58			
Eksperimen				
Rata-rata	38,20			
Kontrol				
Simpangan	11,74			
Baku				
eksperimen				
Simpangan	13,71			
baku				
Kontrol				
Varians	137,6554			
Eksperimen				

Varians	188,1044		
Kontrol			

Berikut adalah perhitungan dari uji t-test independent kemampuan berpikir kritis :

$$t_{hitung} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{(n_1 - 1)xS_1^2 + (n_2 - 1)xS_2^2}{n_1 + n_2 - 2}} x(\frac{1}{n_1} + \frac{1}{n_2})}$$

$$= \frac{36,37}{\sqrt{\frac{(33)(137,6554) + (33)(188,1044)}{66} x(\frac{1}{34} + \frac{1}{34})}}$$

$$= \frac{36,37}{\sqrt{\frac{4542,6282 + 6207,4452}{66} x(\frac{1}{34} + \frac{1}{34})}}$$

$$= \frac{36,37}{\sqrt{(162,879)x(0,05882)}}$$

$$= \frac{36,37}{\sqrt{9,581}}$$

$$= \frac{36,37}{3,0952}$$

$$= 11,750$$

Berdasarkan tabel 4.23 diketahui bahwa soal posttest yang diberikan kepada siswa berjumlah 5 soal dengan skor maksimal keseluruhan 90. Pada tabel 4.23 memperlihatkan bahwa Hasil uji t-test diperoleh nilai T_{hitumg} =11,750 taraf signifikansi 5% d_k = 34 – 1

diperoleh t(33;0,05)=1,996 karena $t_{hitung}>t_{tabel}$, maka H_0 ditolak dan H_1 diterima artinya rata-rata kemampuan berpikir kritis kelas eksperimen dengan menggunakan pembelajaran discovery learning berbantuan geogebra lebih baik daripada rata-rata kelas kontrol. Perhitungan selengkapnya dapat dilihat pada lampiran 84.

Jadi dapat disimpulkan bahwa model pembelajaran discovery learning berbantuan geogebra efektif terhadap kemampuan berpikir kritis siswa kelas XII MAN 2 Kota Semarang pada materi Dimensi tiga tahun ajaran 2023/2024.

C. Hasil dan Pembahasan

Penelitian ini bertujuan untuk mengukur efektivitas model pembelajaran discovery learning berbantuan geogebra terhadap kemampuan berpikir kritis dan motivasi belajar siswa pada materi dimensi tiga siswa MAN 2 Kota Semarang tahun ajaran 2023/2024. Model pembelajaran discovery learning berbantuan geogebra diterapkan pada kelas eksperimen, sebelumnya peneliti telah memberikan tes awal untuk di uji normalitas, homogenitas serta uji kesamaan rata rata untuk mengetahui kondisi awal antara kelas eksperimen dan kontrol sama atau tidak. Soal tes awal berjumlah tujuh

butir soal uraian yang kemudian diuji cobakan pada kelas XII MIPA 1 yang mana kelas tersebut telah mendapatkan materi turunan.

Analisis butir soal menggunakan uji validitas, uji reliabilitas, tingkat kesukaran soal dan daya pembeda soal untuk mengetahui kelayakan soal tersebut agar dapat diberikan pada kelas populasi. Hasil analisis diperoleh data vang valid berjumlah lima butir soal dan vang tidak valid berjumlah dua butir soal, soal yang tidak valid kemudian validitas lagi dibuang diuji hingga menghasilkan semua butir soal valid, kemudian butir soal yang valid diuji reliabilitas diperoleh nilai 0,863 yang herdasarkan tahel 3.3 termasıık dalam kriteria interpretasi reliabilitas yang tetap.

Analisis tingkat kesukaran soal diperoleh lima butir soal berkriteria sedang. Analisis daya pembeda soal diperoleh satu soal berkriteria sedang dan empat butir soal berkriteria baik, sehingga terdapat 5 butir soal yang dijadikan sebagai soal tes awal yaitu nomor 3,4,5,6,7. Seluruh kelas populasi yang terdiri dari kelas XII MIPA 1, XII MIPA 2, XII MIPA 3, XII MIPA 4, XII MIPA 5, XII MIPA 6 diuji normalitas menggunakan data nilai tes awal menggunakan uji chi-kuadrat didapatkan semua kelas memperoleh $t_{hitung} < t_{tahel}$ yang artinya enam kelas

populasi berdistribusi normal. Kelas populasi yang semuanya berdistribusi normal kemudian diuji homogenitas menggunakan metode Barlett diperoleh $X^2_{hitung} = 3,211 \, dan \, X^2_{tabel} = 11,070 \, yang$ berarti $X^2_{hitung} < X^2_{tabel}$ sehingga dapat disimpulkan bahwa enam kelas berasal dari populasi dengan kemampuan berpikir kritis awal yang homogen.

Uji selanjutnya yaitu uji kesamaan rata-rata menggunakan ANOVA satu jalan (one way ANOVA) diperoleh $F_{hitung}=1,627\ dan\ F_{tabel}=2,261$ yang berarti bahwa $F_{hitung}< F_{tabel}$ maka H_0 diterima yang artinya keenam kelas memiliki rata-rata yang identik. Dapat dikatakan bahwa kelas XII MIPA 1, XII MIPA 2, XII MIPA 3, XII MIPA 4, XII MIPA 5, XII MIPA 6 dengan kondisi awal yang sama. Setelah nya kelas populasi tersebut akan dipilih secara random menggunakan teknik *cluster random sampling* sehingga diperoleh kelas XII MIPA 6 sebagai kelas eksperimen dan kelas XII MIPA 5 sebagai kelas kontrol.

Kelas eksperimen selanjutkan diberikan perlakuan berupa model pembelajaran *discovery learning* berbantuan geogebra sedangkan kelas kontrol tidak diberikan perlakuan melainkan menggunakan model pembelajaran yang biasa diajarkan oleh guru pengampu.

Pelaksanaan pembelajaran kelas eksperimen pada materi dimensi tiga sebanyak tiga pertemuan dengan alokasi waktu 90 menit setiap pembelajarannya.

Pelaksanaan model pembelajaran discovery learning berbantuan geogebra ini ada lima tahapan, pada tahap pertama yaitu stimulus pada tahap ini siswa diberikan media pembelajaran berupa kertas origami berbentuk persegi dan segitiga kemudian siswa mengamati dan menyusun media pembelajaran tersebut. Tahap kedua yaitu identifikasi, pada tahap ini siswa menyusun pertanyaan dari hasil pengamatan yang telah dilakukan pada tahap pertama.

Tahap ketiga adalah pengumpulan data, di mana siswa secara aktif membaca buku untuk menemukan jawaban dari pertanyaan yang telah dirumuskan. Tahap keempat yaitu pengolahan data, pada tahap ini siswa menuliskan jawaban yang telah diperolehnya dan croscek dengan media geogebra dari setiap pertanyaan yang telah dibuat menggunakan bahasanya sendiri dan mudah dipahami. Tahap yang terakhir yaitu penarikan kesimpulan , pada tahap ini siswa menarik kesimpulan dari permasalahan yang telah diselesaikan.

Setelah pembahasan materi dimensi tiga selesai, peneliti kemudian memberikan soal postest kemampuan berpikir kritis. Pelaksanaan model pembelajaran discovery learning berbantuan geogebra dilakukan pada kelas eksperimen, angket motivasi belajar diberikan kelas eksperimen dan kepada control setelah mendapatkan perlakuan pembelajaran, sebelum diberikan angket motivasi belajar terlebih dahulu diuji validitas dan reliabilitas.

Hasil uji validitas diperoleh 24 butir angket yang valid dari 24 butir angket keseluruhan. Seluruh butir angket yang valid diuji reliabilitas diperoleh nilai 0,859 yang berdasarkan tabel 3.3 termasuk dalam kriteria interpretasi reliabilitas yang sangat tetap. Sehingga terdapat 24 butir angket yang dapat digunakan untuk mengukur motivasi belajar siswa kelas eksperimen dan kontrol yaitu butir angket nomor 1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 18, 20, 21, 22, 23, 24. Hasil analisis angket motivasi belajar kelas kontrol diperoleh ratarata 74,34 dan rata-rata motivasi belajar kelas eksperimen diperoleh 80,10.

Data skor angket motivasi belajar kelas kontrol dan eksperimen diuji normalitas, uji homogenitas, uji perbedaan rata-rata. Berdasarkan uji normalitas, data motivasi belajar kelas kontrol diperoleh $t_{hitung}=4,614 < t_{tabel}=7,814$ sedangkan data motivasi belajar

kelas eksperimen diperoleh $t_{hitung}=6,854 < t_{tabel}=7,814$ sehingga dapat dikatakan bahwa data motivasi belajar kelas kontrol dan eksperimen berdistribusi normal. Kedua data ini kemudian diuji homogenitas dan diperoleh $F_{hitung}=1,84 < F_{tabel}=1,86$ maka H_0 diterima artinya tidak terdapat perbedaan varians antara data motivasi belajar kelas kontrol dan eksperimen atau kedua data tersebut homogen.

Setelah kedua data berdistribusi normal dan homogen selanjutnya diuji perbedaan rata-rata dengan nilai rata rata kelas eksperimen 80,10 dan kelas kontrol 74,34, maka H_0 ditolak dan H_1 diterima artinya terdapat perbedaan rata-rata motivasi belajar kelas eksperimen dengan rata-rata kelas kontrol. menggunakan uji t-test diperoleh nilai $F_{hitung} = 2,571 > F_{tabel} = 2,001$. Sehingga dapat dikatakan bahwa model pembelajaran discovery learning berbantuan geogebra efektif terhadap motivasi belajar siswa kelas XII MAN 2 Kota Semarang pada materi dimensi tiga.

Kelas kontrol yang menggunakan model yang digunakan oleh guru pengampu dan kelas eksperimen yang setelah diberi perlakuan model pembelajaran discovery learning berbatuan geogebra akan diberikan soal postest kemampuan berpikir kritis. Sebelum soal

postest ini diberikan terlebih dahulu diuji validitas, uji reliabilitas, tingkat kesukaran soal dan daya pembeda soal. Hasil dari uji validitas diperoleh 5 butir soal yang valid dari 6 butir soal keseluruhan, satu butir soal yang tidak valid dibuang dan dilakukan uji validitas tahap kedua yang menghasilkan seluruh butir telah valid. kemudian butir soal yang valid diuji reliabilitas diperoleh nilai 0,739 berdasarkan tabel 3.5 termasuk dalam kriteria interpretasi reliabilitas yang tetap.

Analisis tingkat kesukaran soal diperoleh lima butir soal berkriteria sedang. Analisis daya pembeda soal diperoleh tiga butir soal berkriteria baik,dua butir soal berkriteria sedang, sehingga terdapat 5 butir soal yang dijadikan sebagai soal postest yaitu nomor 1,2,3,4, dan 5.

Data nilai postest dari kelas kontrol dan kelas eksperimen kemudian diuji normalitas, uji homogenitas, uji perbedaan rata-rata kemampuan berpikir kritis. Berdasarkan analisis uji normalitas pada kelas eksperimen (XII MIPA 6) diperoleh $t_{hitung}=9,159 < t_{tabel}=9,487$ dan pada kelas kontrol (XII MIPA 5) diperoleh $t_{hitung}=5,438 < t_{tabel}=9,487$. Sehingga dapat dikatakan bahwa Kelas eksperimen (XII MIPA 6) dan kelas kontrol (XII MIPA 6) dan kelas kontrol (XII MIPA 6) dan kelas kontrol (XII MIPA 5)

setelah diuji normalitas kemudian diuji homogenitas diperoleh $F_{hitung}=1,366 < F_{tabel}=1,787$ yang artinya kedua kelas mempunyai karakter yang sama atau homogen.

Selanjutnya yaitu kelas eksperimen (XII MIPA 6) dan kelas kontrol (XII MIPA 5) diuji perbedaan rata-rata menggunakan *independent sample t-test* diperoleh $F_{hitung}=11,75>F_{tabel}=1,99$, maka dinyatakan terdapat perbedaan kemampuan berpikir kritis kelas eksperimen dan kelas kontrol. Hal tersebut dapat dilihat dari rata-rata nilai postest kelas yang diberikan perlakuan menggunakan model pembelajaran d*iscovery learning* berbantuan geogebra lebih baik yaitu 74,58 dibandingkan rata-rata nilai postest siswa menggunakan model yang biasa digunakan guru pengampu yaitu 38,20.

Dapat disimpulkan bahwa kemampuan berpikir kritis siswa yang diberi perlakuan berupa model pembelajaran discovery learning berbantuan geogebra menunjukkan kualitas yang lebih unggul dibandingkan dengan kemampuan berpikir kritis siswa yang menggunakan model pembelajaran yang biasa digunakan guru pengampu.

Perbedaan ini disebabkan oleh berbagai perlakuan yang berbeda yang diterapkan dalam kelas eksperimen

yaitu diberikan perlakuan model *discovery learning* berbantuan geogebra dan kelas kontrol tidak diberikan perlakuan melainkan menggunakan model pembelajaran yang biasa digunakan guru pengampu. Pada kelas eksperimen, digunakan model pembelajaran *discovery learning* dengan berbantuan geogebra, dimana siswa

Model pembelajaran discovery learning berbantuan geogebra mendorong siswa untuk berinteraksi dengan antar temannya pada tahap stimulus dan identifikasi masalah sehingga akan memperbaiki keyakinan siswa terhadap kemampuan yang dimilikinya, sejalan dengan ini Ulpah (2019) mengemukakan bahwa adanya interaksi ketika pembelajaran akan menciptakan suasana belajar yang kondusif dan juga menekankan pemberian kesempatan belaiar yang lebih luas untuk mengembangkan kemampuannya sehingga hal tersebut memperbaiki akan kevakinan siswa terhadap kemampuan yang dimilikinya.

Model pembelajaran *discovery learning* berbantuan geogebra juga membantu siswa dalam berpikir lebih aktif dalam langkah identifikasi masalah dan juga mengemukakan jawabannya dengan menggunakan bahasa sendiri dalam langkah pengolahan data sehingga siswa menjadi lebih faham yang mana juga dapat

meningkatkan kemampuan berpikir kritis, hal ini sejalan dengan penelitian (Pratiwi, 2014) mengatakan bahwa model pembelajaran discovery learning berbantuan meningkatkan geogebra kemampuan mampu kemampuan berpikir kritis siswa dan juga penelitian yang dilakukan oleh Saragih (2014) dalam penelitiannya mengemukakan bahwa siswa mendapat yang pembelajaran dengan model pembelajaran discovery learning berbantuan geogebra mempunyai motivasi belajar yang lebih baik daripada siswa dengan pembelajaran yang biasa digunakan guru pengampu.

D. Keterbatasan Penelitian

Penelitian ini telah dilakukan dengan sebaik mungkin, namun peneliti menyadari bahwa masih terdapat banyak keterbatasan dalam penelitian ini, antara lain:

- Keterbatasan tempat penelitian Penelitian terbatas pada tempat yaitu di MAN 2 kota Semarang tahun ajaran 2023/2024. Ketika dilakukan di tempat dan materi yang berbeda ada kemungkinan akan mendapatkan hasilyang berbedaa pula, namun tidak signifikan.
- Keterbatasan waktu dalam penelitian ini terjadi selama proses penyusunan skripsi, sehingga waktu yang tersedia sangatlah terbatas, hanya terbatas untuk penelitian saja. Sehingga dapat memepengaruhi hasil penelitian.

- 3. Keterbatasan materi membuat penelitian ini terbatas pada pengkajian materi yang memiliki dimensi tiga saja.
- 4. Keterbatasan kemampuan Peneliti menyadari adanya keterbatasan yang dimiliki, oleh karenanya bimbingan dari pembimbing sangat membantu dalam penyusunan skripsi ini..

Meskipun penelitian ini memiliki beberapa keterbatasan, peneliti bersyukur karena dapat melaksanakan penelitian ini dengan baik dan juga peneliti dapat memaparkan keefektifan model pembelajaran *Discovery Learning* terhadap kemampuan berpikir kritis dan motivasi belajar siswa pada materi dimensi tiga.

BAB V

SIMPULAN DAN SARAN

A. Simpulan

Berdasarkan hasil dan pembahasan pada bab sebelumnya dapat disimpulkan bahwa:

- 1. Nilai rata-rata postest kemampuan berpikir kritis kelas eksperimen lebih baik dari pada nilai rata-rata postest kemampuan berpikir kritis kelas kontrol. Adapun rata-rata nilai postest kelas eksperimen sebesar 74,58 dan rata-rata nilai postest siswa kelas kontrol yaitu 38,20 . Sedangkan dalam analisa hipotesis uji t diperoleh $t_{(0,05;66)}=1,996 < t_{hitung}=11,75$. Artinya nilai rata-rata kemampuan berpikir kritis kelas eksperimen lebih baik daripada kelas kontrol. Dari pemaparan tersebut dapat disimpulkan bahwa model pembelajaran *discovery learning* berbantuan geogebra efektif terhadap kemampuan berpikir kritis siswa kelas XII MAN 2 Kota Semarang pada materi dimensi tiga tahun ajaran 2023/2024.
- 2. Berdasarkan hasil nilai angket motivasi belajar, nilai motivasi belajar siswa kelas eksperimen lebih tinggi dibandingkan kelas kontrol. Hasil analisis di peroleh nilai rata-rata kelas eksperimen 80,10 dan kelas kontrol 74,34, menggunakan Uji t-test diperoleh

 $t_{hitung} = 2,571 > t_{(0,05;29)} = 2,001$. Artinya nilai rata-rata motivasi belajar siswa kelas eksperimen dengan menggunakan pembelajaran *discovery learning* lebih baik daripada rata-rata kelas kontrol. Jadi dapat disimpulkan bahwa model pembelajaran *Discovery Learning* berbantuan geogebra efektif terhadap motivasi belajar siswa kelas XII MAN 2 Kota Semarang. pada materi Dimensi Tiga.

B. Saran

Berdasarkan hasil penelitian yang telah dilakukan, saran yang ingin peneliti sampaikan yakni apabila pihak lain menggunakan model pembelajaran ini sebagai panduan penelitian, sebaiknya disesuaikan dengan kondisi lingkungan sekolah, termasuk alokasi waktu, fasilitas pendukung, dan karakteristik siswa yang ada.

DAFTAR PUSTAKA

- Abdul Kadir. (2020). Efektivitas Pembelajaran Matematika Berbasis Edmodo Di Man Lhokseumawe. *Numeracy*, 7(2), 225–239.
 - https://doi.org/10.46244/numeracy.v7i2.1198
- Agustini, & Wardani, N. S. (2022). Efektivitas Pendekatan Inkuiri terhadap Kemampuan Berpikir Kritis dalam Pembelajaran Tematik Peserta Didik Kelas V SD. *Ilmiah Ilmu Pendidikan*, *5*, 5472–5478.
- Aliana, A., Al Adawiyah, R., & Ayu, P. (2021). Efektivitas Pembelajaran Daring Pada Masa Pandemi Covid-19: *Value, 2*(1), 1–10.
 - https://doi.org/10.36490/value.v2i1.177
- Anjarwati, D., Juandi, D., Nurlaelah, E., & Hasanah, A.

 (2022). Studi Meta-Analisis: Pengaruh Model
 Discovery Learning Berbantuan Geogebra Terhadap
 Kemampuan Berpikir Kritis Matematis Siswa. *Jurnal Cendekia: Jurnal Pendidikan Matematika*, 6(3), 2417–
 2427. https://doi.org/10.31004/cendekia.v6i3.1506
- Arbain, N., & Shukor, N. A. (2015). The Effects of GeoGebra on Students Achievement. *Procedia Social and Behavioral Sciences*, 172(2007), 208–214. https://doi.org/10.1016/j.sbspro.2015.01.356

- Arwani, R., & Tyas, A. (2023). Efektivitas Model
 Pembelajaran Contextual Teaching and Learning Dan
 Inquiry Learning Terhadap Peningkatan Kemampuan
 Berpikir Kritis Pada Mata Pelajaran Ipa Kelas V Sd
 Gugus Puspitaloka. *Pendas : Jurnal Ilmiah Pendidikan Dasar*, 8(1), 2667–2676.
 - https://doi.org/10.23969/jp.v8i1.8392
- Baharuddin dan Wahyuni, E. N. (2015). *Teori Belajar dan Pembelajaran*. Ar-ruzz Media.
- Darmawan, D., & Dinn, W. (2018). *Model Pembelajaran di Sekolah*. PT Remaja Rosdakarya.
- Dores, O. jiran dores, Wibowo, dwi cahyadi wibowo, & Susanti, susi susanti. (2020). Analisis kemampuan berpikir kritis siswa pada mata pelajaran matematika 1. *Pendidikan Matematika*, 2, 242–254.
- Facione, P. a. (2015). Critical Thinking: What It Is and Why It Counts. *Insight Assessment, ISBN 13: 978-1-891557-07-1.*, 1–28.
- Fadillah, S., & Hasanah, N. (2023). Pendidikan Matematika:

 Urgensi kemampuan Berpikir Kritis dan Karakter

 Mandiri. 04(01), 1–5.
- Faiz, F. (2012). *Thinking Skill* (M. Affan (ed.)). SUKA-Press UIn Sunan Kalijaga.

- Faradisa, N. (2018). Efektivitas Model Pembelajaran
 Reciprocal Teaching denagn Reward and Punishment
 terhadap Motivasi Belajar dan Pemahaman Konsep
 pada Materi Segiempat di Skripsi. Pendidikan
 Matematika, Universitas
 http://eprints.walisongo.ac.id/id/eprint/9303/%0A
 https://eprints.walisongo.ac.id/id/eprint/9303/1/1
 33511029.pdf
- Hamzah, F., Mujib, A., Firmansyah,), Muslim, U., Al, N., Medan, W., Garu2, J., & Sumatera Utara, M. (2022). Efektivitas Pembelajaran Blended Learning Menggunakan Schoology Pada Pelajaran Matematika 1). *Januari*, *10*(1), 95–104.
- Hayati, F. (2020). *Variabel Belajar (Kompilasi Konsep)* (M. Fadli (ed.)). CV. Pusdikra MJ.
- Hosnan, M. (2014). *Pendekatan Saintifik dan Kontekstual dalam Pembelajaran Abad 21*. Ghalia Indonesia.
- Indonesia, R. (2003). *Undang-undang Republik Indonesia*Nomor 20 Tahun 2003 Tentang Sistem Pendidikan
 Nasional.
- Irawan, T. A., & Rahardjo, S. B. (2017). *Analisis Kemampuan Berpikir Kritis Siswa Kelas VII-A SMP Negeri 1 Jaten. 21*, 232–236.

- Kemendikbud. (2018). Permendikbud RI.
- Lestari, F., Putri, A. D., & Wardani, A. K. (2019). Identifikasi Kemampuan Berpikir Kritis Siswa Kelas VIII Menggunakan Soal Pemecahan Masalah. *Rset Pendidikan Dan Inovasi Pembejaran Matematika*, 2(2).
- Lestari, K. E., & Yudhanegara, M. R. (2015). *Penelitian Pendidikan Matematika*. Revika Aditama.
- Marisya, A., & Sukma, E. (2020). Konsep Model Discovery Learning pada Pembelajaran Tematik Terpadu di Sekolah Dasar Menurut Pandangan Para Ahli. *Jurnal Pendidikan Tambusa*, 4(3), 2191.
- Martaida, T., Bukit, N., & Ginting, E. M. (2017). The Effect
 Of Discovery Learning Model On Critical Thinking
 Ability In Thematic Learning. *International*Conference Education, Culture ..., 7(6), 1–8.
 https://doi.org/10.9790/7388-0706010108
- Muttaqien, A. R., Suprijono, A., Purnomo, N. H., & Rendy A.P, D. B. (2021). The influence of cooperative learning model types of teams games tournaments on students' critical thinking ability. *International Journal for Educational and Vocational Studies*, 3(6), 432. https://doi.org/10.29103/ijevs.v3i6.4620

- Nasir, M., & Dollo, A. (2018). *Model Pembelajaran Berpikir Historis*. UMPAR Press.
- Nasution, W. N. (2018). pengaruh strategi pembelajaran dan motivasi belajar (A. Daulay & Sumaiyah (eds.)). Perdana Publishing.
- Novtiar, C., & Aripin, U. (2017). Dan Kepercayaan Diri Siswa Smp Melalui. *Jurnal PRISMA Universitas Suryakancana MENINGKATKAN*, VI(2), 119–131.
- Pratiwi, F. A. (2014). Pengaruh Penggunaan Model
 Discovery Learning dengan Pendekatan Saintifik
 terhadap Kemampuan Berpikir Kritis Siswa SMA.
 Pengaruh Penggunaan Model Discovery Learning
 Dengan Pendekatan Saintifik Terhadap Keterampilan
 Berpikir Kritis Siswa Sma, 6, 10.
- Pristiwanti, D., Badariah, B., Hidayat, S., & Dewi, R. sari. (2022). Pengertian Pendidikan. *Pendidikan Dan Konseling*, 4 *Nomor* 6(Pengertian pendidikan), 5.
- Putri, R. H., Lesmono, A. D., & Aristya, P. D. (2017).

 Pengaruh Model Discovery Learning Terhadap

 Motivasi Belajar Dan Hasil Belajar Fisika Siswa MAN

 Bondowoso. *Jurnal Pembelajaran Fisika*, 6(2), 168–
 174.
- Racmatika, T. R., Sumantri, M. S. sumantri, Purwanto,

- agung purwanto, & Wicaksono, jatu wahyu wicaksono. (2021). Pengaruh Model Pembelajaran Dan Kemandirian Belajar Terhadap. *Buana Pendidikan*, *17*(1), 59–69.
- Rahmah, J., Sari, R., & Faradiba, S. S. (2023). Pelatihan Aplikasi Geogebra Pada Materi Transformasi Geometri Pada Siswa Smp Assa'idiyyah Kepanjen. Jurnal Pengabdian Masyarakat Dan Riset Pendidikan, 1(3), 132–139.
 - https://doi.org/10.31004/jerkin.v1i3.29
- Rahmawati, M., & Suryadi, E. (2019). Guru sebagai fasilitator dan efektivitas belajar siswa. *Jurnal Pendidikan Manajemen Perkantoran*, *4*(1), 49. https://doi.org/10.17509/jpm.v4i1.14954
- Rahmawati, R. (2016). Faktor-faktor yang Mempengaruhi Motivasi Belajar Siswa Kelas X SMA N 1 Piyungan pada Mata Pelajaran Ekonomi Tahun Ajaran2015/2016. 326–337.
- S, A. (2013). *Prosedur Penelitian*. Rineka Cipta.
- Siagian, R. E. F., Marliani, N., & Lubis, E. M. (2021).

 Pengaruh Kemandirian Belajar Terhadap

 Kemampuan Berpikir Kritis Pada Siswa Sekolah

 Menengah Atas. *Jurnal Educatio FKIP UNMA*, 7(4),

- 1798-1805.
- https://doi.org/10.31949/educatio.v7i4.1597
- Sinaga, R. (2022). Efektivitas Pendekatan Open-Ended
 Dengan Model STAD (Student Teams Achievement
 Divisions) Terhadap Kemampuan Berpikir Kritis
 Matematis Siswa Pada Sepren, October 2022, 181–
 190.
 - https://jurnal.uhn.ac.id/index.php/sepren/article/view/832
- Subagio, Lilik; Karnasih, I. I. (2021). Meningkatkan Motivasi Belajar Siswa dengan Menerapkan Model Discovery Learning dan Problem Based Learning berbantuan Geogebra. *Jurnal Pendidikan Matematika Raflesia*, 6(2), 15–26.
- Sudijono, A. (2015). *Pengantar statistik pendidikan*. Rajawali Pers.
- Sugiyono. (2017). *Metode Penelitian Kombinasi (Mixed Methods)*. Alfabeta.
- Sugiyono. (2018a). *Metode Peneltian Kuantitatif, Kualitatif,* dan R&D. Alfabeta.
- Sugiyono. (2018b). *Statistik Nonparametris* (B. R. Setiadi (ed.)). Alfabeta.
- Supardi. (2017). Statistika Penelitian Pendidikan:

- Perhitungan, Penyajian, Penjelasan, Penafsiran, dan Penarik Kesimpulan. PT Rajagrafindo Persada.
- Tampubolon, C. F. G., Manurung, S., & Sidabutar, R. (2022).

 Pengaruh Model Pencapaian Konsep Terhadap
 Kemampuan Kreativitas Matematis Siswa Pada
 Materi Pola Bilangan Di Kelas Viii Smp Journak Of
 Mathematics Education and Science, 8(1), 91–97.
 http://36.91.151.182/handle/123456789/6317%0A
 http://36.91.151.182/bitstream/handle/123456789
 /6317/ASIMA
 - NAIBAHO.pdf?sequence=1&isAllowed=y
- Thobroni. (2015). *Belajar dan Pebelajaran : Teori dan Praktik* (Ar-ruzz Media (ed.)).
- Zainiyati, H. S. (2017). Pengembangan Media Berbasis ICT (Konsep dan Aplikasi pada Pembelajaran Pendidikan Agama Islam). PT. Kharisma Putra Utama.
- Zakiah, L., & Lestari, I. (2019). *Berpikir Kritis dalam* konteks Pembelajaran (Erminawati (ed.)). Erzatama Karya Abadi.

Lampiran 1 Hasil Wawancara Pra Penelitian

Hasil Wawancara Pra Penelitian

A. Tujuan Wawancara

Wawancara pada pra penelitian ini bertujuan untuk mengetahui kondisi motivasi belajar siswa dan kemampuan berpikir kritis siswa di MAN 2 Kota Semarang. Wawancara ini berlandaskan indikator motivasi belajar dan indikator kemmapuan berpikir kritis.

B. Pertanyaan dalam wawancara

Pertanyaan	Jawaban
Ketika siswa di berikan	Siswa sering kali tidak
sebuah soal dan tidak	mengerjakan soal yang
wajib untuk dijawab,	bersifat tidak wajib dan
apakah siswa tersebut	tidak input nilai, siswa
memiliki kesadaran diri	akan mengerjakan ketika
untuk mengerjakannya?	guru menyampaikan
	bahwa hasilnya nanti
	akan di inputkan
Ketika siswa diberikan soal	Ada beberapa siswa yang
yang HOTS. Apakah	memang suka ketika di
mereka akan berusaha	beri tantangan, namun
mengerjakannya atau	adapula siswa yang
	enggan mengerjakan hal

langsung menyerah dan	hal yang menurut
tidak mengerjakannya?	mereka sulit
Ketika siswa satu	Menurut saya, siswa
mendapatkan nilai yang	akan lebih berusaha
memuaskan. Apakah siswa	ketika melihat temannya
lainnya akan termotivasi	mendapat lebih dan ingin
untuk memperbaiki	mendapatkannya juga,
nilainya?	namun juga ada
	beberapa siswa yang
	cuek dan tidak mau tau
	tentang apa yang di
	dapat temannya, serta
	tidak ingin
	memperbaikinya.
Ketika siswa di beri sebuah	Untuk mengidentifikasi
soal apakah siswa tersebut	sih biasanya itu di
berusaha memahami dan	tujukan pada materi-
mengidentifikasi satu	materi tertentu mbak,
persatu permasalahan	yang memang harus
yang ada dalam soal?	dikerjakan secara runtut
	namun biasanya siswa
	tidak menyantumkan
	satu persatu Langkah ,
	satu persatu Langkah , hanya intinya saja

Ketika siswa diberikan soal	Nah kalo ini sering kali
setipe dengan contoh soal	siswa protes jika diberi
sebelumnya apakah	soal beda dengan
mereka lebih antusias	contohnya, dan siswa
dalam mengerjakanya?	hanya terpaku dengan
	satu tipe soal itu saja
	tidak dikembangkan
Ketika siswa di beri soal.	Siswa biasanya
Apakah siswa tersebut	mengerjakan secara
akan mencari dulu apa saja	langsung tanpa
yang sudah diketahui?	menuliskan apa yang
	diketahui dulu, biasanya
	kalua harus ada
	diketahuinya itu perlu
	adanya perintah dari
	guru

Lampiran 2 Profil Sekolah

Profil Sekolah

Nama Madrasah : MAN 2 KOTA SEMARANG

Nama Kepala Madrasah : Drs. H. Junaedi, M.Pd.

NSS/NSM : 131133740002

NPSN : 20363038

Alamat

Kelurahan : Jl. Bangetayu Raya No.1

Kecamatan : Genuk

Kota : Semarang

Provinsi : Jawa Tengah

Kode Pos : 50155

Tahun Berdiri : 1968

Jenjang Akreditasi : A

Lampiran 3 Jadwal Kegiatan Penelitian

Jadwal Kegiatan Penelitian

Hari/Tanggal	Tempat	Keterangan
Selasa, 15	Perpustakaan	Wawancara Pra
November 2022	MAN 2 Kota	Penelitian
	Semarang	
Kamis, 2 Februari	Kelas XII MIPA 1	Uji coba soal tes
2023	(TP 2022/2023)	awal dan angket
		motivasi belajar
Jum'at, 3 Februari	Kelas XII MIPA 4	Uji coba Posttest
2023	(TP 2022/2023)	
Rabu, 26 Juli 2023	Kelas XII MIPA 1	Tes awal
Kamis, 27 Juli	Kelas XII MIPA 2	Tes Awal
2023		
Senin, 31 Juli 2023	Kelas XII MIPA 3	Tes Awal
Kamis, 27 Juli	Kelas XII MIPA 4	Tes Awal
2023		
Senin, 24 Juli 2023	Kelas XII MIPA 5	Tes Awal
Jum'at, 28 Juli	Kelas XII MIPA 6	Tes Awal
2023		
Kamis, 3 Agustus	Kelas XII MIPA 6	Praktik
2023		pembelajaran
		Discovery
		Learning

Rabu, 26 Juli 2023	Kelas XII MIPA 5	Praktik
		pembelajaran
		konvesional
Jum'at, 4 agustus	Kelas XII MIPA 6	Praktik
2023		pembelajaran
		Discovery
		Learning
Senin, 31 Juli 2023	Kelas XII MIPA 5	Praktik
		pembelajaran
		Konvesional
Kamis, 10 Agustus	Kelas XII MIPA 6	Praktik
2023		pembelajaran
		Discovery
		Learning
Rabu, 2 Agustus	Kelas XII MIPA 5	Praktik
2023		pembelajaran
		Konvesional
Jum'at, 11 Agustus	Kelas XII MIPA 6	Postest dan angket
2023		
Senin, 7 agustus	Kelas XII MIPA 5	Postest dan angket
2023		

Lampiran 4 Daftar Nama Siswa Uji Coba Angket

Daftar Nama Siswa Uji Coba Angket Motivasi Belajar

No	Nama	Kode
		Nilai Maks
1	ADELIA PUTRI SUHENDRA	UCT-01
2	ARDIANA UMI YAHRO	UCT-02
3	CHOIRIN NAFISAH	UCT-03
4	DESI FITRIA RAHMAWATI	UCT-04
5	DINA FAIDATUL KHASANAH	UCT-05
6	DYAH AYU WARDA NINGRUM	UCT-06
7	EKA SUCI RAHAYU	UCT-07
8	FADILA AGUSTINA	UCT-08
9	FRISKA SAFIRA RISMADHANI	UCT-09
10	HANIF HILMAWAN	UCT-10
11	ILMA FIQNI AMALA	UCT-11
12	KHOIRUNNISA	UCT-12
13	LAILATUS SARI`ATUL MAHMUDAH	UCT-13
14	LATHOIFUR ROSYADI	UCT-14
15	MARCELL MURYONO	UCT-15
16	MELINDA MULYANI AL RATTANI	UCT-16
17	MUHAMMAD ZIDNI AMIN PRAYOGA	UCT-17
18	NABILA KHARISUN ZAHRO	UCT-18
	NABILLA AURELIA PUTRI	
19	MAHARANI	UCT-19

20	NAYLA ALFINA RAHMA	UCT-20
21	NUR SYAKIRA	UCT-21
22	PUTRI FITRIANI	UCT-22
23	PUTRI UTAMI	UCT-23
24	RAFI SURYA PRATAMA	UCT-24
25	RASYID ABDURRACHMAN S.	UCT-25
26	RENATA AZZAHRA	UCT-26
27	RINI ISFANA	UCT-27
28	RISKA DZULHIJJAH	UCT-28
29	SALMA NABILA	UCT-29
30	SALSA ZAKIYATUL MUNAWAROH	UCT-30

Lampiran 5 Daftar Nama Siswa Uji Coba Tes Awal

Daftar Nama Siswa Uji Coba Tes Awal

No	Nama	Kode
		Nilai Maks
1	ADELIA PUTRI SUHENDRA	UCT-01
2	ARDIANA UMI YAHRO	UCT-02
3	CHOIRIN NAFISAH	UCT-03
4	DESI FITRIA RAHMAWATI	UCT-04
5	DINA FAIDATUL KHASANAH	UCT-05
6	DYAH AYU WARDA NINGRUM	UCT-06
7	EKA SUCI RAHAYU	UCT-07
8	FADILA AGUSTINA	UCT-08
9	FRISKA SAFIRA RISMADHANI	UCT-09
10	HANIF HILMAWAN	UCT-10
11	ILMA FIQNI AMALA	UCT-11
12	KHOIRUNNISA	UCT-12
13	LAILATUS SARI`ATUL MAHMUDAH	UCT-13
14	LATHOIFUR ROSYADI	UCT-14
15	MARCELL MURYONO	UCT-15
16	MELINDA MULYANI AL RATTANI	UCT-16
17	MUHAMMAD ZIDNI AMIN PRAYOGA	UCT-17
18	NABILA KHARISUN ZAHRO	UCT-18
	NABILLA AURELIA PUTRI	
19	MAHARANI	UCT-19

20	NAYLA ALFINA RAHMA	UCT-20
21	NUR SYAKIRA	UCT-21
22	PUTRI FITRIANI	UCT-22
23	PUTRI UTAMI	UCT-23
24	RAFI SURYA PRATAMA	UCT-24
25	RASYID ABDURRACHMAN S.	UCT-25
26	RENATA AZZAHRA	UCT-26
27	RINI ISFANA	UCT-27
28	RISKA DZULHIJJAH	UCT-28
29	SALMA NABILA	UCT-29
30	SALSA ZAKIYATUL MUNAWAROH	UCT-30

Lampiran 6 Daftar Nama Siswa Uji Coba Posttest Berpikir Kritis

Daftar Nama Siswa Uji Coba Posttest Berpikir Kritis

NO	Nama	Kode
		Nilai Maks
1	ADITYA ZHIHAN MAULANA	UCP-01
2	AGASI CITA WULANDARI	UCP-02
3	AMELYA LUTFIANI	UCP-03
4	ANISA FITRI HANDAYANI	UCP-04
5	ARTIZYA CYMA DHIARNA	UCP-05
6	ARZUNI SYAIUL HIDAYAH	UCP-06
7	AULIA TEZA KIRANI	UCP-07
8	AULIA USSYA HIIDA	UCP-08
9	BILAL ACHMAD ALRYAN	UCP-09
10	DWI FATIMATUZ ZAHRO`	UCP-10
11	ILHAM ARTAWAN	UCP-11
12	IRMANSYAH MAULANA FIRZA	UCP-12
13	KARIMAH PINASTI	UCP-13
14	MUCHAMMAD ALVIN FIRMANSYAH	UCP-14
15	MUHAMMAD ARIF	UCP-15
16	MUHAMMAD BAGUS SATRIO	UCP-16
17	MUHAMMAD IFAN NURWIBOWO	UCP-17
18	MUHAMMAD RIZKI MIFTAKHUDIN	UCP-18
19	MUHAMMAD SHIROTH A'INUL YAQIN	UCP-19

20	NAILA ROHMATAL FITRI	UCP-20
21	NAJWA SAFIRA AULIA	UCP-21
22	NAZWA SHIDQI AMALIA	UCP-22
23	NILAM CAHYANINGTYAS	UCP-23
24	NOVIA HANIFATUL RAHMA	UCP-24
25	PUTRA SETIA WIBOWO	UCP-25
26	REGITA PUTRI NIRMALASARI	UCP-26
27	RIBCHA NUR MAELIANI	UCP-27
28	RICKY KURNIAWAN	UCP-28
29	RIFQI FIRMANSYAH	UCP-29
30	SALSABILA LITUHAYU	UCP-30

Lampiran 7 Daftar Nama Siswa Kelas XII MIPA 1

NO	Nama	Kode
		Nilai Maks
1	ADITYA BHAKTI SAPUTRO	P1-01
2	AGUS HAZIQ ZULHILMY	P1-02
3	AKHILA SIWI HERUKO	P1-03
4	ARIS WIBOWO	P1-04
5	ARSYIL NURHADI SASONGKO	P1-05
6	AULIA RAMADHANI	P1-06
7	AYUDYA ENDAH HAPSARI	P1-07
8	BELLA ASYIFA PUTRI	P1-08
9	BELLA ASSALIA PUTRI	P1-09
10	CAHYA HIDAYATI	P1-10
11	EDI SETYAWAN	P1-11
12	FAHRUL ISLAMI AHMAD SAPUTRA	P1-12
13	FATIMAH	P1-13
14	HARIS SABIR SAPUTRA	P1-14
15	ICHI RETRI CHOIRUNNISA	P1-15
16	MADJID RANGRANG PUTRA	P1-16
17	MEILINA RAHMAWATI	P1-17
18	MEISA SAFINA PUTRI	P1-18
19	MOHAMMAD AFFANDI PRATAMA	P1-19
20	MONICA AZALIA ZERLINA	P1-20

21	MUHAMMAD FAISAL SYARIF	P1-21
22	MUHAMMAD GUS NADHIF	P1-22
23	MUHAMMAD ILYAS CHAIRIL AMRY	P1-23
24	MUHAMMAD MIFTAHUL HUDA	P1-24
25	NADIA ISMATUL FUADAH	P1-25
26	NATASHA DWI AMELIA	P1-26
27	NAYA AQILLA ANGGRENI	P1-27
28	NUR SHOLIHULAMMARYANTO	P1-28
29	RAFEEFAHYAN RISQU FAUSTA	P1-29
30	RAFI KAMILA	P1-30
31	REHAN PUTRA ARBIANSYAH	P1-31
32	RIFANA MUFIDHATUL M.	P1-32
33	RIZAL MAULANA	P1-33
34	SHOLIKHATUN NIKMAH	P1-34
35	SINUNG ALVIAN KHOLIS	P1-35
36	ZAHRA PUTRI ANDINI	P1-36

Lampiran 8 Daftar Nama Siswa Kelas XII MIPA 2

NO	Nama Kode		
		Nilai Maks	
1	ADAM KHOIRI	P2-01	
2	ADELIA IZATUL LAIL	P2-02	
3	AHMAD KAFAFI	P2-03	
4	AHMAT KHOLIP	P2-04	
5	ARMILDA RACHELESKORTA	P2-05	
6	ARYA GADIS BASWARA	P2-06	
7	AZKA NABILA EKA PUTRI	P2-07	
8	DEVI KHOIRUN NISA	P2-08	
	EKA SAPTI ARIANIFAJRI		
9	WICAKSONO	P2-09	
10	FAJRI WICAKSONO	P2-10	
11	FIBRI NEISYA ARFIYANI	P2-11	
12	FRISKA RASYA SUCI A.H	P2-12	
13	IKA AULIA NURMALA	P2-13	
14	HAYDAR MUHAMMAD FATHIN	P2-14	
15	HUSNA HUTOMO	P2-15	
16	ABRAHIM FATEEH ALIE	P2-16	
17	IKA AULIA NURMALA	P2-17	
18	IRFAN NAUFALABID	P2-18	
19	MISTAQUL IMANIA	P2-19	

20	MUHAMMAD FAIQ AL GHIFARI	P2-20
21	MUHAMMAD IRSYAD P2-21	
22	MUHAMMAD KHIRUL HUDA	P2-22
23	MUNA MALICHAH AHMADI	P2-23
24	NADZWA RIZKIA RACHMADANI	P2-24
25	NESSYA AMELIA PUTRI	P2-25
26	NIKEN KUMALA LISTYA	P2-26
27	NUR SUCI LAZUARDI	P2-27
28	RAAFU UTRIIYAN	P2-28
29	RANGGA PRIGAM CAHYONO	P2-29
30	REVA EKA DUTA AULIYA	P2-30
31	SALWA PRAMESWARI PUTRI	P2-31
32	SEKAR WANGI	P2-32
33	SHENDI	P2-33
34	ULIN NUHA	P2-34
35	UMI NUR FADHILAH	P2-35
36	YANUAR MUHAMMAD ANAS S.	P2-36

Lampiran 9 Daftar Nama Siswa Kelas XII MIPA 3

NO	Nama	Kode
		Nilai Maks
1	AGHIL SUBHAANY	P3-01
2	AHMAT LABIB MARZUKI	P3-02
3	AKBAR ZIDANE DEFFA RAMADHAN	P3-03
4	ALFANDY KURNIAWAN	P3-04
5	BALQIS DHIYA FADHILAH	P3-05
6	CINDY ELYA FARSA	P3-06
7	DAWAM MISBAHUDDIN MUKHLIS	P3-07
8	EVELYN ARMIL ASETIAAJI	P3-08
9	FATHI HANIFA HUSNA	P3-09
10	GUZELA ARFIA YUNIA	P3-10
11	HANNA PUTRI ARYANI	P3-11
12	HILMIA NABILA ZADA	P3-12
13	IKA SASKYA DAMAYANTI	P3-13
14	INDRA SATRIYA WIJAYA	P3-14
15	IQBAL FATUR RAHMAN	P3-15
16	IRFAN RIZQULLAH	P3-16
17	ISMAIL NURHIDAYAT	P3-17
18	LINDA TRI LESTARI	P3-18
19	LIUQMAN ZAKI SISWANTO	P3-19
20	MUHAMMAD AGUNG	P3-20

21	MUHAMMAD NAUFAL RAFII P3-21			
	MUHAMMAD RAMADITYA			
22	SUSANTO	P3-22		
23	MUHAMMAD RIZKI ARDI P.C.	P3-23		
24	NADYA PUTRI ANISYA	P3-24		
25	NAILA KHISNA AULIA	P3-25		
26	NAYLA PUTRI YUNITA	P3-26		
27	NISA ARISETYAPUTRI	P3-27		
28	PASHA NOVITA ARDANI	P3-28		
29	RAQUELA SEKTIANA	P3-29		
30	REZA MAULANA AKHSAN	P3-30		
31	SALWA WAFIQ AZIZAH	P3-31		
32	SHEVIA KEYSA HEMALIA	P3-32		
33	SHILVY KHIRO UMMAH	P3-33		
34	SIDIK HADIPURNOMO	P3-34		
35	SISKA PUTRI LESTARI	P3-35		
36	ZASKIA ATIKARISMA	P3-36		

Lampiran 10 Daftar Nama Siswa Kelas XII MIPA 4

NO	Nama	Kode
		Nilai Maks
1	ALBIMA RAKA SAPUTRA	P4-01
2	ANJARIN PURI DETIANTI	P4-02
3	ARDANA PUTRA WAHYTAMA	P4-03
4	AYDIN KENZIE OTTA RADJA BAHY	P4-04
5	BAMBANG SUSILO SETIAWAN	P4-05
6	BINAR RIDHA WIRITANAYA	P4-06
7	DEVIANTI SILVIA AGUSTIN	P4-07
8	DHANANG ADHI SANTOSO	P4-08
9	FACHRI AKBAR KURNIAWAN	P4-09
10	FEBRIAN AZHAR MUSTOFA	P4-10
11	FIRDA NUR AMALIA	P4-11
12	FITRIANA	P4-12
13	HILMA CHOIRUN NISA'	P4-13
14	HILMYANA SAFIRA DEVI	P4-14
15	ISTIGFARI DIKA MAULANA	P4-15
16	KAKA HERDYAN ATHAILLAH	P4-16
17	MARCO SYAHIN MASYHUR	P4-17
18	MAULANA RAKHA MUKTI	P4-18
19	MUHAMAD ZIDAN MUZAKKI P4-19	

	MUHAMMAD ILHAM SETYO	
20	PRAPTOMO	P4-20
21	MUHAMMAD RIZQI DESTHIRTY	P4-21
22	MUNIF FEBRIYANTO	P4-22
23	NADEA SARAS MAHESWARI	P4-23
24	NAILA PRATIDINA ALI	P4-24
25	NAJWA AYYUNIZAHRA SETIAWAN	P4-25
26	NATANIA SIVA NUGROHO	P4-26
27	NUR HIDAYAH	P4-27
28	NURUL AINI	P4-28
29	RAHMAN ALFARIZI	P4-29
30	RISANDANOSALKRISYA DESPA	P4-30
31	SALSABILA AULIA NAJWA	P4-31
32	SERA AMALINA	P4-32
33	SHOFWAH LAILATUL FITRI	P4-33
34	SINDI AULIA KUSUMA WARDANI	P4-34
35	UMI FADHILAH	P4-35
36	VICKY PRADIPTA	P4-36

Lampiran 11 Daftar Nama Siswa Kelas XII MIPA 5

NO	Nama Kode	
		Nilai Maks
1	ABBILIA NISSA UTAMI	P5-01
2	ALVIEN EKA BIMA RADIPTHA	P5-02
3	AMARA GENDHIS YULISTIANA	P5-03
4	AMELIA MULYA NINGRUM	P5-04
5	ANINDYTA PUTRI REFA ZAHIRA	P5-05
6	ANYA MERDEKAWATI	P5-06
7	ARIF ZAKI HALIM	P5-07
8	BIMO GURUH SAPUTRA	P5-08
9	BOGI PUTRA ANANTA	P5-09
10	BRIANISA RISMARA	P5-10
11	FARHAN EKA PUTRA	P5-11
12	FAZA LAILA TANZILURRAHMAH	P5-12
13	HANAANALFI FAHREZI	P5-13
14	IKA ANISA HADIAR SALSABILLA	P5-14
15	IKA SOFIYANTI	P5-15
16	IQBAL SURYA AQEEL P.	P5-16
17	IZZA YUSRIA SEPTIANI	P5-17
18	JOVAN SAKTI NILNALMUNA	P5-18
19	KHAIRUN NISAKMAHARANI P5-19	
20	KHOIRUL BAGUS WICAKSONO P5-20	

21	LINTANG RADYA AZAHRA	P5-21
22	MUHAMMAD RIYANTO	P5-22
	MUHAMMAD AKMAL	
23	ARDIYANSYACH	P5-23
24	MUHAMMAD ASNAL MATHOLIB	P5-24
25	MUHAMMAD SYAFI' AL MUSTOFA	P5-25
26	MUHAMMAD SYAFI'I R. RIFQI	P5-26
27	NAELLA AYU AZ-ZAHRA	P5-27
28	NAJWA MAZAYA AZLA	P5-28
29	NIHAYATUL IZZA	P5-29
30	NURUL HIDAYAH	P5-30
31	R. RASYA RAMADHANTI SUDARWIN	P5-31
32	RAFIF NARARYA	P5-32
33	RENALDI ANGGORO DWI SAPUTRO	P5-33
34	RIZAL WISNU IRKHAM	P5-34
35	TIRTA PUSPASARI	P5-35
36	WAHYU SURYAATMAJA	P5-36

Lampiran 12 Daftar Nama Siswa Kelas XII MIPA 6

		Kode
NO	NAMA	Nilai
		Maks
1	ALVINO HAIKAL MUJIIBURAHMAN	P6-01
2	ARSYA DENI RIZANTO	P6-02
3	ARTIKA HIDAYATUR ROHMAH	P6-03
4	AURA SENDA EKA SUCI	P6-04
5	AURELLIA RAMADHANI	P6-05
6	BALQIS ZULAFA NUR BILBINA	P6-06
7	CRISTIAN PUTRA PRATAMA	P6-07
8	DESTA HAIDAR ALI	P6-08
9	EKSA SURYA RAMADHAN	P6-09
10	FADHILA SHOHWATUL ISLAMI	P6-10
11	FERY ADY FIRMANSYAH	P6-11
12	FITRA AKBAR	P6-12
13	FRIESCA MUFI AZHARI	P6-13
14	KANAYYA PUTRI ZERLINA	P6-14
15	KHOIRUL RIFKI PRASETYO	P6-15
16	M. ALVIN ARRYAWAN FAJAR R.	P6-16
17	MAULIDA FEBRIANA RAHMA	P6-17
18	MEILANI WIDYANINGRUM	P6-18
19	MITHA CITRA AGUSTIN	P6-19

20	MUHAMMAD AQIL MIQDADU FATIH P6-20		
	MUHAMMAD AZRIL		
21	ABDURRAHMAN	P6-21	
22	MUHAMMAD EKA SUTIYOSO	P6-22	
23	MUHAMMAD RIZKI AL FATAH	P6-23	
24	NABILA WAHYU SEPTYANI	P6-24	
25	NAILA AULIA SALSABILA	P6-25	
26	NAVAL PURNOMO WIRA SAMUDRA	P6-26	
27	NAZRIL IRHAM	P6-27	
28	NUR SALSABILA HANDAYASTRI P6-2		
29	NURUL SINTIA ERNASARI	P6-29	
30	REVANDA PUTRI FILDZA D.	P6-30	
31	RIDHOMAULANA RIZKY	P6-31	
	SAVRIEL RAKHA WILDAN		
32	WISASTRYA	P6-32	
33	SHELVY OKTAVIA HERAWATI	P6-33	
34	WAHYU MARTIN SAPUTRA	P6-34	
35	YUZIKA SUKMA WARDANI	P6-35	
36	ZAHRA PUTRI MEISYA	P6-36	

Lampiran 13 Kisi- Kisi Instrumen Angket

KISI - KISI INSTRUMEN ANGKET

Indikator	Item pernyataan	
	positif	negatif
Kesadaran diri dan keinginan untuk	11,18,21	3,8,22
belajar		
tekun berusaha dan bekerja keras	2,6,9	7,14,19
Pantang menyerah untuk lebih baik	1,10,23	12,15,24
Berani bersaing untuk menggapai	5,16,20	4,17,13
prestasi		
Jumlah	24	

Lampiran 14 Intrumen Angket Motivasi Belajar

INSTRUMEN ANGKET MOTIVASI BELAJAR

Identitas responden:

Nama :

Kelas :

No. Absen:

Pentunjuk Pengisian Angket:

- 1 Isikan terlebih dahulu identitas anda
- 2 Bacalah setiap pernyataan dengan seksama
- 3 Pilih jawaban pernyataan sejujur jujurnya dengan memberikan tanda ($\sqrt{}$) pada kolom yang sesuai dengan kondisi anda

Keterangan:

Simbol	Arti	Keterangan
SS	Sangat	Dipilih jika anda sangat setuju dengan
	Setuju	pernyataan yang ada dalam angket
S	Setuju	Dipilih jika anda hanya setuju dengan
		pernyataan yang ada dalam angket
TS	Tidak	Dipilih jika anda tidak setuju dengan
	Setuju	pernyataan yang ada dalam angket

STS	Sangat	Dipilih jika anda sangat tidak setuju dengan
	Tidak	pernyataan yang ada dalam angket
	Setuju	

Kategori Pernyataan	Skala Pernyataan	Skor
Positif	Sangat Setuju (SS)	4
	Setuju (S)	3
	Tidak Setuju (TS)	2
	Sangat Tidak Setuju (STS)	1
Negatif	Sangat Setuju (SS)	1
	Setuju (S)	2
	Tidak Setuju (TS)	3
	Sangat Tidak Setuju (STS)	4

No.	Pernyataan	Alteri	natif Jaw	aban	
		SS	S	TS	STS
1.	Saya memiliki keberanian				
	untuk menyampaikan				
	pendapat				
2.	Saya belajar setiap malam				
3.	Saya malas dan sibuk sendiri				
	saat guru mengajar				
4.	Saya pesimis sebelum				
	mengerjakan soal				

5.	Saya merasa tertantang untuk		
	mengerjakan sal yang sulit		
6.	Saya berusaha mengerjakan		
	tugas dengan usaha sendiri		
7.	Saya mengeluh saat guru		
	memberikan tugas		
8.	Saya putus asa saat tidak		
	paham pelajaran		
9.	Saya mencatat materi dengan		
	baik		
10.	Saya ingin hasil belajar saya		
	maksimal		
11.	Saya hadir ke sekolah sebelum		
	bel masuk berbunyi		
12.	Saya menyerah jika mendapat		
	materi yang saya anggap sulit		
13.	Saya menyontek tugas teman		
14.	Saya malas apabila berdiskusi		
15.	Saya puas dengan hasil yang		
	biasa saja		
16.	Saya mengkonsetrasikan		
	perhatian terhadap Pelajaran		
17.	Saya malas berprestasi jika		
	teman saya mencapai prestasi		
	yang lebih tinggi		

18.	Saya mempelajari materi		
	sebelum pembelajaran dimulai		
19.	Saya mengerjakan PR di		
	sekolah		
20.	Saya senang bersaing hasil nilai		
	dengan teman saya		
21.	Saya merasa rugi jika tertinggal		
	Pelajaran		
22.	Saya diam saat di beri		
	kesempatan untuk bertanya		
23.	Saya intropeksi diri jika nilai		
	saya menurun		
24.	Prestasi yang jelek saya terima,		
	tanpa saya berusaha lebih baik		
	lagi		

Lampiran 15 Pedoman Penskoran Uji Coba Angket

PEDOMAN PERSKORAN INSTRUMEN UJI COBA ANGKET MOTIVASI BELAJAR

Kategori	Skala Pernyataan	Skor
Pernyataan		
Positif	Sangat Setuju (SS)	4
	Setuju (S)	3
	Tidak Setuju (TS)	2
	Sangat Tidak Setuju (STS)	1
Negatif	Sangat Setuju (SS)	1
	Setuju (S)	2
	Tidak Setuju (TS)	3
	Sangat Tidak Setuju (STS)	4

Cara perhitungan nilai skala Motivasi Belajar

Skor maksimal = 100

Nilai Skala =
$$\frac{Skor\ yang\ diperoleh}{96}$$
 x 100

Lampiran 16 Analisis Uji Validitas Instrumen Angket Motivasi Belajar

Analisis Uji Validitas Instrumen Angket Motivasi Belajar

Responde	1	2	3		5	6	7	8	9	10		12	13	14	15	16	17	18	19	20	21	22	23	24	Total skor
UCT-01	4	3	3		3	3	3	2	3	4	_		4	4	3	3	3	3	2	3	4	3	3	3	74
UCT-02	4	3	3		3	3		2	3	4		3	3		3	3	3	3	3	3	4	3	3	3	75
UCT-03	4	2	4	_	4	3		2	3	3		2	3		4	3	4	4	3	4	3	3	3	4	79
UCT-04	3	2	4	4	3	2		2	4	4		1	3		4	4	4	4	3	3	4	2	3	4	74
UCT-05	4	1	3		3	2		2	2	4	_	2	2	_	2	3	2	3	3	3	2	3	2	3	58
UCT-06	3	2	4	3	3	2		2	3	3	3	3	2	4	3	3	2	3	3	3	3	2	3	3	67
UCT-07	3	3	3	3	3	2		2	3	3		3	3	3	3	3	3	3	3	3	3	2	3	3	69
UCT-08 UCT-09	4	3	3	_	3	3		3	3	3		3	3		4	3	3	3	3	3	2	3	3	3	74
	- 5	2	3		3	2			4		_		3	_	2	5	- 5	- 5	3		- 4	1	- 5		66 77
UCT-10 UCT-11	4	2	4	3	3	1	2	2	4	4	3	3	3	4	- 4	2	3	3	2	4	4	3	4	4	78
UCT-12	4	- 4	4	4	3	3	- 4	- 2	4	4	3	0	4	4	- 4	3	4	4	3	3	-	3	4	4	75
UCT-13	4	4	4	4	3	4	- 1	2	4	4	3	4	4	4	1	4	4	4	3	- 1	4	4	4	4	92
UCT-14	2	3	4	3	3	3	2	2	3	4	3	3	3	4	-	2	4	- 4	2	4	-	3	2	4	81
UCT-15	2	2	3		2	2	-)	2	3		2	2		3	3	2	2	2	2	1 3	3	3	2	62
UCT-16	3	3	3		2	2	2)	3	3	_	2	2	_	3	2	2	3	3	3	3	2	2	4	65
UCT-17	2	3	4	3	3	2	3	3	3	4	4	2	3	4	4	3	3	4	3	3	3	3	3	3	75
UCT-18	4	2	4	4	4	2	2	,	3	3	3	3	3	4	4	4	3	4	4	4	3	4	3	4	80
UCT-19	2	3	3	3	2	3	3	2	3	2		3	3	3	3	2	3	3	2	3	4	2	3	3	64
UCT-20	4	2	4	4	3	3	3	2	2	3	4	3	3	4	4	3	4	4	2	4	2	2	4	2	75
UCT-21	3	3	3	2	2	2	3	3	3	3	2	2	3	3	3	2	2	2	3	3	3	2	2	2	61
UCT-22	4	3	4	4	3	3	2	3	3	3	3	2	3	4	4	3	4	4	4	3	4	4	4	4	82
UCT-23	3	3	3	4	3	3	2	3	3	3	3	4	3	4	4	3	3	4	3	3	3	3	3	3	76
UCT-24	3	2	3	3	4	4	3	2	3	4	3	4	3	4	3	3	4	4	3	4	2	3	4	4	79
UCT-25	4	3	3	3	4	3	3	3	3	4	_	4	3	4	4	4	3	4	3	4	3	3	4	4	84
UCT-26	3	3	3		3	3		3	3	3		3	3	3	3	3	3	3	3	3	3	3	3	3	72
UCT-27	3	2	2	3	3	3	3	2	4	4	3	3	4	4	3	4	3	3	2	3	3	3	4	3	74
UCT-28	4	2	3	3	3	3	3	4	3	4	4	4	4	4	3	4	3	4	3	3	3	4	4	4	83
UCT-29	4	4	3	3	4	3	4	4	3	3		3	4	4	3	3	3	4	3	4	4	3	4	3	83
UCT-30	3	4	4	4	3	3	_	4	4	4		3	4	4	4	3	4	4	4	3	3	4	3	3	86
ΣX	103	81	102	100	92	80	79	75	94	104	89	82	91	113	99	90	96	105	88	97	95	86	98	101	
ΣΥ																									2240
ΣΝ;	10609	6561	10404	10000	8464	6400	6241	5625	8836	10816	7921	6724	8281	12769	9801	8100	9216	11025	7744	9409		7396	9604	10201	
∑XY ∑X²	7750	6123	7667	7525	6948	6058	5983	5685	7081	7821	6733	6216	6881	8508	7471	6790	7270	7941	6628	7300		6523	7418	7613	
ΣX	365	235	356	344	292	226	225	209	304	370	285	250	291	431	343	284	320	377	268	325	317	264	332	351	_
N∑XY	232500	183690	230010	225750	208440	181740	179490	170550	212430	234630	201990	186480	30 206430	255240	224130	203700	218100	238230	198840	219000	214830	195690	222540	228390	
								_																	-
N∑X²	10950	7050	10680	10320	8760	6780	6750	6270	9120	11100	8550	7500	8730	12930	10290	8520	9600	11310	8040	9750	9510	7920	9960	10530	
ΣΥ ²																									169094
N∑Y ²	5072820																								
(<u>\S</u> Y) ²													5017600												
L																									
N∑XY-∑X∑	1780	2250	1530	1750	2360	2540	2530	2550	1870	1670	2630	2800	2590	2120	2370	2100	3060	3030	1720	1720	2030	3050	3020	2150	
NΣX²-(ΣX)	341	489	276	320	296	380	509	645	284	284	629	776	449	161	489	420	384	285	296	341	485	524	356	329	
NΣY ² -(ΣΥ)													55220												
Rxy	0,410199	0,432992	0,391912	0,416308	0,583738	0,55449	0,477214	0,42728	0,472209	0,421705	0,446254	0,427739	0,52015	0,711008	0,456085	0,43606		0,763787	0,425436	0,396372	.,	0,567004	0,681136	0,50442	
R tabel	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	
	VALID	VALID	VALID	VALID	VALID	VALID	VALID	VALID	VALID	VALID	VALID	VALID	VALID	VALID	VALID	VALID	VALID	VALID	VALID	VALID	VALID	VALID	VALID	VALID	_
Kriteria				1		1					ı					1					ı				

Lampiran 17 Perhitungan Angket Motivasi Belajar

Perhitungan Angket Motivasi Belajar

Rumus

$$r_{xy} = \frac{n \sum XY - \sum X \sum Y}{\sqrt{(n \sum X^2 - (\sum X)^2)(n \sum Y^2 - (\sum Y)^2)}}$$

Kriteria Apabila $r_{xy} \ge r_{tabel}$ maka butir soal

valid

Berikut adalah contoh perhitungan uji validitas butir angket nomor 1

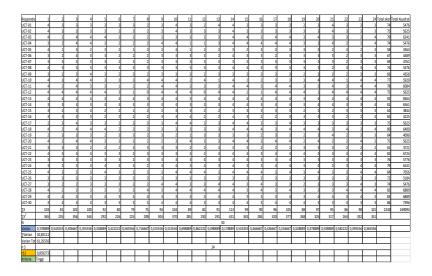
$$r_{xy} = \frac{n \sum XY - \sum X \sum Y}{\sqrt{(n \sum X^2 - (\sum X)^2)(n \sum Y^2 - (\sum Y)^2)}}$$

$$= \frac{(30)(7958) - (102)(2323)}{\sqrt{((30)(358) - (10404))((30)(181933) - (5396329)}}$$

$$= \frac{238740 - 236946}{\sqrt{((10740) - (10404))((5457990) - (5396329)}}$$

$$= \frac{1794}{\sqrt{(336)(61661)}}$$

$$= \frac{1794}{\sqrt{20718096}}$$


$$= \frac{1794}{455,713}$$

$$= 0.394$$

Butir angket dikatakan valid apabila $r_{xy} > r_{tabel}$. Pada taraf signifikansi 5% dengan N=30 diperoleh r_{tabel} = 0,361. Karena r_{xy} = 0,394 \geq 0,361 maka dapat disimpulkan bahwa butir angket tersebut **valid**.

Lampiran 18 Tabel Perhitungan uji Reliabilitas Angket Motivasi Belajar

Tabel Perhitungan Uji Reliabilitas Angket Motivasi Belajar

Lampiran 19 Perhitungan uji Reliabilitas angket Motivasi Belajar

Perhitungan Uji Reliabilitas Angket Motivasi Belajar

Rumus

$$r_{11} = \left(\frac{n}{n-1}\right) \left(1 - \frac{\sum_{i=1}^{2} s_{i}^{2}}{s_{t}^{2}}\right)$$

Perhitungan soal nomor 1

$$r_{11} = \left(\frac{n}{n-1}\right) \left(1 - \frac{\sum_{i}^{2} s_{i}^{2}}{s_{t}^{2}}\right)$$

$$= \left(\frac{24}{24-1}\right) \left(1 - \frac{10,82}{60,83}\right)$$

$$= \left(\frac{24}{23}\right) (1 - (0,1671))$$

$$= (1,043)(0,8222)$$

$$= 0,857$$

Berdasarkan perhitungan untuk angket motivasi belajar $r_{11} = 0.857$

dan $r_{tabel} = 0.361$. Karena $r_{hitung} > r_{tabel}$ maka setiap item soal tersebut **reliabel**.

Lampiran 20 Kisi-Kisi Uji Coba Tes Awal

KISI - KISI UJI COBA TES AWAL

Satuan Pendidikan : MAN 2 Kota Semarang

Mata Pelajaran : Matematika

Kelas/Semester : XII/Ganjil

Materi Pokok : Dimensi Tiga

Alokasi Waktu : 60 menit

Jumlah Butir Soal : 6 soal

Aspek Penilaian : Kemampuan Berpikir Kritis

Kompetensi Dasar

3.8 Menjelaskan sifat-sifat turunan fungsi aljabar dan menentukan turunan fungsi aljabar menggunakan definisi atau sifat-sifat turunan fungsi

4.8 Menyelesaikan masalah yang berkaitan dengan turunan fungsi aljabar

Indikator Pembelajaran

- 3.8.1 Menentukan turunan fungsi dengan definisi atau sifatsifat turunan fungsi
- 4.8.1 Menyelesaikan masalah yang berkaitan dengan turunan fungsi aljabar

Indikator Berpikir Kritis

- A. Interpretation, yaitu kemampuan untuk memahami dan memaknai permasalahan
- B. Analisys, yaitu kemampuan untuk mengidentifikasi permasalahan.
- C. Evalution , yaitu kemampuan untuk merepresentasi ulang permasalahan sehingga dapat berpikir logika.
- D. Inference, yaitu kemapuan untuk mencari hal-hal yang dibutuhkan untuk menarik kesimpulan
- E. Explanation, yaitu kemampun untuk memberikan alasan logis dalam sebuah permasalahan.
- F. Self regulation, yaitu kemampuan untuk memonitoring aktivitas kognitif seseorang dalam menyelesaikan permasalahan.

No	Indikat	tor Pembelajaran	Indikator Soal	Indikatator				
soal				Berpikir Kritis				
1	3.8.1	Menentukan	Diberikan suatu	Interpretation,				
		turunan fungsi	fungsi aljabar.	yaitu kemampuan				
		dengan definisi	Siswa diminta	untuk memahami				
		atau sifat-sifat	untuk mencari	dan memaknai				
		turunan fungsi	turunan dari	permasalahan				
			fungsi aljabar	Analisys, yaitu				
			tersebut dengan	kemampuan untuk				
			definisi	mengidentifikasi				
				permasalahan.				

				Evalution , yaitu
				-
				kemampuan untuk
				merepresentasi
				ulang
				permasalahan
				sehingga dapat
				berpikir logika.
				Inference, yaitu
				kemapuan untuk
				mencari hal-hal
				yang dibutuhkan
				untuk menarik
				kesimpulan
2	4.8.1	Menyelesaikan	Diberikan suatu	Analisys, yaitu
		masalah yang	fungsi aljabar	kemampuan untuk
		berkaitan	berupa akar.	mengidentifikasi
		dengan turunan	Siswa di minta	permasalahan
		fungsi aljabar	untuk mencari	Inference, yaitu
			turunan pertama	kemampuan untuk
			dari fungsi	mencari hal-hal
			tersebut	yang dibutuhkan
				untuk menarik
				kesimpulan
				Explanation, yaitu
				kemampuan untuk

				memberikan
				alasan logis dalam
				sebuah
				permasalahan.
3	4.8.1	Menyelesaikan	Diberikan fungsi	Interpretation,
		masalah yang	aljabar pangkat .	yaitu kemampuan
		berkaitan	siswa diminta	untuk memahami
		dengan turunan	untuk mencari	dan memaknai
		fungsi aljabar	turunan kedua	permasalahan
			dari fungsi	Analisis, yaitu
			tersebut.	kemampuan untuk
				mengidentifikasi
				permasalahan
				Evalution , yaitu
				kemampuan untuk
				merepresentasi
				ulang
				permasalahan
				sehingga dapat
				berpikir logika.
				Inference, yaitu
				kemampuan untuk
				mencari hal-hal
				yang dibutuhkan

				untuk menarik
				kesimpulan
4	1.8.1	Menyelesaikan	Diberikan fungsi	Interpretation,
		masalah	aljabar	yaitu kemampuan
		konstektual	pembagian. Siswa	untuk memahami
		yang berkaitan	diminta untuk	dan memaknai
		dengan turunan	mencari turunan	permasalahan
		fungsi aljabar	pertama dari	Analisys, yaitu
			fungsi tersebut	kemampuan untuk
				mengidentifikasi
				permasalahan.
				Explanation, yaitu
				kemampun untuk
				memberikan
				alasan logis dalam
				sebuah
				permasalahan.
				Evalution , yaitu
				kemampuan untuk
				merepresentasi
				ulang
				permasalahan
				sehingga dapat
				berpikir logika.

				Inference, yaitu
				-
				kemampuan untuk
				mencari hal-hal
				yang dibutuhkan
				untuk menarik
				kesimpulan
5	4.8.1	Menyelesaikan	Diberikan fungsi	Interpretation,
		masalah	aljabar berupa	yaitu kemampuan
		kontekstual	perkalian. Siswa	untuk memahami
		yang berkaitan	diminta untuk	dan memaknai
		dengan turunan	mencari turunan	permasalahan
		fungsi	pertama dari	Analisys, yaitu
			fungsi tersebut	kemampuan untuk
				mengidentifikasi
				permasalahan
				Explanation, yaitu
				kemampun untuk
				memberikan
				alasan logis dalam
				sebuah
				permasalahan.
				Evalution , yaitu
				kemampuan untuk
				merepresentasi
				ulang

				permasalahan
				sehingga dapat
				berpikir logika.
				Inference, yaitu
				kemampuan untuk
				mencari hal-hal
				yang dibutuhkan
				untuk menarik
				kesimpulan
6	3.8.1	Menentukan	Diberikan fungsi	Interpretation,
		turunan fungsi	aljabar pangkat	yaitu kemampuan
		dengan definisi	banyak. Siswa di	untuk memahami
		atau sifat-sifat	minta untuk	dan memaknai
		turunan fungsi	mencari turunan	permasalahan
			fungsi tersebut	Analisys, yaitu
			dengan definisi	kemampuan untuk
				mengidentifikasi
				permasalahan
				Inference, yaitu
				kemapuan untuk
				mencari hal-hal
				yang dibutuhkan
				untuk menarik
				kesimpulan

7	4.8.1	Menyelesaikan	Diberikan fungsi	Interpretation,
		masalah	aljabar pangkat.	yaitu kemampuan
		konstektual	Siswa diminta	untuk memahami
		yang berkaitan	mencari turunan	dan memaknai
		dengan turunan	ketiga dari fungsi	permasalahan
		fungsi aljabar	tersebut	Evalution , yaitu
				kemampuan untuk
				merepresentasi
				ulang
				permasalahan
				sehingga dapat
				berpikir logika.
				Self regulation,
				yaitu kemampuan
				untuk
				memonitoring
				aktivitas kognitif
				seseorang dalam
				menyelesaikan
				permasalahan.
				Inference, yaitu
				kemapuan untuk
				mencari hal-hal
				yang dibutuhkan

	untuk	menarik
	kesimpu	lan

Lampiran 21 Lembar uji Coba Tes Awal

LEMBAR SOAL UJI COBA TES AWAL

Mata Pelajaran : Matematika Waktu : 60 menit

Kelas/Semester : XI/Genap Materi : Turunan

Petunjuk:

- Tulislah nama lengkap, nomor absen dan kelas pada lembar jawab yang disediakan
- Baca, pahami dan kerjakan soal-soal berikut ini dengan benar
- Tidak diperbolehkan melakukan kecurangan dalam bentuk apapun
- 4) Tidak oleh kerjsama dengan teman yang ain
- 5) Kumpulkan jawaban setelah mengerjakan soal
- 6) Awali dan akhiri dengan doa
- 1. Dengan definisi tentukan turunan pertama dari fungsi $f(x) = x^2 + 7x 3$
- 2. Tentukan turunan pertama dari fungsi $g(x) = \sqrt{x-5}$
- 3. Tentukan turunan kedua dari fungsi $f(x) = 3x^8$
- 4. Tentukan turunan pertama dari fungsi $f(x) = \frac{(x^2 3x + 1)^2}{x 2}$
- 5. Tentukan turunan pertama dari fungsi $g(x) = (3x 2)^2(x^2 + 5 6)$

- 6. Dengan definisi tentukan turunan pertama dari fungsi $f(x) = x^3 x^2 + 2x 5$
- 7. Tentukan turunan ketiga dari fungsi $g(x) = 2x^5$

Lampiran 22 Kunci Jawaban dan Penskoran Uji Coba

KUNCI JAWABAN DAN PENSKORAN UJI COBA TES AWAL

No.	Kunci Jawaban	Skor	Kriteria Penskoran	Indikator Berpikir
Soal				Kritis
1.	$f(x) = x^{2} + 7x - 3$ $f(x + h) = (x + h)^{2}$	0	jika siswa tidak mampu untuk	Interpretation, yaitu
	$f(x+h) = (x+h)^2$		memahami dan memaknai	kemampuan untuk
	+7(x+h)		permasalahan	memahami dan
	- 3			memaknai
	$= x^2 + 2xh + h^2 + 7x + 7h$	1	Jika siswa mampu untuk	permasalahan
	- 3		memahami dan memaknai	
			permasalahan tetapi tidak tepat	
		2	Jika siswa mampu untuk	
			memahami dan memaknai	

$f(x+h) - f(x) = (x^2)$		permasalahan tetapi kurang	
$+2xh+h^2$		lengkap	
+7x+7h	3	Jika siswa mampu untuk	
$-3-(x^2)$		memahami dan memaknai	
+7x-3)		permasalahan dengan tepat	
$=2hx+h^2+7h$			
= h(2x + h + 7)			
	0	Jika siswa tidak mampu untuk	Analisys, yaitu
		mengidentifikasi permasalahan	kemampuan untuk
		Jika siswa mampu untuk	mengidentifikasi
		mengidentifikasi permasalahan	permasalahan.
		tetapi tidak tepat	

$f^{1}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{h(2x+h+7)}{h}$ $= \lim_{h \to 0} 2x + h + 7 = 2x + 7$	3	Jika siswa mampu untuk mengidentifikasi permasalahan tetapi kurang tepat Jika siswa mampu untuk mengidentifikasi permasalahan dengan tepat	
Jadi, turunan pertamanya adalah $2x + 7$	0	Jika siswa tidak mampu untuk mencari hal-hal yang dibutuhkan untuk menarik kesimpulan	Inference, yaitu kemampuan untuk mencari hal-hal yang dibutuhkan untuk
	1	Jika siswa mampu untuk mencari hal-hal yang dibutuhkan untuk menarik kesimpulan tetapi tidak tepat	menarik kesimpulan

		2	Jika siswa mampu untuk	
			mencari hal-hal yang	
			dibutuhkan untuk menarik	
			kesimpulan tetapi kurang tepat	
		3	Jika siswa mampu untuk	
			mencari hal-hal yang	
			dibutuhkan untuk menarik	
			kesimpulan dengan tepat	
2.	$g(x+h) = \sqrt{(x+h) - 5}$	0	jika siswa tidak mampu untuk	Analisys, yaitu
	$g(x+h) = \sqrt{(x+h) - 5}$ $g(x+h) - g(h)$		mengidentifikasi permasalahan	kemampuan untuk
	$= (\sqrt{(x+h)-5})$ $-(\sqrt{x-5})$			mengidentifikasi
	$-(\sqrt{x-5})$	1	Jika siswa mampu untuk	permasalahan.
	(γ σ)		mengidentifikasi permasalahan	
			tetapi tidak tepat	

	2	Jika siswa mampu untuk mengidentifikasi permasalahan tetapi kurang tepat	
	3	Jika siswa mampu untuk mengidentifikasi permasalahan dengan tepat	
$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$	0	Jika tidak mampu untuk untuk memberikan alasan logis dalam sebuah permasalahan	Explanation, yaitu kemampuan untuk memberikan alasan
$= \lim_{h \to 0} \frac{\sqrt{(x+h) - 5} - \sqrt{x - 5}}{h}$ $= \lim_{h \to 0} \frac{\sqrt{x + h - 5} - \sqrt{x - 5}}{\sqrt{x + h - 5} + \sqrt{x - 5}}$ $(x + h - 5) - (x - 5)$		Jika siswa mampu untuk memberikan alasan logis dalam sebuah permasalahan tetapi tidak tepat	logis dalam sebuah permasalahan.
$= \lim_{h \to 0} \frac{(x+h-5) - (x-5)}{h\sqrt{x+h-5} + \sqrt{x-5}}$	2	Jika siswa mampu untuk memberikan alasan logis dalam	

$\lim_{h \to 0} \frac{h}{h\sqrt{x+h-5} + \sqrt{x-5}}$		sebuah permasalahan tetapi kurang lengkap	
$= \lim_{h \to 0} \frac{1}{\sqrt{x + h - 5} + \sqrt{x - 5}}$ $= \lim_{h \to 0} \frac{1}{\sqrt{x - 5} + \sqrt{x - 5}}$ $= \frac{1}{2\sqrt{x - 5}}$	3	Jika siswa mampu untuk memberikan alasan logis dalam sebuah permasalahan dengan tepat	
Jadi, nilai turuna	0	jika siswa tidak mampu untuk	Inference, yaitu
pertamanya adalah $g'^{(x)} =$		mencari hal-hal yang	kemapuan untuk
$\frac{1}{2\sqrt{x-5}}$		dibutuhkan untuk menarik	mencari hal-hal yang
27x-5		kesimpulan	dibutuhkan untuk
	1	Jika siswa mampu untuk	menarik kesimpulan
		mencari hal-hal yang	

			dibutuhkan untuk menarik
			kesimpulan tetapi tidak tepat
		2	Jika siswa mampu untuk
			mencari hal-hal yang
			dibutuhkan untuk menarik
			kesimpulan tetapi kurang tepat
		3	Jika siswa mampu untuk
			mencari hal-hal yang
			dibutuhkan untuk menarik
			kesimpulan dengan tepat
3.	$f(x) = ax^n$ $f'(x) = anx^{n-1}$	0	jika siswa tidak mampu untuk Interpretation, yaitu
	$f'(x) = anx^{n-1}$		memahami dan memaknai kemampuan untuk
			permasalahan memahami dan

	1	Jika siswa mampu untuk memak	nai
		memahami dan memaknai permas	alahan
		permasalahan tetapi tidak tepat	
	2	Jika siswa mampu untuk	
		memahami dan memaknai	
		permasalahan tetapi kurang	
		tepat	
	3	Jika siswa mampu untuk	
		memahami dan memaknai	
		permasalahan dengan tepat	
Maka, $f(x) = 3x^8$ $f'(x) = 3.8x^{8-1}$	0	Jika siswa tidak mampu untuk Analisy	s, yaitu
$f'(x) = 3.8x^{8-1}$		mengidentifikasi permasalahan kemam	puan untuk
$= 24x^7$	1	Jika siswa mampu untuk mengid	entifikasi
		mengidentifikasi permasalahan permas	alahan.
		tetapi tidak tepat	

	2	Jika siswa mampu untuk mengidentifikasi permasalahan tetapi kurang tepat	
	3	Jika siswa mampu untuk mengidentifikasi permasalahan dengan tepat	
$f''(x) = 24.7x^{7-1}$	0	jika siswa tidak mampu berpikir	Evalution , yaitu
$= 168x^6$		logika dengan merepresentasi	kemampuan untuk
		ulang permasalahan	merepresentasi ulang
	1	Jika siswa mampu berpikir	permasalahan
		logika dengan merepresentasi	sehingga dapat
		ulang permasalahan tetapi tidak	berpikir logika.
		tepat	
	2	Jika siswa mampu berpikir	
		logika dengan merepresentasi	

			ulang permasalahan tetapi	
			kurang tepat	
		3	Jika siswa mampu berpikir	
			logika dengan merepresentasi	
			ulang permasalahan dengan	
			tepat	
Jadi turunan	keduanya	0	Jika siswa tidak mampu untuk	Inference, yaitu
adalah 168 x^6			mencari hal-hal yang	kemampuan untuk
			dibutuhkan untuk menarik	mencari hal-hal yang
			kesimpulan	dibutuhkan untuk
		1	Jika siswa mampu untuk	menarik kesimpulan
			mencari hal-hal yang	
			dibutuhkan untuk menarik	
			kesimpulan tetapi tidak tepat	

		2	Jika siswa mampu untuk
			mencari hal-hal yang
			dibutuhkan untuk menarik
			kesimpulan tetapi kurang tepat
		3	Jika siswa mampu mampu untuk
			mencari hal-hal yang
			dibutuhkan untuk menarik
			kesimpulan dengan tepat
4.		0	jika siswa tidak mampu untuk Interpretation, yaitu
	$u = (x^2 - 3x + 1)^2$		memahami dan memaknai kemampuan untuk
	v = x - 2		permasalahan memahami dan
		1	Jika siswa mampu untuk memaknai
			memahami dan memaknai permasalahan
			permasalahan tetapi tidak tepat

	2	Jika siswa mampu untuk	
		memahami dan memaknai	
		permasalahan tetapi kurang	
		tepat	
	3	Jika mampu untuk memahami	
		dan memaknai permasalahan	
		dengan tepat	
$u' = 2(x^2 - 3 + 1)(2x - 3)$ $= 2(2x - 3)(x^2 - 3x + 1)$	0	Jika siswa tidak mampu untuk	Analisys, yaitu
$= 2(2x - 3)(x^2 - 3x + 1)$		mengidentifikasi permasalahan	kemampuan untuk
v'=1	1	Jika siswa mampu untuk	mengidentifikasi
		mengidentifikasi permasalahan	permasalahan.
		tetapi tidak tepat	
	2	Jika siswa mampu untuk	
		mengidentifikasi permasalahan	
		tetapi kurang tepat	

	3	Jika siswa mampu untuk mengidentifikasi permasalahan dengan tepat	
$f'(x) = \frac{u'v - uv'}{v^2}$	0	Jika siswa tidak mampu untuk memberikan alasan logis dalam sebuah permasalahan	Explanation, yaitu kemampuan untuk memberikan alasan
	1	Jika siswa mampu untuk memberikan alasan logis dalam sebuah permasalahan tetapi tidak tepat	logis dalam sebuah permasalahan.
	2	Jika siswa mampu untuk memberikan alasan logis dalam sebuah permasalahan jawaban benar tapi tidak lengkap	

	3	Jika siswa mampu untuk memberikan alasan logis dalam sebuah permasalahan dengan tepat	
$= \frac{2(2x-3)(x^2-3x+1) \cdot (x}{(x-1)^2}$ $= \frac{(4x-6)(x^3-5x^2+7x-2)}{(x-2)^2}$		jika siswa tidak mampu berpikir logika dengan merepresentasi ulang permasalahan	Evalution , yaitu kemampuan untuk merepresentasi ulang
$= 4x^4 - 26x^3 + 58x^2 - 50x + 4x^2 - 44x + 4x^2 - 44x + 4x^2 - 4x + 4x + 4x^2 - 4x + 4x + 4x^2 - 4x + 4x$	1	Jika siswa mampu berpikir logika dengan merepresentasi ulang permasalahan tetapi tidak tepat	permasalahan sehingga dapat berpikir logika.
	2	Jika siswa mampu berpikir logika dengan merepresentasi ulang permasalahan tetapi kurang tepat	

	3	Jika siswa mampu berpikir logika dengan merepresentasi ulang permasalahan dengan tepat
Jadi, turunan pertamanya adalah $\frac{3x^4 - 20x^3 + 47x^2 - 44x + 11}{x^2 - 4x + 4}$	0	Jika siswa tidak mampu untuk Inference, yaitu mencari hal-hal yang kemampuan untuk dibutuhkan untuk menarik mencari hal-hal yang kesimpulan dibutuhkan untuk
	2	Jika siswa mampu untuk mencari hal-hal yang dibutuhkan untuk menarik kesimpulan tetapi tidak tepat Jika siswa mampu untuk mencari hal-hal yang

			dibutuhkan untuk menarik	
			kesimpulan tetapi kurang tepat	
		3	Jika siswa mampu untuk	
			mencari hal-hal yang	
			dibutuhkan untuk menarik	
			kesimpulan dengan tepat	
5.	$u = (3x - 2)^2$ $v = (x^2 + 5x - 6)$	0	jika siswa tidak mampu untuk	Interpretation, yaitu
	$v = (x^2 + 5x - 6)$		memahami dan memaknai	kemampuan untuk
			permasalahan	memahami dan
		1	Jika siswa mampu untuk	memaknai
			memahami dan memaknai	permasalahan
			permasalahan tetapi tidak tepat	
		2	Jika siswa mampu untuk	
			memahami dan memaknai	

		permasalahan tetapi kurang	
		tepat	
	3	Jika siswa mampu untuk	
		memahami dan memaknai	
		permasalahan dengan tepat	
u' = 2(3x - 2).3 v' = 2x + 5	0	Jika siswa tidak mampu untuk	Analisys, yaitu
v'=2x+5		mengidentifikasi permasalahan	kemampuan untuk
	1	Jika siswa mampu untuk	mengidentifikasi
		mengidentifikasi permasalahan	permasalahan.
		tetapi tidak tepat	
	2	Jika siswa mampu untuk	
		mengidentifikasi permasalahan	
		tetapi kurang tepat	

	3	Jika siswa mampu untuk	
		mengidentifikasi permasalahan	
		dengan tepat	
f'(x) = u'.v + v'.u	0	Jika siswa tidak mampu untuk	Explanation, yaitu
		memberikan alasan logis dalam	kemampuan untuk
		sebuah permasalahan.	memberikan alasan
	1	Jika siswa mampu untuk	logis dalam sebuah
		memberikan alasan logis dalam	permasalahan.
		sebuah permasalahan tetapi	
		tidak tepat	
	2	Jika siswa mampu untuk	
		memberikan alasan logis dalam	
		sebuah permasalahan tetapi	
		kurang tepat	

	3	Jika siswa mampu untuk	
		memberikan alasan logis dalam	
		sebuah permasalahan dengan	
		tepat	
f'(x) = 2(3x - 2).3(x + 5x	0	jika siswa tidak mampu berpikir	Evalution , yaitu
- 6)		logika dengan merepresentasi	kemampuan untuk
+(3x)		ulang permasalahan	merepresentasi ulang
$-2)^{2}(2x$	1	Jika siswa mampu berpikir	permasalahan
+ 5)		logika dengan merepresentasi	sehingga dapat
$= (3x - 2)(6(x^2 + 5x - 6)$		ulang permasalahan tetapi tidak	berpikir logika.
+(3x)		tepat	
$-2)^{2}(2x$	2	Jika siswa mampu berpikir	
+ 5)		logika dengan merepresentasi	
		ulang permasalahan tetapi	
		kurang tepat	

$= (3x - 2)(6x^2 + 30x - 36$	3	Jika siswa mampu berpikir
$+6x^{2}$		logika dengan merepresentasi
+ 11 <i>x</i>		ulang permasalahan dengan
- 10)		tepat
$= (3x - 2)(12x^2 + 41x$		
- 46)		
$= 36^3 + 99^2 - 220x + 92$		
Jadi, turunan pertamannya	0	Jika siswa tidak mampu untuk Inference, yaitu
adalah $36^3 + 99^2 - 220x +$		mencari hal-hal yang kemampuan untuk
92		dibutuhkan untuk menarik mencari hal-hal yang
		kesimpulan dibutuhkan untuk
	1	Jika siswa mampu untuk menarik kesimpulan
		mencari hal-hal yang

			dibutuhkan untuk menarik	
			kesimpulan tetapi tidak tepat	
		2	Jika siswa mampu untuk	
			mencari hal-hal yang	
			dibutuhkan untuk menarik	
			kesimpulan tetapi kurang tepat	
		3	Jika siswa mampu untuk	
			mencari hal-hal yang	
			dibutuhkan untuk menarik	
			kesimpulan dengan tepat	
6.	$f(x) = x^3 - x^2 + 2x - 5$	0	jika siswa tidak mampu untuk	Interpretation, yaitu
	$=3x^{n-1}-2x^{n-1}+2x^{n-1}$		memahami dan memaknai	kemampuan untuk
			permasalahan	memahami dan

	1	Jika siswa mampu untuk	memaknai
	1	Jika siswa mampu untuk	Illelliakilai
		memahami dan memaknai	permasalahan
		permasalahan tetapi tidak tepat	
	2	Jika siswa mampu untuk	
		memahami dan memaknai	
		permasalahan tetapi kurang	
		tepat	
	3	Jika siswa mampu untuk	
		memahami dan memaknai	
		permasalahan dengan tepat	
$=3x^{3-1}-2x^{2-1}+2$	$2x^{1-1}$ 0	Jika siswa tidak mampu untuk	Analisys, yaitu
$=3x^2+2x+2$		mengidentifikasi permasalahan	kemampuan untuk
	1	Jika siswa mampu untuk	mengidentifikasi
		mengidentifikasi permasalahan	permasalahan.
		tetapi tidak tepat	

	2	Jika siswa mampu untuk	
		mengidentifikasi permasalahan	
		tetapi kurang tepat	
	3	Jika siswa mampu untuk	
		mengidentifikasi permasalahan	
		dengan tepat	
Jadi, turunan pertamanya	0	Jika siswa tidak mampu untuk	Inference, yaitu
adalah $3x^2 + 2x + 2$		mencari hal-hal yang	kemampuan untuk
		dibutuhkan untuk menarik	mencari hal-hal yang
		kesimpulan	dibutuhkan untuk
	1	Jika siswa mampu mampu untuk	menarik kesimpulan
		mencari hal-hal yang	
		dibutuhkan untuk menarik	
		kesimpulan tetapi tidak tepat	

		2	Jika siswa mampu untuk
			mencari hal-hal yang
			dibutuhkan untuk menarik
			kesimpulan tetapi kurang tepat
		3	Jika siswa mampu untuk
			mencari hal-hal yang
			dibutuhkan untuk menarik
			kesimpulan dengan tepat
7.	$g(x) = 2x^5$	0	jika siswa tidak mampu untuk Interpretation, yaitu
	$= n. 2 x^{n-1}$		memahami dan memaknai kemampuan untuk
	$= 5.2 x^{5-1}$		permasalahan memahami dan
	$g'(x) = 10x^4$	1	Jika siswa mampu untuk memaknai
			memahami dan memaknai permasalahan
			permasalahan tetapi tidak tepat

	2	Jika siswa mampu untuk memahami dan memaknai permasalahan tetapi kurang tepat	
	3	Jika mampu untuk memahami dan memaknai permasalahan dengan tepat	
$g''(x) = 10.4x^{4-1}$ $= 40 x^3$	0	jika siswa tidak mampu berpikir	Evalution , yaitu
$=40 x^3$		logika dengan merepresentasi	kemampuan untuk
		ulang permasalahan	merepresentasi ulang
			permasalahan
	1	Jika siswa mampu berpikir	sehingga dapat
		logika dengan merepresentasi	berpikir logika.

		ulang permasalahan tetapi tidak	
		tepat	
	2	Jika siswa mampu berpikir	
		logika dengan merepresentasi	
		ulang permasalahan tetapi	
		kurang tepat	
	3	Jika siswa mampu berpikir	
		logika dengan merepresentasi	
		ulang permasalahan dengan	
		tepat	
$g^{\prime\prime\prime}(x) = 3.40 x^{3-1}$	0	jika siswa tidak mampu untuk	Self regulation, yaitu
$= 120 x^2$		memonitoring aktivitas kognitif	kemampuan untuk
		seseorang dalam menyelesaikan	memonitoring
		permasalahan	aktivitas kognitif

	1	Jika	siswa	mampu	untuk	seseorang	dalam
	1	•		g aktivitas		menyelesaika	
		seseo	rang da	lam menyel	lesaikan	permasalahan	١.
		perma	asalaha	n tetapi tida	ık tepat		
	2	Jika	siswa	mampu	untuk		
		memo	onitorin	g aktivitas	kognitif		
		seseo	rang da	lam menyel	lesaikan		
		perma	asalaha	n tetapi	kurang		
		tepat					
	3	Jika	siswa	mampu	untuk		
		memo	onitorin	g aktivitas	kognitif		
		seseo	rang da	lam menyel	esaikan		
		perma	asalaha	n dengan te	pat		
	0	Jika s	iswa ti	dak mampı	u untuk	Inference,	yaitu
		menca	ari	hal-hal	yang	kemapuan	untuk

Jadi, turunan ketiga dari		dibutuhkan untuk menarik mencari hal-hal yang
$2x^5$ adalah 120 x^2		kesimpulan dibutuhkan untuk
	1	Jika siswa mampu untuk menarik kesimpulan
		mencari hal-hal yang
		dibutuhkan untuk menarik
		kesimpulan tetapi tidak tepat
	2	Jika siswa mampu untuk
		mencari hal-hal yang
		dibutuhkan untuk menarik
		kesimpulan tetapi kurang tepat
	3	Jika siswa mampu untuk
		mencari hal-hal yang
		dibutuhkan untuk menarik
		kesimpulan dengan tepat

Lampiran 23 Analisis Butir Soal Intrumen Tes Awal validitas Tahap 1

Analisis Butir Soal Intrumen Tes Awal validitas Tahap 1

Variabel X								
Responde	Caal 1	Soal 2	Soal 3	Soal 4	Soal 5	Soal 6	Soal 7	TOTAL
UCT-01	2	2 2	30ai 3	30ai 4 8	50ai 5	5041 6	30ai 7 9	35
UCT-01	2	6	6	11	5	5	9	44
UCT-02	6	6	3	11	5	5	3	39
UCT-03	2	6	4	10	10	5	6	43
UCT-05	2	2	4	10	5	6	9	38
UCT-06	2	6	3	11	5	5	3	35
UCT-07	2	6	6	11	5	5	9	44
UCT-08	6	6	3	6	0	5	4	30
UCT-09	6	6	1	11	5	5	3	37
UCT-10	6	6	3	11	5	5	3	39
UCT-11	1	0	0	0	0	1	0	2
UCT-12	6	6	3	11	5	6	9	46
UCT-13	2	6	6	10	5	5	9	43
UCT-14	1	6	3	7	0	1	4	22
UCT-15	1	6	6	11	5	5	9	43
UCT-16	2	6	6	11	5	5	9	44
UCT-17	2	6	2	0	0	0	4	14
UCT-18	2	6	4	11	10	5	6	44
UCT-19	2	6	6	10	10	5	4	43
UCT-20	2	6	6	10	0	0	0	24
UCT-21	2	6	6	10	10	5	6	45
UCT-22	1	6	3	10	5	1	0	26
UCT-23	1	6	0	0	0	0	0	7
UCT-24	1	6	6	11	5	5	9	43
UCT-25	2	6	6	11	5	3	6	39
UCT-26	1	6	0	0	0	0	0	7
UCT-27	2	6	4	10	5	5	6	38
UCT-28	2	6	4	11	5	3	6	37
UCT-29	6	6	3	11	5	3	5	39
UCT-30	2	6	4	11	5	3	6	37
UCT-31	2	6	6	11	5	6	6	42
UCT-32	6	6	2	11	5	5	3	38
ΣΧ	85	178	123	288	145	123	165	
ΣΥ					•			1107
(Σ×)²	7225	31684	15129	82944	21025	15129	27225	
ΣΧΥ	3136	6338	4781	11204	5880	4897	6565	
ΣX²	331	1052	589	3006	925	597	1151	
N				32				
ΝΣΧΥ	100352	202816	152992	358528	188160	156704	210080	
N∑X²	10592	33664	18848	96192	29600	19104	36832	
ΣΥ²								42801
NΣY ²				1200022				42001
(E)() ²				1369632				
(ΣY) ²				1225449				
NEVY EVE	6257	F770	10021	20742	27645	205.42	27425	
NΣXY-ΣXΣ	6257	5770	16831	39712	27645	20543	27425	
NΣX²-(ΣX)	3367	1980	3719	13248	8575	3975	9607	
$N\Sigma Y^2 - (\Sigma Y)^2$		1		144183	1	1		
Rxy	0,28398		0,726842				0,736878	
R tabel	0,349	0,349	0,349	0,349	0,349	0,349	0,349	
		TIDAK VAL		VALID	VALID	VALID	VALID	
Kriteria	Rendah	Rendah	Tinggi	Sangat Tin	Tinggi	Sangat Tin	Tinggi	

Lampiran 24 Analisis Butir Soal Intrumen Tes Awal validitas Tahap 2

Analisis Butir Soal Intrumen Tes Awal validitas Tahap 2

Variabel X								
Responde	Soal 3	Soal 4	Soal 5	Soal 6	Soal 7	TOTAL		
UCT-01	4	8	5	5	9	31		
UCT-02	6	11	5	5	9	36		
UCT-03	3	11	5	5	3	27		
UCT-04	4	10	10	5	6	35		
UCT-05	4	10	5	6	9	34		
UCT-06	3	11	5	5	3	27		
UCT-07	6	11	5	5	9	36		
UCT-08	3	6	0	5	4	18		
UCT-09	1	11	5	5	3	25		
UCT-10	3	11	5	5	3	27		
UCT-11	0	0	0	1	0	1		
UCT-12	3	11	5	6	9	34		
UCT-13	6	10	5	5	9	35		
UCT-14	3	7	0	1	4	15		
UCT-15	6	11	5	5	9	36		
UCT-16	6	11	5	5	9	36		
UCT-17	2	0	0	0	4	6		
UCT-18	4	11	10	5	6	36		
UCT-19	6	10	10	5	4	35		
UCT-20	6	10	0	0	0	16		
UCT-21	6	10	10	5	6	37		
UCT-22	3	10	5	1	0	19		
UCT-23	0	0	0	0	0	О		
UCT-24	6	11	5	5	9	36		
UCT-25	6	11	5	3	6	31		
UCT-26	0	0	0	0	0	О		
UCT-27	4	10	5	5	6	30		
UCT-28	4	11	5	3	6	29		
UCT-29	3	11	5	3	5	27		
UCT-30	4	11	5	3	6	29		
UCT-31	6	11	5	6	6	34		
UCT-32	2	11	5	5	3	26		
ΣΧ	123	288	145	123	165			
ΣΥ						844		
(∑x)²	15129	82944	21025	15129	27225			
ΣΧΥ	3775	8723	4655	3840	5219			
ΣX ²	589	3006	925	597	1151			
N			32					
NΣXY	120800	279136	148960	122880	167008			
NΣX ²	18848	96192	29600	19104	36832			
ΣY ²						26212		
NΣY ²		1	828	784	1			
(ΣY) ²		712336						
(2.)			,12	330				
ΝΣΧΥ-ΣΧΣ	16988	36064	26580	19068	27748			
$N\Sigma X^2 - (\Sigma X)^2$	3719	13248	8575		9607			
$N\Sigma Y^2 - (\Sigma Y)^2$		13246			3007	———		
		0.004455		448	0.706455			
Rxy	0,783381		0,807201					
R tabel	0,349	0,349	0,349	0,349				
Validitas	VALID	VALID	VALID	VALID	VALID	—		
Kriteria	Tinggi	Jangat III	Sangat Tin	Jangat III	ringgi			

Lampiran 25 Perhitungan validitas Soal Uji Coba Tes Awal

Perhitungan validitas Soal Uji Coba Tes Awal

Rumus

$$r_{xy} = \frac{n\sum XY - \sum X\sum Y}{\sqrt{(n\sum X^2 - (\sum X)^2)(n\sum Y^2 - (\sum Y)^2)}}$$

contoh perhitungan uji validitas butir soal pretest nomor 3

$$r_{xy} = \frac{n \sum XY - \sum X \sum Y}{\sqrt{(n \sum X^2 - (\sum X)^2)(n \sum Y^2 - (\sum Y)^2)}}$$

$$= \frac{(32)(3775) - (123)(844)}{\sqrt{((32)(589) - (15129))((32)(26212) - (712336))}}$$

$$= \frac{120800 - 103812}{\sqrt{((18846) - (15129))((838784) - (712336))}}$$

$$= \frac{16988}{\sqrt{(3719)(126448)}}$$

$$= \frac{16988}{\sqrt{470260112}}$$

$$= \frac{16988}{21685,48}$$

$$= 0.783$$

Butir soal tes awal dikatakan valid apabila $r_{xy} \geq r_{tabel}$. Pada taraf signifikansi 5% dengan N=32 diperoleh $r_{tabel}=0,349$

Karena $r_{xy} = 0.783381 \ge 0.349$ maka dapat disimpulkan bahwa butir soal tes awal tersebut valid.

Lampiran 26 Tabel Perhitungan Uji reliabilitas Tes Awal Tahap 1

Tabel Perhitungan Uji reliabilitas Tes Awal Tahap 1

Variabel X																		
Responde	Soal 1	Soal 2	Soal 3	Soal 4	Soal 5	Soal 6	Soal 7	TOTAL	Total Kuad	Irat	χ²	Soal 1	Soal 2	Soal 3	Soal 4	Soal 5	Soal 6	Soal 7
UCT-01	2	2	4	. 8	5	5	9	35	1225		1	4	4	16	64	25	25	81
UCT-02	2	6	6	11	5	5	9	44	1936		2	4	36	36	121	25	25	81
UCT-03	6	6	3	11	5	5	3	39	1521		3	36	36	9	121	25	25	9
UCT-04	2	6	4	10	10	5	6	43	1849		4	4	36	16	100	100	25	
UCT-05	2	2	4	10	5	6	9	38	1444		5	4	4	16	100	25	36	81
UCT-06	2	6	3	11	5	5	3	35	1225		6	4	36	9	121	25	25	9
UCT-07	2	6	6	11	5	5	9	44	1936		7	4	36	36	121	25	25	81
UCT-08	6	6	3	6	0	5	4	30	900		8	36	36	9	36	0	25	16
UCT-09	6	6	1	11	5	5	3	37	1369		9	36	36	1	121	25	25	9
UCT-10	6	6	3	11	5	5	3	39	1521		10	36	36	9	121	25	25	
UCT-11	1	0	0	0	0	1	0	2	4		11	1	0		0	0	1	_
UCT-12	6	6	3	11	5	6	9	46	2116		12	36	36	9	121	25	36	81
UCT-13	2		t				9	43			13			36	100	25	25	
UCT-14	1	6	_	7	0		4	22	484		14		36	9	49	0	1	
UCT-15	1	6	6	11	5	5	9	43	1849		15	1	36	36	121	25	25	_
UCT-16	2		_		5		9	44	1936		16		36	36	121	25	25	
UCT-17	2						4	14	196		17		36	4	0	0	0	_
UCT-18	2			11	10	_	6	44	1936		18		36	16	121	100	25	
UCT-19	2	6	6	10	10	5	4	43	1849		19	4	36	36	100	100	25	
UCT-20	2	_	_	_	0	0	0	24	576		20	4	36	36	100	0	_	-
UCT-21	2		6	10	10	5	6	45	2025		21	4	36	36	100	100	25	
UCT-22	1	-		10		_	0	26			22		36	9	100	25	1	
UCT-23	1		 		_	_	0	7	49		23		36	0	0	0		_
UCT-24	1		-	_	5		9	43			24		36	36	121	25	25	
UCT-25	2	6	6	11	5	3	6	39	1521		25	4	36	36	121	25	9	
UCT-26	1		_	_			0	7	49		26		36	0	0	0		
UCT-27	2	6	4	10	5	5	6	38	1444		27	4	36	16	100	25	25	
UCT-28	2	_	_	11	5		6	37	1369		28	4	36	16	121	25	9	-
UCT-29	6	_	3	11	5	3	5	39	1521		29	36	36	9	121	25	9	
UCT-30	2	6	4	11	5	3	6	37	1369		30	4	36	16	121	25	9	36
UCT-31	2	6	6	11	5	6	6	42	1764		31	4	36	36	121	25	36	_
UCT-32	6		_	_	5		3	38	1444		32	36	36	4	121	25	25	
ΣX	85	178	123	288	145	123	165	1107	42801		ΣX ²	331	1052	589	3006	925	597	
ΣX ²	331	1052	589		925		1151	1107	12002		<u> </u>	332	1002	303	3000	- 525	337	
N N	32	1032	303	3000	323	331	1131											
	3,288086	1,933594	3,631836	12 0275	0 27/022	3,881836	9,381836											
Varian SVarian	43.42871	1,333394	3,031630	12,93/5	0,374023	3,001030	2,301050											
Varian Tot	-7 -		-	-														
n S	140,8037	-	-	-	-	_												
		-			-													
r11	0,806827																	
Reabilitas																		
Kriteria	Tinggi		L															

Lampiran 27 Tabel Perhitungan Uji reliabilitas Tes Awal Tahap 2

Tabel Perhitungan Uji reliabilitas Tes Awal Tahap 2

Variabel X									1					
Responde	Soal 3	Soal 4	Soal 5	Soal 6	Soal 7	TOTAL	Total Kuad	frat	X ²	Soal 3	Soal 4	Soal 5	Soal 6	Soal 7
UCT-01	4		5	5	9		961				64	25	25	81
UCT-02	6	11	5	5	9	36	1296			36	121	25	25	81
UCT-03	3	11	5	5	3	27	729			3 9	121	25	25	9
UCT-04	4	10	10	5	6	35	1225			1 16	100	100	25	36
UCT-05	4	10	5	6	9	34	1156			16	100	25	36	81
UCT-06	3	11	5	5	3	27	729			5 9	121	25	25	9
UCT-07	6	11	5	5	9	36	1296			7 36	121	25	25	81
UCT-08	3	6	0	5	4	18	324			3 9	36	0	25	16
UCT-09	1	11	5	5	3	25	625			1	121	25	25	9
UCT-10	3		5	5		27	729		1		121	25	25	9
UCT-11	0	0	0	1	0	1	1		1	1 0	0	0	1	0
UCT-12	3		5	6	9	34	1156		1		121	25	36	81
UCT-13	6		5	5	_	35	1225		1		100	25	25	81
UCT-14	3	7	0	1	4	15	225		1	1 9	49	0	1	16
UCT-15	6		5	5	9	36	1296		1	36	121	25	25	81
UCT-16	6	11	5	5	9	36	1296		1	36	121	25	25	81
UCT-17	2		0	0	4	6	36		1	7 4	0	0	0	16
UCT-18	4	11	10	5	6	36	1296		1		121	100	25	36
UCT-19	6		10	5		35	1225		1		100	100	25	16
UCT-20	6	10	0	0	0	16	256		2		100	0	0	
UCT-21	6	10	10	5	6	37	1369		2		100	100	25	36
UCT-22	3	10	5	1	0	19	361		2	2 9	100	25	1	0
UCT-23	0			0		0	0		2		0	0	0	0
UCT-24	6		5	5			1296		2		121	25	25	81
UCT-25	6		5	3	6	31	961		2		121	25	9	36
UCT-26	0		0	0		0	0		2		0	0	0	0
UCT-27	4		5	5		30	900		2		100	25	25	36
UCT-28	4		5	3	6	29	841		2		121	25	9	36
UCT-29	3	11	5	3	5	27	729		2		121	25	9	25
UCT-30	4		5	3		29	841		3		121	25	9	
UCT-31	6		5	6		34	1156		3		121	25	36	36
UCT-32	2	11	5	5	3	26	676		3	2 4	121	25	25	9
ΣX	123	288	145	123	165	844	26212		ΣX^2	589	3006	925	597	1151
$\sum X^2$	589	3006	925	597	1151									
N	32													
Varian	3,631836	12,9375	8,374023	3,881836	9,381836									
∑Varian	38,20703													
Varian Tot	123,4844													
n S	5													
r11	0,86324													
Reabilitas	Reliabel													
Kriteria	Tinggi													

Lampiran 28 Perhitungan Uji Reliabilitas Tes Awal

Perhitungan Uji reliabilitas Tes Awal

Rumus

$$r_{11} = \left(\frac{5}{5-1}\right) \left(1 - \frac{\sum_{i}^{2} s_{i}^{2}}{s_{t}^{2}}\right)$$

perhitunganya

$$r_{11} = \left(\frac{5}{5-1}\right) \left(1 - \frac{\sum_{i}^{2} s_{i}^{2}}{s_{t}^{2}}\right)$$

$$= \left(\frac{5}{5-1}\right) \left(1 - \frac{11,45222}{68,51222}\right)$$

$$= \left(\frac{5}{4}\right) (1 - (0,1671)$$

$$= (1,25)(0,8329)$$

$$= 0,867$$

Lampiran 29 Tabel Perhitungan Uji Kesukaran Tes Awal Tahap 1

Tabel Perhitungan Uji Kesukaran Tes Awal Tahap 1

Variabel X								
Responde	Soal 1	Soal 2	Soal 3	Soal 4	Soal 5	Soal 6	Soal 7	TOTAL
UCT-01	2	2	4	8	5	5	9	35
UCT-02	2	6	6	11	5	5	9	44
UCT-03	6	6	3	11	5	5	3	39
UCT-04	2	6	4	10	10	5	6	43
UCT-05	2	2	4	10	5	6	9	38
UCT-06	2	6	3	11	5	5	3	35
UCT-07	2	6	6	11	5	5	9	44
UCT-08	6	6	3	6	0	5	4	30
UCT-09	6	6	1	11	5	5	3	37
UCT-10	6	6	3	11	5	5	3	39
UCT-11	1	0	0	0	0	1	0	2
UCT-12	6	6	3	11	5	6	9	46
UCT-13	2	6	6	10	5	5	9	43
UCT-14	1	6	3	7	0	1	4	22
UCT-15	1	6	6	11	5	5	9	43
UCT-16	2	6	6	11	5	5	9	44
UCT-17	2	6	2	0	0	0	4	14
UCT-18	2	6	4	11	10	5	6	44
UCT-19	2	6	6	10	10	5	4	43
UCT-20	2	6	6	10	0	0	0	24
UCT-21	2	6	6	10	10	5	6	45
UCT-22	1	6	3	10	5	1	0	26
UCT-23	1	6	0	0	0	0	0	7
UCT-24	1	6	6	11	5	5	9	43
UCT-25	2	6	6	11	5	3	6	39
UCT-26	1	6	0	0	0	0	0	7
UCT-27	2	6	4	10	5	5	6	38
UCT-28	2	6	4	11	5	3	6	37
UCT-29	6	6	3	11	5	3	5	39
UCT-30	2	6	4	11	5	3	6	37
UCT-31	2	6	6	11	5	6	6	42
UCT-32	6	6	2	11	5	5	3	38
Rata-rata :	2,65625	5,5625	3,84375	9	4,53125	3,84375	5,15625	
Skor maks		9	12	15	15	9	12	
TK	0,295139		0,320313	0,6	0,302083	0,427083	0,429688	
Kriteria	SUKAR	SEDANG	SEDANG	SEDANG	SEDANG	SEDANG	SEDANG	

Lampiran 30 Uji Kesukaran Tes Awal Tahap 2

Tabel Perhitungan Uji Kesukaran Tes Awal Tahap 2

Variabel X						
Responde	Soal 3	Soal 4	Soal 5	Soal 6	Soal 7	TOTAL
UCT-01	4	8	5	5	9	31
UCT-02	6	11	5	5	9	36
UCT-03	3	11	5	5	3	27
UCT-04	4	10	10	5	6	35
UCT-05	4	10	5	6	9	34
UCT-06	3	11	5	5	3	27
UCT-07	6	11	5	5	9	36
UCT-08	3	6	0	5	4	18
UCT-09	1	11	5	5	3	25
UCT-10	3	11	5	5	3	27
UCT-11	0	0	0	1	0	1
UCT-12	3	11	5	6	9	34
UCT-13	6	10	5	5	9	35
UCT-14	3	7	0	1	4	15
UCT-15	6	11	5	5	9	36
UCT-16	6	11	5	5	9	36
UCT-17	2	0	0	0	4	6
UCT-18	4	11	10	5	6	36
UCT-19	6	10	10	5	4	35
UCT-20	6	10	0	0	0	16
UCT-21	6	10	10	5	6	37
UCT-22	3	10	5	1	0	19
UCT-23	0	0	0	0	0	0
UCT-24	6	11	5	5	9	36
UCT-25	6	11	5	3	6	31
UCT-26	0	0	0	0	0	0
UCT-27	4	10	5	5	6	30
UCT-28	4	11	5	3	6	29
UCT-29	3	11	5	3	5	27
UCT-30	4	11	5	3	6	29
UCT-31	6	11	5	6	6	34
UCT-32	2	11	5	5	3	26
Rata-rata :	3,84375	9	4,53125	3,84375	5,15625	
Skor maks		15	15	9	12	
TK	0,320313	0,6	-	0,427083	0,429688	
Kriteria	SEDANG	SEDANG	SEDANG	SEDANG	SEDANG	

Lampiran 31 Perhitungan Uji Kesukaran Tes Awal

Perhitungan Uji Kesukaran Tes Awal

Rumus

$$TK = \frac{rata - rata \ skor \ item}{skor \ maksimal \ yang \ diterapkan}$$

Berikut adalah contoh perhitungan tingkat kesukaran butir soal nomor 3:

$$TK = \frac{rata - rata \text{ skor item}}{\text{skor maksimal yang diterapkan}}$$
$$= \frac{3,84375}{12}$$
$$= 0,320$$

Berdasarkan perhitungan tersebut diperoleh nilai r_{11} = 0,320 yang mana dalam tabel 4.8 nilai ini termasuk dalam kriteria interpretasi reliabilitas yang sangat tetap.

Lampiran 32 Tabel Perhitungan Uji Daya Beda Soal Tes Awal Tahap 1

Tabel Perhitungan Uji Daya Beda Soal Tes Awal Tahap 1

Variabel)	(
Respon	Soal 1	Soal 2	Soal 3	Soal 4	Soal 5	Soal 6	Soal 7	TOTAL		Soal 1	Soal 2	Soal 3	Soal 4	Soal 5	Soal 6	Soal 7
UCT-12	6	6	3	11	5		6 9	46	ΣX	85	178	123	288	145	123	
UCT-21	2	6	6	10	10		5 6	45	Skor ma	cs 9	9	12	15	15	9	
UCT-02	2	6	6	11	5		5 9	44	N*27%				8,64			
UCT-07	2	6	6	11	5		5 9	44	x bar ata	s 2,5	6	5,125	10,625	6,875	5,125	7,
UCT-16	2	6	6				5 9	44	x bar ba	w 1,875	5,25	, .	, .	0,625		
UCT-18	2	6	4	11	10		5 6	44	DP	0,069444	0,083333	0,25	0,433333	0,416667	0,458333	0,53
UCT-04	2	6	4	10	10	!	5 6	43	Kriteria	Jelek	Jelek	Sedang	Baik	Baik	Baik	Baik
UCT-13	2	6					,									
UCT-15	1	6	6	_	_		5 9	_								
UCT-19	2	6	6	10	10		5 4	43								
UCT-24	1	6	6	11	5		5 9									
UCT-31	2	6	6	11	. 5	-	6 6									
UCT-03	6	6	3	11	. 5		5 3	39								
JCT-10	6	6	3	11	5		5 3	39								
UCT-25	2	6	6	11	. 5		3 6	39								
UCT-29	6	6	3	11	5		3 5	39								
UCT-05	2	2	4	10	5		6 9	38								
UCT-27	2	6	4	10	5		5 6									
UCT-32	6	6	2	11	5		5 3	38								
UCT-09	6	6	1	11	5		5 3									
UCT-28	2	6	4	11	. 5		3 6	37								
JCT-30	2	6	4	11	. 5		3 6	37								
JCT-01	2	2	4	. 8	5		5 9	35								
UCT-06	2	6	3	11	5		5 3	35								
JCT-08	6	6	3				5 4									
JCT-22	1	6	3	10	5		1 (26								
JCT-20	2	6	6	10	0		0 0	24								
JCT-14	1	6	3	7	0		1 4	22								
UCT-17	2	6	2	0	0		0 4	14								
JCT-23	1	6	0	0	0		0 0	7								
JCT-26	1	6	0	0	0		0 0	7								
JCT-11	1	0	0	0	0		1 (2								

Lampiran 33 Tabel Perhitungan Uji Daya Beda Soal Tes Awal Tahap 2

Tabel Perhitungan Uji Daya Beda Soal Tes Awal Tahap

2

Variabel X	d											
Respon •		Soal 4	Soal 5	Soal 6	Soal 7	TOTAL		Soal 3	Soal 4	Soal 5	Soal 6	Soal 7
UCT-21	6	10	10	5	6	37	ΣX	123	288	145	123	165
UCT-02	6	1:	. 5	5	9	36	Skor mal	cs 12	15	15	9	12
UCT-07	6	1	. 5	5	9	36	N*27%			8,64		
UCT-15	6	1:	. 5	5	9	36	x bar ata	s 5,5	10,75	6,875	5	7,875
UCT-16	6	11	. 5	5	9	36	x bar ba	v 2,125	4,125	0,625	1	1,5
UCT-18	4	1:	10	5	6	36	DP	0,28125	0,441667	0,416667	0,444444	0,53125
UCT-24	6	11	. 5	5	9	36	Kriteria	Sedang	Baik	Baik	Baik	Baik
UCT-04	4	10	10	5	6	35						
UCT-13	6	10) 5	5	9	35						
UCT-19	6	10	10	5	4	35						
UCT-05	4	10) 5	6	9	34						
UCT-12	3	11	L 5	6	9	34						
UCT-31	6	1:	. 5	6	6	34						
UCT-01	4		3 5	5	9	31						
UCT-25	6	11	. 5	3	6	31						
UCT-27	4	10) 5	5	6	30						
UCT-28	4	11	. 5	3	6	29						
UCT-30	4	11	L 5	3	6	29						
UCT-03	3	1:	L 5	5	3	27						
UCT-06	3	11	. 5	5	3	27						
UCT-10	3	1:	L 5	5	3	27						
UCT-29	3	11	. 5	3	5	27						
UCT-32	2	11	L 5	5	3	26						
UCT-09	1				3	25						
UCT-22	3	10	5	1	0	19						
UCT-08	3			5	4	18						
UCT-20	6	10	0	0	0	16						
UCT-14	3			1	4	15						
UCT-17	2		0	0	4	6						
UCT-11	C		0	1	0	1						
UCT-23	C			0	0	0						
UCT-26	C	(0	0	0	0						

Lampiran 34 Perhitungan Uji daya Beda Soal Tes Awal

Perhitungan Uji Daya Beda Soal Tes Awal

Rumus

$$DP = \frac{\bar{x}kA - \bar{x}k}{skor\ maksimum}$$

Berikut adalah contoh perhitungan daya beda butir soal pretest nomor 3.

$$DP = \frac{\bar{x}kA - \bar{x}k}{skor\ maksimum}$$
$$= \frac{5,125 - 2,125}{12}$$
$$= \frac{3}{12}$$
$$= 0,25$$

Berdasarkan kriteria indeks daya pembeda instrumen pada tabel 3.4 soal nomor 3 memiliki daya pembeda sedang.

Lampiran 35 Lembar Soal Tes Awal

LEMBAR SOAL TES AWAL

Mata Pelajaran : Matematika Waktu : 60 menit

Kelas/Semester : XI/Genap Materi : Turunan

Petunjuk:

- Tulislah nama lengkap, nomor absen dan kelas pada lembar jawab yang disediakan
- Baca, pahami dan kerjakan soal-soal berikut ini dengan benar
- Tidak diperbolehkan melakukan kecurangan dalam bentuk apapun
- 4) Tidak oleh kerjsama dengan teman yang ain
- 5) Kumpulkan jawaban setelah mengerjakan soal
- 6) Awali dan akhiri dengan doa

SOAL

- 1. Tentukan turunan kedua dari fungsi $f(x) = 3x^8$
- 2. Tentukan turunan pertama dari fungsi $f(x) = \frac{(x^2 3x + 1)^2}{x 2}$
- 3. Tentukan turunan pertama dari fungsi $g(x) = (3x 2)^2(x^2 + 5 6)$

- 4. Tentukan turunan pertama dari fungsi $f(x) = x^3 x^2 + 2x 5$
- 5. Tentukan turunan ketiga dari fungsi $g(x) = 2x^5$

KUNCI JAWABAN DAN PENSKORAN TES AWAL

No.	Kunci Jawaban	Skor	Keterangan	Indikator
1.	$f(x) = ax^n$ $f'(x) = anx^{n-1}$	0	jika siswa tidak mampu untuk	Interpretation, yaitu
	$f'(x) = anx^{n-1}$		memahami dan memaknai	kemampuan untuk
			permasalahan	memahami dan
				memaknai
		1	Jika siswa mampu untuk	permasalahan
			memahami dan memaknai	
			permasalahan tetapi tidak tepat	
		2	Jika siswa mampu untuk	
			memahami dan memaknai	
			permasalahan tetapi kurang	
			tepat	

	3	Jika siswa mampu untuk	
		memahami dan memaknai	
		permasalahan dengan tepat	
Maka, $f(x) = 3x^8$ $f'(x) = 3.8x^{8-1}$	0	Jika siswa tidak mampu untuk	Analisys, yaitu
		mengidentifikasi permasalahan	kemampuan untuk
$=24x^7$	1	Jika siswa mampu untuk	mengidentifikasi
		mengidentifikasi permasalahan	permasalahan.
		tetapi tidak tepat	
	2	Jika siswa mampu untuk	
		mengidentifikasi permasalahan	
		tetapi kurang tepat	
	3	Jika siswa mampu untuk	
		mengidentifikasi permasalahan	
		dengan tepat	

$f''(x) = 24.7x^{7-1}$	0	jika siswa tidak mampu berpikir	Evalution , yaitu
$= 168x^6$		logika dengan merepresentasi	kemampuan untuk
		ulang permasalahan	merepresentasi ulang
	1	Jika siswa mampu berpikir	permasalahan
		logika dengan merepresentasi	sehingga dapat
		ulang permasalahan tetapi tidak	berpikir logika.
		tepat	
	2	Jika siswa mampu berpikir	
		logika dengan merepresentasi	
		ulang permasalahan tetapi	
		kurang tepat	
	3	Jika siswa mampu berpikir	
		logika dengan merepresentasi	
		ulang permasalahan dengan	
		tepat	

Jadi	turunan	keduanya	0	lika siswa	tidak man	npu untuk	Inference,	yaitu
-		Redddilyd				iipu uiituk		
adalal	1 $168x^6$			mencari	hal-hal	yang	kemampuan	untuk
				dibutuhka	n untuk	menarik	mencari hal-l	nal yang
				kesimpula	n		dibutuhkan	untuk
			1	Jika sisv	a mamp	u untuk	menarik kesir	npulan
				mencari	hal-hal	yang		
				dibutuhka	n untuk	menarik		
				kesimpula	n tetapi tida	ak tepat		
			2	Jika sisv	<i>r</i> a mamp	u untuk		
				mencari	hal-hal	yang		
				dibutuhka	n untuk	menarik		
				kesimpula	n tetapi kur	ang tepat		
			3	Jika siswa	nampu mai	mpu untuk		
				mencari	hal-hal	yang		

			dibutuhkan untuk menarik	
			kesimpulan dengan tepat	
2.		0	jika siswa tidak mampu untuk	Interpretation, yaitu
	$u = (x^2 - 3x + 1)^2$		memahami dan memaknai	kemampuan untuk
	v = x - 2		permasalahan	memahami dan
		1	Jika siswa mampu untuk	memaknai
			memahami dan memaknai	permasalahan
			permasalahan tetapi tidak tepat	
		2	Jika siswa mampu untuk	
			memahami dan memaknai	
			permasalahan tetapi kurang	
			tepat	
		3	Jika mampu untuk memahami	
			dan memaknai permasalahan	
			dengan tepat	

$u' = 2(x^2 - 3 + 1)(2x - 3)$	0	Jika siswa tidak mampu untuk	Analisys, yaitu
$u' = 2(x^2 - 3 + 1)(2x - 3)$ $= 2(2x - 3)(x^2 - 3x + 1)$		mengidentifikasi permasalahan	kemampuan untuk
v'=1	1	Jika siswa mampu untuk	mengidentifikasi
		mengidentifikasi permasalahan	permasalahan.
		tetapi tidak tepat	
	2	Jika siswa mampu untuk	
		mengidentifikasi permasalahan	
		tetapi kurang tepat	
	3	Jika siswa mampu untuk	
		mengidentifikasi permasalahan	
		dengan tepat	
$f'(x) = \frac{u'v - uv'}{v^2}$	0	jika siswa tidak mampu berpikir	Evalution , yaitu
v^2		logika dengan merepresentasi	kemampuan untuk
		ulang permasalahan	merepresentasi ulang

$= \frac{2(2x-3)(x^2-3x+1).(x+1)}{(x+1)^2}$	1	Jika siswa mampu berpikir	permasalahan
(x-x)		logika dengan merepresentasi	sehingga dapat
$= \frac{(4x-6)(x^3-5x^2+7x-2)}{(x-2)^2}$		ulang permasalahan tetapi tidak	berpikir logika.
		tepat	
$= \frac{4x^4 - 26x^3 + 58x^2 - 50x + 1}{2}$	2	Jika siswa mampu berpikir	
$3x^4 - 20x^3 + 47x^2 - 44x -$		logika dengan merepresentasi	
$= \frac{3x^4 - 20x^3 + 47x^2 - 44x - 4x^2}{x^2 - 4x + 4}$		ulang permasalahan tetapi	
		kurang tepat	
	3	Jika siswa mampu berpikir	
		logika dengan merepresentasi	
		ulang permasalahan dengan	
		tepat	
	0	Jika siswa tidak mampu untuk	Inference, yaitu
		mencari hal-hal yang	kemampuan untuk

Jadi, turunan pertamanya		dibutuhkan untuk menarik mencari hal-hal yang
adalah $\frac{3x^4 - 20x^3 + 47x^2 - 44x + 11}{x^2 - 4x + 4}$		kesimpulan dibutuhkan untuk
x4x+4	1	Jika siswa mampu untuk menarik kesimpulan
		mencari hal-hal yang
		dibutuhkan untuk menarik
		kesimpulan tetapi tidak tepat
	2	Jika siswa mampu untuk
		mencari hal-hal yang
		dibutuhkan untuk menarik
		kesimpulan tetapi kurang tepat
	3	Jika siswa mampu untuk
		mencari hal-hal yang
		dibutuhkan untuk menarik
		kesimpulan dengan tepat

3.	$u = (3x - 2)^2$	0	jika siswa tidak mampu untuk	Interpretation, yaitu
	$v = (x^2 + 5x - 6)$		memahami dan memaknai	kemampuan untuk
			permasalahan	memahami dan
		1	Jika siswa mampu untuk	memaknai
			memahami dan memaknai	permasalahan
			permasalahan tetapi tidak tepat	
		2	Jika siswa mampu untuk	
			memahami dan memaknai	
			permasalahan tetapi kurang	
			tepat	
		3	Jika siswa mampu untuk	
			memahami dan memaknai	
			permasalahan dengan tepat	
	u' = 2(3x - 2).3	0	Jika siswa tidak mampu untuk	Analisys, yaitu
	v'=2x+5		mengidentifikasi permasalahan	kemampuan untuk

	1	Jika siswa mampu untuk mengidentifikasi
		mengidentifikasi permasalahan permasalahan.
		tetapi tidak tepat
	2	Jika siswa mampu untuk
		mengidentifikasi permasalahan
		tetapi kurang tepat
	3	Jika siswa mampu untuk
		mengidentifikasi permasalahan
		dengan tepat
f'(x) = u'.v + v'.u	0	Jika siswa tidak mampu untuk Explanation, yaitu
		memberikan alasan logis dalam kemampuan untuk
		sebuah permasalahan. memberikan alasan
	1	Jika siswa mampu untuk logis dalam sebuah
		memberikan alasan logis dalam permasalahan.

		sebuah permasalahan tetapi	
		tidak tepat	
	2	Jika siswa mampu untuk	
		memberikan alasan logis dalam	
		sebuah permasalahan tetapi	
		kurang tepat	
	3	Jika siswa mampu untuk	
		memberikan alasan logis dalam	
		sebuah permasalahan dengan	
		tepat	
f'(x) = 2(3x - 2).3	(x+5x 0	jika siswa tidak mampu berpikir	Evalution , yaitu
- 63)	logika dengan merepresentasi	kemampuan untuk
+ (3	3x	ulang permasalahan	merepresentasi ulang
- 2)	(2x 1	Jika siswa mampu berpikir	permasalahan
+ 5)	logika dengan merepresentasi	

$= (3x - 2)(6(x^2 + 5x - 6)$		ulang permasalahan tetapi tidak	sehingga dapa	at
+ (3 <i>x</i>		tepat	berpikir logika.	
$-2)^{2}(2x$	2	Jika siswa mampu berpikir		
+ 5)		logika dengan merepresentasi		
$= (3x - 2)(6x^2 + 30x - 36$		ulang permasalahan tetapi		
$+6x^{2}$		kurang tepat		
+ 11 <i>x</i>	3	Jika siswa mampu berpikir		
- 10)		logika dengan merepresentasi		
$= (3x - 2)(12x^2 + 41x)$		ulang permasalahan dengan		
		tepat		
- 46)				
$= 36^3 + 99^2 - 220x + 92$				
	0	Jika siswa tidak mampu untuk	Inference, yait	u
		mencari hal-hal yang	kemampuan untu	k

Jadi, turunan pertamannya		dibutuhkan untuk menarik mencari hal-hal yang
adalah $36^3 + 99^2 - 220x +$		kesimpulan dibutuhkan untuk
92	1	Jika siswa mampu untuk menarik kesimpulan
		mencari hal-hal yang
		dibutuhkan untuk menarik
		kesimpulan tetapi tidak tepat
	2	Jika siswa mampu untuk
		mencari hal-hal yang
		dibutuhkan untuk menarik
		kesimpulan tetapi kurang tepat
	3	Jika siswa mampu untuk
		mencari hal-hal yang
		dibutuhkan untuk menarik
		kesimpulan dengan tepat

4.	$f(x) = x^3 - x^2 + 2x - 5$	0	jika siswa tidak mampu untuk	Interpretation, yaitu
	$=3x^{n-1}-2x^{n-1}+2x^{n-1}$		memahami dan memaknai	kemampuan untuk
			permasalahan	memahami dan
		1	Jika siswa mampu untuk	memaknai
			memahami dan memaknai	permasalahan
			permasalahan tetapi tidak tepat	
		2	Jika siswa mampu untuk	
			memahami dan memaknai	
			permasalahan tetapi kurang	
			tepat	
		3	Jika siswa mampu untuk	
			memahami dan memaknai	
			permasalahan dengan tepat	
	$=3x^{3-1}-2x^{2-1}+2x^{1-1}$	0	Jika siswa tidak mampu untuk	Analisys, yaitu
			mengidentifikasi permasalahan	kemampuan untuk

$=3x^2+2x+2$	1	Jika siswa mampu untuk mengidentifikasi permasalahan	mengidentifikasi permasalahan.
		tetapi tidak tepat	
	2	Jika siswa mampu untuk	
		mengidentifikasi permasalahan	
		tetapi kurang tepat	
	3	Jika siswa mampu untuk	
		mengidentifikasi permasalahan	
		dengan tepat	
Jadi, turunan pertamanya	0	Jika siswa tidak mampu untuk	Inference, yaitu
adalah $3x^2 + 2x + 2$		mencari hal-hal yang	kemampuan untuk
		dibutuhkan untuk menarik	mencari hal-hal yang
		kesimpulan	dibutuhkan untuk
	1	Jika siswa mampu mampu untuk	menarik kesimpulan
		mencari hal-hal yang	

			dibutuhkan untuk menarik	
			kesimpulan tetapi tidak tepat	
		2	Jika siswa mampu untuk	
			mencari hal-hal yang	
			dibutuhkan untuk menarik	
			kesimpulan tetapi kurang tepat	
		3	Jika siswa mampu untuk	
			mencari hal-hal yang	
			dibutuhkan untuk menarik	
			kesimpulan dengan tepat	
5.	$g(x) = 2x^5$ $= n. 2 x^{n-1}$	0	jika siswa tidak mampu untuk	Interpretation, yaitu
	$= n. 2 x^{n-1}$		memahami dan memaknai	kemampuan untuk
			permasalahan	memahami dan

	1	Jika siswa mampu untuk	memaknai
		memahami dan memaknai	permasalahan
		permasalahan tetapi tidak tepat	
	2	Jika siswa mampu untuk	
		memahami dan memaknai	
		permasalahan tetapi kurang	
		tepat	
	3	Jika mampu untuk memahami	
		dan memaknai permasalahan	
		dengan tepat	
$= 5.2 x^{5-1}$ $g'(x) = 10x^4$	0	Jika siswa tidak mampu untuk	Analisys, yaitu
$g'(x) = 10x^4$		mengidentifikasi permasalahan	kemampuan untuk
	1	Jika siswa mampu untuk	mengidentifikasi
		mengidentifikasi permasalahan	permasalahan.
		tetapi tidak tepat	

	2	Jika mampu untuk mengidentifikasi permasalahan tetapi kurang tepat	
	3	Jika siswa mampu untuk mengidentifikasi permasalahan dengan tepat	
$g''(x) = 10.4x^{4-1}$ $= 40 x^3$	0	jika siswa tidak mampu berpikir	Evalution , yaitu
$= 40 x^3$		logika dengan merepresentasi	kemampuan untuk
		ulang permasalahan	merepresentasi ulang permasalahan
	1	Jika siswa mampu berpikir	sehingga dapat
		logika dengan merepresentasi	berpikir logika.
		ulang permasalahan tetapi tidak	
		tepat	

		2	Jika siswa mampu berpikir
			logika dengan merepresentasi
			ulang permasalahan tetapi
			kurang tepat
		3	Jika siswa mampu berpikir
			logika dengan merepresentasi
			ulang permasalahan dengan
			tepat
g'''(z	$x(x) = 3.40 x^{3-1}$ $= 120 x^2$	0	jika siswa tidak mampu untuk Self regulation, yaitu
	$= 120 x^2$		memonitoring aktivitas kognitif kemampuan untuk
			seseorang dalam menyelesaikan memonitoring
			permasalahan aktivitas kognitif
		1	Jika siswa mampu untuk seseorang dalam
			memonitoring aktivitas kognitif

		seseorang dalam menyelesaikan	menyelesaikan
		permasalahan tetapi tidak tepat	permasalahan.
	2	Jika siswa mampu untuk	
		memonitoring aktivitas kognitif	
		seseorang dalam menyelesaikan	
		permasalahan tetapi kurang	
		tepat	
	3	Jika siswa mampu untuk	
		memonitoring aktivitas kognitif	
		seseorang dalam menyelesaikan	
		permasalahan dengan tepat	
Jadi, turunan ketiga dari	0	Jika siswa tidak mampu untuk	Inference, yaitu
$2x^5$ adalah 120 x^2		mencari hal-hal yang	kemapuan untuk
		dibutuhkan untuk menarik	mencari hal-hal yang
		kesimpulan	

1	Jika siswa	mampu	untuk	dibutuhkan	untuk
1	Jika 313Wa	mampa	untuk	aibutuiikaii	untuk
	mencari	hal-hal	yang	menarik kesir	npulan
	dibutuhkan	untuk r	nenarik		
	kesimpulan t	etapi tidak t	tepat		
2	Jika siswa	mampu	untuk		
	mencari	hal-hal	yang		
	dibutuhkan	untuk r	nenarik		
	kesimpulan t	etapi kuran	g tepat		
3	Jika siswa	mampu	untuk		
	mencari	hal-hal	yang		
	dibutuhkan	untuk r	nenarik		
	kesimpulan d	engan tepa	t		

Lampiran 37 Kisi-Kisi Uji Coba Posttest

KISI - KISI UJI COBA POSTTEST

Satuan Pendidikan : MAN 2 Kota Semarang

Mata Pelajaran : Matematika

Kelas/Semeste : XII/Ganjil

Materi Pokok : Dimensi Tiga

Alokasi Waktu : 60 menit

Jumlah Butir Soal : 6 soal

Aspek Penilaian: Kemampuan Berpikir Kritis

Kompetensi Dasar

- 4.9 Mendeskripsikan jarak dalam ruang (antar titik,titik ke garis, dan titik ke bidang)
 - 4.1 Menentukan jarak dalam ruang (antar titik,titik ke garis, dan titik ke bidang)

Indikator Pembelajaran

- 4.9.1 Mengidentifikasi jarak antar titik dalam ruang
- 4.9.2 Mengidentifikasi jarak dari titik ke garis dalam ruang
- 4.9.3 Mengidentifikasi jarak dari titik ke bidang dalam ruang

- 4.1.1 Menyelesaikan masalah yang berkaitan dengan jarak titik dalam ruang
- 4.1.2 Menyelesaikan masalah yang berkaitan dengan jarak dari titik ke garis dalam ruang
- 4.1.3 Menyelesaikan masalah yang berkaitan dengan jarak dari titik ke bidang dalam ruang

Indikator Berpikir Kritis

- Interpretation, yaitu kemampuan untuk memahami dan memaknai permasalahan
- 2. Analisys, yaitu kemampuan untuk mengidentifikasi permasalahan.
- 3. Evalution , yaitu kemampuan untuk merepresentasi ulang permasalahan sehingga dapat berpikir logika.
- 4. Inference, yaitu kemampuan untuk mencari hal-hal yang dibutuhkan untuk menarik kesimpulan
- 5. Explanation, yaitu kemampuan untuk memberikan alasan logis dalam sebuah permasalahan.
- 6. Self regulation, yaitu kemampuan untuk memonitoring aktivitas kognitif seseorang dalam menyelesaikan permasalahan.

Nomor	Indikator Pembelajaran	Indikator Soal	Indikator
Soal			Berpikir Kritis

1.	3.1.1	Mengidentifikasi	Diberikan gambar	Analisys, yaitu
		jarak antar titik	bangun ruang.	kemampuan
		dalam ruang	Siswa di minta	untuk
	3.1.2	Mengidentifikasi	untuk	mengidentifikasi
		jarak dari titik ke	mengidentifikasi	permasalahan.
		garis dalam ruang	jarak antar titik,	
	3.1.3	Mengidentifikasi	jarak titik ke	
		jarak dari titik ke	garis, jarak titik	
		bidang dalam	ke bidang	
		ruang		
2.	3.1.2	Mengidentifikasi	Diberikan gambar	Interpretation,
		jarak dari titik ke	kubus	yaitu
		garis dalam ruang	ABCD.EFGH	kemampuan
	4.1.2	Menyelesaikan	.siswa diminta	untuk
		masalah yang	untuk	memahami dan
		berkaitan dengan	menentukan	memaknai
		jarak dari titik ke	jarak antar titik	permasalahan
		garis dalam ruang	ke diagonal	
				Evalution , yaitu
				kemampuan
				untuk
				merepresentasi
				ulang
				permasalahan

				sehingga dapat
				berpikir logika.
				1 0
				Self regulation,
				yaitu
				kemampuan
				untuk
				memonitoring
				aktivitas kognitif
				seseorang dalam
				menyelesaikan
				permasalahan.
				permasaranan.
				Inference, yaitu
				kemapuan untuk
				mencari hal-hal
				yang dibutuhkan
				untuk menarik
				kesimpulan
3.	3.1.3	Mengidentifikasi	Di berikan	Interpretation,
		jarak dari titik ke	gambar Limas	yaitu
		bidang dalam	persegi yang	kemampuan
		ruang	memiliki panjang	untuk
	4.1.3	Menyelesaikan	sisi alas dan sisi	memahami dan
		masalah yang	tegaknya. siswa	

berkaitan	dengan	diminta	untuk	memaknai
	-			
jarak dari		menenti		permasalahan
bidang	dalam	jarak	puncak	
ruang		limas	terhadap	Evalution , yaitu
		alasnya		kemampuan
				untuk
				merepresentasi
				ulang
				permasalahan
				sehingga dapat
				berpikir logika.
				Self regulation,
				yaitu
				kemampuan
				untuk
				memonitoring
				aktivitas kognitif
				seseorang dalam
				menyelesaikan
				permasalahan
				-
				Inference, yaitu
				kemapuan untuk
				mencari hal-hal
				meneari narmar

				wana dibutublees
				yang dibutuhkan
				untuk menarik
				kesimpulan
4.	3.1.1	Mengidentifikasi	Di berikan	Interpretation,
		jarak antar titik	gambar kubus	yaitu
		dalam ruang	ABCD.EFGH.siswa	kemampuan
	4.1.1	Menyelesaikan	diminta untuk	untuk
		masalah yang	menentukan titik	memahami dan
		berkaitan dengan	P dan Q , lalu	memaknai
		jarak titik dalam	siswa diminta	permasalahan
		ruang	menentukan	
			jarak titik ke titik	Evalution , yaitu
				kemampuan
				untuk
				merepresentasi
				ulang
				permasalahan
				sehingga dapat
				berpikir logika.
				Self regulation,
				yaitu
				kemampuan
				untuk
				memonitoring

				aktivitas kognitif
				seseorang dalam
				menyelesaikan
				permasalahan.
				Inference, yaitu
				kemapuan untuk
				mencari hal-hal
				yang dibutuhkan
				untuk menarik
				kesimpulan.
				-
5.	3.1.2	Mengidentifikasi	Di berikan	Interpretation,
		jarak dari titik ke	gambar kubus	yaitu
		garis dalam ruang	ABCD.EFGH.siswa	kemampuan
	4.1.2	Menyelesaikan	diminta untuk	untuk
		masalah yang	membuat titik	memahami dan
		berkaitan dengan	tengah dan	memaknai
		jarak dari titik ke	menentukan	permasalahan
		garis dalam ruang	jarak titik ke garis	
				Evalution , yaitu
				kemampuan
				untuk
				merepresentasi
				ulang
				ه

permasalahan sehingga dapat berpikir logika. Explanation yaitu kemampuan untuk memberikan alasan logis sebuah dalam permasalahan Inference, yaitu kemapuan untuk mencari hal-hal yang dibutuhkan untuk menarik kesimpulan Self regulation, yaitu kemampuan untuk

Г				
				menyelesaikan
				memonitoring
				aktivitas kognitif
				seseorang dalam
				permasalahan
6.	3.1.3	Mengidentifikasi	Di berikan	Interpretation,
		jarak dari titik ke	gambar kubus	yaitu
		bidang dalam	ABCD.EFGH	kemampuan
		ruang	siswa diminta	untuk
	4.1.3	Menyelesaikan	untuk	memahami dan
		masalah yang	menentukan titik	memaknai
		berkaitan dengan	P,Q,R dan	permasalahan
		jarak dari titik ke	menentukan	
		bidang dalam	jarak titik R ke	Evalution , yaitu
		ruang	bidang EPQH.	kemampuan
				untuk
				merepresentasi
				ulang
				permasalahan
				sehingga dapat
				berpikir logika.
				Analisys, yaitu
				kemampuan
				untuk

mengidentifikasi permasalahan.

Explanation
yaitu
kemampuan
untuk
memberikan
alasan logis
dalam sebuah
permasalahan

Self regulation,
yaitu
kemampuan
untuk
memonitoring
aktivitas kognitif
seseorang dalam
menyelesaikan
permasalahan

Inference, yaitu kemapuan untuk mencari hal-hal

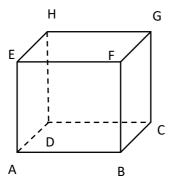
	yang dibutuhkan	
	untuk	menarik
	kesimp	ulan.
	untuk	
	membe	rikan
	alasan	logis
	dalam	sebuah
	permas	alahan.
		untuk kesimpi untuk membe alasan dalam

Lampiran 38 Lembar Uji Coba Post-Test

LEMBAR SOAL UII COBA POST-TEST

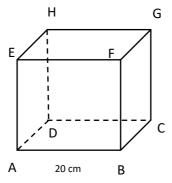
Mata Pelajaran : Matematika Waktu : 60 menit

Kelas/Semester: xII/Ganjil Materi: Dimensi

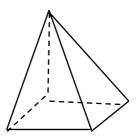

Tiga

Petunjuk:

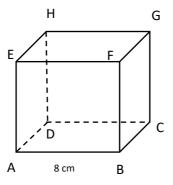
 Tulislah nama lengkap, nomor absen dan kelas pada lembar jawab yang disediakan


- 2) Baca, pahami dan kerjakan soal-soal berikut ini dengan benar
- Tidak diperbolehkan melakukan kecurangan dalam bentuk apapun
- 4) Tidak oleh kerjsama dengan teman yang ain
- 5) Kumpulkan jawaban setelah mengerjakan soal
- 6) Awali dan akhiri dengan doa

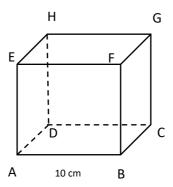
1. Perhatikan gambar kubus ABCD.EFGH berikut


Identifikasikan jarak antar titik, jarak titik ke garis, jarak titik ke bidang!

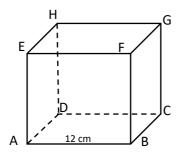
2. Perhatikan gambar kubus ABCD.EFGH berikut


Tentukan jarak antara titik B ke diagonal EG!

3. Perhatikan gambar berikut


Limas persegi tersebut memiliki panjang sisi alas 20cm sementara itu, panjang sisi tegaknya 30cm. Tentukan jarak puncak limas terhadap alasnya!

4. Perhatikan gambar kubus ABCD.EFGH berikut


jika P titik tengah BF dan Q titik tengah EH . tentukan jarak titik P ke titik Q!

5. Perhatikan gambar kubus ABCD.EFGH berikut

titik \boldsymbol{M} adalah titik tengah BC . Tentukan jarak titik
 \boldsymbol{M} ke garis EG

6. Perhatikan gambar kubus ABCD.EFGH berikut

P dan Q masing-masing merupakan titik tengah EF dan GH sedangkan R merupakan titik perpotongan AC dan BD . Tentukan jarak titik R ke bidang BPQC

Lampiran 39 Kunci Jawaban Uji Coba Posttest

KUNCI JAWABAN UJI COBA POSTTEST

No	Kunci Jawaban	Skor	Kriteria Penskoran	Indikator Berpikir
				Kritis
So				
al				
1.	Alternatif Penyelesaian :	0	jika siswa tidak mampu	Analisys, yaitu
			mengidentifikasi	kemampuan untuk
	1. Jarak antar titik adalah		permasalahan	mengidentifikasi
	panjang ruas garis yang	1	Jika siswa dapat	permasalahan.
	menghubungkan kedua		mengidentifikasi	
	titik tersebut.		permasalahan tetapi tidak	
			tepat	

jarak titik A ke B, B ke	C 2	Jika siswa dapat	
, C ke D dst.		mengidentifikasi	
		permasalahan kurang tepat	
	3	Jika siswa dapat	
		mengidentifikasi	
		permasalahan dengan tepat.	
2. Jarak titik ke garis dala	h 0	jika siswa tidak mampu Analisys, ya	aitu
ruas garis yang tega	k	mengidentifikasi kemampuan un	tuk
lurus atau terpende	k	permasalahan mengidentifikasi	
dari sebuah tit	k 1	Jika siswa dapat permasalahan.	
terhadap garis. Misalny	a	mengidentifikasi	
: jarak titik A ke garis E	С	permasalahan tetapi tidak	
jarak titik A ke garis E	В	tepat	
dst.	2	Jika siswa dapat	
		mengidentifikasi	

		permasalahan tetapi kurang tepat	
	3	Jika siswa dapat mengidentifikasi permasalahan dengan tepat	
Jarak titik ke Bidang adalah panjang ruas garis yang ditarik dari suatu titik sampai memotong tegak lurus suatu bidang. Isalnya jarak titik A ke bidang BCFG, A ke bidang	1	jika siswa tidak dapat Analisys, yait mengidentifikasi kemampuan untu permasalahan mengidentifikasi permasalahan. Jika siswa dapat permasalahan. mengidentifikasi permasalahan tetapi tidak tepat	
BCEH dst.	2	Jika siswa dapat mengidentifikasi	

			permasalahan tetapi kurang tepat	
		3	Jika siswa dapat mengidentifikasi permasalahan dengan tepat	
2.	Alternatif Penyelesaian:	1	jika siswa tidak mampu untuk memahami dan memaknai permasalahan Jika siswa mampu untuk memahami dan memaknai permasalahan tetapi tidak tepat	Interpretation, yaitu kemampuan untuk memahami dan memaknai permasalahan
		2	Jika siswa mampu untuk memahami dan memaknai	

		permasalahan tetapi kurang	
		tepat	
	3	Jika siswa mampu untuk	
		memahami dan memaknai	
		permasalahan dengan tepat	
Jika AB 20 cm, maka EF dan EG	0	Jika siswa tidak mampu	Evalution , yaitu
juga 20 cm dan $FH = 20\sqrt{2}$		berpikir logika untuk	kemampuan untuk
		merepresentasi ulang	merepresentasi ulang
		permasalahan	permasalahan sehingga
	1	Jika siswa dapat mampu	dapat berpikir logika.
		berpikir logika untuk	
		merepresentasi ulang	
		permasalahan tetapi tidak	
		tepat	

	2	Jika siswa mampu berpikir	
		logika untuk merepresentasi	
		ulang permasalahan tetapi	
		kurang tepat	
	3	Jika siswa mampu berpikir	
		logika untuk merepresentasi	
		ulang permasalahan dengan	
		tepat	
$FH = \sqrt{(FC)^2 + (CH)^2}$	0	jika siswa tidak mampu	Self regulation, yaitu
$=\sqrt{(20^2+(20)^2)^2}$		untuk untuk memonitoring	kemampuan untuk
$= \sqrt{400 + 400}$		aktivitas kognitif seseorang	memonitoring aktivitas
$=\sqrt{800}$		dalam menyelesaikan	kognitif seseorang dalam
		permasalahan	menyelesaikan
$=20\sqrt{2}$	1	Jika siswa mampu untuk	permasalahan
		untuk memonitoring	

		1
	aktivitas kognitif seseorang	
	dalam menyelesaikan	
	permasalahan tetapi tidak	
	tepat	
2	Jika siswa mampu untuk	
	untuk memonitoring	
	aktivitas kognitif seseorang	
	dalam menyelesaikan	
	permasalahan tetapi kurang	
	tepat	
3	Jika siswa mampu untuk	
	untuk memonitoring	
	aktivitas kognitif seseorang	
	dalam menyelesaikan	
	permasalahan dengan tepat	

$PF = \frac{1}{2} FH = \frac{1}{2} (20\sqrt{2}) = 10\sqrt{2}$	0	Jika siswa tidak mampu	Evalution , yaitu
2 2		untuk merepresentasi ulang	kemampuan untuk
		permasalahan sehingga	merepresentasi ulang
		dapat berpikir logika	permasalahan sehingga
	1	Jika siswa mampu untuk	dapat berpikir logika.
		merepresentasi ulang	
		permasalahan sehingga	
		dapat berpikir logika tetapi	
		tidak tepat	
	2	Jika siswa mampu untuk	
		merepresentasi ulang	
		permasalahan sehingga	
		dapat berpikir logika tetapi	
		kurang tepat	

	3	Jika siswa mampu untuk merepresentasi ulang permasalahan sehingga dapat berpikir logika dengan tepat	
$BP = \sqrt{(PF)^2 + (BF)^2}$ $= \sqrt{(10\sqrt{2})^2 + (20)^2}$ $= \sqrt{200 + 400}$ $= \sqrt{600}$	0	Jika siswa tidak mampu untuk memonitoring aktivitas kognitif seseorang dalam menyelesaikan permasalahan	Self regulation, yaitu kemampuan untuk memonitoring aktivitas kognitif seseorang dalam menyelesaikan
$=10\sqrt{6}$	1	Jika siswa mampu untuk untuk memonitoring aktivitas kognitif seseorang dalam menyelesaikan	permasalahan

		permasalahan tetapi tidak		
		tidak tepat		
	2	Jika siswa mampu untuk		
		memonitoring aktivitas		
		kognitif seseorang dalam		
		menyelesaikan		
		permasalahan jawaban		
		benar tetapi kurang lengkap		
	3	Jika siswa mampu untuk		
		mengidentifikasi		
		permasalahan dengan tepat		
Jadi, jarak titik B ke garis EG	0	jika siswa tidak mampu	Inference,	yaitu
adalah $10\sqrt{6}$		untuk mencari hal-hal yang	kemampuan	untuk
		dibutuhkan untuk menarik	mencari hal-hal	yang
		kesimpulan		

1	Jika siswa mampu untuk dibutuhkan untuk
	mencari hal-hal yang menarik kesimpulan
	dibutuhkan untuk menarik
	kesimpulan tetapi tidak tepat
2	Jika siswa mampu untuk
	mencari hal-hal yang
	dibutuhkan untuk menarik
	kesimpulan tetapi kurang
	tepat
3	Jika siswa mampu untuk
	mencari hal-hal yang
	dibutuhkan untuk menarik
	kesimpulan dengan tepat

3.	Alternatif Penyelesaian:	0	jika siswa tidak mampu Interpretation, yaitu
			untuk memahami dan kemampuan untuk
			memaknai permasalahan memahami dan
	See Market	1	Jika siswa mampu untuk memaknai permasalahan
			memahami dan memaknai
			permasalahan tetapi tidak .
			tepat
		2	Jika siswa mampu untuk
			memahami dan memaknai
			permasalahan tetapi kurang
			tepat
		3	Jika siswa mampu untuk
			memahami dan memaknai
			permasalahan dengan tepat

Jika Panjang sisi alas 20 cm,	0	Jika siswa tidak mampu	Evalution , yaitu
maka diagonal sisi $20\sqrt{2}$		berpikir logika dengan	kemampuan untuk
		merepresentasi ulang	merepresentasi ulang
		permasalahan	permasalahan sehingga
	1	Jika siswa mampu berpikir	dapat berpikir logika.
		logika dengan	
		merepresentasi ulang	
		permasalahan tetapi tidak	
		tepat	
	2	Jika siswa mampu berpikir	
		logika dengan	
		merepresentasi ulang	
		permasalahan tetapi kurang	
		tepat	

	3	mampu berpikir logika	
		dengan merepresentasi	
		ulang permasalahan dengan	
		tepat	
$AC = \sqrt{AB^2 + BC^2}$	0	jika siswa tidak mampu	Self regulation, yaitu
$=\sqrt{20^2+20^2}$		untuk memonitoring	kemampuan untuk
$=\sqrt{400+400}$		aktivitas kognitif seseorang	memonitoring aktivitas
·		dalam menyelesaikan	kognitif seseorang dalam
$= \sqrt{800}$		permasalahan	menyelesaikan
$=20\sqrt{2}$	1	Jika siswa mampu untuk	permasalahan
		memonitoring aktivitas	
		kognitif seseorang dalam	
		menyelesaikan	
		permasalahan tetapi tidak	
		tepat	

	2	Jika siswa mampu untuk memonitoring aktivitas kognitif seseorang dalam menyelesaikan permasalahan tetapi kurang	
	3	Jika siswa mampu untuk memonitoring aktivitas kognitif seseorang dalam menyelesaikan permasalahan dengan tepat	
$AE = \frac{1}{2}AC$ $= \frac{1}{2}(20\sqrt{2}) = 10\sqrt{2}$	0	Jika siswa tidak mampu untuk merepresentasi ulang permasalahan sehingga dapat berpikir logika.	Evalution , yaitu kemampuan untuk merepresentasi ulang

	1	Jika siswa mampu untuk permasalahan sehingga
		merepresentasi ulang dapat berpikir logika.
		permasalahan sehingga
		dapat berpikir logika tetapi
		tidak tepat
	2	Jika siswa untuk
		merepresentasi ulang
		permasalahan sehingga
		dapat berpikir logika tetapi
		kurang tepat
	3	Jika siswa mampu untuk
		merepresentasi ulang
		permasalahan sehingga
		dapat berpikir logika dengan
		tepat

$FE = \sqrt{(30)^2 - (10\sqrt{2})^2}$ $= \sqrt{900 - 200}$ $= \sqrt{700}$ $= 10\sqrt{7}$	0	Jika siswa tidak mampu untuk memonitoring aktivitas kognitif seseorang dalam menyelesaikan permasalahan	Self regulation, yaitu kemampuan untuk memonitoring aktivitas kognitif seseorang dalam menyelesaikan
	1	Jika siswa mampu untuk memonitoring aktivitas kognitif seseorang dalam menyelesaikan permasalahan tetapi tidak tepat	permasalahan
	2	Jika siswa mampu untuk memonitoring aktivitas kognitif seseorang dalam menyelesaikan	

		permasalahan jawaban	
		benar	
		tetapi kurang lengkap	
	3	Jika siswa mampu untuk	
		mengidentifikasi	
		permasalahan dengan tepat	
Jadi jarak titik puncak ke alas	0	jika siswa tidak mampu	Inference, yaitu
adalah $10\sqrt{7}$		untuk mencari hal-hal yang	kemampuan untuk
		dibutuhkan untuk menarik	mencari hal-hal yang
		kesimpulan	dibutuhkan untuk
	1	Jika siswa mampu untuk	menarik kesimpulan
		mencari hal-hal yang	
		dibutuhkan untuk menarik	
		kesimpulan tetapi tidak tepat	

		2	Jika siswa mampu untuk	
			mencari hal-hal yang	
			dibutuhkan untuk menarik	
			kesimpulan tetapi kurang	
			tepat	
		3	Jika siswa mampu untuk	
			mencari hal-hal yang	
			dibutuhkan untuk menarik	
			kesimpulan dengan tetap	
4.	Alternatif penyelesaian:	0	jika siswa tidak mampu	Interpretation, yaitu
			untuk memahami dan	kemampuan untuk
			memaknai permasalahan	memahami dan
		1	Jika siswa mampu untuk	memaknai permasalahan
			memahami dan memaknai	

		permasalahan tetapi tidak tepat	
	2	Jika siswa mampu untuk memahami dan memaknai permasalahan tetapi kurang tepat	
	3	Jika siswa mampu untuk memahami dan memaknai permasalahan dengan tepat	
Jika AB 8 cm, maka PF ½ dari AB =4 cm	0	Jika siswa tidak mampu berpikir logika dengan merepresentasi ulang permasalahan	Evalution , yaitu kemampuan untuk merepresentasi ulang permasalahan sehingga
	1	Jika siswa mampu berpikir logika dengan	dapat berpikir logika.

		merepresentasi ulang	
		permasalahan tetapi tidak	
		tepat	
	2	Jika siswa mampu berpikir	
		logika dengan	
		merepresentasi ulang	
		permasalahan tetapi kurang	
		tepat	
	3	Jika siswa mampu berpikir	
		logika dengan	
		merepresentasi ulang	
		permasalahan dengan tepat	
$QF = \sqrt{(EF)^2 + (FQ)^2}$	0	Jika siswa tidak mampu	Self regulation, yaitu
$QF = \sqrt{(EF)^2 + (FQ)^2}$ $= \sqrt{8^2 + 4^2}$		untuk memonitoring	kemampuan untuk
v		aktivitas kognitif seseorang	memonitoring aktivitas

$=\sqrt{64+16}$		dalam	menyelesaikan	kognitif seseorang dalam
$=\sqrt{80}$		permasalah	an	menyelesaikan
$=4\sqrt{5}$				permasalahan
-,0	1	Jika siswa	mampu untuk	
		memonitori	ng aktivitas	
		kognitif se	eseorang dalam	
		menyelesail	kan	
		permasalah	an tetapi tidak	
		tepat		
	2	Jika siswa	mampu untuk	
		memonitori	ng aktivitas	
		kognitif se	eseorang dalam	
		menyelesail	kan	
		permasalah	an tetapi kurang	
		tepat		

	3	Jika siswa mampu untuk memonitoring aktivitas kognitif seseorang dalam menyelesaikan permasalahan dengan tepat	
$PQ = \sqrt{(QF)^2 + (PF)^2}$ $= \sqrt{(4\sqrt{5})^2 + 4^2}$ $= \sqrt{80 + 16}$ $= \sqrt{90}$	0	Jika siswa tidak mampu untuk memonitoring aktivitas kognitif seseorang dalam menyelesaikan permasalahan	Self regulation, yaitu kemampuan untuk memonitoring aktivitas kognitif seseorang dalam menyelesaikan
$=4\sqrt{6}$	1	Jika siswa mampu untuk memonitoring aktivitas kognitif seseorang dalam menyelesaikan	permasalahan

		permasalaha	an teta _l	pi tidak		
		tepat				
	2	Jika siswa	mampı	ı untuk		
		memonitori	ng	aktivitas		
		kognitif se	seorang	dalam		
		menyelesaik	kan			
		permasalaha	an tetap	i kurang		
		tepat	•	G		
	3	Jika siswa	mampı	ı untuk		
		memonitori	ng	aktivitas		
		kognitif se	seorang	dalam		
		menyelesaik	_			
		permasalaha		ın tepat		
	0	•		-	Inference,	waitu
	U	jika siswa	шак	mampu	illierence,	yaitu
		mencari	hal-hal	yang	kemampuan	untuk

Jadi, jarak titik P ke titik Q adalah		dibutuhkan untuk menarik	mencari hal-hal	yang
$4\sqrt{6}$		kesimpulan	dibutuhkan	untuk
	1	Jika siswa mampu mencari	menarik kesimpula	ın
		hal-hal yang dibutuhkan		
		untuk menarik kesimpulan		
		tetapi tidak tepat		
	2	Jika siswa mampu mencari		
		hal-hal yang dibutuhkan		
		untuk menarik kesimpulan		
		tetapi kurang tepat		
	3	Jika siswa mampu mencari		
		hal-hal yang dibutuhkan		
		untuk menarik kesimpulan		
		dengan tepat		

5.	Alternatif penyelesaian :	0	jika siswa tidak mampu	Interpretation, yaitu
			untuk memahami dan	kemampuan untuk
			memaknai permasalahan	memahami dan
	G	1	Jika siswa tidak mampu untuk memahami dan	memaknai permasalahan
			memaknai permasalahan tetapi tidak tepat	
		2	Jika siswa tidak mampu untuk memahami dan memaknai permasalahan	
			tetapi kurang tepat	
		3	Jika siswa tidak mampu	
			untuk memahami dan	
			memaknai permasalahan	
			dengan tepat	

Jika AB = 10 cm, maka EG =	0	Jika siswa tidak mampu	Evalution , yaitu
$10\sqrt{2}$		berpikir logika dengan	kemampuan untuk
		merepresentasi ulang	merepresentasi ulang
		permasalahan	permasalahan sehingga
	1	Jika siswa mampu berpikir	dapat berpikir logika.
		logika dengan	
		merepresentasi ulang	
		permasalahan tetapi tidak	
		tepat	
	2	Jika siswa mampu berpikir	
		logika dengan	
		merepresentasi ulang	
		permasalahan tetapi kurang	
		tepat	

	3	Jika siswa mampu berpikir	
		logika dengan	
		merepresentasi ulang	
		permasalahan dengan tepat	
$EG = 10\sqrt{2}$	0	jika siswa tidak mampu	Self regulation, yaitu
$GN = \frac{1}{2}EG = 5\sqrt{2}$		untuk memonotoring	kemampuan untuk
$\frac{dN-2}{2} = \frac{3\sqrt{2}}{2}$		aktivitas kognitif seseorang	memonotoring aktivitas
		dalam menyelelesaikan	kognitif seseorang dalam
$GM = \sqrt{(GC)^2 + (MC)^2}$		permasalahan.	menyelelesaikan masalah
$= \sqrt{(10)^2 + (5)^2}$	1	Jika siswa mampu untuk	
$=\sqrt{100+25}$		memonotoring aktivitas	
$=\sqrt{125}$		kognitif seseorang dalam	
$=5\sqrt{5}$		menyelelesaikan masalah	
- 545		tetapi tidak tepat	

	2	Jika siswa mampu untuk	
		memonotoring aktivitas	
		kognitif seseorang dalam	
		menyelelesaikan masalah	
		tetapi kurang tepat	
	3	Jika siswa mampu untuk	
		memonotoring aktivitas	
		kognitif seseorang dalam	
		menyelelesaikan masalah	
		dengan tepat	
AM = GM	0	Jika siswa tidak mampu	Explanation, yaitu
		untuk memberikan alasan	kemampuan untuk
		logis dalam sebuah	memberikan alasan logis
		permasalahan	

	1	Jika siswa mampu untuk	dalam sebuah
		memberikan alasan logis	permasalahan.
		dalam sebuah permasalahan	
		tetapi tidak tepat	
	2	Jika siswa mampu untuk	
		memberikan alasan logis	
		dalam sebuah permasalahan	
		tetapi kurang tepat	
	3	Jika siswa mampu untuk	
		memberikan alasan logis	
		dalam sebuah permasalahan	
		dengan tepat	
$EM = \sqrt{(AE)^2 + }$	$(AM)^2$ 0	Jika siswa tidak mampu	Self regulation, yaitu
(42)2 (untuk memonotoring	kemampuan untuk
$= (10)^2 + ($	575)2	aktivitas kognitif seseorang	memonotoring aktivitas

$=\sqrt{100+125}$		dalam menyelelesaikan	kognitif seseorang dalam
$=\sqrt{225}$		masalah	menyelelesaikan masalah
= 15	1	Jika siswa mampu untuk	
		memonotoring aktivitas	
		kognitif seseorang dalam	
		menyelelesaikan masalah	
		tetapi tidak tepat	
	2	Jika siswa mampu untuk	
		memonotoring aktivitas	
		kognitif seseorang dalam	
		menyelelesaikan masalah	
		tetapi kurang tepat	

	3	mampu untuk				
		memonotoring aktivitas				
		kognitif seseorang dalam				
		menyelelesaikan masalah				
		dengan tepat				
Memakai rumus cosinus	0	jika siswa tidak mampu	Self regulation, yaitu			
$\cos E = \frac{EM^2 + EG^2 - MG^2}{2.EM.EG}$		memonitoring aktivitas	kemampuan untuk			
		kognitif dalam	memonitoring aktivitas			
$=\frac{225+200-125}{2.15.10\sqrt{2}}$		menyelesaikan masalahan	kognitif seseorang dalam			
	1	Jika siswa mampu	menyelesaikan			
$=\frac{1}{\sqrt{2}}$		memonitoring aktivitas	permasalahan.			
		kognitif dalam				
MN		menyelesaikan masalahan				
$\sin E = \frac{MN}{EM}$		tetapi tidak tepat				

	2	Jika siswa mampu
$MN = \frac{EM}{\sqrt{2}} = \frac{15}{\sqrt{2}} = \frac{15}{2}\sqrt{2}$		memonitoring aktivitas
$\sqrt{2} - \sqrt{2} - \sqrt{2} = 2$		kognitif dalam
		menyelesaikan masalahan
		tetapi kurang tetap
	3	Jika siswa mampu
		memonitoring aktivitas
		kognitif dalam
		menyelesaikan masalahan
		dengan tepat
	0	Jika siswa mampu untuk Inference, yaitu
Jadi, jarak titik M ke garis EG		mencari hal-hal yang kemampuan untuk
adalah $\frac{15}{2}\sqrt{2}$		dibutuhkan untuk menarik mencari hal-hal yang
2		kesimpulan

1	Jika siswa mampu untuk dibutuhkan untuk
	mencari hal-hal yang menarik kesimpulan
	dibutuhkan untuk menarik
	kesimpulan tetapi kurang
	tepat
2	Jika siswa mampu untuk
	mencari hal-hal yang
	dibutuhkan untuk menarik
	kesimpulan tetapi tidak tepat
3	Jika siswa mampu untuk
	mencari hal-hal yang
	dibutuhkan untuk menarik
	kesimpulan dengan tepat

6.	Alternatif Penyelesaian :	0	jika siswa tidak mampu	Interpretation, yaitu
0.	Thermath renyelesaran.		untuk memahami dan	kemampuan untuk
			memaknai permasalahan	memahami dan
	н о в			memaknai permasalahan
		1	Jika siswa mampu untuk	
			memahami dan memaknai	
			permasalahan tetapi tidak	
	and the second		tepat	
		2	Jika siswa mampu untuk	
			memahami dan memaknai	
			permasalahan tetapi kurang	
			tepat	
		3	Jika siswa mampu untuk	
			memahami dan memaknai	
			permasalahan dengan tepat	

Jika AB = 12 cm, maka RS =6	0	Jika siswa tidak mampu	Evalution , yaitu
		berpikir logika dengan	kemampuan untuk
		merepresentasi ulang	merepresentasi ulang
		permasalahan	permasalahan sehingga
	1	Jika siswa mampu berpikir	dapat berpikir logika.
		logika dengan	
		merepresentasi ulang	
		permasalahan tetapi tidak	
		tepat	
	2	Jika siswa mampu berpikir	
		logika dengan	
		merepresentasi ulang	
		permasalahan tetapi kurang	
		tepat	

	3	Jika siswa mampu berpikir logika dengan merepresentasi ulang permasalahan dengan tepat		
$RS = \frac{1}{2} AB = \frac{1}{2} (12) = 6$ RT = 12	1 2	jika siswa tidak mampu untuk mengidentifikasi permasalahan Jika siswa mampu untuk mengidentifikasi permasalahan tetapi tidak tepat Jika siswa mampu untuk mengidentifikasi permasalahan tetapi kurang tepat	Analisys, kemampuan mengidentifikasi permasalahan.	yaitu untuk

	3	Jika siswa mampu untuk mengidentifikasi permasalahan dengan tepat	
$TS = \sqrt{(RS)^2 + (RT)^2}$ $= \sqrt{(6)^2 + (12)^2}$ $= \sqrt{36 + 144}$ $= \sqrt{180}$ $= 6\sqrt{5}$	1 2	Jika siswa tidak mampu untuk memberikan alasan logis dalam sebuah permasalahan Jika siswa mampu untuk memberikan alasan logis dalam sebuah permasalahan tetapi tidak tepat Jika siswa mampu untuk memberikan alasan logis dalam sebuah permasalahan tetapi kurang tepat	Explanation, yaitu kemampuan untuk memberikan alasan logis dalam sebuah permasalahan.

	3	Jika siswa mampu untuk memberikan alasan logis dalam sebuah permasalahan dengan tepat	
Menggunakan Perband segitiga $RS \times RT = TS \times RO$ $6 \times 12 = 6\sqrt{5} \times RO$	lingan 0	jika siswa tidak mampu memonitoring aktivitas kognitif dalam menyelesaikan masalahan	Self regulation, yaitu kemampuan untuk memonitoring aktivitas kognitif seseorang dalam
$RO = \frac{6x12}{6\sqrt{5}}$ $= \frac{72}{6\sqrt{5}}$	1	Jika siswa mampu memonitoring aktivitas kognitif dalam menyelesaikan masalahan tetapi tidak tepat	menyelesaikan permasalahan.

$=\frac{72}{6\sqrt{5}}x\frac{\sqrt{5}}{\sqrt{5}}$	2	Jika siswa mampu memonitoring aktivitas	
$= \frac{72\sqrt{5}}{30}$ $= \frac{12\sqrt{5}}{5}$		kognitif dalam menyelesaikan masalahan tetapi kurang tepat	
5	3	Jika mampu memonitoring aktivitas kognitif dalam menyelesaikan masalahan dengan tepat	
Jadi, jarak titik R ke bidang BPQC adalah $\frac{12\sqrt{5}}{5}$	0	Jika siswa tidak mampu untuk mencari hal-hal yang dibutuhkan untuk menarik kesimpulan	Inference, yaitu kemampuan untuk mencari hal-hal yang dibutuhkan untuk
	1	Jika siswa mampu untuk mencari hal-hal yang	menarik kesimpulan

	dibutuhkan untuk menarik kesimpulan tetapi tidak tepat	
2	Jika siswa mampu untuk mencari hal-hal yang dibutuhkan untuk menarik kesimpulan tetapi kurang	
3	Jika siswa mampu untuk mencari hal-hal yang	
	dibutuhkan untuk menarik kesimpulan dengan tepat	

Lampiran 40 Analisis Perhitungan Uji Validitas Intrumen Posttest Tahap 1

Aalisis Perhitungan Uji Validitas Intrumen Posttest Tahap 1

UCP-01 UCP-02 UCP-03 UCP-04	Soal No.1	Soal No.2	Soal No.3	Soal No.4	Soal No.5	Soal No.6	lumlah Sk	 ΣXY S	oal No.1													C 1 81	
UCP-02 UCP-03 UCP-04	6	9												Soal No.6)	K [*]	Soal No.1		Soal No.3	Soal No.4	Soal No.5		
UCP-03 UCP-04			9	3	6	6	38	1	228	304	342	114	228			1	36		81	9	36	36	
UCP-04		6	9	3	6	6	36	2	216	216	324	108	216			2	36		81	9	36	36	
	6	8	14	8	9	4	49	3	294	392	686	392	441			3	36		196	64	81	16	
	0	8		6		6	42	4	0	336	546	252	378			4	0		169	36	81	36	
UCP-05	6	8		3	9	9	48	5	288	384	624	144	432			5	36		169	9	81	81	2304
UCP-06	6	3		3	0	9	24	6	144	72	72	72	0			6	36		9	9	0	81	576
UCP-07	6	14		6	0	6	35	7	210	490	105	210	0			7	36		9	36	0	36	1225
UCP-08	6	11		0	0	15	46	8	276	506	644	0	0			8	36		196	0	0	225	2116
UCP-09	3 6	11 15		5	18 14	15	67 62	9	201	737	1005	335	1206			9 10	9	121 225	225	25 25	324	225	4489 3844
UCP-10 UCP-11	3	15	14	10	11	15	60	11	372 180	930 420	806 840	310 600	868 660			11	36	49	169 196	100	196 121	81 225	3600
UCP-11	6	7	9	11	11	12	56	12	336	392	504	616	616		-	12	36		81	121	121	144	3136
UCP-12	3	8		6	8	7	38	13	114	392	228	228	304		-	13	30 9		36	36	64	49	
UCP-13	3	12		10	8	9	52	14	156	624	520	520	416		-	14	9		100	100	64	81	2704
UCP-15	2	6	6	6	11	9	40	15	80	240	240	240	440		-	15	4		36	36	121	81	1600
UCP-16	0	9	7	9	- 11	0	24	16	00	216	168	192	0		-	16	0		49	64	0	0.1	
UCP-17	3	9	5	10	0	13	40	17	120	360	200	400	0		-	17	9		25	100	0	169	1600
UCP-18	6	7	4	1	3	1	22	18	132	154	88	22	66			18	36		16	100	9	103	484
UCP-19	6	5	6	5	10	11	43	19	258	215	258	215	430			19	36		36	25	100	121	1849
UCP-20	6	7	4	1	6	1	25	20	150	175	100	25	150			20	36		16	1	36	1	625
UCP-21	6	17	12	7	18	0	60	21	360	1020	720	420	1080	0		21	36		144	49	324	0	
UCP-22	0	3	4	6	3	6	22	22	0	66	88	132	66	132		22	0	9	16	36	9	36	
UCP-23	6	18	18	4	10	11	67	23	402	1206	1206	268	670	737		23	36	324	324	16	100	121	4489
UCP-24	6	11	1	Ō	0	0	18	24	108	198	18	0	0	0		24	36	121	1	0	0	0	324
UCP-25	6	15	14	10	18	13	76	25	456	1140	1064	760	1368	988		25	36	225	196	100	324	169	5776
UCP-26	6	12	12	8	14	15	67	26	402	804	804	536	938	1005		26	36	144	144	64	196	225	4489
UCP-27	3	7	8	6	10	9	43	27	129	301	344	258	430	387		27	9	49	64	36	100	81	1849
UCP-28	6	17		10	4	12	66	28	396	1122	1122	660	264			28	36	289	289	100	16	144	4356
UCP-29	6	18	17	7	4	12	64	29	384	1152	1088	448	256	768		29	36	324	289	49	16	144	4096
UCP-30	6	12	15	8	11	15	67	30	402	804	1005	536	737	1005		30	36		225	64	121	225	4489
Σx	140	299	295	176	231	256		JML ∑XA	6794	15280	15759	9013	12660	13523			778	3509	3587	1320	2677	2870	73029
ΣΥ							1397										ΣX²	ΣX²	Σx^2	ΣX ²	Σx^2	ΣX ²	ΣY ²
(Σ×) ²	19600	89401	87025	30976	53361	65536																	
ΣXY	6794	15280	15759	9013	12660	13523																	
ΣX²	778	3509	3587	1320	2677	2870																	
N			30																				
N∑XY	203820	458400	472770	270390	379800	405690																	
N∑X ²	23340	105270	107610	39600	80310	86100																	
ΣY^2					_		73029																
N∑Y ²	2190870																						
$(\Sigma Y)^2$			1951	609																			
ΝΣΧΥ-ΣΧΣ	8240	40697	60655	24518	57093	48058																	
NΣX ² -(ΣX)	3740	15869	20585	8624	26949	20564																	
ΝΣΥ²-(ΣΥ)			2392	261																			
Rxv	0.275458	0.660468		0.539753	0.71101	0.685135																	
R tabel	0,361	0,361	0,361	0,361	0,361	0,361																	
Validitas	TIDAK VAL		VALID		VALID	VALID																	

Lampiran 41 Analisis Perhitungan Uji Validitas Intrumen Posttest Tahap 2

Analisis Perhitungan Uji Validitas Intrumen Posttest Tahap 2

Responde	Soal No.2	Soal No.3	Soal No.4	Soal No.5	Soal No.6	Jumlah Sk	or	ΣΧΥ	Soal No.2		Soal No.4				X ²	Soal No.2					Jumlah Sk
UCP-01	8	9	3	6	6	32		1	256	288	96	192			1	64	81	9	36	36	
UCP-02	6	9	3	6	6	30		2	180	270	90	180			2	36	81	9	36	36	
UCP-03	8	14	8	9	4	43		3	344	602	344	387	172		3		196	64	81	16	
UCP-04	8	13	6	9	6	42		4	336	546	252	378			4		169	36	81	36	
UCP-05	8	13	3	9	9	42		5	336	546	126	378			5		169	9	81	81	
UCP-06	3	3	3	0		18		6	54	54	54	0			6		9		0	81	324
UCP-07	14 11	3	6	0		29		7	406	87		0			7		9	36	0	36 225	
UCP-08	11	14	0			40		8	440	560	0 320		000		8		196 225	0	324	225	
UCP-09 UCP-10	11	15 13	5	18 14		64 56		9 10	704 840	960 728	280	1152 784	960 504		10		169	25 25	324 196	225 81	4096 3136
UCP-10	7	14	10	11	15	57		10	399	728	570	627	855		11		196	100	121	225	3249
UCP-12	7	9	11	11	12	50		12	350	450	550	550		l 1	12		81	121	121	144	
UCP-13	8	6	6	8		35		13	280	210	210	280			13		36	36	64	49	
UCP-14	12	10	10	8	9	49		14	588	490	490	392			14		100	100	64	81	
UCP-15	6	- 6	6	11		38		15	228	228	228	418			15	36	36	36	121	81	
UCP-16	9	7	8	0		24		16	216	168	192	0			16		49		0	0	
UCP-17	9	5	10	0	13	37		17	333	185	370	0	481		17	81	25	100	0	169	1369
UCP-18	7	4	1	3	1	16		18	112	64	16	48	16		18	49	16		9	1	256
UCP-19	5	6	5	10	11	37		19	185	222	185	370	407		19	25	36	25	100	121	1369
UCP-20	7	4	1	6	1	19		20	133	76	19	114	19		20	49	16	1	36	1	361
UCP-21	17	12	7	18	0	54		21	918	648	378	972	0		21	289	144	49	324	0	2916
UCP-22	3	4	6	3	6	22		22	66	88		66	132		22	9	16	36	9	36	
UCP-23	18	18	4	10		61		23	1098	1098	244	610	671		23		324		100	121	
UCP-24	11	1	0	0		12		24	132	12		0	0		24		1	0	0	0	144
UCP-25	15	14	10	18		70		25	1050	980	700	1260	910		25	225	196	100	324	169	
UCP-26	12	12	8	14		61		26	732	732	488	854	915		26		144	64	196	225	3721
UCP-27	7	8	6	10		40		27	280	320	240	400	360		27		64	36	100	81	1600
UCP-28	17 18	17 17	10	4	12 12	60 58		28 29	1020	1020	600	240			28 29		289 289	100	16 16	144 144	
UCP-29 UCP-30	18	17	8	11		61		30	1044 732	986 915	406 488	232 671	915		30		289	49 64	121	225	3364 3721
Σ×	299	295	176	231	256	61		IML 2XX	13792	14331	8242	11555	12299	1	30	3509	3587	1320	2677	2870	
ΣY	299	293	176	251	1257			IIVIL ZX1	13/32	14331	0242	11333	12299		ΣX²	ΣX ²	ΣX ²	ΣX ²		ΣΥ ²	00219
(Σ×),	89401	87025	30976	53361	65536										2×	2.8	2×	2.8	2×	24	
ΣXY	13792	14331	8242	11555	12299																
ΣX ²	3509	3587	1320	2677	2870																
N N	3309	3367		0	2870																
NΣXY	413760	429930	247260	346650	368970																
NEX2	105270	107610	39600	80310	86100																
N2 X ΣΥ ²	103270	107610	39600	80310	86100	60219															
NΣY ²			1806570			60219															
$(\Sigma Y)^2$			1580049			\vdash															
(2 Y)			1580049																		
NEW EVE	37917	59115	26028	56283	47178																
ΝΣΧΥ-ΣΧΣ																					
$N\Sigma X^2 - (\Sigma X)$	15869	20585	8624	26949	20564	Ь Н															
$N\Sigma Y^2 - (\Sigma Y)^2$			226																		
Rxy R tabel	0,632419	0,865701	0,588887	0,720363	0,691244	-															
			0,361 VALID	0,361 VALID	0,361 VALID	\vdash															
			VALID	VALID	VALID																

Lampiran 42 Perhitungan Uji Validitas Intrumen Posttest

Perhitungan Uji Validitas Intrumen Posttest

Rumus

contoh perhitungan uji validitas butir soal postest nomor 2.

$$r_{xy} = \frac{n \sum XY - \sum X \sum Y}{\sqrt{(n \sum X^2 - (\sum X)^2)(n \sum Y^2 - (\sum Y)^2)}}$$

$$= \frac{(30)(13792) - (299)(1257)}{\sqrt{((30)(3509) - (89401))((30)(60219) - (1580049)}}$$

$$= \frac{413760 - 375843}{\sqrt{((105270) - (89401))((1806570) - (1580049)}}$$

$$= \frac{37917}{\sqrt{(15869)(226512)}}$$

$$= \frac{37917}{\sqrt{3594661749}}$$

$$= \frac{37917}{59955,49}$$

$$= 0,632$$

Butir soal postest dikatakan valid apabila $r_{xy} \ge r_{tabel}$. Pada taraf signifikansi 5% dengan N=32 diperoleh $r_{tabel} = 0,361$. Karena $r_{xy} = 0,632419 \ge 0,361$ maka dapat disimpulkan bahwa butir angket tersebut valid.

Lampiran 43 Analisis Perhitungan Uji Reliabilitas Intrumen Posttest Tahap 1

Analisis Perhitungan Uji Reliabilitas Intrumen Posttest Tahap 1

UCP-01	Responde	Soal No.1	Soal No.2	Soal No.3	Soal No.4	Soal No.5	Soal No.6	Jumlah Sk	Total Kuad	Irat	X ²	Soal No.1	Soal No.2	Soal No.3	Soal No.4	Soal No.5	Soal No.6
UCP-02 6 6 6 9 3 6 6 8 9 4 4 49 2401 3 3 6 64 196 64 81 14 10 10 10 10 64 119 12 12 12 12 12 12 12 12 12 12 12 12 12	_				3										9		_
UCP-03	UCP-02	6			3	6	6		1296		2		36	81	9		36
UCP-05 6									2401		3						16
UCP-06 6	UCP-04	0	8	13	6	9	6	42	1764		4	0	64	169	36	81	36
UCP-07 6	UCP-05	6	8	13	3	9	9	48	2304		5	36	64	169	9	81	81
UCP-08 6 11 14 0 0 15 46 2116 8 36 121 196 0 0 225 UCP-09 3 11 15 5 18 15 67 4488 9 9 121 225 25 324 225 UCP-10 6 15 13 5 14 9 62 3844 10 36 225 199 100 121 225 196 81 11 10 11 15 60 3600 11 9 49 196 100 121 221 125 196 181 121 121 122 122 126 6 6 6 8 7 38 1444 13 9 64 36 36 64 49 UCP-13 3 8 6 6 6 11 9 40 1600 15 4	UCP-06	6	3	3	3	0	9	24	576		6	36	9	9	9	0	81
UCP-09 3 11 15 5 18 15 67 4489 9 9 9 121 225 25 324 225 UCP-10 6 15 13 5 14 9 62 3844 10 36 225 169 25 196 81 UCP-11 3 7 14 10 11 15 60 3600 11 9 49 196 100 121 225 UCP-12 6 7 9 11 11 12 56 3136 12 36 49 81 121 121 144 UCP-13 3 8 6 6 6 8 7 38 1444 13 9 9 64 36 36 36 64 49 UCP-14 3 12 10 10 8 9 52 2704 14 9 144 100 100 64 81 UCP-15 2 6 6 6 6 11 9 40 1600 15 4 36 36 36 36 121 81 UCP-16 0 9 7 8 0 0 0 24 576 16 0 81 49 64 0 0 0 0 UCP-17 3 9 5 10 0 0 13 40 1600 17 9 81 25 100 0 169 UCP-18 6 7 4 1 3 1 22 484 18 36 49 16 1 9 1 UCP-19 6 5 6 5 6 5 10 11 43 1849 19 36 25 36 25 100 0 121 UCP-20 6 7 4 1 6 6 1 25 625 20 36 49 16 1 9 1 UCP-21 6 17 12 7 18 0 60 3600 12 36 25 36 225 100 UCP-23 6 18 18 18 4 10 11 67 4489 23 36 324 324 16 100 121 UCP-23 6 18 18 18 4 10 11 67 4489 23 36 324 324 16 100 121 UCP-26 6 11 1 1 0 0 0 0 18 324 324 324 324 324 324 324 324 324 325 UCP-27 3 7 8 6 10 9 43 1849 27 9 49 64 36 100 324 376 325 UCP-27 3 7 8 6 10 9 43 1849 27 9 49 64 36 100 121 UCP-28 6 11 1 1 0 0 0 0 18 324 324 324 324 324 324 324 324 324 324	UCP-07	6	14	3	6	0	6	35	1225		7	36	196	9	36	0	36
UCP-10 6 15 13 5 14 9 62 3844 10 36 225 169 25 196 81 UCP-11 3 7 14 10 11 15 60 3600 11 9 49 196 100 121 225 UCP-12 6 7 9 11 11 12 56 3136 12 36 49 81 121 121 121 UCP-13 3 8 6 6 6 8 7 38 1444 13 9 64 36 36 36 44 49 UCP-14 3 12 10 10 8 9 52 2704 14 9 144 100 100 64 81 UCP-15 2 6 6 6 6 11 9 40 1600 15 4 36 36 36 36 121 81 UCP-16 0 9 7 8 0 0 0 24 576 16 0 81 49 64 0 0 0 UCP-17 3 9 9 5 10 0 13 40 1600 17 9 81 25 100 0 160 UCP-18 6 7 4 1 3 1 22 484 18 36 49 16 1 9 9 UCP-19 6 5 6 5 10 11 43 1849 19 36 25 36 25 100 12 UCP-20 6 7 4 1 1 6 1 25 625 20 36 49 16 1 9 9 12 UCP-20 6 17 12 7 18 0 60 3600 21 36 289 144 49 324 0 UCP-22 0 3 4 6 3 6 3 6 3 6 25 100 12 UCP-23 6 18 18 18 4 10 11 67 4489 23 36 225 196 100 324 160 UCP-25 6 15 14 10 18 13 76 5776 25 36 225 196 100 324 160 UCP-26 6 12 12 12 8 14 15 67 4489 23 36 225 196 100 324 160 UCP-26 6 12 12 12 8 14 15 67 4489 26 36 144 144 64 196 225 0 UCP-27 3 7 8 6 10 9 43 1849 77 9 49 64 36 100 324 160 UCP-28 6 15 14 10 18 13 76 5776 25 36 225 196 100 324 160 UCP-28 6 12 12 12 8 14 15 67 4489 23 36 225 196 100 324 160 UCP-26 6 12 12 12 8 14 15 67 4489 23 36 225 196 100 324 160 UCP-27 3 7 8 6 10 9 43 1849 77 9 49 64 36 100 81 UCP-28 6 15 14 10 18 13 76 5776 25 36 225 196 100 324 160 UCP-28 6 15 14 10 18 13 76 5776 25 36 225 196 100 324 160 UCP-28 6 12 12 12 8 14 15 67 4489 26 36 144 144 64 196 225 0 UCP-28 6 15 14 10 18 13 76 5776 25 36 225 196 100 324 160 UCP-28 6 15 17 77 10 4 12 66 4356 28 36 28 36 289 289 100 16 144 UCP-30 6 12 15 8 11 15 67 4489 26 36 144 144 64 196 225 0 UCP-28 6 18 17 7 7 4 12 64 4096 29 36 324 289 49 16 12 12 25 25 25 25 25 25 25 25 25 25 25 25 25	UCP-08	6	11	14	0	0	15	46	2116		8	36	121	196	0	0	225
UCP-11 3 7 14 10 11 15 60 3600 11 9 49 196 100 121 225 UCP-12 6 7 9 11 11 11 12 56 3136 12 36 49 81 121 121 124 144 UCP-13 3 8 6 6 8 7 38 1444 13 9 64 36 36 64 49 UCP-14 3 12 10 10 8 9 52 2704 14 9 144 100 100 64 81 UCP-15 2 6 6 6 6 11 9 40 1600 15 4 36 36 36 36 121 81 UCP-16 0 9 7 8 0 0 0 24 576 16 0 81 49 64 0 0 0 UCP-17 3 9 9 5 10 0 13 40 1600 17 9 81 25 100 0 169 UCP-18 6 7 4 1 3 1 22 484 18 36 49 16 1 9 1 UCP-19 6 5 6 5 10 11 43 1849 19 36 25 36 25 100 10 UCP-19 6 5 6 5 10 11 43 1849 19 36 25 36 25 100 UCP-20 6 7 4 1 6 1 25 625 20 36 49 16 1 36 1 UCP-21 6 17 12 7 18 0 60 3600 21 36 49 16 1 36 1 UCP-22 0 3 4 6 3 6 3 6 22 484 22 0 9 16 36 9 36 UCP-23 6 18 18 18 4 10 11 67 4489 23 36 324 324 16 100 UCP-24 6 11 1 0 0 0 18 324 24 36 121 1 0 0 0 121 UCP-26 6 12 12 12 8 14 15 67 4489 23 36 324 324 16 100 121 UCP-27 3 7 8 6 10 9 43 1849 77 9 49 64 36 100 121 UCP-28 6 11 17 7 7 4 12 66 4489 23 36 225 196 100 324 160 UCP-28 6 12 12 12 8 14 15 67 4489 26 36 144 144 64 196 225 UCP-28 6 12 12 12 8 14 15 67 4489 26 36 144 144 64 196 225 UCP-28 6 12 12 12 8 14 15 67 4489 26 36 144 144 66 196 225 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 324 225 64 121 225 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 36 144 144 66 196 225 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 36 144 144 64 196 225 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 36 144 144 64 196 225 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 36 144 125 64 121 225 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 36 144 225 64 121 225 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 36 144 225 64 121 225 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 36 144 225 64 121 225 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 387 1320 2677 2870 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 36 144 225 64 121 225 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 36 144 225 64 121 225 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 36 144 225 64 121 225 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 324 225 64 121 225 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 36 344 225 64 121 225 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 324 225 100 16 144 144 144 144 144 144 144 144 144	UCP-09	3	11	15	5	18	15	67	4489		9	9	121	225	25	324	225
UCP-12 6 7 9 11 11 12 56 3136 12 36 49 81 121 121 124 144 UCP-13 3 8 8 6 6 8 8 7 38 1444 13 9 64 36 36 36 64 49 UCP-14 3 12 10 10 8 9 52 2704 14 9 144 100 100 64 81 UCP-15 2 6 6 6 6 11 9 40 1600 15 4 36 36 36 36 121 81 UCP-16 0 9 7 8 0 0 24 576 16 0 81 49 64 0 0 0 UCP-17 3 9 5 10 0 13 40 1600 17 9 81 25 100 0 169 UCP-18 6 7 4 1 3 1 22 484 18 36 49 16 1 9 1 UCP-19 6 5 6 5 10 11 43 1849 19 36 25 36 25 100 121 UCP-20 6 7 4 1 1 6 1 25 625 20 36 49 16 1 1 9 1 UCP-21 6 17 12 7 18 0 60 3600 21 36 289 144 9 324 0 UCP-22 0 3 4 6 6 3 6 3 6 22 484 22 0 9 16 36 9 36 UCP-23 6 18 18 18 4 10 11 67 4489 23 36 324 324 16 100 121 UCP-24 6 11 1 0 0 0 1 18 324 24 36 121 1 0 0 0 0 121 UCP-26 6 12 12 8 14 10 18 37 76 5776 25 36 225 196 100 121 UCP-26 6 12 12 8 14 15 67 4489 26 36 289 289 100 15 144 UCP-27 3 7 8 6 10 9 43 1849 27 9 49 64 36 100 121 UCP-28 6 17 17 10 4 12 66 4356 28 36 28 28 144 14 64 196 225 UCP-27 3 7 8 6 10 9 43 1849 27 9 49 64 36 100 81 UCP-28 6 17 17 10 4 12 66 356 356 28 36 28 144 14 64 196 225 UCP-27 3 7 8 6 10 9 43 1849 27 9 49 64 36 100 81 UCP-28 6 17 17 10 4 12 66 44096 29 36 32 28 28 100 15 144 UCP-29 6 18 17 7 10 4 12 66 44096 29 36 36 28 28 140 22 5 6 110 144 UCP-29 6 18 17 7 10 4 12 66 44096 29 36 36 28 28 100 15 144 UCP-29 6 18 17 7 10 4 12 64 4096 29 36 36 28 28 100 15 144 UCP-29 6 18 17 7 10 4 12 64 4096 29 36 36 28 28 100 15 144 UCP-29 6 18 17 7 10 4 12 64 4096 29 36 36 28 28 100 15 144 UCP-29 6 18 17 7 10 4 12 64 4096 29 36 36 28 28 100 15 144 UCP-29 6 18 17 7 10 4 12 64 4096 29 36 36 28 28 100 15 144 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 36 28 28 100 15 144 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 36 28 28 100 15 144 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 36 28 28 100 15 144 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 36 28 28 100 15 144 UCP-29 6 18 17 7 7 10 4 12 64 4096 29 36 36 28 28 28 100 15 144 UCP-29 6 18 17 7 7 10 4 12 64 4096 29 36 36 28 28 28 100 15 144 UCP-29 6 18 17 7 7 10 15 15 15 15 15 15 15 15 15 15 15 15 15	UCP-10	6	15	13	5	14	9	62	3844		10	36	225	169	25	196	81
UCP-13 3 8 6 6 6 8 7 38 1444 13 9 64 36 36 64 49 UCP-14 3 112 10 10 8 9 52 2704 14 9 144 100 100 64 81 UCP-15 2 6 6 6 6 11 9 40 1600 15 4 36 36 36 36 121 81 UCP-16 0 9 7 8 0 0 0 24 576 16 0 81 49 64 0 0 UCP-17 3 9 5 10 0 13 40 1600 17 9 81 25 100 0 160 UCP-18 6 7 4 1 3 1 22 484 18 36 49 16 1 9 1 UCP-19 6 5 6 5 10 11 43 1849 19 36 25 36 25 100 121 UCP-20 6 7 4 1 6 1 25 625 20 36 49 16 1 36 121 UCP-21 6 17 12 7 18 0 60 3600 21 36 289 144 49 324 0 UCP-22 0 3 4 4 6 3 6 3 6 6 22 484 22 0 9 16 36 289 144 49 324 0 UCP-23 6 18 18 18 4 10 11 67 4489 23 36 324 324 16 100 121 UCP-24 6 11 1 0 0 0 18 324 24 36 121 1 0 0 0 0 0 0 UCP-25 6 15 14 10 18 13 76 5776 25 36 225 100 324 169 UCP-27 3 7 8 6 10 9 43 1849 27 9 49 64 36 100 324 169 UCP-28 6 17 17 10 4 12 66 4356 28 36 289 129 100 16 144 UCP-29 6 18 17 7 4 12 64 489 27 9 49 64 36 100 81 160 100 121 UCP-29 6 18 17 7 4 12 64 489 27 9 49 64 36 100 81 160 100 121 UCP-27 3 7 8 6 10 9 43 1849 27 9 49 64 36 100 81 100 122 UCP-28 6 17 17 10 4 12 66 4356 28 36 289 289 100 16 144 100 12 15 67 4489 27 9 49 64 36 100 81 100 122 UCP-29 6 18 17 7 4 12 64 4096 29 36 324 289 49 16 124 12 12 12 12 12 12 12 13 12 12 12 12 12 12 13 12 12 12 12 12 13 12 12 12 12 12 12 12 12 13 12 12 12 12 12 12 12 12 12 12 12 12 12	UCP-11	3	7	14	10	11	15		3600		11	9	49	196	100	121	225
UCP-14 3 12 10 10 8 9 52 2704 14 9 144 100 100 64 81 UCP-15 2 6 6 6 6 11 9 40 1600 15 4 36 36 36 36 121 81 UCP-16 0 9 7 8 0 0 24 576 16 0 81 49 64 0 0 0 UCP-17 3 9 5 10 0 13 40 1600 17 9 81 25 100 0 169 UCP-18 6 7 4 1 3 1 22 484 18 36 49 16 1 9 1 UCP-19 6 5 6 5 10 11 43 1849 19 36 25 36 25 100 121 UCP-20 6 7 4 1 6 1 25 625 20 36 49 16 1 36 1 UCP-21 6 17 12 7 18 0 60 3600 21 36 289 144 49 324 0 UCP-22 0 3 4 6 3 6 22 484 22 0 9 16 36 9 36 UCP-23 6 18 18 4 10 11 67 4489 23 36 324 324 16 100 121 UCP-24 6 11 1 0 0 0 18 324 24 36 121 1 0 0 0 0 UCP-25 6 15 14 10 18 13 76 5776 25 36 225 196 100 324 169 UCP-26 6 12 12 8 14 15 67 4489 27 9 49 64 36 100 31 UCP-28 6 17 17 10 4 12 66 4356 28 36 324 289 100 16 144 UCP-30 6 12 15 8 11 15 67 4489 30 36 144 144 64 196 225 22 22 23 22 23 22 23 22 23 22 23 22 23 23 24 24	UCP-12	6	7	9	11	11		56	3136		12	36	49	81	121		144
UCP-15	UCP-13	3	8	6	6	8	7	38	1444		13	9	64	36	36	64	49
UCP-16 0 9 7 8 0 0 0 24 576 16 0 81 49 64 0 0 0 UCP-17 3 9 5 10 0 13 40 1600 17 9 81 25 100 0 169 UCP-18 6 7 4 1 3 1 22 484 18 36 49 16 1 9 1 UCP-19 6 5 6 5 10 11 43 1849 19 36 25 36 25 100 121 UCP-20 6 7 4 1 6 1 25 625 20 36 49 16 1 36 1 UCP-21 6 17 12 7 18 0 60 3600 21 36 289 144 49 324 0 UCP-22 0 3 4 6 3 6 3 6 22 484 22 0 9 16 36 9 36 UCP-23 6 18 18 18 4 10 11 67 4489 23 36 324 324 16 100 121 UCP-24 6 11 1 0 0 0 18 324 24 36 121 1 0 0 0 0 18 324 24 36 121 1 0 0 0 0 120 UCP-25 6 15 14 10 18 13 76 5776 25 36 225 196 100 324 160 UCP-26 6 12 12 12 8 14 15 67 4489 26 36 144 144 64 196 225 UCP-27 3 7 8 6 10 9 43 1849 27 9 49 64 36 100 18 UCP-26 6 12 12 12 8 14 15 67 4489 26 36 144 144 64 196 225 UCP-27 3 7 8 6 10 9 43 1849 27 9 49 64 36 100 18 UCP-28 6 17 17 10 4 12 66 4356 28 36 289 289 100 16 14 UCP-29 6 18 17 7 14 12 64 4096 29 36 328 289 289 100 16 14 UCP-29 6 18 17 7 4 12 64 4096 29 36 36 144 225 64 121 225 [X 140 299 295 176 231 256 1397 73029 [X² 778 3509 3587 1320 2677 2870 N N 30	UCP-14	3	12	10	10	8	9	52	2704		14	9	144	100	100	64	81
UCP-17 3 9 5 10 0 13 40 1600 17 9 81 25 100 0 169 UCP-18 6 7 4 1 3 1 222 484 18 36 49 16 1 9 1 UCP-19 6 5 6 5 10 11 43 1849 19 36 25 36 25 100 121 UCP-20 6 7 4 1 6 1 25 625 20 36 49 16 1 36 121 UCP-21 6 17 12 7 18 0 60 3600 21 36 289 144 49 324 0 UCP-22 0 3 4 6 3 6 22 484 22 0 9 16 36 9 36 UCP-23 6 18 18 4 10 11 67 4489 23 36 324 324 16 100 121 UCP-24 6 11 1 0 0 0 0 18 324 24 36 121 1 0 0 0 UCP-25 6 15 14 10 18 13 76 5776 25 36 225 196 100 324 169 UCP-26 6 12 12 8 14 15 67 4489 26 36 144 144 64 196 225 UCP-27 3 7 8 6 10 9 43 1849 27 9 49 64 36 100 81 UCP-28 6 17 17 10 4 12 66 4356 28 36 289 289 100 16 144 UCP-29 6 18 17 7 4 12 64 4096 29 36 324 329 49 16 144 UCP-29 6 18 17 7 4 12 64 4096 29 36 324 289 49 16 144 UCP-30 6 12 15 8 11 15 67 4489 25 36 225 36 225 496 16 144 UCP-30 6 12 15 8 11 15 67 4489 30 36 144 125 64 121 225 X	UCP-15															121	81
UCP-18 6 7 4 1 3 1 22 484 18 36 49 16 1 9 1 UCP-19 6 5 6 5 10 11 43 1849 19 36 25 36 25 100 121 UCP-20 6 7 4 1 6 1 25 625 20 36 49 16 1 36 1 UCP-21 6 17 12 7 18 0 60 3600 21 36 289 144 49 324 0 UCP-22 0 3 4 6 6 3 6 22 484 22 0 9 16 36 9 36 UCP-23 6 18 18 18 4 10 11 67 4489 23 36 324 324 16 100 121 UCP-24 6 11 1 0 0 0 0 18 324 24 36 121 1 0 0 0 0 UCP-25 6 15 14 10 18 13 76 5776 25 36 225 196 100 324 169 UCP-26 6 12 12 8 14 15 67 4489 27 3 36 144 144 64 196 225 UCP-27 3 7 8 6 10 9 43 1849 27 9 49 64 36 100 81 UCP-28 6 17 17 17 10 4 12 66 4356 28 36 289 289 100 16 144 UCP-29 6 18 17 7 4 4 12 66 4356 28 36 289 289 100 16 144 UCP-29 6 18 17 7 4 4 12 66 4096 29 36 324 289 49 16 144 UCP-29 6 18 17 7 4 12 66 4096 29 36 324 289 49 16 144 UCP-29 6 18 17 7 4 12 66 4096 29 36 324 289 49 16 144 UCP-30 6 12 15 8 11 15 67 4889 30 36 144 225 64 121 225 \[\frac{\text{TX}}{\text{TX}} \] \[\fra	UCP-16	_			8	0	0		576					49	64	0	0
UCP-29 6 5 6 5 10 11 43 1849 19 36 25 36 25 100 121 UCP-20 6 7 4 1 6 1 25 625 20 36 49 16 1 36 1 UCP-21 6 17 12 7 18 0 60 3600 21 36 289 144 49 324 0 UCP-22 0 3 4 6 6 3 6 22 484 22 0 9 9 16 36 9 36 UCP-23 6 18 18 4 10 11 67 4489 23 36 36 324 324 16 100 121 UCP-24 6 11 1 0 0 0 0 18 324 24 24 36 121 1 0 0 0 0 UCP-25 6 15 14 10 18 13 76 5776 25 36 225 196 100 324 169 UCP-26 6 11 2 12 8 14 15 67 4489 26 36 124 144 64 196 225 UCP-27 3 7 8 6 10 9 43 1849 27 9 49 64 36 100 324 UCP-28 6 17 17 10 4 12 66 4356 28 36 28 38 289 289 100 15 144 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 324 289 49 100 15 144 UCP-30 6 12 15 8 11 15 67 4489 30 36 36 144 225 64 121 22 5	UCP-17		9	5	10	0	13		1600		-			25	100	0	169
UCP-20 6 7 4 1 1 6 1 25 625 20 36 49 16 1 36 1 UCP-21 6 17 12 7 18 0 60 3600 21 36 289 144 49 324 0 UCP-22 0 3 4 6 3 6 22 484 22 0 9 16 36 9 36 UCP-23 6 18 18 4 10 11 67 4489 23 36 324 324 16 100 121 UCP-24 6 11 1 1 0 0 0 0 18 324 24 36 121 1 0 0 0 0 UCP-25 6 15 14 10 18 13 76 5776 25 36 225 196 100 324 169 UCP-26 6 12 12 12 8 14 15 67 4489 26 36 144 144 64 196 225 UCP-27 3 7 8 6 10 9 43 1849 7 9 49 64 36 100 81 UCP-28 6 17 17 10 4 12 66 4356 28 36 28 36 28 9 28 9 100 16 144 UCP-30 6 18 17 7 7 4 12 64 4096 29 36 324 289 289 100 16 144 UCP-30 6 12 15 8 11 15 67 4489 30 36 324 289 289 100 16 144 UCP-30 6 18 17 7 7 4 12 64 4096 29 36 36 324 229 49 16 16 144 UCP-30 6 12 15 8 11 15 67 4489 30 36 36 324 229 49 16 144 UCP-30 6 17 17 10 4 12 66 4096 29 36 36 324 229 49 16 144 UCP-30 6 17 17 10 4 12 66 4096 29 36 36 324 229 49 16 144 UCP-30 6 17 17 10 4 12 66 4096 29 36 36 324 229 49 16 144 UCP-30 6 17 17 10 4 12 66 4096 30 36 36 324 229 49 16 144 UCP-30 6 17 17 10 4 12 66 4096 30 36 36 324 229 49 16 144 UCP-30 6 12 15 8 11 15 67 4489 30 36 144 225 64 121 225 [XX 140 299 295 176 231 256 1397 73029 [XX^2 778 3509 3587 1320 2677 2870 [XX^2 778 3509 3587 1320 2677	UCP-18				1				484							9	1
UCP-21 6 17 12 7 18 0 60 3600 21 36 289 144 49 324 0 UCP-22 0 3 4 6 3 6 22 484 22 0 9 16 36 9 36 UCP-23 6 18 18 4 10 11 67 4489 23 36 324 324 16 100 121 UCP-24 6 11 1 0 0 0 18 324 24 36 121 1 0 0 0 18 324 24 36 121 1 0 0 0 18 324 24 36 121 1 0 0 0 18 324 24 36 121 1 0 0 0 18 324 24 36 121 1 0 0	UCP-19				5	10			1849						25		121
UCP-22 0 3 4 4 6 3 6 22 484 22 0 9 16 36 9 36 UCP-23 6 18 18 4 10 11 67 4489 23 36 324 324 16 100 121 UCP-24 6 11 1 1 0 0 0 0 18 324 24 36 121 1 0 0 0 0 324 169 UCP-25 6 15 14 10 18 13 76 5776 25 36 225 196 100 324 169 UCP-26 6 12 12 8 14 15 67 4489 26 36 144 144 64 196 225 UCP-27 3 7 8 6 10 9 43 1849 27 9 49 64 36 100 81 UCP-28 6 17 17 10 4 12 66 4356 28 36 289 289 100 16 144 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 324 289 49 16 144 UCP-30 6 12 15 8 11 15 67 4489 30 36 144 225 64 121 225 [XCP-27 3 3 7 8 6 10 9 43] 1849 [XCP-29 6 18 17 7 7 4 12 64 4096 29 36 324 289 49 16 144 UCP-30 6 12 15 8 11 15 67 4489 30 36 144 142 225 64 121 225 [XCP-27 3 3 7 8 8 6 10 9 43] 1849 [XCP-29 6 18 17 7 7 4 12 64 4096 29 36 324 289 49 16 144 [XCP-30 6 12 15 8 11 15 67 4489 30 36 144 144 225 64 121 225 [XCP-27 3 3 7 8 3509 3587 1320 2677 2870 [XCP-27 3 3 7 7 8 3509 3587 1320 2677 2870 [XCP-27 3 3 7 7 8 3509 3587 1320 2677 2870 [XCP-27 3 3 7 7 8 3509 3587 1320 2677 2870 [XCP-27 3 3 7 7 8 3509 3587 1320 2677 2870 [XCP-27 3 3 7 7 8 3509 3587 1320 2677 2870 [XCP-27 3 3 7 7 8 3509 3587 1320 2677 2870 [XCP-27 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	UCP-20						1		625		-			16			1
UCP-23 6 18 18 4 10 11 67 4489 23 36 324 324 16 100 121 UCP-24 6 11 1 0 0 0 0 18 324 24 36 121 1 0 0 0 0 0 UCP-25 6 15 14 10 18 13 76 5776 25 36 225 196 100 324 169 UCP-26 6 12 12 18 14 15 67 4489 26 36 144 144 64 196 225 UCP-27 3 7 8 6 10 9 43 1849 27 9 49 64 36 36 100 81 UCP-28 6 17 17 17 10 4 12 66 4356 28 36 289 289 100 16 144 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 324 289 49 16 144 UCP-29 6 18 17 7 7 4 12 64 4096 29 36 324 289 49 16 144 UCP-30 6 12 15 8 11 15 67 4489 30 36 144 225 64 121 225 [X 140 299 295 176 231 256 1397 73029 [X 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	UCP-21										-						0
UCP-24 6 11 1 0 0 0 18 324 24 36 121 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	UCP-22								484					16			
UCP-25 6 15 14 10 18 13 76 5776 25 36 225 196 100 324 169 UCP-26 6 12 12 8 14 15 67 4489 26 36 144 144 64 196 225 UCP-27 3 7 8 6 10 9 43 1849 27 9 49 64 36 100 81 UCP-28 6 17 17 10 4 12 66 4356 28 36 289 289 100 16 144 UCP-29 6 18 17 7 4 12 64 4096 29 36 324 289 49 16 144 UCP-30 6 12 15 8 11 15 67 4489 30 36 144 225 64 121	UCP-23													324		100	
UCP-26 6 12 12 18 14 15 67 4489 26 36 144 144 64 196 225 UCP-27 3 7 8 6 10 9 43 1849 27 9 49 64 36 100 81 UCP-28 6 17 17 10 4 12 66 4356 28 36 289 289 100 16 144 UCP-29 6 18 17 7 4 12 64 4096 29 36 328 289 100 16 144 UCP-30 6 12 15 8 11 15 67 4489 30 36 144 225 64 121 225 ZX 140 299 295 176 231 256 1397 73029 χ^2 778 3509 3587 1320	_																0
UCP-27 3 7 8 6 10 9 43 1849 27 9 49 64 36 100 81 UCP-28 6 17 17 10 4 12 66 4356 28 36 289 289 100 16 144 UCP-29 6 18 17 7 4 12 64 4096 29 36 324 289 49 16 144 UCP-30 6 12 15 8 11 15 67 4489 30 36 144 225 64 121 225 EX																-	
UCP-28 6 17 17 10 4 12 66 4356 28 36 289 289 100 16 144 UCP-29 6 18 17 7 4 12 64 4096 29 36 324 289 49 16 144 UCP-30 6 12 15 8 11 15 67 4489 30 36 144 225 64 121 225 [X 140 299 295 176 231 256 1397 73029 [X^2 778 3509 3587 1320 2677 2870] N									4489		-				64	196	225
UCP-29 6 18 17 7 4 12 64 4096 29 36 324 289 49 16 144 UCP-30 6 12 15 8 11 15 67 4489 30 36 144 225 64 121 225 [X 140 299 295 176 231 256 1397 73029	-																81
UCP-30 6 12 15 8 11 15 67 4489 30 36 144 225 64 121 225 \(\begin{array}{c c c c c c c c c c c c c c c c c c c	_																
\[\begin{array}{ c c c c c c c c c c c c c c c c c c c											-						_
\(\chi\)X² 778 3509 3587 1320 2677 2870 N 30 0	UCP-30	6	12	15	8	11		67	4489			36	144	225	64	121	
N 30 Varian 4,155556 17,63222 22,87222 9,582222 29,94333 22,84889 [Varian Tot 265,8456 107,0344444		140	299	295	176	231	256	1397	73029		ΣX^2	778	3509	3587	1320	2677	2870
Varian 4,155556 17,63222 22,87222 9,94333 22,84889 ∑Varian 107,0344444 107,0344444 Varian Tot 265,8456 6	ΣX^2	778	3509	3587	1320	2677	2870										
∑Varian 107,0344444 Varian Tot 265,8456 n S 6	N			3	10												
Varian Tot 265,8456 nS 6	Varian	4,155556	17,63222	22,87222	9,582222	29,94333	22,84889										
nS 6	∑Varian			107,03	344444												
	Varian Tot	265,8456															
r11 0,716857	n S				5												
	r11	0,716857															
Reabilitas Reliabel	Reabilitas	Reliabel															
Kriteria Tinggi	Kriteria	Tinggi															

Lampiran 44 Analisis Perhitungan Uji Reliabilitas Intrumen Posttest Tahap 2

Analisis Perhitungan Uji Reliabilitas Intrumen Posttest Tahap 2

Responde	Soal No.2	Soal No.3	Soal No.4	Soal No.5	Soal No.6	Jumlah Si	Total Kuad	Irat	X ²	Soal No.2	Soal No.3	Soal No.4	Soal No.5	Soal No.6
UCP-01	8	9	3	6	6	32	1024		1	64	81	9	36	36
UCP-02	6	9		6		30	900		2	36	81	9	36	36
UCP-03	8	14	8	9	4	43	1849		3	64	196	64	81	16
UCP-04	8	13	6	9	6	42	1764		4	64	169	36	81	36
UCP-05	8	13	3	9	9	42	1764		5	64	169	9	81	81
UCP-06	3	3	3	0	9	18	324		6	9	9	9	0	81
UCP-07	14	3	6	0	6	29	841		7	196	9	36	0	36
UCP-08	11	14	0	0	15	40	1600		8	121	196	0	0	225
UCP-09	11	15	5	18	15	64	4096		9	121	225	25	324	225
UCP-10	15	13	5	14	9	56	3136		10	225	169	25	196	81
UCP-11	7	14	10	11	15	57	3249		11	49	196	100	121	225
UCP-12	7	9	11	11	12	50	2500		12	49	81	121	121	144
UCP-13	8	6	6	8	7	35	1225		13	64	36	36	64	49
UCP-14	12	10	10	8	9	49	2401		14	144	100	100	64	81
UCP-15	6	6	6	11	9	38	1444		15	36	36	36	121	81
UCP-16	9	7	8	0	0	24	576		16	81	49	64	0	0
UCP-17	9	5	10	0	13	37	1369		17	81	25	100	0	169
UCP-18	7	4	1	3	1	16	256		18	49	16	1	9	1
UCP-19	5	6	5	10	11	37	1369		19	25	36	25	100	121
UCP-20	7	4	1	6	1	19	361		20	49	16	1	36	1
UCP-21	17	12	7	18	0	54	2916		21	289	144	49	324	0
UCP-22	3	4	6	3	6	22	484		22	9	16	36	9	36
UCP-23	18	18	4	10	11	61	3721		23	324	324	16	100	121
UCP-24	11	1	0	0		12	144		24	121	1	0	0	0
UCP-25	15	14	10	18	13	70	4900		25	225	196	100	324	169
UCP-26	12	12	8	14	15	61	3721		26	144	144	64	196	225
UCP-27	7	8		10		40			27	49	64	36	100	81
UCP-28	17	17	10	4	12	60			28	289	289	100	16	144
UCP-29	18	17	7	4	12	58			29	324	289	49	16	144
UCP-30	12	15	8	11	15	61	3721		30	144	225	64	121	225
ΣX	299	295	176	231	256	1257	60219		$\sum X^2$	3509	3587	1320	2677	2870
ΣX^2	3509	3587	1320	2677	2870									
N			3	0										
Varian		17,63222	22,87222	9,582222	29,94333	22,84889								
∑Varian			102,87	88889										
Varian Tot	251,69													
n S				5										
r11	0,73906													
Reabilitas	Reliabel													
Kriteria	Tinggi													

Lampiran 45 Perhitungan Uji Reliabilitas Intrumen Posttest

Perhitungan Uji Reliabilitas Intrumen Posttest

Rumus

$$r_{11} = \left(\frac{5}{5-1}\right) \left(1 - \frac{\sum_{i=0}^{2} s_{i}^{2}}{s_{t}^{2}}\right)$$

Perhitunganya

$$r_{11} = \left(\frac{5}{5-1}\right) \left(1 - \frac{\sum_{i}^{2} s_{i}^{2}}{s_{t}^{2}}\right)$$

$$= \left(\frac{5}{5-1}\right) \left(1 - \frac{102,8788}{251,69}\right)$$

$$= \left(\frac{5}{4}\right) (1 - (0,408))$$

$$= (1,25)(0,591)$$

$$= 0,739$$

Berdasarkan perhitungan tersebut butir soal posttest bersifat realiabel.

Lampiran 46 Analisis Kesukaran Soal Intrumen Posttest Tahap 1

Analisis Kesukaran Soal Intrumen Posttest Tahap 1

Responde	Soal No.1	Soal No.2	Soal No.3	Soal No.4	Soal No.5	Soal No.6	Jumlah Sk
UCP-01	6	8	9	3	6	6	38
UCP-02	6	6	9	3	6	6	36
UCP-03	6	8	14	8	9	4	49
UCP-04	0	8	13	6	9	6	42
UCP-05	6	8	13	3	9	9	48
UCP-06	6	3	3	3	0	9	24
UCP-07	6	14	3	6	0	6	35
UCP-08	6	11	14	0	0	15	46
UCP-09	3	11	15	5	18	15	67
UCP-10	6	15	13	5	14	9	62
UCP-11	3	7	14	10	11	15	60
UCP-12	6	7	9	11	11	12	56
UCP-13	3	8	6	6	8	7	38
UCP-14	3	12	10	10	8	9	52
UCP-15	2	6	6	6	11	9	40
UCP-16	0	9	7	8	0	0	24
UCP-17	3	9	5	10	0	13	40
UCP-18	6	7	4	1	3	1	22
UCP-19	6	5	6	5	10	11	43
UCP-20	6	7	4	1	6	1	25
UCP-21	6	17	12	7	18	0	60
UCP-22	0	3	4	6	3	6	22
UCP-23	6	18	18	4	10	11	67
UCP-24	6	11	1	0	0	0	18
UCP-25	6	15	14	10	18	13	76
UCP-26	6	12	12	8	14	15	67
UCP-27	3	7	8	6	10	9	43
UCP-28	6	17	17	10	4	12	66
UCP-29	6	18	17	7	4	12	64
UCP-30	6	12	15	8	11	15	67
Rata-rata :	4,666667	9,966667	9,833333	5,866667	7,7	8,533333	
Skor maks	9	18	18	15	21	18	
TK	0,518519	0,553704	0,546296	0,391111	0,366667	0,474074	
Kriteria	SEDANG	SEDANG	SEDANG	SEDANG	SEDANG	SEDANG	

Lampiran 47 Analisis Kesukaran Soal Intrumen Posttest Tahap 2

Analisis Kesukaran Soal Intrumen Posttest Tahap 2

Responde	Soal No.2	Soal No.3	Soal No.4	Soal No.5	Soal No.6	Jumlah Sk
UCP-01	8	9	3	6	6	32
UCP-02	6	9	3	6	6	30
UCP-03	8	14	8	9	4	43
UCP-04	8	13	6	9	6	42
UCP-05	8	13	3	9	9	42
UCP-06	3	3	3	0	9	18
UCP-07	14	3	6	0	6	29
UCP-08	11	14	0	0	15	40
UCP-09	11	15	5	18	15	64
UCP-10	15	13	5	14	9	56
UCP-11	7	14	10	11	15	57
UCP-12	7	9	11	11	12	50
UCP-13	8	6	6	8	7	35
UCP-14	12	10	10	8	9	49
UCP-15	6	6	6	11	9	38
UCP-16	9	7	8	0	0	24
UCP-17	9	5	10	0	13	37
UCP-18	7	4	1	3	1	16
UCP-19	5	6	5	10	11	37
UCP-20	7	4	1	6	1	19
UCP-21	17	12	7	18	0	54
UCP-22	3	4	6	3	6	22
UCP-23	18	18	4	10	11	61
UCP-24	11	1	0	0	0	12
UCP-25	15	14	10	18	13	70
UCP-26	12	12	8	14	15	61
UCP-27	7	8	6	10	9	40
UCP-28	17	17	10	4	12	60
UCP-29	18	17	7	4	12	58
UCP-30	12	15	8	11	15	61
Rata-rata:	9,966667	9,833333	5,866667	7,7	8,533333	
Skor maks	18	18	15	21	18	
TK	0,553704	0,546296	0,391111	0,366667	0,474074	
Kriteria	SEDANG	SEDANG	SEDANG	SEDANG	SEDANG	

Lampiran 48 Perhitungan Kesukaran Soal Intrumen Posttest

Rumus

$$TK = \frac{rata - rata \ skor \ item}{skor \ maksimal \ yang \ diterapkan}$$

Berikut adalah contoh perhitungan tingkat kesukaran butir soal nomor 2:

TK
$$= \frac{rata - rata \ skor \ item}{skor \ maksimal \ yang \ diterapkan}$$

$$= \frac{9,966667}{18}$$

$$= 0,553$$

Tingkat kesukaran butir soal postest nomor 2 diperoleh nilai 0,553333 yang berdasarkan kriteria tingkat kesukaran instrumen pada tabel 3.3 maka soal nomor 2 mempunyai tingkat kesukaran sedang.

Lampiran 49 Analisis Daya Beda Soal Intrumen Posttest Tahap 1

Analisis Daya Beda Soal Intrumen Posttest Tahap 1

Respon *	Soal No •	Jumlah "I	r	Soal 1	Soal 2	Soal 3	Soal 4	Soal 5	Soal 6					
UCP-25	6	15	14	10	18	13	76	ΣΧ	140	299	295	176	231	256
UCP-09	3	11	15	5	18	15	67	Skor maks	9	18	18	15	21	18
UCP-23	6	18	18	4	10	11	67	N*27%			8	,1		
UCP-26	6	12	12	8	14	15	67	x bar atas	5,625	14,75	15,125	7,125	11,625	12,75
UCP-30	6	12	15	8	11	15	67	x bar baw	4,5	7,5	4,375	3,5	2,25	3,625
UCP-28	6	17	17	10	4	12	66	DP	0,125	0,402778	0,597222	0,241667	0,446429	0,506944
UCP-29	6	18	17	7	4	12	64	Kriteria	JELEK	BAIK	BAIK	SEDANG	BAIK	BAIK
UCP-10	6	15	13	5	14	9	62							
UCP-11	3	7	14	10	11	15	60							
UCP-21	6	17	12	7	18	0	60							
UCP-12	6	7	9	11	11	12	56							
UCP-14	3	12	10	10	8	9	52							
UCP-03	6	8	14	8	9	4	49							
UCP-05	6		13	3	9	9	48							
UCP-08	6	11	14	0	0	15	46							
UCP-19	6	5	6	5	10	11	43							
UCP-27	3	7	8	6	10	9	43							
UCP-04	0	8	13	6	9	6	42							
UCP-15	2	6	6	6	11	9	40							
UCP-17	3	9	5	10	0	13	40							
UCP-01	6	8	9	3	6	6	38							
UCP-13	3	8	6	6	8	7	38							
UCP-02	6	6	9	3	6	6	36							
UCP-07	6	14	3	6	0	6	35							
UCP-20	6	7	4	1	6	1	25							
UCP-06	6	3	3	3	0	9	24							
UCP-16	0	9	7	8	0	0	24							
UCP-18	6	7	4	1	3	1	22							
UCP-22	0	3	4	6	3	6	22							
UCP-24	6	11	1	0	0	0	18							

Lampiran 50 Analisis Daya Beda Soal Intrumen Posttest Tahap 2

Analisis Daya Beda Soal Intrumen Posttest Tahap 2

Respon	Soal No *	Soal No *	Soal No •	Soal No *	Soal No *	Jumlah 🕡	or S	ioal 2	Soal 3	Soal 4	Soal 5	Soal 6
UCP-25	15	14	10	18	13	70	Σχ	299	295	176	231	256
UCP-09	11	15	5	18	15	64	Skor maks	18	18	15	21	18
UCP-23	18	18	4	10	11	61	N*27%			8,1		
UCP-26	12	12	8	14	15	61	x bar atas	13,75	15,25	7,75	11,25	13,5
UCP-30	12	15	8	11	15	61	x bar baw	7,5	4,375	3,5	2,25	3,625
UCP-28	17	17	10	4	12	60	DP (0,347222	0,604167	0,283333	0,428571	0,548611
UCP-29	18	17	7	4	12	58	Kriteria S	EDANG	BAIK	SEDANG	BAIK	BAIK
UCP-11	7	14	10	11	15	57						
UCP-10	15	13	5	14	9	56						
UCP-21	17	12	7	18	0	54						
UCP-12	7	9	11	11	12	50						
UCP-14	12	10	10	8	9	49						
UCP-03	8	14	8	9	4	43						
UCP-04	8	13	6	9	6	42						
UCP-05	8	13	3	9	9	42						
UCP-08	11	14	0	0	15	40						
UCP-27	7	8	6	10	9	40						
UCP-15	6	6	6	11	9	38						
UCP-17	9	5	10		13	37						
UCP-19	5	6	5	10	11	37						
UCP-13	8	6	6	8	7	35						
UCP-01	8	9	3	6	6	32						
UCP-02	6	9	3		-	30						
UCP-07	14	3	6		6	29						
UCP-16	9	7	8	0	0	24						
UCP-22	3	4	6		6	22						
UCP-20	7	4	1	6	1	19						
UCP-06	3	3	3	0	9	18						
UCP-18	7	4	1	3	1	16						
UCP-24	11	1	0	0	0	12						

Lampiran 51 Perhitungan Daya Beda Soal Intrumen Posttest

Perhitungan Daya Beda Soal Intrumen Posttest

Rumusnya

$$DP = \frac{\bar{x}kA - \bar{x}k}{skor\ maksimum}$$

Berikut adalah contoh perhitungan daya beda butir soal postest nomor 2

$$DP = \frac{\bar{x}kA - \bar{x}k}{skor\ maksimum}$$
$$= \frac{13,75 - 7,5}{18}$$
$$= \frac{6,25}{18}$$
$$= 0,347$$

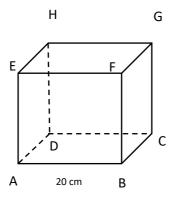
Berdasarkan kriteria indeks daya pembeda instrumen pada tabel 3.4 soal nomor 2 memiliki daya pembeda sedang,

Lampiran 52 Lembar Soal Posttest

LEMBAR SOAL POST-TEST

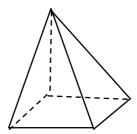
Mata Pelajaran : Matematika Waktu : 60 menit

Kelas/Semester: xII/Ganjil Materi: Dimensi

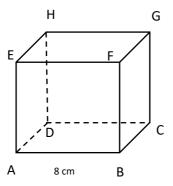

Tiga

Petunjuk:

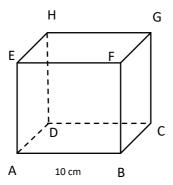
 Tulislah nama lengkap, nomor absen dan kelas pada lembar jawab yang disediakan


- 2) Baca, pahami dan kerjakan soal-soal berikut ini dengan benar
- 3) Tidak diperbolehkan melakukan kecurangan dalam bentuk apapun
- 4) Tidak oleh kerjsama dengan teman yang ain
- 5) Kumpulkan jawaban setelah mengerjakan soal
- 6) Awali dan akhiri dengan doa

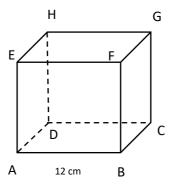
1. Perhatikan gambar kubus ABCD.EFGH berikut


Tentukan jarak antara titik B ke diagonal EG!

2. Perhatikan gambar berikut


Limas persegi tersebut memiliki panjang sisi alas 20cm sementara itu, panjang sisi tegaknya 30cm. Tentukan jarak puncak limas terhadap alasnya!

3. Perhatikan gambar kubus ABCD.EFGH berikut


jika P titik tengah BF dan Q titik tengah EH . tentukan jarak titik P ke titik Q!

4. Perhatikan gambar kubus ABCD.EFGH berikut

titik Madalah titik tengah BC . Tentukan jarak titik
 Mke garis $\ensuremath{\mathsf{EG}}$

5. Perhatikan gambar kubus ABCD.EFGH berikut

P dan Q masing-masing merupakan titik tengah EF dan GH sedangkan R merupakan titik perpotongan AC dan BD . Tentukan jarak titik R ke bidang BPQ!

Lampiran 53 Kunci Jawaban dan Penskoran Posttest

KUNCI JAWABAN DAN PENSKORAN POSTTEST

No	Jawaban	Skor	Keterangan	Indikator
1.	Alternatif Penyelesaian :	0	jika siswa tidak mampu	Interpretation, yaitu
	G		untuk memahami dan	kemampuan untuk
			memaknai permasalahan	memahami dan
		1	Jika siswa mampu untuk	memaknai permasalahan
			memahami dan memaknai	
			permasalahan tetapi tidak	
			tepat	
		2	Jika siswa mampu untuk	
			memahami dan memaknai	
			permasalahan tetapi kurang	
			tepat	

	3	Jika siswa mampu untuk	
		memahami dan memaknai	
		permasalahan dengan tepat	
Jika AB 20 cm, maka EF dan EG	0	Jika siswa tidak mampu	Evalution , yaitu
juga 20 cm dan $FH = 20\sqrt{2}$		berpikir logika untuk	kemampuan untuk
		merepresentasi ulang	merepresentasi ulang
		permasalahan	permasalahan sehingga
	1	Jika siswa dapat mampu	dapat berpikir logika.
		berpikir logika untuk	
		merepresentasi ulang	
		permasalahan tetapi tidak	
		tepat	
	2	Jika siswa mampu berpikir	
		logika untuk merepresentasi	

		ulang permasalahan tetapi	
		kurang tepat	
	3	Jika siswa mampu berpikir	
		logika untuk merepresentasi	
		ulang permasalahan dengan	
		tepat	
$FH = \sqrt{(FC)^2 + (CH)^2}$	0	jika siswa tidak mampu	Self regulation, yaitu
$=\sqrt{(20^2+(20)^2)^2}$		untuk untuk memonitoring	kemampuan untuk
$=\sqrt{400+400}$		aktivitas kognitif seseorang	memonitoring aktivitas
$= \sqrt{800}$		dalam menyelesaikan	kognitif seseorang dalam
		permasalahan	menyelesaikan
$=20\sqrt{2}$	1	Jika siswa mampu untuk	permasalahan
		untuk memonitoring	
		aktivitas kognitif seseorang	
		dalam menyelesaikan	

		permasalahan tetapi tidak
		tepat
	2	Jika siswa mampu untuk
		untuk memonitoring
		aktivitas kognitif seseorang
		dalam menyelesaikan
		permasalahan tetapi kurang
		tepat
	3	Jika siswa mampu untuk
		untuk memonitoring
		aktivitas kognitif seseorang
		dalam menyelesaikan
		permasalahan dengan tepat
$PF = \frac{1}{2} FH = \frac{1}{2} (20\sqrt{2}) = 10\sqrt{2}$	0	Jika siswa tidak mampu Evalution , yaitu
2 2		untuk merepresentasi ulang kemampuan untuk

	permasalahan sehingga	merepresentasi ulang
	dapat berpikir logika	permasalahan sehingga
1	Jika siswa mampu untuk	dapat berpikir logika.
	merepresentasi ulang	
	permasalahan sehingga	
	dapat berpikir logika tetapi	
	tidak tepat	
2	Jika siswa mampu untuk	
	merepresentasi ulang	
	permasalahan sehingga	
	dapat berpikir logika tetapi	
	kurang tepat	
3	Jika siswa mampu untuk	
	merepresentasi ulang	
	permasalahan sehingga	

		dapat berpikir logika dengan	
		tepat	
$BP = \sqrt{(PF)^2 + (BF)^2}$	0	Jika siswa tidak mampu	Self regulation, yaitu
2		untuk memonitoring	kemampuan untuk
$=\sqrt{(10\sqrt{2)}^2+(20)^2}$		aktivitas kognitif seseorang	memonitoring aktivitas
$=\sqrt{200+400}$		dalam menyelesaikan	kognitif seseorang dalam
$=\sqrt{600}$		permasalahan	menyelesaikan
$=10\sqrt{6}$	1	Jika siswa mampu untuk	permasalahan
		untuk memonitoring	
		aktivitas kognitif seseorang	
		dalam menyelesaikan	
		permasalahan tetapi tidak	
		tidak tepat	
	2	Jika siswa mampu untuk	
		memonitoring aktivitas	

		kognitif seseorang dalam	
		menyelesaikan	
		permasalahan jawaban	
		benar tetapi kurang lengkap	
	3	Jika siswa mampu untuk	
		mengidentifikasi	
		permasalahan dengan tepat	
Jadi, jarak titik B ke garis EG	0	jika siswa tidak mampu	Inference, yaitu
adalah $10\sqrt{6}$		untuk mencari hal-hal yang	kemampuan untuk
		dibutuhkan untuk menarik	mencari hal-hal yang
		kesimpulan	dibutuhkan untuk
	1	Jika siswa mampu untuk	menarik kesimpulan
		mencari hal-hal yang	
		dibutuhkan untuk menarik	
		kesimpulan tetapi tidak tepat	

		2	Jika siswa mampu untuk	
			mencari hal-hal yang	
			dibutuhkan untuk menarik	
			kesimpulan tetapi kurang	
			tepat	
		3	Jika siswa mampu untuk	
			mencari hal-hal yang	
			dibutuhkan untuk menarik	
			kesimpulan dengan tepat	
2.	Alternatif Penyelesaian :	0	jika siswa tidak mampu	Interpretation, yaitu
			untuk memahami dan	kemampuan untuk
			memaknai permasalahan	memahami dan
		1	Jika siswa mampu untuk	memaknai permasalahan
			memahami dan memaknai	

	3	permasalahan tetapi tidak tepat Jika siswa mampu untuk memahami dan memaknai permasalahan tetapi kurang tepat Jika siswa mampu untuk memahami dan memaknai permasalahan dengan tepat	
Jika Panjang sisi alas 20 cm, maka diagonal sisi $20\sqrt{2}$	0	Jika siswa tidak mampu berpikir logika dengan merepresentasi ulang permasalahan	Evalution , yaitu kemampuan untuk merepresentasi ulang

1	Jika siswa mampu berpikir	permasalahan sehingga
	logika dengan	dapat berpikir logika.
	merepresentasi ulang	
	permasalahan tetapi tidak	
	tepat	
2	Jika siswa mampu berpikir	
	logika dengan	
	merepresentasi ulang	
	permasalahan tetapi kurang	
	tepat	
3	mampu berpikir logika	
	dengan merepresentasi	
	ulang permasalahan dengan	
	tepat	

$AC = \sqrt{AB^2 + BC^2}$	0	jika siswa tidak mampu Self regulation, yaitu
$= \sqrt{20^2 + 20^2}$		untuk memonitoring kemampuan untuk
$=\sqrt{400+400}$		aktivitas kognitif seseorang memonitoring aktivitas
$= \sqrt{800}$		dalam menyelesaikan kognitif seseorang dalam
		permasalahan menyelesaikan
$=20\sqrt{2}$	1	Jika siswa mampu untuk permasalahan
		memonitoring aktivitas
		kognitif seseorang dalam
		menyelesaikan
		permasalahan tetapi tidak
		tepat
	2	Jika siswa mampu untuk
		memonitoring aktivitas
		kognitif seseorang dalam
		menyelesaikan

		permasalahan tetapi kurang	
		tepat	
	3	Jika siswa mampu untuk	
		memonitoring aktivitas	
		kognitif seseorang dalam	
		menyelesaikan	
		permasalahan dengan tepat	
$AE = \frac{1}{2}AC$	0	Jika siswa tidak mampu	Evalution , yaitu
$= \frac{1}{2} (20\sqrt{2}) = 10\sqrt{2}$		untuk merepresentasi ulang	kemampuan untuk
$=\frac{1}{2}(20\sqrt{2})=10\sqrt{2}$		permasalahan sehingga	merepresentasi ulang
		dapat berpikir logika.	permasalahan sehingga
	1	Jika siswa mampu untuk	dapat berpikir logika.
		merepresentasi ulang	
		permasalahan sehingga	

		dapat berpikir logika tetapi
		tidak tepat
	2	Jika siswa untuk
		merepresentasi ulang
		permasalahan sehingga
		dapat berpikir logika tetapi
		kurang tepat
	3	Jika siswa mampu untuk
		merepresentasi ulang
		permasalahan sehingga
		dapat berpikir logika dengan
		tepat
$EE = (20)^2 + (10\sqrt{2})^2$	0	Jika siswa tidak mampu Self regulation, yaitu
$FE = \sqrt{(30)^2 - (10\sqrt{2})^2}$ $= \sqrt{900 - 200}$		untuk memonitoring kemampuan untuk
$=\sqrt{900-200}$		aktivitas kognitif seseorang memonitoring aktivitas

$=\sqrt{700}$		dalam menyelesaikan	kognitif seseorang dalam
$=10\sqrt{7}$		permasalahan	menyelesaikan
	1	Jika siswa mampu untuk	permasalahan
		memonitoring aktivitas	
		kognitif seseorang dalam	
		menyelesaikan	
		permasalahan	
		tetapi tidak tepat	
	2	Jika siswa mampu untuk	
		memonitoring aktivitas	
		kognitif seseorang dalam	
		menyelesaikan	
		permasalahan jawaban	
		benar	
		tetapi kurang lengkap	

	3	Jika siswa mampu untuk	
		mengidentifikasi	
		permasalahan dengan tepat	
Jadi jarak titik puncak ke alas	0	jika siswa tidak mampu Inference	e, yaitu
adalah $10\sqrt{7}$		untuk mencari hal-hal yang kemampi	uan untuk
		dibutuhkan untuk menarik mencari	hal-hal yang
		kesimpulan dibutuhk	an untuk
	1	Jika siswa mampu untuk menarik	kesimpulan
		mencari hal-hal yang	
		dibutuhkan untuk menarik	
		kesimpulan tetapi tidak tepat	
	2	Jika siswa mampu untuk	
		mencari hal-hal yang	
		dibutuhkan untuk menarik	

			kesimpulan tetapi kurang tepat	
		3	Jika siswa mampu untuk mencari hal-hal yang dibutuhkan untuk menarik	
			kesimpulan dengan tetap	
3.	Alternatif penyelesaian :	0	jika siswa tidak mampu	Interpretation, yaitu
			untuk memahami dan	kemampuan untuk
			memaknai permasalahan	memahami dan
		1	Jika siswa mampu untuk memahami dan memaknai permasalahan tetapi tidak	memaknai permasalahan
			tepat	
		2	Jika siswa mampu untuk	
			memahami dan memaknai	

		permasalahan tetapi kurang	
		tepat	
	3	Jika siswa mampu untuk	
		memahami dan memaknai	
		permasalahan dengan tepat	
Jika AB 8 cm, maka PF ½ dari AB	0	Jika siswa tidak mampu	Evalution , yaitu
=4 cm		berpikir logika dengan	kemampuan untuk
		merepresentasi ulang	merepresentasi ulang
		permasalahan	permasalahan sehingga
	1	Jika siswa mampu berpikir	dapat berpikir logika.
		logika dengan	
		merepresentasi ulang	
		permasalahan tetapi tidak	
		tepat	

	2	Jika siswa mampu berpikir	
		logika dengan	
		merepresentasi ulang	
		permasalahan tetapi kurang	
		tepat	
	3	Jika siswa mampu berpikir	
		logika dengan	
		merepresentasi ulang	
		permasalahan dengan tepat	
$QF = \sqrt{(EF)^2 + (FQ)^2}$	0	Jika siswa tidak mampu	Self regulation, yaitu
$QF = \sqrt{(EF)^2 + (FQ)^2}$ $= \sqrt{8^2 + 4^2}$		untuk memonitoring	kemampuan untuk
$=\sqrt{64+16}$		aktivitas kognitif seseorang	memonitoring aktivitas
$= \sqrt{80}$		dalam menyelesaikan	kognitif seseorang dalam
		permasalahan	menyelesaikan
$=4\sqrt{5}$			permasalahan

1	Jika siswa mampu untuk memonitoring aktivitas kognitif seseorang dalam menyelesaikan permasalahan tetapi tidak tepat	
2	Jika siswa mampu untuk memonitoring aktivitas kognitif seseorang dalam menyelesaikan permasalahan tetapi kurang tepat	
3	Jika siswa mampu untuk memonitoring aktivitas kognitif seseorang dalam	

		menyelesaikan	
		permasalahan dengan tepat	
$PQ = \sqrt{(QF)^2 + (PF)^2}$	0	Jika siswa tidak mampu	Self regulation, yaitu
(1 5 2 · 12		untuk memonitoring	kemampuan untuk
$= \sqrt{(4\sqrt{5})^2 + 4^2}$ $= \sqrt{80 + 16}$		aktivitas kognitif seseorang	memonitoring aktivitas
$= \sqrt{80 + 16}$		dalam menyelesaikan	kognitif seseorang dalam
$=\sqrt{90}$		permasalahan	menyelesaikan
$=4\sqrt{6}$	1	Jika siswa mampu untuk	permasalahan
		memonitoring aktivitas	
		kognitif seseorang dalam	
		menyelesaikan	
		permasalahan tetapi tidak	
		tepat	
	2	Jika siswa mampu untuk	
		memonitoring aktivitas	

		kognitif seseorang dalam menyelesaikan permasalahan tetapi kurang tepat	
	3	Jika siswa mampu untuk memonitoring aktivitas kognitif seseorang dalam menyelesaikan permasalahan dengan tepat	
Jadi, jarak titik P ke titik Q adalah $4\sqrt{6}$	0	jika siswa tidak mampu mencari hal-hal yang dibutuhkan untuk menarik kesimpulan	Inference, yaitu kemampuan untuk mencari hal-hal yang dibutuhkan untuk
	1	Jika siswa mampu mencari hal-hal yang dibutuhkan	menarik kesimpulan

			untuk menarik kesimpulan tetapi tidak tepat	
		2	Jika siswa mampu mencari hal-hal yang dibutuhkan untuk menarik kesimpulan tetapi kurang tepat	
		3	Jika siswa mampu mencari hal-hal yang dibutuhkan untuk menarik kesimpulan dengan tepat	
4.	Alternatif penyelesaian :	0	jika siswa tidak mampu untuk memahami dan memaknai permasalahan	Interpretation, yaitu kemampuan untuk memahami dan
		1	Jika siswa tidak mampu untuk memahami dan	memaknai permasalahan

G		memaknai permasalahan		
F		tetapi tidak tepat		
	2	Jika siswa tidak mampu		
		untuk memahami dan		
0 M		memaknai permasalahan		
		tetapi kurang tepat		
	3	Jika siswa tidak mampu		
		untuk memahami dan		
		memaknai permasalahan		
		dengan tepat		
Jika AB = 10 cm, maka EG =	0	Jika siswa tidak mampu	Evalution ,	yaitu
$10\sqrt{2}$		berpikir logika dengan	kemampuan	untuk
		merepresentasi ulang	merepresentasi	ulang
		permasalahan		

1	Jika siswa mampu berpikir	permasalahan sehingga
	logika dengan	dapat berpikir logika.
	merepresentasi ulang	
	permasalahan tetapi tidak	
	tepat	
2	Jika siswa mampu berpikir	
	logika dengan	
	merepresentasi ulang	
	permasalahan tetapi kurang	
	tepat	
3	Jika siswa mampu berpikir	
	logika dengan	
	merepresentasi ulang	
	permasalahan dengan tepat	

$EG = 10\sqrt{2}$	0	jika siswa tidak mampu	Self regulation, yaitu
$GN = \frac{1}{2}EG = 5\sqrt{2}$		untuk memonotoring	kemampuan untuk
$aiv = 2^{Lu = 3vZ}$		aktivitas kognitif seseorang	memonotoring aktivitas
		dalam menyelelesaikan	kognitif seseorang dalam
$GM = \sqrt{(GC)^2 + (MC)^2}$		permasalahan.	menyelelesaikan masalah
$= \sqrt{(10)^2 + (5)^2}$	1	Jika siswa mampu untuk	
$=\sqrt{100+25}$		memonotoring aktivitas	
$=\sqrt{125}$		kognitif seseorang dalam	
$=5\sqrt{5}$		menyelelesaikan masalah	
		tetapi tidak tepat	
	2	Jika siswa mampu untuk	
		memonotoring aktivitas	
		kognitif seseorang dalam	
		menyelelesaikan masalah	
		tetapi kurang tepat	

	3	Jika siswa mampu untuk memonotoring aktivitas kognitif seseorang dalam menyelelesaikan masalah dengan tepat	
AM = GM	0	Jika siswa tidak mampu untuk memberikan alasan logis dalam sebuah permasalahan	Explanation, yaitu kemampuan untuk memberikan alasan logis dalam sebuah
	2	Jika siswa mampu untuk memberikan alasan logis dalam sebuah permasalahan tetapi tidak tepat Jika siswa mampu untuk	permasalahan.
	-	memberikan alasan logis	

			dalam sebuah permasalahan	
			tetapi kurang tepat	
		3	Jika siswa mampu untuk	
			memberikan alasan logis	
			dalam sebuah permasalahan	
			dengan tepat	
-	$EM = \sqrt{(AE)^2 + (AM)^2}$	0	Jika siswa tidak mampu	Self regulation, yaitu
			untuk memonotoring	kemampuan untuk
	$= \sqrt{(10)^2 + (5\sqrt{5})^2}$		aktivitas kognitif seseorang	memonotoring aktivitas
	$=\sqrt{100+125}$		dalam menyelelesaikan	kognitif seseorang dalam
	$=\sqrt{225}$		masalah	menyelelesaikan masalah
	= 15	1	Jika siswa mampu untuk	
			memonotoring aktivitas	
			kognitif seseorang dalam	

		menyelelesaikan masalah
		tetapi tidak tepat
	2	Jika siswa mampu untuk
		memonotoring aktivitas
		kognitif seseorang dalam
		menyelelesaikan masalah
		tetapi kurang tepat
	3	mampu untuk
		memonotoring aktivitas
		kognitif seseorang dalam
		menyelelesaikan masalah
		dengan tepat
Memakai rumus cosinus	0	jika siswa tidak mampu Self regulation, yaitu
		memonitoring aktivitas kemampuan untuk

$\cos E = \frac{EM^2 + EG^2 - MG^2}{2.EM.EG}$		kognitif	dalam	memonitoring	aktivitas
		menyelesaikan m	nasalahan	kognitif seseora	ng dalam
$=\frac{225+200-125}{24540\sqrt{2}}$	1	Jika siswa	mampu	menyelesaikan	
$\frac{-}{2.15.10\sqrt{2}}$		memonitoring	aktivitas	permasalahan.	
$=\frac{1}{\sqrt{2}}$		kognitif	dalam		
·		menyelesaikan	masalahan		
$\sin E = \frac{MN}{EM}$		tetapi tidak tepat	-		
$SIII L - \frac{1}{EM}$	2	Jika siswa	mampu		
		memonitoring	aktivitas		
$MN = \frac{EM}{\sqrt{2}} = \frac{15}{\sqrt{2}} = \frac{15}{2}\sqrt{2}$		kognitif	dalam		
VZ VZ Z		menyelesaikan	masalahan		
		tetapi kurang teta	ар		
	3	Jika siswa	mampu		
		memonitoring	aktivitas		
		kognitif	dalam		

		menyelesaikan masalahan
		dengan tepat
	0	Jika siswa mampu untuk Inference, yaitu
Jadi, jarak titik M ke garis EG		mencari hal-hal yang kemampuan untuk
adalah $\frac{15}{2}\sqrt{2}$		dibutuhkan untuk menarik mencari hal-hal yang
2		kesimpulan dibutuhkan untuk
	1	Jika siswa mampu untuk menarik kesimpulan
		mencari hal-hal yang
		dibutuhkan untuk menarik
		kesimpulan tetapi kurang
		tepat
	2	Jika siswa mampu untuk
		mencari hal-hal yang
		dibutuhkan untuk menarik
		kesimpulan tetapi tidak tepat

		3	Jika siswa mampu untuk mencari hal-hal yang dibutuhkan untuk menarik kesimpulan dengan tepat	
5.	Alternatif Penyelesaian :	0	jika siswa tidak mampu untuk memahami dan memaknai permasalahan	Interpretation, yaitu kemampuan untuk memahami dan memaknai permasalahan
		1	Jika siswa mampu untuk memahami dan memaknai permasalahan tetapi tidak tepat	
		2	Jika siswa mampu untuk memahami dan memaknai	

		permasalahan tetapi kurang	
		tepat	
	3	Jika siswa mampu untuk	
		memahami dan memaknai	
		permasalahan dengan tepat	
Jika AB = 12 cm, maka RS =6	0	Jika siswa tidak mampu	Evalution , yaitu
		berpikir logika dengan	kemampuan untuk
		merepresentasi ulang	merepresentasi ulang
		permasalahan	permasalahan sehingga
	1	Jika siswa mampu berpikir	dapat berpikir logika.
		logika dengan	
		merepresentasi ulang	
		permasalahan tetapi tidak	
		tepat	

	2	Jika siswa mampu berpikir		
		logika dengan		
		merepresentasi ulang		
		permasalahan tetapi kurang		
		tepat		
	3	Jika siswa mampu berpikir		
		logika dengan		
		merepresentasi ulang		
		permasalahan dengan tepat		
$RS = \frac{1}{2}AB = \frac{1}{2}(12) = 6$	0	jika siswa tidak mampu	Analisys,	yaitu
		untuk mengidentifikasi	kemampuan	untuk
RT = 12		permasalahan mengidentifika	mengidentifikasi	i
	1	Jika siswa mampu untuk	permasalahan.	
		mengidentifikasi		

		permasalahan tetapi tidak	
		tepat	
	2	Jika siswa mampu untuk	
		mengidentifikasi	
		permasalahan tetapi kurang	
		tepat	
	3	Jika siswa mampu untuk	
		mengidentifikasi	
		permasalahan dengan tepat	
$TS = \sqrt{(RS)^2 + (RT)^2}$	0	Jika siswa tidak mampu	Explanation, yaitu
$= \sqrt{(6)^2 + (12)^2}$		untuk memberikan alasan	kemampuan untuk
$=\sqrt{36+144}$		logis dalam sebuah	memberikan alasan logis
$= \sqrt{180}$		permasalahan	dalam sebuah
	1	Jika siswa mampu untuk	permasalahan.
$=6\sqrt{5}$		memberikan alasan logis	

			dalam sebuah permasalahan	
			tetapi tidak tepat	
		2	Jika siswa mampu untuk	
			memberikan alasan logis	
			dalam sebuah permasalahan	
			tetapi kurang tepat	
		3	Jika siswa mampu untuk	
			memberikan alasan logis	
			dalam sebuah permasalahan	
			dengan tepat	
Me	enggunakan Perbandingan	0	jika siswa tidak mampu	Self regulation, yaitu
seg	gitiga		memonitoring aktivitas	kemampuan untuk
	$RS \ x \ RT = TS \ x \ RO$		kognitif dalam	memonitoring aktivitas
			menyelesaikan masalahan	kognitif seseorang dalam

$6 x 12 = 6\sqrt{5} x RO$	1	Jika siswa mampu menyelesaikan
$RO = \frac{6x12}{6\sqrt{5}}$		memonitoring aktivitas permasalahan.
		kognitif dalam
$=\frac{72}{6\sqrt{5}}$		menyelesaikan masalahan
		tetapi tidak tepat
$=\frac{72}{6\sqrt{5}}x\frac{\sqrt{5}}{\sqrt{5}}$	2	Jika siswa mampu
6V5 V5		memonitoring aktivitas
$=\frac{72\sqrt{5}}{30}$		kognitif dalam
12√ 5		menyelesaikan masalahan
$=\frac{12\sqrt{5}}{5}$		tetapi kurang tepat
	3	Jika mampu memonitoring
		aktivitas kognitif dalam
		menyelesaikan masalahan
		dengan tepat

Jadi, jarak titik R ke bidang BPQC	0	Jika siswa tidak mampu	Inference, yaitu
adalah $\frac{12\sqrt{5}}{5}$		untuk mencari hal-hal yang	kemampuan untuk
5		dibutuhkan untuk menarik	mencari hal-hal yang
		kesimpulan	dibutuhkan untuk
	1	Jika siswa mampu untuk	menarik kesimpulan
		mencari hal-hal yang	
		dibutuhkan untuk menarik	
		kesimpulan tetapi tidak tepat	
	2	Jika siswa mampu untuk	
		mencari hal-hal yang	
		dibutuhkan untuk menarik	
		kesimpulan tetapi kurang	
		tepat	
	3	Jika siswa mampu untuk	
		mencari hal-hal yang	

	dibutuhkan untuk menarik	
	kesimpulan dengan tepat	

Lampiran 54 Daftar Nilai Tes Awal Kelas XII MIPA 1

Responde	No.1	No.2	No.3	No.4	No.5	Jumlah skor	Nilai
P1-35	6	0	4	0	9	19	30,16
P1-12	6	0	4	6	9	25	39,68
P1-24	6	0	4	6	9	25	39,68
P1-33	6	10	4	6	0	26	41,27
P1-10	5	0	12	5	6	28	44,44
P1-17	6	6	4	6	9	31	49,21
P1-27	6	4	6	6	9	31	49,21
P1-25	6	11	4	5	6	32	50,79
P1-02	4	10	4	6	9	33	52,38
P1-31	6	8	4	6	9	33	52,38
P1-16	6	8	5	6	9	34	53,97
P1-29	6	8	5	6	9	34	53,97
P1-09	6	11	6	3	9	35	55,56
P1-01	6	10	4	6	9	35	55,56
P1-04	6	8	6	6	9	35	55,56
P1-14	6	10	4	6	9	35	55,56
P1-15	6	11	4	5	9	35	55,56
P1-19	4	10	6	6	9	35	55,56
P1-26	6	11	4	5	9	35	55,56
P1-34	6	11	4	5	9	35	55,56
P1-05	6	10	5	6	9	36	57,14
P1-32	6	7	9	6	9	37	58,73
P1-03	4	10	12	5	6	37	58,73
P1-36	4	10	12	5	6	37	58,73
P1-11	6	10	9	5	8	38	60,32
P1-21	6	9	8	6	9	38	60,32
P1-07	6	10	12	5	6	39	61,90
P1-06	6	10	10	6	9	41	65,08
P1-18	6	10	10	6	9	41	65,08
P1-30	6	10	12	5	9	42	66,67
P1-08	6	10	12	6	9	43	68,25
P1-13	6	10	12	6	9	43	68,25
P1-23	6	10	12	6	9	43	68,25
P1-28	6	10	12	6	9	43	68,25

Lampiran 55 Daftar Nilai Tes Awal Kelas XII MIPA 2

Responde	No.1	No.2	No.3	No.4	No.5	Jumlah skor	Nilai
P2-25	6	0	0	4	9	19	30,16
P2-21	6	0	0	9	6	21	33,33
P2-12	6	5	0	6	9	26	41,27
P2-06	6	1	10	5	6	28	44,44
P2-07	6	5	6	5	6	28	44,44
P2-32	6	1	12	5	6	30	47,62
P2-31	6	10	0	5	9	30	47,62
P2-01	6	5	5	6	9	31	49,21
P2-02	6	10	6	5	6	33	52,38
P2-18	6	10	6	5	6	33	52,38
P2-33	4	10	10	5	6	35	55,56
P2-18	6	10	4	6	9	35	55,56
P2-23	4	10	10	5	6	35	55,56
P2-08	6	5	10	6	9	36	57,14
P2-05	6	10	10	5	6	37	58,73
P2-20	6	10	12	0	9	37	58,73
P2-11	6	10	12	0	9	37	58,73
P2-30	6	8	10	6	9	39	61,90
P2-17	6	7	12	5	9	39	61,90
P2-14	6	10	10	5	9	40	63,49
P2-13	6	10	10	5	9	40	63,49
P2-24	6	8	12	6	9	41	65,08
P2-18	6	8	12	6	9	41	65,08
P2-04	6	10	12	5	9	42	66,67
P2-35	6	10	12	5	9	42	66,67
P2-03	6	10	12	5	9	42	66,67
P2-14	6	10	12	5	9	42	66,67
P2-29	6	10	12	5	9	42	66,67
P2-36	6	10	12	6	9	43	68,25
P2-26	9	10	7	6	12	44	69,84

Lampiran 56 Daftar Nilai Tes Awal Kelas XII MIPA 3

Responde	No. 1	No. 2	No.3	No.4	No.5	Jumlah skor	Nilai
P3-07	2	4	3	6	9	24	38,10
P3-02	6	5	0	6	9	26	41,27
P3-04	4	1	10	5	6	26	41,27
P3-03	6	5	5	6	9	31	49,21
P3-21	6	5	5	6	9	31	49,21
P3-23	6	5	5	6	9	31	49,21
P3-01	4	10	6	5	6	31	49,21
P3-15	4	11	6	5	6	32	50,79
P3-17	8	5	5	6	9	33	52,38
P3-10	4	11	5	5	9	34	53,97
P3-20	6	5	8	6	9	34	53,97
P3-14	6	11	5	3	9	34	53,97
P3-32	6	10	4	6	9	35	55,56
P3-28	6	11	5	5	9	36	57,14
P3-30	6	5	10	6	9	36	57,14
P3-35	6	10	10	5	6	37	58,73
P3-22	9	11	6	5	6	37	58,73
P3-11	6	10	12	5	6	39	61,90
P3-19	6	10	10	6	9	41	65,08
P3-31	6	10	12	4	9	41	65,08
P3-09	6	11	11	5	9	42	66,67
P3-29	6	10	12	5	9	42	66,67
P3-05	6	10	12	5	9	42	66,67
P3-12	6	10	12	5	9	42	66,67
P3-08	6	10	12	6	9	43	68,25
P3-33	6	10	12	6	9	43	68,25
P3-27	6	10	12	6	9	43	68,25
P3-25	6	11	11	6	9	43	68,25
P3-18	6	10	12	6	9	43	68,25
P3-24	6	11	11	6	9	43	68,25
P3-06	9	10	12	6	9	46	73,02

Lampiran 57 Daftar Nilai Tes Awal Kelas XII MIPA 4

Responde	No.1	No.2	No.3	No.4	No.5	Jumlah skor	Nilai
P4-30	6	0	12	0	0	18	28,57
P4-33	6	3	0	6	6	21	33,33
P4-01	6	1	4	3	9	23	36,51
P4-09	6	7	0	5	6	24	38,10
P4-29	6	7	0	5	6	24	38,10
P4-08	6	6	0	5	9	26	41,27
P4-11	6	10	0	6	6	28	44,44
P4-10	5	5	10	3	6	29	46,03
P4-15	6	0	9	5	9	29	46,03
P4-17	6	9	0	5	9	29	46,03
P4-19	6	0	9	5	9	29	46,03
P4-36	6	9	4	5	9	33	52,38
P4-04	4	10	9	5	6	34	53,97
P4-13	4	7	12	5	6	34	53,97
P4-16	4	10	9	5	6	34	53,97
P4-31	7	7	9	5	6	34	53,97
P4-07	6	5	9	6	9	35	55,56
P4-20	6	7	9	5	9	36	57,14
P4-34	6	6	10	5	9	36	57,14
P4-21	4	11	10	6	6	37	58,73
P4-14	6	11	7	5	9	38	60,32
P4-12	6	6	12	6	9	39	61,90
P4-22	4	9	12	5	9	39	61,90
P4-23	6	9	10	5	9	39	61,90
P4-32	6	10	12	5	6	39	61,90
P4-24	5	11	10	5	9	40	63,49
P4-26	6	9	10	6	9	40	63,49
P4-27	5	11	10	5	9	40	63,49
P4-28	6	9	10	6	9	40	63,49
P4-02	6	11	10	5	9	41	65,08
P4-06	6	12	12	5	6	41	65,08
P4-35	6	10	10	6	9	41	65,08
P4-03	6	10	12	5	9	42	66,67
P4-05	6	10	12	5	9	42	66,67
P4-18	6	10	12	5	9	42	66,67
P4-25	9	10	12	5	12	48	76,19

Lampiran 58 Daftar Nilai Tes Awal Kelas XII MIPA 5

Responde	No.1	No.2	No.3	No.4	No.5	Jumlah skor	Nilai
P5-02	6	4	8	0	0	18	28,57
P5-35	6	11	1	0	0	18	28,57
P5-32	6	0	0	9	6	21	33,33
P5-14	6	1	4	3	9	23	36,51
P5-30	6	0	11	6	2	25	39,68
P5-22	6	0	11	6	2	25	39,68
P5-19	6	8	4	1	9	28	44,44
P5-13	6	1	7	5	9	28	44,44
P5-29	6	0	9	5	9	29	46,03
P5-06	3	11	8	3	6	31	49,21
P5-11	6	11	8	6	1	32	50,79
P5-33	6	11	8	0	7	32	50,79
P5-05	6	7	10	1	9	33	52,38
P5-21	6	4	11	6	6	33	52,38
P5-18	6	10	8	6	4	34	53,97
P5-10	4	7	12	5	6	34	53,97
P5-31	4	10	10	5	6	35	55,56
P5-15	2	11	8	6	9	36	57,14
P5-23	6	8	9	8	6	37	58,73
P5-07	6	11	8	3	9	37	58,73
P5-25	6	11	8	3	9	37	58,73
P5-16	6	8	8	6	9	37	58,73
P5-35	6	10	10	6	6	38	60,32
P5-01	4	11	12	5	6	38	60,32
P5-08	4	10	12	6	7	39	61,90
P5-27	6	7	12	6	9	40	63,49
P5-09	6	11	8	6	9	40	63,49
P5-34	6	11	8	6	9	40	63,49
P5-20	6	9	10	6	9	40	63,49
P5-24	6	11	8	6	9	40	63,49
P5-17	6	9	12	5	9	41	65,08
P5-05	6	11	12	6	6	41	65,08

Lampiran 59 Daftar Nilai Tes Awal Kelas XII MIPA 6

Responde	No.1	No.2	No.3	No.4	No.5	Jumlah Skor	Nilai
P6-17	6	1	11	0	0	18	28,57
P6-10	4	4	4	1	6	19	30,16
P6-24	4	4	4	1	6	19	30,16
P6-12	6	1	1	5	6	19	30,16
P6-05	2	4	3	6	9	24	38,10
P6-11	6	0	11	6	2	25	39,68
P6-21	6	0	11	6	2	25	39,68
P6-15	6	4	8	1	9	28	44,44
P6-09	6	0	9	5	9	29	46,03
P6-27	6	9	0	5	9	29	46,03
P6-35	6	10	4	2	9	31	49,21
P6-06	3	11	8	3	6	31	49,21
P6-26	6	10	4	2	9	31	49,21
P6-19	6	1	10	6	9	32	50,79
P6-36	6	1	12	6	9	34	53,97
P6-31	4	7	12	6	6	35	55,56
P6-23	6	4	10	6	9	35	55,56
P6-34	4	7	12	6	6	35	55,56
P6-13	6	10	6	5	9	36	57,14
P6-30	4	10	12	2	9	37	58,73
P6-02	6	4	12	6	9	37	58,73
P6-20	6	8	12	6	6	38	60,32
P6-14	6	10	8	6	9	39	61,90
P6-18	6	10	12	2	9	39	61,90
P6-07	4	10	12	6	7	39	61,90
P6-32	4	10	12	6	7	39	61,90
P6-25	6	9	12	4	9	40	63,49
P6-04	6	10	12	6	6	40	63,49
P6-33	6	9	10	6	9	40	63,49
P6-22	6	10	10	6	9	41	65,08
P6-03	6	10	11	6	9	42	66,67
P6-29	6	12	9	6	9	42	66,67

Lampiran 60 Uji Normalitas Tahap Awal Kelas XII MIPA 1

Uji Normalitas Tahap Awal Kelas XII MIPA 1

Rata-rata	55,51		Range	38,10		
Simpanga	9,000241		Banyak ke	6,05388	(diambil 6	data)
skor minir	30,16		Panjang Ke	6,349206	(diambil 7	data)
skor maks	68,25					
Kelas Inte	fi	Batas xi	Nilai zi	Luas zi	Ei	Chi kuadr
		29,5	-2,8898			
30-36	1			0,015414	0,524078	0,432191
		36,5	-2,11204			
37-43	3			0,073714	2,506277	0,097261
		43,5	-1,33428			
44-50	4			0,19787	6,727582	1,105851
		50,5	-0,55653			
51-57	13			0,298618	10,15301	0,798319
		57,5	0,221231			
58-64	6			0,253556	8,620906	0,796801
		64,5	0,998988			
65-71	7			0,121095	4,117237	2,018422
		71,5	1,776745			
					t hitung	5,248845
					t tabel	7,814728

$$Nilai = \frac{jumlah \ skor \ yang \ diperoleh}{skor \ maksimal} x \ 100$$

Lampiran 61 Uji Normalitas Tahap Awal Kelas XII MIPA 2

Uji Normalitas Tahap Awal Kelas XII MIPA 2

Rata-rata	56,51		Range	39,68		
Simpangai	10,42615		Banyak ke	6,05388		
Nilai Minir	30,16		Panjang Ke	6,613757		
Nilai Maks	69,84					
Kelas Inter	fi	Batas xi	Nilai zi	Luas zi	Ei	Chi Kuadra
		29,5	-2,5904			
30-36	2			0,022698	0,771733	1,954873
		36,5	-1,91902			
37-43	1			0,078593	2,672153	1,046383
		43,5	-1,24763			
44-50	4			0,176143	5,988875	0,660496
		50,5	-0,57624			
51-57	6			0,255675	8,692964	0,834244
		57,5	0,095152			
58-64	8			0,24042	8,174275	0,003716
		64,5	0,766541			
65-71	9			0,14645	4,979312	3,24662
		71,5	1,437929			
					t hitung	7,746332
					t tabel	9,487729

$$Nilai = \frac{jumlah \ skor \ yang \ diperoleh}{skor \ maksimal} x \ 100$$

Lampiran 62 Uji Normalitas Tahap Awal Kelas XII MIPA 3

Uji Normalitas Tahap Awal Kelas XII MIPA 3

Rata-rata	58,42		Range	34,92063		
Simpanga	9,438946		Banyak ke	5,921494		
Nilai Minir	38,09524		Panjang Ke	5,820106		
Nilai Maks	73,01587					
Kelas Inter	fi	Batas xi	Nilai zi	Luas zi	Ei	Chi Kuadra
		37,5	-2,21666			
38-43	3			0,043616	1,352105	2,008393
		43,5	-1,581			
44-49	4			0,115305	3,574462	0,05066
		49,5	-0,94533			
50-55	6			0,206162	6,391024	0,023924
		55,5	-0,30967			
56-61	5			0,24938	7,73077	0,9646
		61,5	0,325996			
62-67	6			0,204103	6,327208	0,016921
		67,5	0,96166			
68-73	7			0,113013	3,503416	3,489765
		73,5	1,597325			
					t hitung	6,554264
					t tabel	7,814728

$$Nilai = \frac{jumlah \ skor \ yang \ diperoleh}{skor \ maksimal} x \ 100$$

Lampiran 63 Uji Normalitas Tahap Awal Kelas XII MIPA 4

Uji Normalitas Tahap Awal Kelas XII MIPA 4

Rata-rata	54,85		Range	47,61905		
Simpangan Baku	11,22		Banyak Kelas Interval	6,135798		
Skor Minimum	28,57		Panjang Kelas Interval	6,802721		
Skor Maksimum	76,19					
Kelas Interval	fi	Batas xi	Nilai zi	Luas zi	Ei	Chi Kuadrat
		27,5	-2,437542481			
28-34	2			0,02747	0,988922	1,03373032
		34,5	-1,813676216			
35-41	4			0,082197	2,959083	0,36616337
		41,5	-1,189809951			
42-48	5			0,168655	6,071597	0,18912996
		48,5	-0,565943686			
49-55	6			0,237379	8,545638	0,75831327
		55,5	0,05792258			
56-62	8			0,229219	8,251881	0,00768842
		62,5	0,681788845			
63-69	10			0,151851	5,466647	3,75939583
		69,5	1,30565511			
70-76	1			0,069002	2,484067	0,88663231
		76,5	1,929521375			
					t hitung	7,00105348
					t tabel	9,48772904

$$Nilai = \frac{jumlah \ skor \ yang \ diperoleh}{skor \ maksimal} x \ 100$$

Lampiran 64 Uji Normalitas Tahap Awal Kelas XII MIPA 5 Uji Normalitas Tahap Awal Kelas XII MIPA 5

Rata-rata	52,58		Range	36,50794		
Simpangan Baku	10,79		Banyak kelas Interval	5,966995		
Skor Minimum	28,57		Panjang Kelas Interval	6,084656		
Skor Maksimum	65,08					
Kelas Interval	fi	Batas xi	Nilai zi	Luas zi	Ei	Chi Kuadrat
		27,5	-2,325103328			
28-34	3			0,036823	1,178326	2,8162787
		34,5	-1,676134614			
35-41	3			0,105315	3,370088	0,0406415
		41,5	-1,0271659			
42-48	3			0,200471	6,415068	1,8180151
		48,5	-0,378197187			
49-55	8			0,254075	8,130386	0,002091
		55,5	0,270771527			
56-62	8			0,214429	6,861732	0,1888232
		62,5	0,91974024			
63-69	7			0,120496	3,855884	2,5637353
		69,5	1,568708954			
					t hitung	7,4295847
					t tabel	7,8147279

$$Nilai = \frac{jumlah \ skor \ yang \ diperoleh}{skor \ maksimal} x \ 100$$

Lampiran 65 Uji Normalitas Tahap Awal Kelas XII MIPA 6

Uji Normalitas Tahap Awal Kelas XII MIPA 6

Rata-rata	51,98413		Range	38,09524		
Simpangan Baku	11,70597		Banyak kelas Interval	5,966995		
Skor Minimum	28,57143		Panjang Kelas Interval	6,349206		
Skor Maksimum	66,66667					
Kelas Interval	fi	Batas xi	Nilai zi	Luas zi	Ei	Chi Kuadrat
icias iritervar		27,5		Luu3 21		CIII Kuaurat
28-34	4			0,049402	1,580852	3,70197633
		34,5	-1,493607767			
35-41	3			0,117588	3,762822	0,15464385
		41,5	-0,89562227			
42-48	3			0,197763	6,328414	1,75057118
		48,5	-0,297636772			
49-55	8			0,235054	7,521735	0,03041022
		55,5	0,300348725			
56-62	8			0,197452	6,31846	0,44751017
		62,5	0,898334222			
63-69	6			0,117219	3,750993	1,3484523
		69,5	1,496319719			
					Jumlah	7,43356405
					t tabel	7,8147279

$$Nilai = \frac{jumlah \ skor \ yang \ diperoleh}{skor \ maksimal} x \ 100$$

Lampiran 66 Uji Homogenitas Tahap Awal Kelas XII MIPA Uji Homogenitas Tahap Awal Kelas XII MIPA

Berdasarkan data nilai pada lampiran 58 sampai dengan 63 diperoleh hasil uji homogenitas tahap awal sebagai berikut:

Kel	dk	s ²	log s ²	dk. Log s ²	dk.s ²
1	33	81,00434			2673,143
2	29	108,7045	2,036248	59,05118	3152,431
3	30	89,0937	1,949847	58,49541	2672,811
4	35	125,8963	2,100013	73,50046	4406,372
5	31	116,3452	2,065749	64,03821	3606,702
6	31	137,0297	2,136815	66,24126	4247,921
Σ	189			384,3073	20759,38
s² gabungan	109,838				
В	385,7022				
X ²	3,211997				
X ² tabel	11,0705				

Lampiran 67 Uji Kesamaan Rata-rata Tahap Awal Kelas XII MIPA

Uji Kesamaan Rata-rata Tahap Awal Kelas XII MIPA

Berdasarkan data nilai pada lampiran 58 sampai dengan 63 diperoleh hasil uji kesamaan rata-rata tahap awal sebagai berikut:

X		MIPA 1		MIPA 2		MIPA 3		MIPA 4		MIPA 5		MIPA 6	
1 30,16 909,55 30,16 909,55 38,10 1451,25 28,57 816,33 28,57 816,33 30,68 1574,70 33,33 111,111 41,77 1703,20 33,33 111,111 30,16 909,5 30,88 1574,70 34,14 1975,31 49,21 2421,26 38,10 1451,25 39,68 1574,70 38,10 1451,25 36,15 133,28 33,33 111,11 30,16 909,5 30,16 41,27 1703,20 44,44 1975,31 49,21 2421,26 38,10 1451,25 39,68 1574,70 38,10 1451,2 36,10 1451,25 39,68 1574,70 38,10 1451,2 36,10 1451,25 39,68 1574,70 38,10 1451,2 39,10 1451,2 39,10 1451,2		IVIIPA 1	2	IVIIPA Z		IVIIFA 3							
2 39.68 1574.70 33.33 1111.11 41.27 1703.20 33.33 1111.11 25.77 81.63.30 30.16 995.5 3 39.68 1574.70 41.27 1703.20 41.27 1703.20 36.51 3132.83 33.33 1111.11 61.905.5 4 4 41.27 1703.20 44.44 1975.31 44.91 1975.31 49.21 2421.26 38.10 1451.25 36.51 1332.83 30.16 995.5 5 4 4.444 1975.31 44.44 1975.31 49.21 2421.26 38.10 1451.25 36.51 1332.83 30.16 995.5 6 4 95.21 2421.26 47.62 2267.57 49.21 2421.26 41.42 1703.20 39.88 1574.70 39.68 1574.77 7 9 39.21 2421.26 47.62 1267.57 49.21 2421.26 41.42 1703.20 39.88 1574.70 39.68 1574.77 8 8 50.79 2579.99 45.21 2241.26 50.79 2579.99 46.03 2718.92 44.44 1975.31 34	1	X 20.16		X 20.16		X 20 10		X 20 57		X 20 57		X 20 E 7	
3 39.68 1574.70 41.27 1703.20 44.44 1975.31 49.21 2421.26 38.10 1451.25 36.51 1332.83 30.16 909.5													
4 41,27 1703,20 44,44 1975,31 49,21 2421,26 38,10 1451,15 36,51 1332,83 30,16 909.5 5 44,44 1975,31 44,44 1975,31 49,21 2421,26 38,10 1451,15 36,51 1332,83 30,16 909.5 6 49,21 2421,26 47,62 2267,57 49,21 2421,26 41,27 1703,20 39,68 1574,70 39,68 1574,7 7 49,21 2421,26 47,62 2267,57 49,21 2421,26 44,44 1975,31 44,44 197												, -	909,55
S													909,55
6 49.21 2421.26 47.62 2267.57 49.21 2421.26 44.44 1975.31 44.44 1975.31 34.44													1451,25
T								41.27					1574,70
8													1574,70
10	8	50,79	2579,99	49,21	2421,26	50,79	2579,99	46,03	2118,92	44,44	1975,31	44,44	1975,31
11 5337 2912,57 55,56 3086,42 53,97 2912,57 46,03 2118,92 50,79 2579,99 49,21 2421,2 12 53,97 2912,57 55,56 3086,42 53,97 2912,57 52,38 2743,76 50,79 2579,99 49,21 2421,2 13 55,56 3086,42 55,56 3086,42 57,14 3265,31 53,97 2912,57 52,38 2743,76 49,21 2421,2 14 55,56 3086,42 57,14 3265,31 57,14 3265,31 53,97 2912,57 53,97 2912,57 53,97 2912,57 15 55,56 3086,42 58,73 3449,23 57,14 3265,31 53,97 2912,57 53,97 2912,57 16 55,56 3086,42 58,73 3449,23 58,73 3449,23 53,97 2912,57 53,97 2912,57 16 55,56 3086,42 58,73 3449,23 58,73 3449,23 53,97 2912,57 53,97 2912,57 18 55,56 3086,42 58,73 3449,23 58,73 3449,23 53,57 52,38 57,14 3265,31	9	52,38	2743,76	52,38	2743,76	52,38	2743,76	46,03	2118,92	46,03	2118,92	46,03	2118,92
12 53,97 2912,57 55,56 3086,42 55,56 3086,42 55,56 3086,42 55,56 3086,42 55,56 3086,42 55,56 3086,42 55,56 3086,42 55,56 3086,42 55,56 3086,42 55,56 3086,42 57,14 3265,31 57,14 3265,31 53,97 2912,57 52,38 2743,76 50,79 2573,9 15 55,56 3086,42 57,14 3265,31 57,14 3265,31 53,97 2912,57	10	52,38	2743,76	52,38	2743,76	53,97	2912,57	46,03	2118,92	49,21	2421,26	46,03	2118,92
13	11	53,97	2912,57	55,56	3086,42	53,97	2912,57	46,03	2118,92	50,79	2579,99	49,21	2421,26
14	12	53,97	2912,57	55,56	3086,42	53,97	2912,57	52,38	2743,76	50,79	2579,99	49,21	2421,26
15	13	55,56	3086,42	55,56	3086,42	55,56	3086,42	53,97	2912,57	52,38	2743,76	49,21	2421,26
16	14	55,56	3086,42	57,14	3265,31	57,14	3265,31	53,97	2912,57	52,38	2743,76	50,79	2579,99
17	15	55,56	3086,42		3449,23	57,14	3265,31	53,97	2912,57	53,97	2912,57	53,97	2912,57
18			3086,42		3449,23	58,73	3449,23		2912,57		2912,57	55,56	3086,42
19	17	55,56	3086,42	58,73	3449,23	58,73	3449,23	55,56	3086,42	55,56	3086,42	55,56	3086,42
20 555.6 3086.42 63.49 4031.24 65.68 4235.32 58.73 3449.23 58.73 3449.23 58.73 3449.23 58.73 3449.23 58.73 3449.23 58.73 3449.23 58.73 3449.23 58.73 3449.23 58.73 3449.23 58.73 3449.23 58.73 3449.23 58.73 3449.23 58.73 3449.23 58.73 3449.23 58.73 3449.23 58.73 3449.23 58.73 3449.23 58.73 3449.23 58.73 3449.23 65.08 4235.32 66.67 4444.44 61.90 3832.20 58.73 3449.23 65.08 61.90 3832.20 60.32 3638.20 61.90 3832.20 58.73 3449.23 58.73 34.73 34.73 34.73 34.73 34.73		55,56	3086,42	61,90	3832,20	61,90	3832,20	57,14	3265,31	57,14	3265,31	55,56	3086,42
221 57,14 3265,31 63,49 4031,24 66,67 4444,44 61,90 3832,20 58,73 3449,23 50,32 3638,20 23 58,73 3449,23 65,08 4235,32 66,67 4444,44 61,90 3832,20 60,32 3638,20 61,90 3832,2 24 58,73 3449,23 63,24 4444,44 61,90 3832,20 60,32 3638,20 61,90 3832,2 25 60,32 3638,20 66,67 4444,44 68,25 4658,60 63,24 3638,20 61,90 3832,20 66,67 4444,44 68,25 4658,60 63,49 4031,24 63,49 4031,24 61,90 3832,2 27 61,90 3832,20 66,67 4444,44 68,25 4658,60 63,49 4031,24 63,49			3086,42		3832,20	65,08				58,73	3449,23	57,14	3265,31
22 58,73 3449,23 65,08 4235,32 66,67 4444,44 61,90 3832,20 60,32 3638,20 61,90 3832,2 24 58,73 3449,23 65,08 4235,32 66,67 4444,44 61,90 3832,20 60,32 3638,20 61,90 3832,2 25 60,32 3638,20 66,67 4444,44 68,25 4658,60 63,49 4031,24 61,90 3832,2 26 60,32 3638,20 66,67 4444,44 68,25 4658,60 63,49 4031,24 63,49 4031,24 61,90 3832,2 27 61,90 3832,20 66,67 4444,44 68,25 4658,60 63,49 4031,24 63,49													3449,23
23 58,73 3449,23 65,08 4235,32 66,67 4444,44 61,90 3832,20 60,32 3638,20 61,90 3832,20 24 58,73 3449,23 66,67 4444,44 66,67 4444,44 61,90 3832,20 61,90 3832,20 25 60,32 3638,20 66,67 4444,44 68,25 4658,60 61,90 3832,20 61,90 3832,20 26 60,32 3638,20 66,67 4444,44 68,25 4658,60 63,49 4031,24 63,49 4031,24 63,49 4031,24 28 65,08 4225,32 66,67 4444,44 68,25 4658,60 63,49 4031,24 63,49 4031,24 63,49 4031,24 29 65,08 4225,32 66,67 4444,44 68,25 4658,60 63,49 4031,24 63,49 4031,24 63,49 4031,24 30 66,67 4444,44 68,25 4658,60 63,25 4658,60 63,49 4031,24 63,49 4031,24 31 68,25 4658,60 73,02 5331,32 65,08 4235,32 63,49 4031,24 63,49 4031,24 32 68,25 4658,60 73,02 5331,32 65,08 4235,32 65,08 4235,32 33 68,25 4658,60 73,02 5331,32 65,08 4235,32 65,08 4235,32 34 68,25 4658,60 66,67 4444,44 32 68,25 4658,60 66,67 4444,44 33 68,25 4658,60 66,67 4444,44 34 68,25 4658,60 66,67 4444,44 35 68,25 4658,60 66,67 4444,44 36 66,67 4444,44 37 68,25 4658,60 66,67 4444,44 38 68,25 4658,60 66,67 4444,44 39 18 18 18 18 18 18 18 1													3449,23
24 58,73 3449,23 66,67 4444,44 68,25 4658,60 61,90 3832,20 61,90 3832,20 66,67 4444,44 68,25 4658,60 61,90 3832,20 61,90 3832,20 66,67 4444,44 68,25 4658,60 63,49 4031,24 63,49 4031,24 61,90 3832,20 66,67 4444,44 68,25 4658,60 63,49 4031,24													
25 60.32 3638.20 66.67 4444.44 68.25 4658.60 63.99 4031.24 63.94 0031.24 63.99 3832.20 66.67 4444.44 68.25 4658.60 63.49 4031.24													3832,20
26 60,32 3638,20 66,67 4444,44 68,25 4658,60 63,49 4031,24 63,49													
27 61,90 3832,20 66,67 4444,44 68,25 4658,60 63,49 4031,24													
28													
29 65,08 4235,32 68,25 4658,60 68,25 4658,60 65,08 4235,32 63,49 4031,24 65,08 4235,32 65,08													
30 66,67 4444,44 69,84 4877,80 68,25 4658,60 5,08 4235,32 63,84 4031,24 65,08 4235,32 63,84 4031,24 65,08 4235,32 66,67 4444,44 32 68,25 4658,60 66,67 4444,44 44,44													
31 68,25 4658,60 73,02 5331,32 65,08 4235,32 65,08 4235,32 66,67 4444,4 32 68,25 4658,60 66,67 4444,44 6 33 68,25 4658,60 66,67 4444,44 6 34 68,25 4658,60 76,67 4444,44 6 35 68,25 4658,60 76,19 5804,99 76,19 76,19 76,19 76,19 76,19 76,19 76,19 76,19 76,19 76,19 76,19													
32 68.25 4658.60 66.67 4444.44 633 68.25 4658.60 66.67 4444.44 66.67 444				69,84	4877,80								
33 68.25 4658,60 66,67 4444,44 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9						/3,02	5331,32						
34 68,25 4658,60										65,08	4235,32	66,67	4444,44
35													
36		08,25	4658,60										
XII MIPA 1													
2X 1887,30 1695,24 1811,11 1974,60 1682,54 163,49 (ZXI)^2 3561907,28 2873832,20 3280123,46 3899057,70 2830939,78 2767205,85 X		VII MIDA 1		VII MIDA 2		VII MIDA 2			3004,33	VII MIDA S		VII MIDA 6	
(∑K)² 3561907.28 2873832,20 3280123,46 3899057,70 2830939,78 2767205,85 ∑k² 10714,29 1074429 107435,12 200,000													
\$\frac{1}{2}x^2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \													
\$\overline{\chi}^2\$ 114795918,37 34 30 31 36 32 32 \$\overline{\chi}\$N/N 195 \$\overline{\chi}\$\$ \$\overline{\chi}\$\$ \$\overline{\chi}\$\$ \$\overline{\chi}\$\$ \$\overline{\chi}\$\overline{\chi}\$\$ 107435,12 98946,84 108483,25 112713,53 92073,57 90723,1 \$\overline{\chi}\$\$\tag{\chi}\$\$ 160375,41 \$\overline{\chi}\$\$ \$\overline{\chi}\$\$ \$\overline{\chi}\$\$ \$\overline{\chi}\$\$ \$\overline{\chi}\$\$ 19,0114874 \$\overline{\chi}\$\$ \$\overline{\chi}\$\$ \$\overline{\chi}\$\$ \$\overline{\chi}\$\$ \$\overline{\chi}\$\$ 20759,38067 \$\overline{\chi}\$\$ \$\overline{\chi}\$\$ \$\overline{\chi}\$\$ \$\overline{\chi}\$\$ 20759,38067 \$\overline{\chi}\$\$ \$\overline{\chi}\$\$ \$\overline{\chi}\$\$ \$\overline{\chi}\$\$ 20759,38067 \$\overline{\chi}\$\$ \$\overline{\chi}\$\$ \$\overline{\chi}\$\$ \$\overline{\chi}\$\$ 30,00000000000000000000000000000000000				20/3032,20		3200123,40		3033037,/0		2030333,/8		2,0/203,83	
n 34 30 31 36 32 32 ∑n/N 195 5 5 5 5 5 5 ∑k) ² 107435,12 98946,84 108483,25 112713,53 92073,57 90723,1 ½x T 610375,41 IKA 910,014874 5 92073,57 90723,1 IKA 105,091,4874 105,000,400,400,400,400,400,400,400,400,4	Z.A.	. , .								-		 	
Σ(N/N 195 98946,84 108483,25 112713,53 92073,57 90723,1 Σ(X) ² 107435,12 98946,84 108483,25 112713,53 92073,57 90723,1 Σ(X) 107435,1 974	Σx	, .		20		24		20		22		22	
∑(Ki) ² 107435,12 98946,84 108483,25 112713,53 92073,57 90723,1 ∑x ² T 610375,41 IAK 919,0114874 IKT 21678,39215 IKD 20759,38067 RIKA 183,8022975	Γn /N			30		31		36		32	-	32	
∑x ² T 610375,41 JKA 919,0114874 JKT 21678,39215 JKD 20799,38067 RJKA 183,8022975		195	107435 12		98946 94		108483.25		112713 52		92073 57		90723 10
IKA 919,0114874 IKT 21678,39215 IKD 20759,38067 RIKA 183,8022975		61027E 41	10,433,12		30340,04		100103,23		111/10,00		32073,37		30723,20
IKT 21678,39215 IKD 20759,38067 RIKA 183,8022975													
JKD 20759,38067 RJKA 183,8022975													
RJKA 183,8022975													
IRIKD 109 83799791	RJKD	109,8379929											
		_33,03.3323											
Fhitung 1,673394538	Fhitung	1.673394538											
F tabel 2,261892421													

1) Mencari Jumlah kuadrat antar kelompok (JK_A)

$$(JK_A) = \left(\sum_{i=1}^{k} \frac{(\sum X_i)^2}{n_i}\right) - \frac{(\sum X_T)^2}{n_T}$$

$$JK_A = (104761,97 + 95794,40 + 105810,43 + 108307,15 + 88466,86 + 86475,18) - (588697,01)$$

$$JK_A = 919,01$$

2) Menentukan jumlah kuadrat dalam kelompok (JK_D)

$$(JK_D) = \sum_{i=1}^{k} \left(\sum X_i^2 - \frac{(\sum X_i)^2}{n_i} \right)$$
$$JK_D = (21678,39) - (919,01)$$
$$JK_D = 20759,38$$

3) Menentukan jumlah kuadrat total (JK_T)

$$(JK_T) = \sum X_T^2 - \frac{(\sum X_T)^2}{n_T}$$

$$JK_T = (610375,41) - (588697,01)$$

$$JK_T = 21678,38$$

4) Menentukan derajat kebebasan (d_k)

$$dk_A = k - 1 = 6 - 1 = 5$$

 $dk_D = n_T - k = 195 - 6 = 189$
 $dk_T = n_T - 1 = 195 - 1 = 194$

5) Menentukan rata-rata jumlah kuadrat

$$RJK_A = \frac{JK_A}{dk_A}$$

$$RJK_A = \frac{919,01}{5}$$

$$RJK_A = 183,802$$

$$RJK_D = \frac{JK_D}{dk_D}$$

$$RJK_D = \frac{20759,38}{189}$$

$$RJK_D = 109,837$$

6) Menentukan F_{hitung}

$$F_{hitung} = \frac{RJK_A}{RJK_D}$$

$$F_{hitung} = \frac{183,802}{109,837}$$

$$F_{hitung} = 1,673$$

7) Menenetukan nilai kritis

$$F_{tabel} = F_{(a)(dk_A)(dk_D)}$$

 $F_{tabel} = F_{(0,05)(5)(189)}$
 $F_{tabel} = 2,261$

Karena nilai $F_{hitung} < F_{tabel}$, maka enam kelas ini memiliki rata-rata yang sama dan dapat dikatakan tidak terdapat perbedaan rata rata dari keenam kelas ini.

Lampiran 68 Rencana Pelaksanaan Pembelajaran 1

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) KELAS EKSPERIMEN PERTEMUAN I

Rencana Pelaksanaan Pembelajaran

(RPP)

Nama Sekolah : MAN 2 Kota Semarang

Mata Pelajaran : Matematika Wajib

Kelas/ Semester : XII / Ganjil

Materi Pokok : Dimensi Tiga

Alokasi Waktu : 2 x 45 menit

A. Kompetensi Inti

- Menghayati dan mengamalkan ajaran agama yang dianutnya.
- 2. Menunjukkan perilaku jujur, disiplin, tanggung jawab, peduli (gotong royong, kerjasama, toleran, damai), santun, responsif, dan pro-aktif sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia.

- 3. Memahami, menerapkan, dan menganalisis faktual. pengetahuan konseptual, prosedural. berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora kebangsaan, dengan wawasan kemanusiaan. kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta penerapan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah.
- 4. Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengat pengembangan dari yang dipelajarinya di sekolah secara mandiri, dan mampu menggunakan metode sesuai kaidah keilmuan.

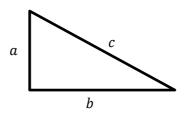
B. Kompetensi Dasar dan Indikator

3.1 Mendeskripsikan	3.1.1	Mengidentifikasi jarak antar
jarak dalam ruang		titik dalam ruang
(antar titik,titik ke	3.1.2	Mengidentifikasi jarak dari titik
garis, dan titik ke		ke garis dalam ruang
bidang)	3.1.3	Mengidentifikasi jarak dari titik
		ke bidang dalam ruang

4.1 Menentukan	4.1.1	Menyelesaikan masalah yang
jarak dalam		berkaitan dengan jarak antar
ruang (antar		titik dalam ruang
titik,titik ke	4.1.2	Menyelesaikan masalah yang
garis, dan titik		berkaitan dengan jarak dari
ke bidang)		titik ke garis dalam ruang
	4.1.3	Menyelesaikan masalah yang
		berkaitan dengan jarak dari
		titik ke bidang dalam ruang

C. Tujuan Pembelajaran (KD 3.1.1 dan 4.1.1)

Melalui pembelajaran *Discovery Learning* dengan *Kerjasama* siswa dapat:


- Mengidentifikasi jarak antar titik dalam ruang dengan baik
- 2. Menyelesaikan masalah yang berkaitan dengan jarak antar titik dalam ruang dengan benar

D. Materi Pembelajaran

- a. Pengertian jarak antar titik
 jarak antara dua titik adalah panjang ruas garis yang
 menghubungkan kedua titik tersebut.
- b. Cara penyelesaiannya

Dalam bangun ruang, menentukan jarak titik A dan titik B dapat digunakan teorema Pythagoras bila terkait dengan segitiga siku-siku atau memakai aturan sinus dan cosinus bila tidak terkait dengan segitiga siku-siku. Jarak antara dua titik adalah panjang ruas garis yang menghubungkan kedua titik tersebut, untuk menentukan nilainya dapat digunakan dalil pytagoras, aturan sinus, dan aturan cosinus.

Rumus pytagoras yaitu:

$$c^2 = b^2 + a^2$$

Keteragan:

c = sisi miring

b = sisi tegak

a = sisi alas

Dengan cara lain menggabungkan dua titik koordinat

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

keterangan:

d = jarak antar titik

 x_1 = koordinat x titik 1

 x_2 =koordinat x titik 2

 y_1 = koordinat y titik 1

 y_2 = koordinat y titik 2

E. Pendekatan, Model dan Metode Pembelajaran

Pendekatan pembelajaran: pendekatan saintifik

Model pembelajaran : Discovery Learning

Metode pembelajaran : Tanya jawab,

diskusi kelompok, penugasan

F. Media Pembelajaran

Geogebra

G. Sumber Belajar

Buku siswa dan buku guru kelas XII

Buku referensi lain

Internet

H. Langkah - Langkah Pembelajaran

Ke		Deskripsi Kegiatan	Pengorg	anis
gia			asiaı	ı
ta			Waktu	Sis
n				wa
Pe	1.	Guru mengondisikan kelas, membuka	3 menit	K
nd		pelajaran dengan salam, berdo'a dan		
ah		presensi kehadiran (PPK religius)		
ulu	2.	Guru melakukan apersepsi dengan	3 menit	K
an		mengajukan pertanyaan "apakah kalian		
		tau apa itu geometri?" (menanya,		
		interaksi, komunikasi)		
	3.	Siswa diberi gambaran tentang manfaat	2 menit	K
		mempelajari perbandingan dalam		
		kehidupan sehari-hari. dan diberi		
		motivasi melalui surat Al Maidah ayat		
		97		
		جَعَلَ اللهُ الْكَعْبَةَ الْبَيْتَ الْحَرَامَ قِيمًا لِّلنَّاسِ وَالشَّهْرَ		
		الْحَرَامَ وَالْهَدْيَ وَالْقَلَابِدَ اللَّهِ اللَّهِ عَلَمُوا اَنَّ اللَّهَ يَعْلَمُ مَا فِي		
		السَّمَوٰتِ وَمَا فِي الْأَرْضِ ۗ وَانَّ اللَّهَ بِكُلِّ شَيْءٍ عَلِيْمٌ		

	Artinya :		
	"Allah telah menjadikan Ka'bah rumah		
	suci tempat manusia berkumpul.		
	Demikian pula bulan haram, hadyu dan		
	qala'id. Yang demikian itu agar kamu		
	mengetahui, bahwa Allah mengetahui		
	apa yang ada di langit dan apa yang ada		
	di bumi, dan bahwa Allah Maha		
	Mengetahui segala sesuatu."		
	Kata ka'bah disini menunjukkan bahwa		
	dimensi tiga juga berada di kehidupan		
	sehari-hari , karena bentuk ka'bah		
	merupakan bentuk tiga dimensi (PPK		
	religius dan PPK rasa ingin tahu)		
	4. Guru menyampaikan tujuan	2 menit	K
	pembelajaran yang akan dicapai dan		
	teknik penilaian (PPK rasa ingin tahu)		
Int	(Stimulus)	10	K
i	1. Peserta didik mengamati media kertas	menit	
	persegi dan 3 kertas bentuk segitiga yang		
	disajikan oleh guru. (Rasa Ingin Tahu,		
	Mengamati, Literasi, Analitis, melakukan)		
	(stimulation atau pemberi rangsangan)		

	(Identifikasi Masalah)	10	I
2.	Peserta didik diberi kesempatan untuk	menit	
	menanyakan terkait apa yang di dapat		
	dari hasil pertanyaan " Apa hubungan		
	segitiga dengan mengitung jarak dalam		
	bangun ruang ?". (Menanya, critical		
	thinking, Rasa Ingin Tahu, Kritis)		
	(Problem statement atau identifikasi		
	masalah)		
	(Pengumpulan Data)	20	G
3.	Guru membagi beberapa kelompok,	menit	
	Setiap kelompok diminta untuk		
	bekerjasama mencari rumus dan cara		
	menghitung jarak antar titik kemudian		
	mencoba media geogebra dengan model		
	Discovery Learning (Mencoba, Menalar,		
	Kolaborasi, Komunikasi, Literasi, Bekerja		
	Sama, Toleransi). (Data Collection)		
	(Pengolahan Data)	15	G
4.	Secara berkelompok siswa diperintah	menit	
	untuk mengerjakan LKPD dengan		
	mencoba menemukan rumus kemudian		

	di selaraskan dengan geogebra sehingga					
	menemukan solusinya dengan diskus	i.				
	kelompok (<i>Kolaborasi, komunikasi</i> ,	,				
	menghargai, bekerjasama) (Data	ı				
	Processing)					
	(Pembuktian)	10	G			
	5. Setiap kelompok mempresentasikar	menit				
	hasil diskusi yang telah dikerjakan					
	(Menalar, Mengevauasi, Literasi menulis					
	Mandiri dan Tekun, Mencoba,					
	Menganalisis, Literasi Membaca dan	!				
	menulis)(Verification atau analisis data)					
Pe	(Penarikan kesimpulan)	2 menit				
nu	1. Siswa dibimbing guru menyimpulkar	ı				
tu	materi dimensi tiga tentang jarak antar					
p	titik yang sudah dibahas	:				
	(mengkomunikasikan)					
	2. Siswa dengan arahan guru	4 menit	К			
	merefleksikan dengan memberikar					
	pertanyaan terkait materi yang belum					
	di pahami dan melakukan evaluasi (tes					
	tertulis) terhadap kegiatan	ı				

	pembelajaran (refleksi, komunikasi, menalar)		
3.	Siswa diminta mempelajari materi selanjutnya dan diberi tugas untuk mencoba geogebra dimensi tiga dirumah (mandiri, bertanggungjawab, kolaborasi)	2 menit	I
4.	Guru mengarahkan siswa untuk berdo'a dan mengakhiri pembelajaran dengan salam penutup (PPK religius)	2 menit	К

I : Individu, K : Klasikal, G : Kelompok

I. Penilaian Hasil Belajar

1. Teknik Penilaian

a) Penilaian Sikap : Kerjasama

b) Penilaian Pengetahuan: Kuis/tes tertulis tentang peluang kejadian sederhana

c) Ketrampilan : Portfolio

2. Instrumen Penilaian Sikap

No.	Nama	Kerja sama				
	siswa	Bersedia	Ringan tangan	Menghargai		
		menerima	membantu	pendapat		
		tanggung	teman	teman		
		jawab	sekelompok	sekelompok		
1.						
2.						

Semarang, 14 Juli 2023

Mengetahui,

Kepala Madrasah Aliyah Negeri

Guru Mata Pelajaran

NIP. 196508021996031001

Choirul Aini Mustaghfiroh

Lampiran 1
INSTRUMEN PENILAIAN TES TERTULIS DAN
PENGETAHUAN

KISI-KISI SOAL

КОМРЕТЕ	INDIK	ATOR	N	SOAL	BEN
NSI DASAR	SOAL		0		TUK
			S		SOA
			0		L
			A		
			L		
3.1 Mendes	3.1.1	Mengi	1	1. Sebuah	Urai
kripsika		dentifi		kubus	an
n jarak		kasi		ABCD.EF	
dalam		jarak		GH	
ruang		antar		dengan	
(antar		titik		Panjang	
titik,titi		dalam		rusuk 4	
k ke		ruang		cm.	
garis,				hitunglah	
dan titik				jarak titik	
ke				A ke titik	
bidang)				F?	

4.1 Menent	Menyelesaika	2	2.	Diketahui	Urai
ukan	n masalah			balok	an
jarak	yang			ABCD.EF	
dalam	berkaitan			GH	
ruang	dengan jarak			dengan	
(antar	antar titik			AB = 8	
titik,titi	dalam ruang			cm, BC = 6	
k ke				cm, dan	
garis,				BF = 24	
dan titik				cm. Jarak	
ke				titik H ke	
bidang)				titik B	
				adalah	

Lampiran 2

TES TERTULIS

Materi Pokok : Dimensi Tiga

Tujuan Pembelajaran:

- Mengidentifikasi jarak antar titik dalam ruang dengan baik
- 2. Menyelesaikan masalah yang berkaitan dengan jarak antar titik dalam ruang dengan benar

Waktu

Nama

No. Absen:

Soal

- 1. Sebuah kubus ABCD.EFGH dengan Panjang rusuk 4 cm. hitunglah jarak titik A ke titik F?
- 2. Diketahui balok ABCD.EFGH dengan AB = 8 cm, BC = 6 cm, dan BF = 24 cm. Jarak titik H ke titik B adalah

KUNCI JAWABAN TES TERTULIS

 Jarak titik A ke F sam dengan panjang garis AF Menggunakan rumus phytagoras

$$AF = \sqrt{(AB)^2 + (BF)^2}$$
$$= \sqrt{4^2 + 4^2}$$
$$= \sqrt{16 + 16}$$
$$= \sqrt{32}$$
$$= 4\sqrt{2}$$

2. Jarak titik H ke titik B adalah panjang ruas garis HB. Perhatikan segitiga BAD siku-siku di titik C, maka dengan pythagoras diperoleh:

$$BD = \sqrt{(AB)^2 + (AD)^2}$$

$$= \sqrt{(8)^2 + 6^2}$$

$$= \sqrt{64 + 36}$$

$$= \sqrt{100}$$

$$= 10$$

Perhatikan segitiga BDH siku-siku di titik D, maka dengan pythagoras diperoleh:

$$HB = \sqrt{(BD)^2 + (DH)^2}$$
$$= \sqrt{(10)^2 + (24)^2}$$

$$= \sqrt{100 + 576}$$
$$= \sqrt{676}$$
$$= 26$$

Jadi, jarak titik H ke titik B adalah 26 cm.

Lampiran 3

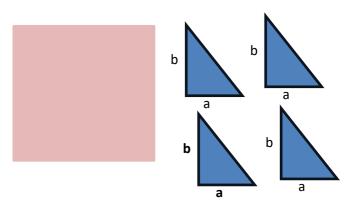
Materi Pokok : Dimensi Tiga

Tujuan Pembelajaran:

- Mengidentifikasi jarak antar titik dalam ruang dengan baik
- 2. Menyelesaikan masalah yang berkaitan dengan jarak antar titik dalam ruang dengan benar

Petunjuk:

Kelompok


1. Isilah identitas pada bagan yang telah disediakan

- 2. Bacalah dan pahami LKPD
- 3. Diskusikan bersama anggota kelompok yang sudah ditentukan
- 4. Jawablah pertanyaan pada tempat yang disediakan
- 5. Tanyakan pada guru jika terdapat hal yang kurang jelas
- 6. Setelah selesai megerjakan LKPD, setiap perwakilan kelompok mempresentasikan hasil diskusi kelompok

Mengamati dan Mencoba

Petunjuk media:

- Susun 4 segitiga yang telah di sediakan di atas kertas persegi yang sudah disediakan
- Pastikan menyusunnya sisi tepi yaitu sisi a dan b dan menutupi semua tepi persegi
- Setelah tersusun semua.
- 4 segitiga berikutnya , disusun dua-dua menjadi persegi panjang dengan tepi sisi a dan b , lalu persegi panajng tersebut disusun diatas kertas persegi
- Dari hasil 2 praktik tersebut kalian akan mendapatkan sebuah rumus phytagoras

Susunan pertama

Daerah yang tidak tertutup dengan segitiga yaitu:

Susunan kedua

Daerah yang tidak tertutup dengan segitiga yaitu : dan

Maka,nilai daerah yang tidak tertutup pertama dan kedua besarnya adalah sama

Sehingga, dapat disimpulkan rumus phytagoras adalah

Untuk mencari rumus luas segitiga

• Disediakan kertas origami berbentuk segitiga

- Lalu bagi menjadi 2 sama besar
- Bentuk 2 potongan segitiga tadi menjadi persegi Panjang
- Lalu amati

Kita tahu rumus luas persegi Panjang yaitu :

X

Pada persegi Panjang yang terbentuk

Panjang persegi Panjang =..... Segitiga

Lebar persegi Panjang = alas segitiga

Sehingga, luas persegi Panjang = luas segitiga

$$pxl = \dots x \dots x \dots$$

Maka, rumus segitiga adalah

Amatilah dan cobalah media geogebra di laptop kelompok masing-masing

M	[asa]	lah	1

Gambarlah Kubus ABCD.EFGH dengan Panjang rusuk 20cm
dan coba hitunglah jarak titik B ke titik H!
Kalian kerjakan manual dengan rumus pythagoras pada
kolom yang disediakan
Coba croscek dengan klik dalam geogebra bagian garis BH
berapa panjangnya?

Apakah panjangnya sama dengan jawaban kalian?.....

KUNCI JAWABAN LKPD

Daerah yang tidak tertutup dengan segitiga yaitu : c^2

Susunan kedua

Daerah yang tidak tertutup dengan segitiga yaitu : a^2 dan b^2

Maka,nilai daerah yang tidak tertutup pertama dan kedua besarnya adalah sama

Sehingga, dapat disimpulkan rumus phytagoras adalah

$$c^2 = a^2 + b^2$$

Kita tahu rumus luas persegi Panjang yaitu: p x l

Pada persegi Panjang yang terbentuk

Panjang persegi Panjang = tinggi Segitiga

Lebar persegi Panjang = $=\frac{1}{2}$ alas segitiga

Sehingga, luas persegi Panjang = luas segitiga

$$pxl == \frac{1}{2} x alas x tinggi$$

Maka, rumus segitiga adalah

$$= \frac{1}{2} x alas x tinggi$$

Masalah 1

Panjang BH

Kita cari dulu Panjang DB

$$BD = \sqrt{(AB)^2 + (AD)^2}$$

$$= \sqrt{20^2 + 20^2}$$

$$= \sqrt{400 + 400}$$

$$= \sqrt{800}$$

$$= 20\sqrt{2}$$

Lanjut

$$BH = \sqrt{(BD)^2 + (DH)^2}$$

$$= \sqrt{(20\sqrt{2})^2 + 20^2}$$

$$= \sqrt{800 + 400}$$

$$= \sqrt{1200}$$

$$= 20\sqrt{3}$$

Jadi Panjang BH adalah $20\sqrt{3}$

386

Lampiran 4

LEMBAR PENGAMATAN PENILAIAN KETERAMPILAN

Mata Pelajaran : Matematika

Kelas / Semester : XII / Ganjil

Tahun Pelajaran: 2023/2024

Indikator terampil menerapkan konsep/prinsip dan strategi pemecahan masalah yang berkaitan dengan peluang kejadian sederhana

- Kurang terampil, jika sama sekali tidak terampil dalam pemecahan masalah berkaitan dengan dimensi tiga jarak titik ke titik
- Terampil, jika menunjukkan sudah ada usaha untuk terampil dalam pemecahan masalah yang berkaitan dengan dimensi tiga jarak titik ke titik
- 3. Sangat terampil, jika menunjukkan adanya usaha untuk terampil dalam pemecahan masalah yang berkaitan dengan dimensi tiga jarak titik ke titik

Tuliskan tanda centang ($\sqrt{}$) pada kolom sesuai hasil p Keterangan

KT : Kurang Terampil

No	Nama Siswa	Keterampilan				
		lalam meny	nenyelesaikan			
		masalah yang berkaitan dengar Dimensi Tiga				
		KT	Т	ST		
1						
2						
3						
4						
5						

T : Terampil

ST : Sangat Terampil

Lampiran 69 Rencana Pelaksanaan Pembelajaran 2

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) KELAS EKSPERIMEN PERTEMUAN 2

Rencana Pelaksanaan Pembelajaran

(RPP)

Nama Sekolah: MAN 2 Kota Semarang

Mata Pelajaran : Matematika Wajib

Kelas/ Semester : XII / Ganjil

Materi Pokok : Dimensi Tiga

Alokasi Waktu : 2 x 45 menit

A. Kompetensi Inti

- Menghayati dan mengamalkan ajaran agama yang dianutnya.
- 2. Menunjukkan perilaku jujur, disiplin, tanggung jawab, peduli (gotong royong, kerjasama, toleran, damai), santun, responsif, dan pro-aktif sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia.

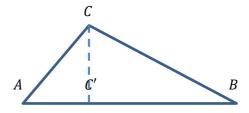
- 3. Memahami, menerapkan, dan menganalisis pengetahuan faktual, konseptual, prosedural, berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta penerapan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah.
- 4. Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengat pengembangan dari yang dipelajarinya di sekolah secara mandiri, dan mampu menggunakan metode sesuai kaidah keilmuan.

B. Kompetensi Dasar dan Indikator

3.2 Mendeskripsikan	3.2.1	Mengidentifikasi jarak
jarak dalam ruang		antar titik dalam ruang
(antar titik,titik ke	3.2.2	Mengidentifikasi jarak
garis, dan titik ke		dari titik ke garis dalam
bidang)		ruang
	3.2.3	Mengidentifikasi jarak
		dari titik ke bidang
		dalam ruang

4.2.1 Menyelesaikan
masalah yang
berkaitan
dengan jarak
antar titik
dalam ruang
4.2.2 Menyelesaikan
masalah yang
berkaitan
dengan jarak
dari titik ke
garis dalam
ruang
4.2.3 Menyelesaikan
masalah yang
berkaitan
dengan jarak
dari titik ke
bidang dalam
ruang

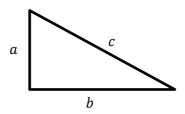
C. Tujuan Pembelajaran (KD 3.1.1 dan 4.1.1)


Melalui pembelajaran *discovery learning* dengan *bernalar kritis* siswa dapat:

- 1. Mengidentifikasi jarak dari titik ke garis dalam ruang
- 2. Menyelesaikan masalah yang berkaitan dengan jarak dari titik ke garis dalam ruang

D. Materi Pembelajaran

- a. Pengertian jarak titik ke garis
 Jarak titik ke garis adalah ruas garis yang tegak lurus
 atau terpendek dari sebuah titik terhadap sebuah
 garis. Misal A adalah titik dan g adalah garis. Jarak titik
 A ke garis g adalah panjang ruas garis AB dengan B
 terletak di garis *g*, dan AB tegak lurus dengan garis *g*.
- b. Cara menghitungnya
 Jarak titik ke garis bisa dihitung dengan menggunakan rumus phytagoras, selain itu juga menggunakan rumus luas segitiga dengan cara perbandingan.


Rumusnya sebagai berikut:

$$\frac{1}{2} x AB x CC' = \frac{1}{2} x ACxCB$$

Selain itu juga bisa dengan rumus phytagoras menyesuaikan soal yang dibutuhkan

Rumus pytagoras yaitu:

$$c^2 = b^2 + a^2$$

Keteragan:

c = sisi miring

b = sisi tegak

a = sisi alas

E. Pendekatan, Model dan Metode Pembelajaran

Pendekatan pembelajaran : pendekatan saintifik

Model pembelajaran : Discovery Learning

Metode pembelajaran : Tanya jawab,

diskusi kelompok, penugasan

F. Media Pembelajaran

Geogebra

G. Sumber Belajar

Buku siswa dan buku guru kelas XII

Buku referensi lain

Internet

H. Langkah - Langkah Pembelajaran

Kegia	Deskripsi Kegiatan		Peng	org	anisasi
tan			an		1
			Wakt	u	Siswa
Penda	1.	Guru mengondisikan	4 men	it	K
hulua		kelas, membuka pelajaran			
n		dengan salam, berdo'a			
		dan presensi kehadiran			
		(PPK religius)			
	2.	Guru melakukan	3	n	K
		apersepsi dengan		e	
		mengajukan pertanyaan		n	
		"apa rumus luas		i	
		segitiga?"(menanya,		t	
		interaksi, komunikasi)			
	3.	Siswa diberi gambaran	2	n	K
		tentang manfaat		e	
		mempelajari		n	

perbandingan dalam kehidupan sehari-hari. dan diberi motivasi melalui surat An-Nahl ayat 68 وَاوْحٰى رَبُّكَ إِلَى النَّحْلِ اَنِ اتَّخِذِيْ مِنَ الْجِبَالِ بُيُوْتًا وَّمِنَ الشَّجَرِ وَمِمَّا يَعْرِ شُوْنُ Artinya: "Dan Tuhanmu mengilhamkan kepada lebah, "Buatlah sarang di gunung-gunung, di pohon-pohon kayu, dan di tempat-tempat yang dibikin manusia" Kata sarang disini menunjukkan bahwa dimensi tiga yaitu bangun ruang yang terbentuk dari sarang lebah yaitu prism aini menujukan bahwa

			1	
		dimensi tiga juga berada		
		di kehidupan sehari-hari		
		, karena bentuk sarang		
		lebah merupakan bentuk		
		tiga dimensi (PPK		
		religius dan PPK rasa		
		ingin tahu)		
	4.	Guru menyampaikan	2 menit	K
		tujuan pembelajaran yang		
		akan dicapai dan teknik		
		penilaian (PPK rasa ingin		
		tahu)		
Inti		(Stimulus)	10	K
	1.	Peserta didik mengamati	menit	
		bangun ruang kubus yang		
		ada dikelas. (Rasa Ingin		
		Tahu, Mengamati, Literasi,		
		Analitis, melakukan)		
		(Stimulation atau		
		pemberian rangsangan)		
	(Id	lentifikasi Masalah)	10	I
			menit	

2.	Peserta didik diberi		
	kesempatan untuk		
	menanyakan apa yang		
	didapat dari hasil		
	pengamatan "contoh dari		
	jarak titik ke garis yang		
	mana ?". (Menanya,		
	critical thinking, Rasa		
	Ingin Tahu, Kritis)		
	(Problem Statement atau		
	identifikasi masalah)		
L			_
(Pe	engumpulan Data)	20	G
(Pe	engumpulan Data) Guru membagi beberapa	20 menit	G
			G
	Guru membagi beberapa		G
	Guru membagi beberapa kelompok, Setiap		G
	Guru membagi beberapa kelompok, Setiap kelompok diminta untuk		G
	Guru membagi beberapa kelompok, Setiap kelompok diminta untuk bekerjasama mencari		G
	Guru membagi beberapa kelompok, Setiap kelompok diminta untuk bekerjasama mencari rumus untuk menghitung		G
	Guru membagi beberapa kelompok, Setiap kelompok diminta untuk bekerjasama mencari rumus untuk menghitung jarak titik ke garis dan		G
	Guru membagi beberapa kelompok, Setiap kelompok diminta untuk bekerjasama mencari rumus untuk menghitung jarak titik ke garis dan mencari sumber materi		G
	Guru membagi beberapa kelompok, Setiap kelompok diminta untuk bekerjasama mencari rumus untuk menghitung jarak titik ke garis dan mencari sumber materi yang ada dalam buku		G

	Menalar, Kolaborasi,		
	Komunikasi, Literasi,		
	Bekerja Sama, Toleransi).		
	(Data Collection)		
	(Pengolahan Data)	15	G
4.	Secara berkelompok	menit	ď
т.	•	meme	
	siswa diperintah untuk		
	mengerjakan LKPD		
	dengan cara yang telah		
	ditemukan dan juga		
	rumus yang telah		
	dipelajari sebelumnya di		
	buku serta mencoba		
	geogebra untuk		
	menyelaraskan hasil		
	sehingga menemukan		
	solusinya dengan diskusi		
	kelompok (Kolaborasi,		
	komunikasi, menghargai,		
	bekerjasama) (Data		
	Processing)		

	(Pe	embuktian)	10	G
	5.	Mempresentasikan hasil	menit	
		diskusi yang telah		
		dikerjakan (Menalar,		
		Mengevauasi, Literasi		
		menulis, Mandiri dan		
		Tekun, Mencoba,,		
		Menganalisis, Literasi		
		Membaca dan menulis)		
		(Verification atau analisis		
		data)		
Penut		(penarikan kesimpulan)	2 menit	ŀ
up	1.	Siswa dibimbing guru		
		menyimpulkan materi		
		dimensi tiga tentang jarak		
		titik ke garis yang sudah		
		dibahas		
		(mengkomunikasikan)		
	2.	Siswa dengan arahan	6menit	K
		guru merefleksikan		
		dengan memberikan		
		pertanyaan terkait materi		
		yang belum di pahami		

	dan melakukan evaluasi		
	(tes tertulis) terhadap		
	kegiatan pembelajaran		
	(refleksi, komunikasi,		
	menalar)		
3.	Siswa diminta	2menit	I
	mempelajari materi		
	selanjutnya dan diberi		
	tugas untuk mencoba		
	geogebra mengenai jarak		
	titik ke garis dirumah		
	(mandiri,		
	bertanggungjawab,		
	kolaborasi)		
4.	Guru mengarahkan siswa	2 menit	K
	untuk berdo'a dan		
	mengakhiri pembelajaran		
	dengan salam penutup		
	(PPK religius)		

I : Individu, K : Klasikal, G : Kelompok

I. Penilaian Hasil Belajar

Teknik Penilaian

a) Penilaian Sikap : Kerjasama

b) Penilaian Pengetahuan: Kuis/tes tertulis tentang peluang kejadian sederhana

c) Ketrampilan : Portofolio

Instrumen Penilaian Sikap

No.	Nama	Bernalar kritis			
	siswa	Memahami	Mampu	Menemukan	
		konsep dari	memecahkan	cara untuk	
		media	masalah	menyelaraskan	
		geogebra	dimensi tiga	penyelesaian	
			melalui media	dengan media	
			geogebra	geogebra	
1.					
2.					

Semarang, 14 Juli 2023

Mengetahui,

Kepala Madrasah Aliyah Negeri

2 Kota Semarang

NIP. 196508021996031001

Guru Mata Pelajaran

AMP

Choirul Aini Mustaghfiroh

Lampiran 1

INSTRUMEN PENILAIAN TES TERTULIS DAN PENGETAHUAN

KISI-KISI SOAL

KOMPETEN	INDIKATOR	NO	SOAL	BEN
SI DASAR	SOAL	SO		TUK
		AL		SOAL
3.3 Mendesk	3.3.1	1	1. Sebua	Uraia
ripsikan	Mengidentifik		h	n
jarak	asi jarak dari		kubus	
dalam	titik ke garis		ABCD	
ruang	dalam ruang		.EFGH	
(antar			denga	
titik,titik			n	
ke garis,			Panja	
dan titik			ng	
ke			rusuk	
bidang)			20	
			cm.	
			hitun	
			glah	
			jarak	

					titik E	
					ke	
					garis	
					BD?	
4.2 Menentu	4.2.1	Meny	2	2.	Diket	Uraia
kan jarak		elesai			ahui	n
dalam		kan			kubus	
ruang		masal			ABCD	
(antar		ah			.EFGH	
titik,titik		yang			denga	
ke garis,		berkai			n	
dan titik		tan			Panja	
ke		denga			ng	
bidang)		n			rusuk	
		jarak			12	
		dari			cm.	
		titik			tentu	
		ke			kan	
		garis			jarak	
		dalam			titik A	
		ruang			ke	

	garis	
	BH!	
		garis BH!

KUNCI JAWABAN TES TERTULIS

4.2.3.1 Panjang garis AB adalah 4 cm Maka, jarak titik A ke F adalah diagonal sisi. Sehingga :

$$AF = s\sqrt{2} = 4\sqrt{2} cm$$

Jadi, jarak titik A ke F adalah $4\sqrt{2}$ cm

4.2.3.2 Kita lihat segitiga BDH

Mencari nilai BD

$$BD^{2} = AB^{2} + AD^{2}$$

$$BD = \sqrt{8^{2} + 6^{2}}$$

$$BD = \sqrt{64 + 36}$$

$$BD = \sqrt{100}$$

$$BD = 10 cm$$

Maka, HB adalah

$$HB^{2} = BD^{2} + DH^{2}$$

$$HB = \sqrt{10^{2} + 24^{2}}$$

$$HB = \sqrt{100 + 576}$$

$$HB = \sqrt{676}$$

$$HB = 26 cm$$

Jadi, jarak titik H ke titik B adalah 26 cm

Lampiran 3

Materi Pokok : Dimensi Tiga

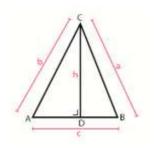
Tujuan Pembelajaran:

- 1. Mengidentifikasi jarak dari titik ke garis dalam ruang
- 2. Menyelesaikan masalah yang berkaitan dengan jarak dari titik ke garis dalam ruang

Kelompok :

Anggota Kelompok:

Ι.	•••••
2.	
3.	
4.	
5.	
6	


Petunjuk:

- 1. Isilah identitas pada bagan yang telah disediakan
- 2. Bacalah dan pahami LKPD
- Diskusikan bersama anggota kelompok yang sudah ditentukan
- 4. Jawablah pertanyaan pada tempat yang disediakan
- 5. Tanyakan pada guru jika terdapat hal yang kurang jelas
- 6. Setelah selesai megerjakan LKPD, setiap perwakilan kelompok mempresentasikan hasil diskusi kelompok Perhatikan permasalahan di bawah ini!

Dua kapal tanker berangkat dari titik yang sama dengan arah berbeda sehingga membentuk sudut 60°. Jika kapal pertama bergerak dengan kecepatan 30 km/jam, dan kapal kedua bergerak dengan kecepatan 25 km/jam.

Langkah pertama

Untuk memudahkan penyelesaian masalah di atas, kita bisa membentuk segitiga seperti gambar di bawah.

Berdasarkan ΔDBC maka dapat diperoleh tiga persamaan seperti berikut.

Sin B =
$$\frac{h}{a} \rightarrow h = \cdots . Sin ...$$

$$\mathbf{Cos} \, \mathbf{B} = \frac{1}{a} \to DB = \text{a. Cos } \dots$$

$$AD = ... - DB = ... - a. Cos B$$

Dari ΔADC dan teorema pythagoras dapat diperoleh persamaan di bawah

Aturan Cosinus

Untuk sembarang segitiga ABC, dengan panjang sisi-sisi a, b, c dan ∠A, ∠B, ∠C berlaku:

$$a^2 =$$

$$h^2 =$$

$$c^2 =$$

$$b^2 = c^2 - 2ac \cdot Cos B + \dots$$

$$b^2 = c^2 - 2ac \cdot Cos B + a^2$$

Amatilah dan cobalah media geogebra di laptop kelompok masing-masing

Masalah 1

Diketahui kubus ABCD.EFGH dengan panjang rusuk 6 cm. Jika T titik tengah HG, R titik tengah CG, maka jarak R ke BT adalah ... cm

Kalian kerjakan manual pada kolom yang disediakan

Coba croscek dengan klik dalam geogebra bagian titik R ke
BT berapa panjangnya?
Apakah panjangnya sama dengan jawaban kalian?
Masalah 2
Gambarlah Kubus ABCD.EFGH dengan Panjang rusuk 10 cm
dan coba hitunglah jarak titik B ke garis EG!
Kalian kerjakan manual pada kolom yang disediakan
Coba croscek dengan klik dalam geogebra bagian garis B ke
garis EG berapa panjangnya?
Apakah panjangnya sama dengan jawaban kalian?

KUNCI JAWABAN LKPD

Masalah 1

Jarak titik R ke garis BT adalah panjang ruas garis PR. Segitiga BCR siku-siku di titik C, maka:

$$BR = \sqrt{(BC)^2 + (CR)^2}$$
$$= \sqrt{6^2 + 3^2}$$
$$= \sqrt{36 + 9}$$
$$= \sqrt{45}$$
$$= 3\sqrt{5}$$

Segitiga RGT siku-siku di titik G, maka:

$$RT = \sqrt{(RG)^2 + (GT)^2}$$
$$= \sqrt{(3)^2 + (3)^2}$$
$$= \sqrt{9 + 9}$$
$$= \sqrt{18}$$
$$= 3\sqrt{2}$$

BG diagonal sisi kubus, maka $BG = 6\sqrt{2}$ Segitiga BGT siku-siku di titik G, maka:

$$BT = \sqrt{(BG)^2 + (GT)^2}$$
$$= \sqrt{(6\sqrt{2})^2 + (3)^2}$$
$$= \sqrt{72 + 9}$$
$$= \sqrt{81}$$

Pada segitiga BRT, berlaku aturan cosinus sebagai berikut:

$$\cos < RBT = \frac{BR^2 + BT^2 - RT^2}{2.BR.BT}$$

$$= \frac{(3\sqrt{5})^2 + 9^2 - (3\sqrt{2})^2}{2.3\sqrt{5}.9}$$

$$= \frac{45 + 81 - 18}{54\sqrt{5}}$$

$$= \frac{108}{54\sqrt{5}}$$

$$= \frac{2}{\sqrt{5}}$$

Dengan perbandingan trigonometri diperoleh:

$$sin < RBT = \frac{1}{\sqrt{5}}$$

Luas segitiga RBT:

$$\frac{1}{2} .BT .PR = \frac{1}{2} .BT .BR . \sin < RBT$$

$$PR = BR . \sin < RBT$$

$$PR = 3\sqrt{5} . \frac{1}{\sqrt{5}}$$

$$PR = 3$$

Jadi, jarak titik R ke BT adalah garis PR yaitu 3 cm.

Masalah 2

Jarak titik B ke EG

Kita cari dulu Panjang BO dengan O titik tengah EG

$$OF = \frac{1}{2} HF = \frac{1}{2} 10\sqrt{2} = 5\sqrt{2}$$

$$BO = \sqrt{(OF)^2 + (BF)^2}$$

$$= \sqrt{(5\sqrt{2})^2 + 10^2}$$

$$= \sqrt{50 + 100}$$

$$= \sqrt{150}$$

$$= 5\sqrt{6}$$

Jadi, jarak titik B ke garis EG adalah $5\sqrt{6}$

Lampiran 4

LEMBAR PENGAMATAN PENILAIAN KETERAMPILAN

Mata Pelajaran : Matematika

Kelas / Semester : XII / Ganjil

Tahun Pelajaran: 2023/2024

Indikator terampil menerapkan konsep/prinsip dan strategi pemecahan masalah yang berkaitan dengan peluang kejadian sederhana

- Kurang terampil, jika sama sekali tidak terampil dalam pemecahan masalah berkaitan dengan dimensi tiga jarak titik ke garis
- 2. Terampil, jika menunjukkan sudah ada usaha untuk terampil dalam pemecahan masalah yang berkaitan dengan dimensi tiga jarak titik ke garis
- 3. Sangat terampil, jika menunjukkan adanya usaha untuk terampil dalam pemecahan masalah yang berkaitan dengan dimensi tiga jarak titik ke garis.

Tuliskan tanda centang ($\sqrt{\ }$) pada kolom sesuai hasil

No	Nama Siswa	Keterampilan					
		Terampil dala	Terampil dalam menyelesaikan				
		masalah yang berkaitan dengan					
		Dimensi Tiga jarak titik ke garis					
		KT	Т	ST			
1							
2							
3							
4							
5							

Keterangan

KT : Kurang Terampil

T : Terampil

ST : Sangat Terampil

Lampiran 70 Rencana Pelaksanaan Pembelajaran

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) KELAS EKSPERIMEN PERTEMUAN 3

Rencana Pelaksanaan Pembelajaran

(RPP)

Nama Sekolah: MAN 2 Kota Semarang

Mata Pelajaran : Matematika Wajib

Kelas/ Semester : XII / Ganjil

Materi Pokok : Dimensi Tiga

Alokasi Waktu : 2 x 45 menit

A. Kompetensi Inti

- Menghayati dan mengamalkan ajaran agama yang dianutnya.
- 2. Menunjukkan perilaku jujur, disiplin, tanggung jawab, peduli (gotong royong, kerjasama, toleran, damai), santun, responsif, dan pro-aktif sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia.

- 3. Memahami, menerapkan, dan menganalisis pengetahuan faktual, konseptual, prosedural, berdasarkan rasa ingin tahunya tentang ilmu teknologi, pengetahuan, seni, budaya. humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta penerapan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah.
- 4. Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengat pengembangan dari yang dipelajarinya di sekolah secara mandiri, dan mampu menggunakan metode sesuai kaidah keilmuan

B. Kompetensi Dasar dan Indikator

3.3.1	Mengidentifikasi jarak antar
	titik dalam ruang
3.3.2	Mengidentifikasi jarak dari
	titik ke garis dalam ruang
3.3.3	Mengidentifikasi jarak dari
	titik ke bidang dalam ruang
	3.3.2

4.3 Menentukan jarak	4.3.1	Menyelesaikan masalah yang
dalam ruang		berkaitan dengan jarak antar
(antar titik,titik ke		titik dalam ruang
garis, dan titik ke	4.3.2	Menyelesaikan masalah yang
bidang)		berkaitan dengan jarak dari
		titik ke garis dalam ruang
	4.3.3	Menyelesaikan masalah yang
		berkaitan dengan jarak dari
		titik ke bidang dalam ruang

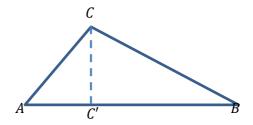
C. Tujuan Pembelajaran (KD 3.1.1 dan 4.1.1)

Melalui pembelajaran *Discovery Learning* dengan *Kerjasama* siswa dapat:

- 1. Mengidentifikasi jarak dari titik ke bidang dalam ruang
- Menyelesaikan masalah yang berkaitan dengan jarak dari titik ke bidang dalam ruang

3.

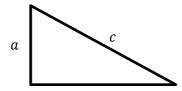
D. Materi Pembelajaran


a. Pengertian jarak titik ke bidang

jarak titik ke bidang adalah panjang ruas garis yang ditarik dari suatu titik sampai memotong tegak lurus suatu bidang

b. Cara menghitungnya

Jarak titik ke garis bisa dihitung dengan menggunakan rumus phytagoras, selain itu juga menggunakan rumus luas segitiga dengan cara perbandingan.


Rumusnya sebagai berikut:

$$\frac{1}{2} x AB x CC' = \frac{1}{2} x ACxCB$$

Selain itu juga bisa dengan rumus phytagoras menyesuaikan soal yang dibutuhkan

Rumus pytagoras yaitu:

b

$$c^2 = b^2 + a^2$$

Keteragan:

c = sisi miring

b = sisi tegak

a = sisi alas

E. Pendekatan, Model dan Metode Pembelajaran

Pendekatan pembelajaran : pendekatan saintifik

Model pembelajaran : Discovery Learning

Metode pembelajaran : Tanya jawab, diskusi

kelompok, penugasan

F. Media Pembelajaran

Geogebra

G. Sumber Belajar

Buku siswa dan buku guru kelas XII

Buku referensi lain

Internet

H. Langkah - Langkah Pembelajaran

Kegiatan		Deskripsi Kegiatan	P	eng	organis	asian
			V	Vak	tu	Siswa
Pendahuluan	1.	Guru mengondisikan	3 men	it		K
		kelas, membuka				
		pelajaran dengan				
		salam, berdo'a dan				
		presensi kehadiran				
		(PPK religius)				
	2.	Guru melakukan		4	menit	K
		apersepsi dengan				
		mengajukan				
		pertanyaan "apakah				
		kalian masih ingat				
		tentang rumus				
		perbandingan				
		segitiga?"(menanya,				
		interaksi, komunikasi)				
	3.	Siswa diberi	2	m	enit	K
		gambaran tentang				
		manfaat mempelajari				
		perbandingan dalam				

kehidupan seharihari. dan diberi motivasi melalui surat Al Hajj ayat 40

الَّذِيْنَ أُخْرِجُوْا مِنْ َٰ
دِيَارِ هِمْ بِغَيْرِ حَقٍّ إِلَّا اَنْ
يَقُوْلُوا رَبَّنَا اللهُ أُولُولَا
دَفْعُ اللهِ النَّاسَ بَعْضَهُمْ
بِبَعْضٍ لَّهُدِّمَتْ صَوَامِعُ
وَبِيَعٌ وَّصَلَوْتٌ وَمَسْجِدُ
وَبِيَعٌ وَصَلَوْتٌ وَمَسْجِدُ
وَبِيَعٌ وَصَلَوْتٌ وَمَسْجِدُ
وَلِينَعٌ وَصَلَوْتٌ وَمَسْجِدُ
وَلِينَعٌ وَصَلَوْتٌ وَمَسْجِدُ
وَلَيْنُصُرَنَ اللهُ مَنْ يَنْصُرُهُ

Artinya:

"(yaitu) orang-orang yang diusir dari kampung halamannya tanpa alasan yang benar, hanya karena mereka berkata, "Tuhan kami ialah Allah." Seandainya Allah tidak menolak (keganasan) sebagian manusia dengan sebagian yang lain, tentu telah dirobohkan biarabiara Nasrani, gereja-gereja, rumah-rumah ibadah orang Yahudi dan masjid-masjid, yang di dalamnya banyak disebut nama Allah, Allah pasti akan menolong orang yang menolong (agama)-Nya. Sungguh, Allah Mahakuat. Mahaperkasa." Kata gereja, masjid disini menunjukkan bahwa dimensi tiga

	juga berada di	
	kehidupan sehari-	
	hari , karena bentuk	
	masjid dan gereja	
	merupakan bentuk	
	tiga dimensi <i>(PPK</i>	
	religius dan PPK rasa	
	ingin tahu)	
	4. Guru menyampaikan 2 menit	K
	tujuan pembelajaran	
	yang akan dicapai	
	dan teknik penilaian	
	(PPK rasa ingin tahu)	
Inti	(Stimulus) 10 menit	K
	1. Peserta didik	
	mengamati gambar	
	limas persegi yang	
	disajikan oleh guru.	
	(Rasa Ingin Tahu,	
	Mengamati, Literasi,	
	Analitis, melakukan)	
	(Stimulation atau	

	pemberian		
	rangsangan)		
	(Identifikasi Masalah)	10 menit	I
2.	Peserta didik diberi		
	kesempatan untuk		
	menanyakan terkait		
	materi dimensi tiga "		
	Bagaimana contoh		
	dari jarak titik ke		
	bidang dalam limas		
	persegi ?". (Menanya,		
	critical thinking, Rasa		
	Ingin Tahu, Kritis)		
	(Problem Statement		
	atau identifikasi		
	masalah)		
	(Pengumpulan data)	20 menit	G
3.	Guru membagi		
	beberapa kelompok,		
	Setiap kelompok		
	diminta untuk		
	bekerjasama mencari		
	sumber materi yang		

		I	T
	ada dalam buku		
	mengenai		
	permasalahan yang		
	disajikan <i>(Mencoba,</i>		
	Menalar, Kolaborasi,		
	Komunikasi, Literasi,		
	Bekerja Sama,		
	Toleransi). (Data		
	Collection)		
	(Pengolahan Data)	15 menit	G
4.	Secara berkelompok		
	siswa diperintah		
	untuk mengerjakan		
	LKPD dengan cara		
	yang telah ditemukan		
	di buku dan mencoba		
	geogebra untuk		
	menyelaraskan hasil		
	sehingga menemukan		
	solusinya dengan		
	diskusi kelompok		
	.(Kolaborasi,		

		komunikasi,		
		menghargai,		
		bekerjasama) (Data		
		processing)		
		(Pembuktian)	10 menit	G
	5.	Mempresentasikan		
		hasil diskusi yang		
		telah dikerjakan		
		(Menalar,		
		Mengevauasi, Literasi		
		menulis, Mandiri dan		
		Tekun, Mencoba,,		
		Menganalisis, Literasi		
		Membaca dan		
		menulis) (Verification		
		atau analisis data)		
Penutup		(Penarikan	2 menit	K
		Kesimpulan)		
	1.	Siswa dibimbing guru		
		menyimpulkan		
		materi dimensi tiga		
		tentang jarak titik ke		
		bidang yang sudah		

	dibahas		
	(mengkomunikasikan)		
2.	Siswa dengan arahan	4 menit	K
	guru merefleksikan		
	dengan memberikan		
	pertanyaan terkait		
	materi yang belum di		
	pahami dan		
	melakukan evaluasi		
	(tes tertulis)		
	terhadap kegiatan		
	pembelajaran		
	(refleksi, komunikasi,		
	menalar)		
3.	Siswa diminta	2 menit	I
	mempelajari materi		
	selanjutnya dan		
	diberi tugas untuk		
	mencoba geogebra		
	mengenai jarak titik		
	ke bidang dirumah		
	(mandiri,		

	bertanggungjawab, kolaborasi)		
4.	Guru mengarahkan	2 menit	K
	siswa untuk berdo'a		
	dan mengakhiri		
	pembelajaran dengan		
	salam penutup (PPK		
	religius)		

I : Individu, K : Klasikal, G : Kelompok

I. Penilaian Hasil Belajar

1) Teknik Penilaian

a) Penilaian Sikap : Kerjasama

b) Penilaian Pengetahuan : Kuis/tes tertulis tentang

peluang kejadian sederhana

c) Ketrampilan : Portofolio

2) Instrumen Penilaian Sikap

No.	Nama	Kerja sama		
	siswa	Bersedia	Ringan tangan	Menghargai
		menerima	membantu	pendapat
		tanggung	teman	teman
		jawab	sekelompok	sekelompok
1.				
2.				

Semarang, 14 Juli 2023

Mengetahui,

Kepala Madrasah Aliyah Negeri Kota Semarang

Guru Mata Pelajaran

2110

Choirul Aini Mustaghfiroh

Lampiran 2

INSTRUMEN PENILAIAN TES TERTULIS DAN PENGETAHUAN

KISI-KISI SOAL

KOMPETENS	INDIK	ATOR	NO	SO	BEN
I DASAR	SOAL		SOAL	AL	TUK
					SOAL
3.3. Mendesk	3.3.1	Mengid	Diketa	1	Uraia
ripsikan		entifika	hui		n
jarak		si jarak	kubus		
dalam		dari	ABCD.E		
ruang		titik ke	FGH		
(antar		bidang	dengan		
titik,titik		dalam	panjan		
ke garis,		ruang	g rusuk		
dan titik			12 cm.		
ke			Tentuk		
bidang)			an		
			jarak		
			titik G		
			ke		

			bidang		
			HCF		
3.4 Men	4.1.3	Menye	Diketah	J.	Uraia
entu		lesaik	ui		n
kan		an	kubus		
jarak		masal	ABCD.E		
dala		ah	FGH		
m		yang	dengan		
ruan		berkai	Panjan		
g		tan	g rusuk		
(anta		denga	6 cm.		
r		n	hitungl		
titik,		jarak	ah		
titik		dari	jarak		
ke		titik	titik C		
garis		ke	ke		
, dan		bidan	bidang		
titik		g	BDHF		
ke					

bida	dalam		
ng)	ruang		

KUNCI JAWABAN TES TERTULIS

 P merupakan titik perpotongan antara diagonal EG dan HF maka,

Panjang EG yakni:

$$EG = s\sqrt{2}$$

$$EG = 12\sqrt{2}$$

Panjang PG yakni:

$$PG = \frac{1}{2}AC = 6\sqrt{2} cm$$

Panjang PC (dengan teorema Pythagoras) yakni:

$$PC^{2} = PG^{2} + CG^{2}$$

 $PC^{2} = (6\sqrt{2})^{2} + 12^{2}$
 $PC^{2} = 72 + 144$
 $PC = \sqrt{216}$
 $PC = 6\sqrt{6} cm$

Dengan menggunakan kesebangunan segitiga maka ΔCPX sebagun dengan ΔPGC , maka:

$$\frac{PG}{PC} = \frac{GX}{CG}$$
$$\frac{6\sqrt{2}}{6\sqrt{6}} = \frac{GX}{12}$$

$$\frac{\sqrt{2}}{\sqrt{6}} = \frac{GX}{12}$$

$$GX = \frac{12\sqrt{2}}{\sqrt{6}}$$

$$GX = \frac{12}{\sqrt{3}}$$

$$GX = 4\sqrt{3}$$

Jadi, jarak titik G ke bidang HCF adalah $4\sqrt{3}$

2. AB adalah 6 cm

Karena AC diagonal sisi maka,

$$AC = s\sqrt{2} = 6\sqrt{2}$$

Misal diagonal AC dab BD adalah titik P. maka, jarak titik C ke bidang BDHF adalah Panjang garis CP, maka, diperoleh:

$$CP = \frac{1}{2}AC = \frac{1}{2}(6\sqrt{2}) = 3\sqrt{2}$$

Jadi, jarak titik C ke bidang BDHF adalah $3\sqrt{2}$

Lampiran 3

Tujuan Pembelajaran:

- Mengidentifikasi jarak dari titik ke garis dalam ruang
- 2. Menyelesaikan masalah yang berkaitan dengan jarak dari titik ke garis dalam ruang

Kelompok :

1)	
2)	
3)	

Anggota Kelompok:

4)

5)

6)	
Pet	cunjuk :
1.	Isilah identitas pada bagan yang telah disediakan
2.	Bacalah dan pahami LKPD
3.	Diskusikan bersama anggota kelompok yang sudah
	ditentukan
4.	Jawablah pertanyaan pada tempat yang disediakan
5.	Tanyakan pada guru jika terdapat hal yang kurang jelas
6.	Setelah selesai megerjakan LKPD, setiap perwakilan
	kelompok mempresentasikan hasil diskusi kelompok
	natilah dan cobalah media geogebra di laptop kelompok sing-masing
Ma	salah 1
Gai	mbarlah Kubus ABCD.EFGH dengan Panjang rusuk 4 cm
col	oa hitunglah jarak titik H ke bidang AFC!
Kal	lian kerjakan manual pada kolom yang disediakan

Apakah panjangnya	sama dengan	jawaban	kalian?
-------------------	-------------	---------	---------

Masalah 2

Gambarlah Limas persegi ABCD.E dengan panjang sisi alas 6 cm dan Panjang sisi tegaknya 10 cm. Tentukan jarak titik puncak ke bidang ABCD!

Kalian kerjakan manual pada kolom yang disediakan

Coba croscek dengan klik dalam geogebra bagian garis AE
berapa panjangnya?

Apakah panjangnya sama dengan jawaban kalian?.....

KUNCI JAWABAN LKPD

Masalah 1

Jarak titik H ke titik AFC adalah panjang garis HO. Garis HB merupakan diagonal ruang kubus ABCD.EFGH nilai HB = $s\sqrt{3}=4\sqrt{3}$. HO dan HB segaris , maka $HO=\frac{2}{3}$ HB Sehingga,

$$HO = \frac{2}{3} (4\sqrt{3})$$
$$= \frac{8\sqrt{3}}{3}$$

Jadi, jarak titik H ke bidang AFC adalah $\frac{8\sqrt{3}}{3}$

Masalah 2

Misal titik diagonal garis AC dan BD adalah O Sehingga

$$AO = \frac{1}{2} AC = \frac{1}{2} (6\sqrt{2}) = 3\sqrt{2}$$

$$TO = \sqrt{TA^2 - AO^2}$$

$$= \sqrt{10^2 - (3\sqrt{2})^2}$$

$$= \sqrt{100 - 18}$$

$$= \sqrt{72}$$

$$= 6\sqrt{2}$$

Maka, jarak titik puncak ke bidang ABCD adalah $6\sqrt{2}$

Lampiran 4

LEMBAR PENGAMATAN PENILAIAN KETERAMPILAN

Mata Pelajaran : Matematika

Kelas / Semester: XII / Ganjil

Tahun Pelajaran: 2023/2024

Indikator terampil menerapkan konsep/prinsip dan strategi pemecahan masalah yang berkaitan dengan peluang kejadian sederhana

- Kurang terampil, jika sama sekali tidak terampil dalam pemecahan masalah berkaitan dengan dimensi tiga jarak titik ke bidang
- 2) Terampil, jika menunjukkan sudah ada usaha untuk terampil dalam pemecahan masalah yang berkaitan dengan dimensi tiga jarak titik ke bidang
- 3) Sangat terampil, jika menunjukkan adanya usaha untuk terampil dalam pemecahan masalah yang berkaitan dengan dimensi tiga jarak titik ke bidang

Tuliskan tanda centang $(\sqrt{\ })$ pada kolom sesuai hasil pengamatan

No	Nama Siswa	Keterampilan										
		Terampil dalam menyelesaikan masalah										
		yang berkaitan dengan Dimensi Tiga jarak										
		titik ke bidang										
		KT	Т	ST								
1												
2												
3												
4												

Keterangan

KT : Kurang Terampil

T : Terampil

ST : Sangat Terampil

Lampiran 71 Daftar Nama Kelas Eksperimen

Daftar Nama Kelas Eksperimen

NO	Nama	Kode
		Nilai Maks
1	ALVINO HAIKAL MUJIIBURAHM	P6-01
2	ARSYA DENI RIZANTO	P6-02
3	ARTIKA HIDAYATUR ROHMAH	P6-03
4	AURA SENDA EKA SUCI	P6-04
5	AURELLIA RAMADHANI	P6-05
6	BALQIS ZULAFA NUR BILBINA	P6-06
7	CRISTIAN PUTRA PRATAMA	P6-07
8	DESTA HAIDAR ALI	P6-08
9	EKSA SURYA RAMADHAN	P6-09
10	FADHILA SHOHWATUL ISLAMI	P6-10
11	FERY ADY FIRMANSYAH	P6-11
12	FITRA AKBAR	P6-12
13	FRIESCA MUFI AZHARI	P6-13
14	KANAYYA PUTRI ZERLINA	P6-14
15	KHOIRUL RIFKI PRASETYO	P6-15
16	M. ALVIN ARRYAWAN FAJAR R.	P6-16
17	MAULIDA FEBRIANA RAHMA	P6-17
18	MEILANI WIDYANINGRUM	P6-18
19	MITHA CITRA AGUSTIN	P6-19
20	MUHAMMAD AQIL MIQDADU	P6-20
21	MUHAMMAD AZRIL ABDURRAI	P6-21
22	MUHAMMAD EKA SUTIYOSO	P6-22
23	MUHAMMAD RIZKI AL FATAH	P6-23
24	NABILA WAHYU SEPTYANI	P6-24
25	NAILA AULIA SALSABILA	P6-25
26	NAVAL PURNOMO WIRA SAMU	P6-26
27	NAZRIL IRHAM	P6-27
28	NUR SALSABILA HANDAYASTRI	P6-28
29	NURUL SINTIA ERNASARI	P6-29
30	REVANDA PUTRI FILDZA D.	P6-30
31	RIDHOMAULANA RIZKY	P6-31
32	SAVRIEL RAKHA WILDAN WISAS	P6-32
	SHELVY OKTAVIA HERAWATI	P6-33
	WAHYU MARTIN SAPUTRA	P6-34
35	YUZIKA SUKMA WARDANI	P6-35
36	ZAHRA PUTRI MEISYA	P6-36

Lampiran 72 Daftar Nama Kelas Kontrol

Daftar Nama Kelas Kontrol

NO	Nama	Kode
		Nilai Maks
1	ABBILIA NISSA UTAMI	P5-01
2	ALVIEN EKA BIMA RADIPTHA	P5-02
3	AMARA GENDHIS YULISTIANA	P5-03
4	AMELIA MULYA NINGRUM	P5-04
5	ANINDYTA PUTRI REFA ZAHIR	P5-05
6	ANYA MERDEKAWATI	P5-06
7	ARIF ZAKI HALIM	P5-07
8	BIMO GURUH SAPUTRA	P5-08
9	BOGI PUTRA ANANTA	P5-09
10	BRIANISA RISMARA	P5-10
11	FARHAN EKA PUTRA	P5-11
12	FAZA LAILA TANZILURRAHMA	P5-12
13	HANAANALFI FAHREZI	P5-13
14	IKA ANISA HADIAR SALSABILL	P5-14
15	IKA SOFIYANTI	P5-15
16	IQBAL SURYA AQEEL P.	P5-16
17	IZZA YUSRIA SEPTIANI	P5-17
18	JOVAN SAKTI NILNALMUNA	P5-18
19	KHAIRUN NISAKMAHARANI	P5-19
20	KHOIRUL BAGUS WICAKSONG	P5-20
21	LINTANG RADYA AZAHRA	P5-21
22	MUHAMMAD RIYANTO	P5-22
23	MUHAMMAD AKMAL ARDIYA	P5-23
24	MUHAMMAD ASNAL MATHO	P5-24
25	MUHAMMAD SYAFI' AL MUST	P5-25
26	MUHAMMAD SYAFI'I R. RIFQI	P5-26
27	NAELLA AYU AZ-ZAHRA	P5-27
28	NAJWA MAZAYA AZLA	P5-28
29	NIHAYATUL IZZA	P5-29
30	NURUL HIDAYAH	P5-30
31	R. RASYA RAMADHANTI SUDA	P5-31
	RAFIF NARARYA	P5-32
	RENALDI ANGGORO DWI SAP	
	RIZAL WISNU IRKHAM	P5-34
	TIRTA PUSPASARI	P5-35
	WAHYU SURYAATMAJA	P5-36

Lampiran 73 Nilai Motivasi Belajar Siswa Kelas Kontrol

Nilai Motivasi Belajar Siswa Kelas Kontrol

Respondet	Soal 1	Soal 2	Soal 3	Soal 4	oal 5	Soal 6	Soal 7	Soal 8	Soal 9	Soal 10	Soal 11	Soal 12	Soal 13	Soal 14	Soal 15	Soal 16	Soal 17	Soal 18	Soal19	soal 20	Soal 21	Soal 22	Soal 23	Soal 24	Jumlah ski	Nilai
P5-23	2	2		2	2	2 :	3	2 2	. 1		3	3 2	. 2	3	1	2	2	2	. 1	. 1	. 3	1	3	2	54	56,25
P5-06	3	3	2	3	2	3 3	3	2 7	3	3	3	2 7	2	3	3	3	2	0	1	1	3	(3	3	56	58,33
P5-01	1	2	3	3	3	4	3	2 1	. 4		}	4 7	2	3	3	3	3	2	. 1	3	3	1	. 3	2	65	67,71
P5-16	3	3	3	2	2	3	4	1 7	. 3		!	3 1	. 3	3	1	3	3	3	3	3	4	1	3	2	65	67,71
P5-08	1	1	3	2	3	3 4	4	2 :	4		!	3 1	. 3	1	1	3	2	2	. 3	3	4	1	4	2	65	67,71
P5-20	3	3	2	3	3	3 3	3	3	3	3	}	4 3	2	3	3	3	3	2	1	1	3	1	. 3	1	66	68,75
P5-34	1	2	3	3	2	3 3	3	2 7	. 3		!	3 3	2	3	3	3	3	2	1	3	4	1	4	3	67	69,79
P5-02	3	3	2	3	2	3 4	4	3 3	1		1	4 7	2	4	3	3	3	2	. 1	. 3	4	1	. 3	3	67	69,79
P5-30	3	3		3	3	3 3	3	3 3	3		3	3 3	3	3	3	3	3	2	. 3	1	. 3	3	3	3	69	71,88
P5-33	3	3		3	3	3 3	3	2 :	4		3	3 3	2	3	3	3	3	2	. 1	. 3	4	1	. 3	4	69	71,88
P5-36	3	3	2	3	3	3 3	3	2 :	4		3	3 3	2	3	3	3	3	2	. 1	. 3	4	1	. 3	4	69	71,88
P5-31	3	3	2	3	3	3 3	3	3 3	1		1	4 3	1	4	4	3	3	2	. 3	3	1	. 3	3	4	70	72,92
P5-11	3	3	3	3	3	3 3	3	2 :	4		3	3 3	2	3	3	3	3	2	. 1	. 3	4	1	. 3	4	70	72,92
P5-25	3	3	3	3	2	3 3	3	3 3	3		3	3 3	3	3	3	3	3	3	3	3	3	3	3	2	70	72,92
P5-09	3	3		3	2	3 4	4	3 7	4	ı	!	4 3	3	1	3	3	3	2	. 3	1	. 3	1	4	4	71	73,96
P5-04	1	2	3	3	3	3 3	3	2 :	4	ı	!	3 3	4	1	4	3	3	2	1	. 3	3	3	3	4	71	73,96
P5-13	3	3		4	3	2 :	3	3 3	4		1	4 3	2	4	3	3	3	2	. 1	. 3	3	1	. 3	3	71	73,96
P5-03	3	3	}	4	2	2 3	3	3 3	4		!	4 7	. 3	3	3	3	4	3	3	1	4	1	. 3	2	72	75,00
P5-24	3	3	2	3	3	2 1	4	3 3	4	ı	!	3 3	3	3	1	3	4	3	3	1	4	3	4	3	73	76,04
P5-07	3	3		3	3	3 3	3	3 3	3		!	3	2	3	3	3	3	2	3	1	4	3	4	4	73	76,04
P5-35	1	2	3	3	3	3 3	3	3 3	4		!	4 3	4	1	4	3	3	2	1	. 3	4	3	4	4	75	78,13
P5-10	3	3	3	2	4	2 :	3	3 4	. 4		!	4 3	3	3	3	3	4	3	3	3	3	3	3	3	76	79,17
P5-21	1	2	3	3	4	3	4	3	4		!	4 4	2	4	1	4	3	4	1	4	1	3	1	4	77	80,21
P5-18	4	4	}	4	3	3 3	3	3 3	4	ı	!	4 :	3	4	3	3	4	2	1	. 1	4	1	4	4	77	80,21
P5-26	3	3	3	3	3	3 3	3	4 3	4		!	3 3	3	4	1	3	3	3	3	3	4	3	4	4	78	81,25
P5-32	4	4	}	4	3	2 3	3	3 7	4		!	4 3	3	3	1	4	3	2	3	4	4	3	4	4	78	81,25
P5-15	3	3		3	3	3	3	3	4	ı	1	4	3	3	3	4	3	4	3	1	. 4	3	3	3	78	81,25
P5-14	4	4		4	3	3 3	3	4 3	4	ı	!	3 3	4	3	4	3	3	3	1	3	3	3	2	4	79	82,29
P5-22	3	3	3	3	4	4 4	4	4 4	4	ı		4 4	3	4	3	3	4	3	3	3	1	3	4	4	84	87,50
P5-17	4	4	}	4	3	4 4	4	2 4	4	ı		4 4	3	3	4	4	3	3	- 4	4	4	3	4	3	86	89,58

Lampiran 74 Nilai Motivasi Belajar Siswa Kelas Eksperimen

Nilai Motivasi Belajar Siswa Kelas Eksperimen

Responde	Soal 1	Soal 2	Soal 3	Soal 4	oal 5	Soal 6	Soal 7	Soal 8	Soal 9	Soal 10	Soal 11	Soal 12	Soal 13	Soal 14	Soal 15	Soal 16	Soal 17	Soal 18	Soal19	soal 20	Soal 21	Soal 22	Soal 23	Soal 24	Jumlah skol	Nilai
P6-06		3 2		3	2	3	+	2 7		3	1	2	1	3	3	_	3	2	2	1		3	3	3	62	64,58
P6-26	ı	4		1 :	1	4	4	1 1		3		1 2	2	1	- 2	4	2	3	2			2	4	1	62	64,58
P6-19	3	3 2		3	3 4	4	0	3 3	:	3		1 2	3	1	1	4	3	- 2	2	3	ı	1	3	2	63	65,63
P6-03	3	3		3	3	3	3	2 7		3	3	1	1 2	3	- 2	3	3	- 2	2	1		3	3	3	64	66,67
P6-18	ı	4 3		2 :	2	3	3	3 4		3		1 3	2	3	- 3	3	3	- 2	2	1	1 3	1	. 3	1	66	68,75
P6-25	3	3 2		3	3	3	2	3	3	4	3	3	2	3	- 3	3	3	- 2	2	3	ı	1	. 3	3	69	71,88
P6-08	3	3 2		3	3	3	3	3	3	4	3	3	2	3		3	3	- 2	2	3		3	3	3	70	72,92
P6-13	ı	4 3		3	3	3	3	3	3	3		1 3	2	3		3	3		2	3	1	2	3	2	70	72,92
P6-21	3	3		3 :	2	3	3	3	3	3	3	3	3	3		3	3		3	3		3	4	3	72	75,00
P6-22	ı	1 2		3	3	3	4	3 7		3	- 1	3	2	3		3	3		2			3	4	4	72	75,00
P6-27	- 13	3		3	3	3	3	3	3	3		3	4	3		3	3		3	1		3	3	3	72	75,00
P6-02		3 2		4	3	2	3	3 3	3	. 4	3	3	3	Į.	L	1 2	. 3	- 2	3	3	;	3	4	4	73	76,04
P6-11	3	3 2		3 4	4	3	3	3 3	3	3	3	3	1	3	3	1	4		3	3	3	3	4	4	73	76,04
P6-16	3	3 3		3	3	3	3	3 3	1	3	Į.	1 3	3	3	1	4	. 4		3	3	3	3	3	3	75	78,13
P6-29	3	3 3		3	3	3	3	3 3	1	3	Į.	1 3	4	1	l	4	. 4	- 1	2	3	l	3	2	4	76	79,17
P6-01	į	4		3	2 :	3	3	3 3	3	4		1 4	1 2		ı	4	4	ı	2	. 3	1	. 3	2	4	78	81,25
P6-28	3	3 3		2 :	3 4	4	3	3 3	1	4		1 3	3		3	4	2	3	4		3	3	4	2	78	81,25
P6-15	3	3 3		3	3	2	3	3 3	1	4		1 3	4		ı	3	4	3	2	. 3	Į,	3	3	4	79	82,29
P6-30	ı	1 3		3	3	3	4	3 3	1	4		1 3	3	3	3	4	3	3	3	4	3	3	3	4	80	83,33
P6-05	3	3 4		4	3	3	4	4	}	4		1 3	4	3	1	4	4	. 3	4	1		1	4	4	81	84,38
P6-07	l	4 3		4	3	3	3	3 4		4		1 4	1	Į į		4	3	3	4	. 1	l	1	3	4	81	84,38
P6-09	l	4 3		3	3	3	4	4	3	4		1 4	3			4	. 4		3	3	1	3	4	4	81	84,38
P6-24	3	3 3		4	3	3	4	3 4		4	3	3	3	3	3	4	4	3	4	3	Į,	3	4	4	83	86,46
P6-10	į	1 3		4	3	3	4	3 4		4		1 4	4		ı	4	4	3	4	1	L	3	1	4	84	87,50
P6-14	3	3		3	2	4	4	4 4		4	Į.	1 4	3	3	L	4	4		4	. I	l	1	3	4	84	87,50
P6-17	3	3 4		4	4	3	4	4	1	3		1 4	3		- 1	4	4		4	3	l	3	3	4	84	87,50
P6-20	l	4 3		3	3	4	4	4 4		4		1 4	3		ı	4	4		4		l l	1	4	4	89	92,71
P6-04	l	4		4	1	4	4	4 4		4	1	1	4		ı	4	4	ı	4	Į.	l	4	4	4	94	97,92
P6-12	l	4		4	1	4	4	4 4		4	- 4	1	4		ı	4	4	ı	4	- 4	l	4	4	4	96	100,00
P6-23	l	4		4	4	4	4	4 4		4	- 4	1	4	-	- L	4	4	- L	4	- 4	Ī	4	4	4	96	100,00

Lampiran 75 Uji Normalitas Nilai Motivasi Belajar kelas Kontrol

Uji Normalitas Nilai Motivasi Belajar kelas Kontrol

rata-rata	74,34028		range	33,33333		
simpangan baku	7,281311		banyak kelas interval	5,966995		
nilai minimum	56,25		panjang kelas interval	5,555556		
nilai maksimum	89,58333					
Kelas interval	fi	Batas xi	Nilai zi	Luas zi	Ei	Chi kuadrat
		55,5	-2,587484261			
56-61	2			0,034078	1,090488	0,75857018
		61,5	-1,763456837			
62-67	3			0,134843	4,31499	0,40074199
		67,5	-0,939429413			
68-73	12			0,280308	8,969859	1,02362309
		73,5	-0,115401989			
74-79	5			0,306658	9,813065	2,36068885
		79,5	0,708625435			
80-85	6			0,176598	5,651129	0,02153751
		85,5	1,532652859			
86-91	2			0,053461	1,710757	0,04890331
		91,5	2,356680283			
					t hitung	4,61406494
					t tabel	40,1132721

Lampiran 76 Uji Normalitas Nilai Motivasi Belajar Eksperimen

Uji Normalitas Nilai Motivasi Belajar Eksperimen

rata-rata	80,10417		range	35,41667		
simpangan baku	9,883443		Banyak Kelas interval	5,966995		
nilai minimum	64,58333		Panjang Kelas Interval	5,902778		
nilai maksimum	100					
Kelas Interval	fi	Batas xi	Nilai zi	Luas zi	Ei	Chi kuadrat
		63,5	-1,679998258			
64-69	5			0,095174	3,045573	1,25420922
		69,5	-1,072922351			
70-75	6			0,17901	5,728311	0,01288594
		75,5	-0,465846443			
76-81	6			0,235493	7,535775	0,31298754
		81,5	0,141229465			
82-87	9			0,216706	6,934603	0,61515633
		87,5	0,748305372			
88-93	1			0,13949	4,463678	2,68770848
		93,5	1,35538128			
91-96	4			0,062793	2,009389	1,97200763
		99,5	1,962457187			
					t hitung	6,85495515
					t tabel	42,5569678

Lampiran 77 Uji Homogenitas Nilai Motivasi Belajar Kelas Eksperimen dan Kontrol

Uji Homogenitas Nilai Motivasi Belajar Kelas Eksperimen dan Kontrol

responden	Kontrol	responden	Eksperimen			
P5-23	56,25	P6-06	64,58			
P5-06	t	P6-26	64,58			
P5-01	67,71	P6-19	65,63			
P5-16	67,71	P6-03	66,67			
P5-08	67,71	P6-18	68,75			
P5-20	68,75	P6-25	71,88			
P5-34	69,79	P6-08	72,92			
P5-02	69,79	P6-13	72,92			
P5-30	-	P6-21	75,00			
P5-33	t	P6-22	75,00			
P5-36	71,88	P6-27	75,00			
P5-31	72,92	P6-02	76,04			
P5-11	72,92	P6-11	76,04			
P5-25	72,92	P6-16	78,13			
P5-09	73,96	P6-29	79,17			
P5-04	73,96	P6-01	81,25			
P5-13	73,96	P6-28	81,25			
P5-03	75,00	P6-15	82,29			
P5-24	76,04	P6-30	83,33			
P5-07	76,04	P6-05	84,38			
P5-35	78,13	P6-07	84,38			
P5-10	79,17	P6-09	84,38			
P5-21	80,21	P6-24	86,46			
P5-18	80,21	P6-10	87 <i>,</i> 50			
P5-26	81,25	P6-14	87,50			
P5-32	81,25	P6-17	87 <i>,</i> 50			
P5-15	81,25	P6-20	92,71			
P5-14	82,29	P6-04	97,92			
P5-22	87,50	P6-12	100,00			
P5-17	89,58	P6-23	100,00			
S ²	53,01749		97,6824413			
F hitung	1,842456891					
F tabel	1,860811435					

<u>Lampiran 78 Uji T-Test Nilai Motivasi Belajar Kelas</u> <u>Eksperimen dan Kontrol</u>

Uji T-Test Nilai Motivasi Belajar Kelas Eksperimen dan Kontrol

P5-23	Responden		Responden	Eksperimen
P5-01 67,71 P6-21 65,63 P5-16 67,71 P6-03 66,67 P5-08 67,71 P6-20 68,75 P5-20 68,75 P6-27 71,88 P5-34 69,79 P6-08 72,92 P5-02 69,79 P6-15 72,92 P5-30 71,88 P6-23 75,00 P5-33 71,88 P6-24 75,00 P5-36 71,88 P6-30 75,00 P5-31 72,92 P6-02 76,04 P5-11 72,92 P6-12 76,04 P5-25 72,92 P6-18 78,13 P5-09 73,96 P6-33 79,17 P5-04 73,96 P6-32 81,25 P5-13 73,96 P6-32 81,25 P5-03 75,00 P6-17 82,29 P5-24 76,04 P6-34 83,33 P5-07 76,04 P6-05 84,38 P5-10 79	P5-23	56,25	P6-06	64,58
P5-16 67,71 P6-03 66,67 P5-08 67,71 P6-20 68,75 P5-20 68,75 P6-27 71,88 P5-34 69,79 P6-08 72,92 P5-02 69,79 P6-15 72,92 P5-30 71,88 P6-23 75,00 P5-33 71,88 P6-24 75,00 P5-36 71,88 P6-30 75,00 P5-31 72,92 P6-02 76,04 P5-11 72,92 P6-12 76,04 P5-25 72,92 P6-12 76,04 P5-25 72,92 P6-18 78,13 P5-09 73,96 P6-33 79,17 P5-04 73,96 P6-33 79,17 P5-03 75,00 P6-17 82,29 P5-03 75,00 P6-17 82,29 P5-24 76,04 P6-32 81,25 P5-35 78,13 P6-07 84,38 P5-10 79	P5-06	58,33	P6-29	64,58
P5-08 67,71 P6-20 68,75 P5-20 68,75 P6-27 71,88 P5-34 69,79 P6-08 72,92 P5-02 69,79 P6-15 72,92 P5-30 71,88 P6-23 75,00 P5-33 71,88 P6-24 75,00 P5-36 71,88 P6-30 75,00 P5-31 72,92 P6-02 76,04 P5-11 72,92 P6-12 76,04 P5-25 72,92 P6-12 76,04 P5-25 72,92 P6-18 78,13 P5-09 73,96 P6-33 79,17 P5-04 73,96 P6-01 81,25 P5-13 73,96 P6-32 81,25 P5-03 75,00 P6-17 82,29 P5-24 76,04 P6-34 83,33 P5-07 76,04 P6-05 84,38 P5-35 78,13 P6-07 84,38 P5-18 80	P5-01	67,71	P6-21	65,63
P5-20 68,75 P6-27 71,88 P5-34 69,79 P6-08 72,92 P5-02 69,79 P6-15 72,92 P5-30 71,88 P6-23 75,00 P5-36 71,88 P6-24 75,00 P5-36 71,88 P6-30 75,00 P5-31 72,92 P6-02 76,04 P5-11 72,92 P6-12 76,04 P5-25 72,92 P6-18 78,13 P5-09 73,96 P6-33 79,17 P5-04 73,96 P6-31 81,25 P5-13 73,96 P6-32 81,25 P5-03 75,00 P6-17 82,29 P5-24 76,04 P6-34 83,33 P5-07 76,04 P6-05 84,38 P5-07 76,04 P6-05 84,38 P5-10 79,17 P6-10 84,38 P5-21 80,21 P6-26 86,46 P5-18 80,21 P6-26 86,46 P5-18 80,21 P6-11 87,50 P5-26 81,25 P6-16 87,50 P5-27 P5-28 81,25 P6-19 87,50 P5-15 81,25 P6-19 87,50 P5-16 82,29 P6-04 97,92 P5-17 89,58 P6-25 100,00 P5-17 89,58 P6-25 100,00 Total 2230,21 2403,125 mean 74,34028 80,1041667 Simpangan 7,281311 9,88344279 Varians 53,01749 97,6824413 t hitung 2,571696414 t tabel 2,001717484	P5-16	67,71	P6-03	66,67
P5-34 69,79 P6-08 72,92 P5-02 69,79 P6-15 72,92 P5-30 71,88 P6-23 75,00 P5-33 71,88 P6-24 75,00 P5-36 71,88 P6-30 75,00 P5-31 72,92 P6-02 76,04 P5-11 72,92 P6-12 76,04 P5-25 72,92 P6-18 78,13 P5-09 73,96 P6-33 79,17 P5-04 73,96 P6-32 81,25 P5-03 75,00 P6-17 82,29 P5-24 76,04 P6-34 83,33 P5-07 76,04 P6-05 84,38 P5-10 79,17 P6-10 84,38 P5-21 80,21 P6-26 86,46 P5-18 80,21 P6-11 87,50 P5-15 81,25 P6-16 87,50 P5-15 81,25 P6-19 87,50 P5-15 81,25 P6-19 87,50 P5-14 82,29 P6-04 97,92 P5-15 81,25 P6-19 87,50 P5-16 81,25 P6-17 82,29 P6-18 80,21 P6-11 87,50 P5-18 80,21 P6-11 87,50 P5-18 80,21 P6-11 87,50 P5-18 80,21 P6-11 87,50 P5-15 81,25 P6-19 87,50 P5-15 81,25 P6-19 87,50 P5-15 81,25 P6-19 87,50 P5-17 89,58 P6-22 92,71 P5-14 82,29 P6-04 97,92 P5-22 87,50 P6-13 100,00 P5-17 89,58 P6-25 100,00 P5-17 89,58 P6-25 100,00 P5-17 89,58 P6-25 100,00 P7,6824413 thitung 2,571696414 thitung 2,001717484	P5-08	67,71	P6-20	68,75
P5-02 69,79 P6-15 72,92 P5-30 71,88 P6-23 75,00 P5-33 71,88 P6-24 75,00 P5-36 71,88 P6-30 75,00 P5-31 72,92 P6-02 76,04 P5-11 72,92 P6-12 76,04 P5-25 72,92 P6-18 78,13 P5-09 73,96 P6-33 79,17 P5-04 73,96 P6-32 81,25 P5-13 73,96 P6-32 81,25 P5-03 75,00 P6-17 82,29 P5-24 76,04 P6-34 83,33 P5-07 76,04 P6-05 84,38 P5-35 78,13 P6-07 84,38 P5-10 79,17 P6-10 84,38 P5-11 80,21 P6-26 86,46 P5-18 80,21 P6-11 87,50 P5-15 81,25 P6-16 87,50 P5-15 81	P5-20	68 <i>,</i> 75	P6-27	71,88
P5-30 71,88 P6-23 75,00 P5-33 71,88 P6-24 75,00 P5-36 71,88 P6-30 75,00 P5-31 72,92 P6-02 76,04 P5-11 72,92 P6-12 76,04 P5-25 72,92 P6-18 78,13 P5-09 73,96 P6-33 79,17 P5-04 73,96 P6-32 81,25 P5-13 73,96 P6-32 81,25 P5-03 75,00 P6-17 82,29 P5-03 75,00 P6-17 82,29 P5-04 76,04 P6-34 83,33 P5-07 76,04 P6-34 83,33 P5-07 76,04 P6-05 84,38 P5-35 78,13 P6-07 84,38 P5-10 79,17 P6-10 84,38 P5-18 80,21 P6-11 87,50 P5-18 80,21 P6-11 87,50 P5-32 81	P5-34	69,79	P6-08	72,92
P5-33 71,88 P6-24 75,00 P5-36 71,88 P6-30 75,00 P5-31 72,92 P6-02 76,04 P5-11 72,92 P6-12 76,04 P5-25 72,92 P6-18 78,13 P5-09 73,96 P6-33 79,17 P5-04 73,96 P6-01 81,25 P5-13 73,96 P6-32 81,25 P5-03 75,00 P6-17 82,29 P5-24 76,04 P6-34 83,33 P5-07 76,04 P6-05 84,38 P5-35 78,13 P6-07 84,38 P5-35 78,13 P6-07 84,38 P5-10 79,17 P6-10 84,38 P5-18 80,21 P6-11 87,50 P5-18 80,21 P6-11 87,50 P5-32 81,25 P6-19 87,50 P5-15 81,25 P6-19 87,50 P5-14 82	P5-02	69,79	P6-15	72,92
P5-36 71,88 P6-30 75,00 P5-31 72,92 P6-02 76,04 P5-11 72,92 P6-12 76,04 P5-25 72,92 P6-18 78,13 P5-09 73,96 P6-33 79,17 P5-04 73,96 P6-01 81,25 P5-13 73,96 P6-32 81,25 P5-03 75,00 P6-17 82,29 P5-24 76,04 P6-34 83,33 P5-07 76,04 P6-05 84,38 P5-35 78,13 P6-07 84,38 P5-10 79,17 P6-10 84,38 P5-11 80,21 P6-10 84,38 P5-18 80,21 P6-11 87,50 P5-18 80,21 P6-11 87,50 P5-18 81,25 P6-16 87,50 P5-15 81,25 P6-19 87,50 P5-14 82,29 P6-04 97,92 P5-22 87	P5-30	71,88	P6-23	75,00
P5-31 72,92 P6-02 76,04 P5-11 72,92 P6-12 76,04 P5-25 72,92 P6-18 78,13 P5-09 73,96 P6-33 79,17 P5-04 73,96 P6-01 81,25 P5-13 73,96 P6-32 81,25 P5-03 75,00 P6-17 82,29 P5-24 76,04 P6-34 83,33 P5-07 76,04 P6-05 84,38 P5-35 78,13 P6-07 84,38 P5-10 79,17 P6-10 84,38 P5-11 80,21 P6-10 84,38 P5-12 80,21 P6-11 87,50 P5-18 80,21 P6-11 87,50 P5-18 80,21 P6-16 87,50 P5-15 81,25 P6-19 87,50 P5-15 81,25 P6-22 92,71 P5-14 82,29 P6-04 97,92 P5-22 87		71,88	P6-24	75,00
P5-11 72,92 P6-12 76,04 P5-25 72,92 P6-18 78,13 P5-09 73,96 P6-33 79,17 P5-04 73,96 P6-01 81,25 P5-13 73,96 P6-32 81,25 P5-03 75,00 P6-17 82,29 P5-24 76,04 P6-34 83,33 P5-07 76,04 P6-05 84,38 P5-35 78,13 P6-07 84,38 P5-10 79,17 P6-10 84,38 P5-11 80,21 P6-26 86,46 P5-18 80,21 P6-11 87,50 P5-26 81,25 P6-16 87,50 P5-32 81,25 P6-19 87,50 P5-15 81,25 P6-22 92,71 P5-14 82,29 P6-04 97,92 P5-22 87,50 P6-13 100,00 P5-17 89,58 P6-25 100,00 P5-17	P5-36	71,88	P6-30	75,00
P5-25 72,92 P6-18 78,13 P5-09 73,96 P6-33 79,17 P5-04 73,96 P6-01 81,25 P5-13 73,96 P6-32 81,25 P5-03 75,00 P6-17 82,29 P5-24 76,04 P6-34 83,33 P5-07 76,04 P6-05 84,38 P5-35 78,13 P6-07 84,38 P5-10 79,17 P6-10 84,38 P5-12 80,21 P6-26 86,46 P5-18 80,21 P6-11 87,50 P5-18 80,21 P6-16 87,50 P5-32 81,25 P6-16 87,50 P5-32 81,25 P6-19 87,50 P5-15 81,25 P6-22 92,71 P5-14 82,29 P6-04 97,92 P5-17 89,58 P6-25 100,00 P5-17 89,58 P6-25 100,00 P5-17	P5-31	72,92	P6-02	76,04
P5-09 73,96 P6-33 79,17 P5-04 73,96 P6-01 81,25 P5-13 73,96 P6-32 81,25 P5-03 75,00 P6-17 82,29 P5-24 76,04 P6-34 83,33 P5-07 76,04 P6-05 84,38 P5-35 78,13 P6-07 84,38 P5-10 79,17 P6-10 84,38 P5-11 80,21 P6-26 86,46 P5-18 80,21 P6-26 86,46 P5-18 80,21 P6-11 87,50 P5-26 81,25 P6-16 87,50 P5-32 81,25 P6-19 87,50 P5-15 81,25 P6-22 92,71 P5-14 82,29 P6-04 97,92 P5-22 87,50 P6-13 100,00 P5-17 89,58 P6-25 100,00 P5-18 2403,125 80,1041667 Simpangan 7,281311 <td>P5-11</td> <td>72,92</td> <td>P6-12</td> <td>76,04</td>	P5-11	72,92	P6-12	76,04
P5-04 73,96 P6-01 81,25 P5-13 73,96 P6-32 81,25 P5-03 75,00 P6-17 82,29 P5-24 76,04 P6-34 83,33 P5-07 76,04 P6-05 84,38 P5-35 78,13 P6-07 84,38 P5-10 79,17 P6-10 84,38 P5-11 80,21 P6-26 86,46 P5-18 80,21 P6-11 87,50 P5-26 81,25 P6-16 87,50 P5-32 81,25 P6-19 87,50 P5-15 81,25 P6-22 92,71 P5-14 82,29 P6-04 97,92 P5-22 87,50 P6-13 100,00 P5-17 89,58 P6-25 100,00 P5-17 89,58 P6-25 100,00 P5-17 89,58 P6-25 100,00 P5-18 2230,21 2403,125 mean 74,34028	P5-25	72,92	P6-18	78,13
P5-13 73,96 P6-32 81,25 P5-03 75,00 P6-17 82,29 P5-24 76,04 P6-34 83,33 P5-07 76,04 P6-05 84,38 P5-35 78,13 P6-07 84,38 P5-10 79,17 P6-10 84,38 P5-21 80,21 P6-26 86,46 P5-18 80,21 P6-11 87,50 P5-26 81,25 P6-16 87,50 P5-32 81,25 P6-19 87,50 P5-15 81,25 P6-22 92,71 P5-14 82,29 P6-04 97,92 P5-22 87,50 P6-13 100,00 P5-17 89,58 P6-25 100,00 P5-17 89,58 P6-25 100,00 Total 2230,21 2403,125 mean 74,34028 80,1041667 Simpangan 7,281311 9,88344279 Varians 53,01749 97,6824413	P5-09	73,96	P6-33	79,17
P5-03 75,00 P6-17 82,29 P5-24 76,04 P6-34 83,33 P5-07 76,04 P6-05 84,38 P5-35 78,13 P6-07 84,38 P5-10 79,17 P6-10 84,38 P5-21 80,21 P6-26 86,46 P5-18 80,21 P6-11 87,50 P5-26 81,25 P6-16 87,50 P5-32 81,25 P6-19 87,50 P5-15 81,25 P6-22 92,71 P5-14 82,29 P6-04 97,92 P5-22 87,50 P6-13 100,00 P5-17 89,58 P6-25 100,00 P5-17 89,58 P6-25 100,00 Total 2230,21 2403,125 mean 74,34028 80,1041667 Simpangan 7,281311 9,88344279 Varians 53,01749 97,6824413 t hitung 2,571696414 t tabel </td <td>P5-04</td> <td>73,96</td> <td>P6-01</td> <td>81,25</td>	P5-04	73,96	P6-01	81,25
P5-24 76,04 P6-34 83,33 P5-07 76,04 P6-05 84,38 P5-35 78,13 P6-07 84,38 P5-10 79,17 P6-10 84,38 P5-21 80,21 P6-26 86,46 P5-18 80,21 P6-11 87,50 P5-26 81,25 P6-16 87,50 P5-32 81,25 P6-19 87,50 P5-15 81,25 P6-22 92,71 P5-14 82,29 P6-04 97,92 P5-22 87,50 P6-13 100,00 P5-17 89,58 P6-25 100,00 Total 2230,21 2403,125 mean 74,34028 80,1041667 Simpangan 7,281311 9,88344279 Varians 53,01749 97,6824413 t hitung 2,571696414 t tabel	P5-13	73,96	P6-32	81,25
P5-07 76,04 P6-05 84,38 P5-35 78,13 P6-07 84,38 P5-10 79,17 P6-10 84,38 P5-21 80,21 P6-26 86,46 P5-18 80,21 P6-26 86,46 P5-18 80,21 P6-11 87,50 P5-26 81,25 P6-16 87,50 P5-32 81,25 P6-19 87,50 P5-15 81,25 P6-22 92,71 P5-14 82,29 P6-04 97,92 P5-22 87,50 P6-13 100,00 P5-17 89,58 P6-25 100,00 Total 2230,21 2403,125 mean 74,34028 80,1041667 Simpangan 7,281311 9,88344279 Varians 53,01749 97,6824413 t hitung 2,571696414 t tabel	P5-03	75,00	P6-17	82,29
P5-35 78,13 P6-07 84,38 P5-10 79,17 P6-10 84,38 P5-21 80,21 P6-26 86,46 P5-18 80,21 P6-11 87,50 P5-26 81,25 P6-16 87,50 P5-32 81,25 P6-19 87,50 P5-15 81,25 P6-22 92,71 P5-14 82,29 P6-04 97,92 P5-22 87,50 P6-13 100,00 P5-17 89,58 P6-25 100,00 Total 2230,21 2403,125 mean 74,34028 80,1041667 Simpangan 7,281311 9,88344279 Varians 53,01749 97,6824413 t hitung 2,571696414 t tabel 2,001717484	P5-24	76,04	P6-34	83,33
P5-10 79,17 P6-10 84,38 P5-21 80,21 P6-26 86,46 P5-18 80,21 P6-11 87,50 P5-26 81,25 P6-16 87,50 P5-32 81,25 P6-19 87,50 P5-15 81,25 P6-22 92,71 P5-14 82,29 P6-04 97,92 P5-22 87,50 P6-13 100,00 P5-17 89,58 P6-25 100,00 Total 2230,21 2403,125 mean 74,34028 80,1041667 Simpangan 7,281311 9,88344279 Varians 53,01749 97,6824413 t hitung 2,571696414 t tabel 2,001717484	P5-07	76,04	P6-05	84,38
P5-21 80,21 P6-26 86,46 P5-18 80,21 P6-11 87,50 P5-26 81,25 P6-16 87,50 P5-32 81,25 P6-19 87,50 P5-15 81,25 P6-22 92,71 P5-14 82,29 P6-04 97,92 P5-22 87,50 P6-13 100,00 P5-17 89,58 P6-25 100,00 Total 2230,21 2403,125 mean 74,34028 80,1041667 Simpangan 7,281311 9,88344279 Varians 53,01749 97,6824413 t hitung 2,571696414 t tabel 2,001717484	P5-35	78,13	P6-07	84,38
P5-18 80,21 P6-11 87,50 P5-26 81,25 P6-16 87,50 P5-32 81,25 P6-19 87,50 P5-15 81,25 P6-22 92,71 P5-14 82,29 P6-04 97,92 P5-22 87,50 P6-13 100,00 P5-17 89,58 P6-25 100,00 Total 2230,21 2403,125 mean 74,34028 80,1041667 Simpangan 7,281311 9,88344279 Varians 53,01749 97,6824413 t hitung 2,571696414 t tabel 2,001717484	P5-10	79,17	P6-10	84,38
P5-26 81,25 P6-16 87,50 P5-32 81,25 P6-19 87,50 P5-15 81,25 P6-22 92,71 P5-14 82,29 P6-04 97,92 P5-22 87,50 P6-13 100,00 P5-17 89,58 P6-25 100,00 Total 2230,21 2403,125 mean 74,34028 80,1041667 Simpangan 7,281311 9,88344279 Varians 53,01749 97,6824413 t hitung 2,571696414 t tabel 2,001717484	P5-21	80,21	P6-26	86,46
P5-32 81,25 P6-19 87,50 P5-15 81,25 P6-22 92,71 P5-14 82,29 P6-04 97,92 P5-22 87,50 P6-13 100,00 P5-17 89,58 P6-25 100,00 Total 2230,21 2403,125 mean 74,34028 80,1041667 Simpangan 7,281311 9,88344279 Varians 53,01749 97,6824413 t hitung 2,571696414 t tabel 2,001717484	P5-18	80,21	P6-11	87,50
P5-15 81,25 P6-22 92,71 P5-14 82,29 P6-04 97,92 P5-22 87,50 P6-13 100,00 P5-17 89,58 P6-25 100,00 Total 2230,21 2403,125 mean 74,34028 80,1041667 Simpangan 7,281311 9,88344279 Varians 53,01749 97,6824413 t hitung 2,571696414 t tabel 2,001717484	P5-26	81,25	P6-16	87,50
P5-14 82,29 P6-04 97,92 P5-22 87,50 P6-13 100,00 P5-17 89,58 P6-25 100,00 Total 2230,21 2403,125 mean 74,34028 80,1041667 Simpangan 7,281311 9,88344279 Varians 53,01749 97,6824413 t hitung 2,571696414 t tabel 2,001717484	P5-32	81,25	P6-19	87,50
P5-22 87,50 P6-13 100,00 P5-17 89,58 P6-25 100,00 Total 2230,21 2403,125 mean 74,34028 80,1041667 Simpangan 7,281311 9,88344279 Varians 53,01749 97,6824413 t hitung 2,571696414 t tabel 2,001717484	P5-15	81,25	P6-22	92,71
P5-17 89,58 P6-25 100,00 Total 2230,21 2403,125 mean 74,34028 80,1041667 Simpangan 7,281311 9,88344279 Varians 53,01749 97,6824413 t hitung 2,571696414 t tabel 2,001717484	P5-14	82,29	P6-04	97,92
Total 2230,21 2403,125 mean 74,34028 80,1041667 Simpangan 7,281311 9,88344279 Varians 53,01749 97,6824413 t hitung 2,571696414 t tabel 2,001717484	P5-22	87,50	P6-13	100,00
mean 74,34028 80,1041667 Simpangan 7,281311 9,88344279 Varians 53,01749 97,6824413 t hitung 2,571696414 t tabel 2,001717484	P5-17	89,58	P6-25	100,00
mean 74,34028 80,1041667 Simpangan 7,281311 9,88344279 Varians 53,01749 97,6824413 t hitung 2,571696414 t tabel 2,001717484				
mean 74,34028 80,1041667 Simpangan 7,281311 9,88344279 Varians 53,01749 97,6824413 t hitung 2,571696414 t tabel 2,001717484	Total	2230 21		2403 125
Simpangan 7,281311 9,88344279 Varians 53,01749 97,6824413 t hitung 2,571696414 t tabel 2,001717484				
Varians 53,01749 97,6824413 t hitung 2,571696414 t tabel 2,001717484				
t hitung 2,571696414 t tabel 2,001717484				
t tabel 2,001717484		55,51745		37,0024413
t tabel 2,001717484	t hitung		2.571696414	1
·				
	kriteria		H0 Ditolak	

Lampiran 79 Nilai Posttest Kelas Kontrol

Nilai Posttest Kelas Kontrol

Responde	No.1	No.2	No.3	No.4	No.5	Jumlah Skor	Nilai
P5-18	9	5	0	0	0	14	15,56
P5-23	9	5	0	0	2	16	17,78
P5-16	5	7	5	0	2	19	21,11
P5-31	10	11	0	0	0	21	23,33
P5-20	15	5	0	0	2	22	24,44
P5-21	11	7	4	0	0	22	24,44
P5-12	9	5	0	0	9	23	25,56
P5-24	11	4	8	0	0	23	25,56
P5-33	7	7	7	2	0	23	25,56
P5-34	15	5	0	5	0	25	27,78
P5-29	9	9	6	2	0	26	28,89
P5-04	9	11	4	2	2	28	31,11
P5-09	11	7	8	0	2	28	31,11
P5-06	9	5	4	11	0	29	32,22
P5-07	11	6	8	2	2	29	32,22
P5-13	7	9	0	11	2	29	32,22
P5-15	9	5	4	12	2	32	35,56
P5-10	10	12	4	5	2	33	36,67
P5-30	9	12	6	5	2	34	37,78
P5-03	12	13	8	2	0	35	38,89
P5-17	9	9	6	11	2	37	41,11
P5-36	9	13	13	2	0	37	41,11
P5-01	12	12	4	8	4	40	44,44
P5-26	11	5	4	9	11	40	44,44
P5-35	11	7	11	6	8	43	47,78
P5-14	12	2	12	11	9	46	51,11
P5-19	9	11	4	11	13	48	53,33
P5-02	11	13	14	0	10	48	53,33
P5-28	12	12	4	8	13	49	54,44
P5-25	12	12	13	11	2	50	55,56
P5-22	12	12	13	10	5	52	57,78
P5-05	13	9	12	11	10	55	61,11
P5-11	9	12	15	11	9	56	62,22
P5-32	11	15	14	6	11	57	63,33

$$Nilai = \frac{jumlah\ skor\ yang\ diperoleh}{skor\ maksimal}x\ 100$$

Lampiran 80 Nilai Posttest Kelas Eksperimen

Nilai Posttest Kelas Eksperimen

Responde	No.1	No.2	No.3	No.4	No.5	Jumlah Sk	Nilai
P6-22	11	5	4	9	11	40	44,44
P6-28	12	12	4	8	4	40	44,44
P6-27	12	12	4	8	13	49	54,44
P6-29	12	12	13	11	2	50	55,56
P6-09	12	12	13	10	7	54	60,00
P6-08	13	9	12	11	10	55	61,11
P6-01	12	11	15	21	0	59	65,56
P6-21	14	14	8	13	13	62	68,89
P6-19	12	12	13	18	8	63	70,00
P6-17	10	12	15	15	12	64	71,11
P6-05	14	12	13	20	7	66	73,33
P6-23	11	13	14	17	12	67	74,44
P6-03	11	11	15	18	13	68	75,56
P6-11	12	12	11	20	13	68	75,56
P6-12	12	12	15	20	10	69	76,67
P6-33	12	12	15	20	10	69	76,67
P6-06	12	12	15	20	11	70	77,78
P6-25	11	11	13	18	17	70	77,78
P6-16	11	12	15	14	19	71	78,89
P6-18	12	12	15	21	11	71	78,89
P6-31	14	14	15	15	13	71	78,89
P6-13	11	11	15	18	17	72	80,00
P6-36	14	12	12	18	16	72	80,00
P6-20	12	12	14	21	14	73	81,11
P6-07	10	11	13	21	19	74	82,22
P6-02	12	12	15	20	15	74	82,22
P6-30	12	12	15	21	16	76	84,44
P6-34	12	12	14	20	18	76	84,44
P6-04	12	12	15	21	17	77	85,56
P6-15	12	12	14	21	18	77	85,56
P6-32	12	11	15	21	18	77	85,56
P6-35	14	12	13	21	18	78	86,67
P6-14	12	12	15	20	21	80	88,89
P6-26	14	12	14	20	20	80	88,89

$$Nilai = \frac{jumlah\ skor\ yang\ diperoleh}{skor\ maksimal}x\ 100$$

Lampiran 81 Uji Normalitas Nilai Posttest Kelas Kontrol

Uji Normalitas Nilai Posttest Kelas Kontrol

Rata-rata	38,20		Range	47,77778		
Simpangan Baku	13,71511		Banyak Kelas Interval	6,05388		
Nilai Minimum	15,56		Panjang Kelas Interval	6,825397		
Nilai Maksimum	63,33					
Kelas Interval	fi	Batas xi	Nilai zi	Luas zi	Ei	Chi-Kuadrat
		14,5	-1,728211241			
15-21	3			0,06967	2,368779	0,16820449
		21,5	-1,217825404			
22-28	8			0,128002	4,352051	3,0577599
		28,5	-0,707439566			
29-35	6			0,182246	6,196366	0,00622296
		35,5	-0,197053729			
36-42	5			0,201093	6,837165	0,49365106
		42,5	0,313332108			
43-49	3			0,171964	5,846785	1,38609236
		49,5	0,823717946			
50-56	5			0,113965	3,87481	0,32673932
		56,5	1,334103783			
57-63	4			0,058529	1,989986	2,03024207
		63,5	1,84448962			
					t hitung	5,4386701
					t tabel	44,9853433

$$Nilai = \frac{jumlah\ skor\ yang\ diperoleh}{skor\ maksimal}x\ 100$$

Lampiran 82 Uji Normalitas Nilai Posttest Kelas Eksperimen

Uji Normalitas Nilai Posttest Kelas Eksperimen

Rata-rata	74,58		Range	44,44		
Simpangan Baku	11,73266		Banyak Kelas Interval	6,05388		
Nilai Minimum	44,44		Panjang Kelas Interval	6,349206		
Nilai Maksimum	88,89		r anjung Kelas Interval	0,0 15200		
Kelas Interval	fi	Batas xi	Nilai zi	Luas zi	Ei	Chi Kuadrat
		43,5	-2,648602355			
44-50	2			0,016045	0,545518	3,87799344
		50,5	-2,051977448			
51-57	2			0,0527	1,791797	0,0241927
		57,5	-1,45535254			
58-64	2			0,12246	4,163625	1,12432625
		64,5	-0,858727633			
65-71	4			0,201376	6,846775	1,18364133
		71,5	-0,262102725			
72-78	11			0,234386	7,969127	1,15272204
		78,5	0,334522182			
79-85	10			0,193104	6,565537	1,7965833
		85,5	0,931147089			
86-92	3			0,112604	3,828542	0,17930616
		92,5	1,527771997			
					t hitung	9,15945907
					t tabel	9,48772904

$$Nilai = \frac{jumlah \ skor \ yang \ diperoleh}{skor \ maksimal} x \ 100$$

Lampiran 83 Uji Homogenitas Nilai Posttest Kelas Eksperimen dan Kontrol

Uji Homogenitas Nilai Posttest Kelas Eksperimen dan Kontrol

Responde	MIPA 5	Responde	MIPA 6
P5-18	15,56	P6-22	44,44
P5-23	17,78	P6-28	44,44
P5-16	21,11	P6-27	54,44
P5-31	23,33	P6-29	55,56
P5-20	24,44	P6-09	60,00
P5-21	24,44	P6-08	61,11
P5-12	25,56	P6-01	65 <i>,</i> 56
P5-24	25,56	P6-21	68,89
P5-33	25,56	P6-19	70,00
P5-34	27,78	P6-17	71,11
P5-29	28,89	P6-05	73,33
P5-04	31,11	P6-23	74,44
P5-09	31,11	P6-03	75,56
P5-06	32,22	P6-11	75,56
P5-07	32,22	P6-12	76,67
P5-13	32,22	P6-33	76,67
P5-15	35,56	P6-06	77,78
P5-10	36,67	P6-25	77,78
P5-30	37,78	P6-16	78,89
P5-03	38,89	P6-18	78,89
P5-17	41,11	P6-31	78,89
P5-36	41,11	P6-13	80,00
P5-01	44,44	P6-36	80,00
P5-26	44,44	P6-20	81,11
P5-35	47,78	P6-07	82,22
P5-14	51,11	P6-02	82,22
P5-19	53,33	P6-30	84,44
P5-02	53,33	P6-34	84,44
P5-28	54,44	P6-04	85,56
P5-25	55,56	P6-15	85,56
P5-22	57,78	P6-32	85 <i>,</i> 56
P5-05	61,11	P6-35	86,67
P5-11	62,22	P6-14	88,89
P5-32	63,33	P6-26	88,89
S2	188,1044		137,6554
F hitung	1,366487		
F tabel	1,787822		

Lampiran 84 Uji Perbedaan Rata-rata

Uji Perbedaan rata-rata Nilai Posttest Kelas Eksperimen dan Kontrol

Responden	MIPA 5	Responden	MIPA 6
пезропасн	Kontrol	Кезропасн	Eksperimen
P5-18		P6-22	44,44
P5-23		P6-28	44,44
P5-16		P6-27	54,44
P5-31		P6-29	55,56
P5-20		P6-09	60,00
P5-21	•	P6-08	61,11
P5-12		P6-01	65,56
P5-12		P6-01 P6-21	68,89
P5-24 P5-33		P6-21 P6-19	70,00
P5-34		P6-17	71,11
P5-29		P6-05	73,33
P5-04		P6-23	74,44
P5-09		P6-03	75,56
P5-06		P6-11	75,56
P5-07		P6-12	76,67
P5-13		P6-33	76,67
P5-15		P6-06	77,78
P5-10		P6-25	77,78
P5-30		P6-16	78,89
P5-03		P6-18	78,89
P5-17		P6-31	78,89
P5-36		P6-13	80,00
P5-01		P6-36	80,00
P5-26		P6-20	81,11
P5-35		P6-07	82,22
P5-14		P6-02	82,22
P5-19	-	P6-30	84,44
P5-02		P6-34	84,44
P5-28	,	P6-04	85,56
P5-25	55 <i>,</i> 56	P6-15	85,56
P5-22	57 <i>,</i> 78	P6-32	85,56
P5-05	61,11	P6-35	86,67
P5-11	62,22	P6-14	88,89
P5-32	63,33	P6-26	88,89
Total	1298,89		2535,56
Mean	38,20		74,5751634
Std devisias	13,71511		11,7326647
Varians	188,1044		137,655421
t hitung		11,7507197	71
t tabel		1,99656441	
Kesimpulan		H0 ditolal	

Hasil uji t-test diperoleh nilai T_{hitumq} = 11,75 5% $d_k = 34 - 1$ signifikansi taraf diperoleh t(33; 0.05) = 1.996karena $t_{hitung} > t_{tabel}$, maka H_0 ditolak dan H_1 diterima artinya rata-rata kemampuan berpikir kritis kelas eksperimen dengan menggunakan pembelajaran Discovery Learning lebih baik daripada rata-rata kelas kontrol. Perhitungan selengkapnya dapat dilihat pada lampiran.

Jadi dapat disimpulkan bahwa model pembelajaran *Discovery learning* efektif terhadap kemampuan berpikir kritis siswa kelas XII MAN 2 Kota Semarang pada materi Dimensi tiga tahun ajaran 2023/2024.

Lampiran 85 Dokumentasi Penelitian

Dokumentasi Penelitian

Guru memberikan penjelasan gambar langkah pengamatan media yang digunakan

Siswa berkelompok mencoba media yang di berikan

Siswa croscek permasalahan menggunakan media geogebra

Perwakilan kelompok mempresentasikan hasil diskusi kelompok dan memberikan kesimpulan

Berikut dokumentasi percobaan pembelajaran di lab komputer

Pembelajaran yang dilakukan di kelas kontrol

Lampiran 86 Dokumentasi Uji

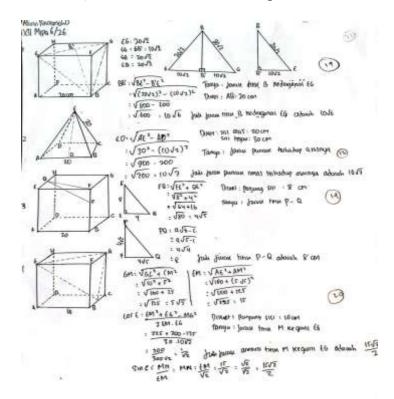
Uji Coba Tes Awal

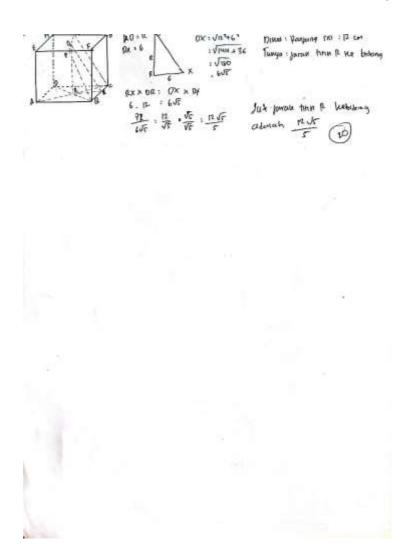
Pengerjaan Tes Awal

Lampiran 87 Dokumentasi Uji Coba

Uji Coba Postest

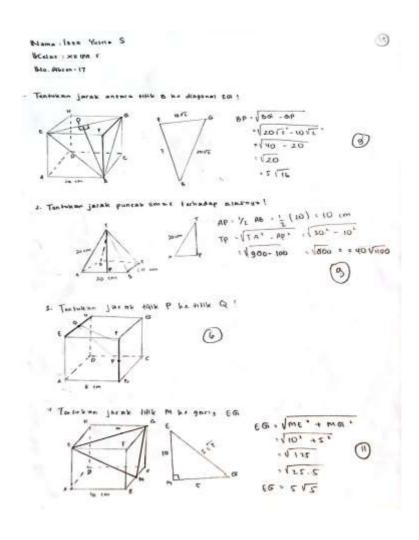
Pengerjaan Postest

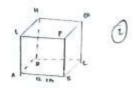

Lampiran 88 Jawaban Test Awal


Jawaban Test Awal

```
wild : Not Showill Ammoryanto
                                                                              P1-18
kelas : xn MIPA I
                                 *) 11. (x2-3x+1) + - 11 + 2(x3-3x+1) (2x-3)
5) 9(x) + 2xe
    9(x) = 2.5 mg-1
                                    A . X-1
                                            -> 0' 1 1
         # 104x4
                                   F(x) - 414 - 441
                                                                      (10)
    9"(x) 1 10 4 x 4+1
          . uoxs
                                        = 2 (x1 -3x+1). MAP (2x-1).(x-2)-(x1-3x1)
   Bu(x) . 40 3 X 1-1
                                                         (x-2)1
          + 120 X+
                                        = (2x*-6x+2). (2x+-7x+6) - (x1-3x+1)*
$ \tan expression and the second
                                                           (x-1)2
(1) ((x) = 3x = 0-1
                                       *(4x4-Mx3 x12xx - 12x2 + 42x = 36x+4xx-11x+2-
        42421
                                                    (x-2)2
  £. (x) = 24 . 7 3 -1
                                        = (4x4-26x3+54x2-90x+12) - (x4-6x3x11x2-6x+1)
        = 168 × ×
                                                    (x-2)2
                                        _C3x4-32x+65x1-65x+13
                                                   (x-2)2
42 CONTINUES FRETERICIENTE PRINCEPORT
4 - ECA - X1 - X1 + 1x -6
      : 3X3-1 - 2X1-1+2 (G)
      2 3x2 - 1x +2
$ - u = (3x -1) + - + u'= 1(3x-1) +
  4: (x++5x-6) -> 41.2x+5
  f'(x), a, a + a 4,
       = 2(3x+1) = (x+5x-1)+(3x-1)+(2x+5)
        . (6x - 4) (3x2+6x -18)+ (9x2-8x +4) (2x+5)
        = (18x3+30x3-180x-12x1-60x+77)+(8x2+14x1-74x2-14x2-60x+8x+16)
        2 (18 x 3 + 78 x 4 - 168 x +72) + (18 x 3 + 21 x 4 - 48 x 526)
        : (36x3+ 99x3 - 120x+91)
```

Lampiran 89 Jawaban Posttest


Jawaban Posttest Kelas Eksperimen



Lampiran 90 Jawaban Posttest

Jawaban Posttest Kelas Kontrol

1 Tentukan jarak Hik R ke bidang BPQC!

Jawaban Angket Kelas Eksperimen

		RESIDENCE AND ADDRESS OF THE SECOND		//	No.	Frenchist	-	-	ing	
	-			9()	Γ.		180		**	89
	Our	of White		1.60		has made belowed and respective police.		4		
	www	th is			E	Their holdes will be seen.			9.	
					Y	State Seller Sto clied works one pers margine.			4	
9 10 7	žΥ			- 4	4	Raps pasteds reliables assignations and		- 1	*	
Propi	40.5	Appet 1			1	Name and Address of Street, and Street, an		W	43	-
-	-	ataba kilostitar anda		1.00	1	Sale broads bengristed tight hope tools and a				
		ricy theor designs and designs.			1	The amphi set present of the tage.			W.	
		representation of the contraction of the contractio	and the same		4	Says peer on our like privat pringers.		11	*	
		pel bacille auto			18.	Name assembly married divergent freight	. 6			
					W.	Sea against being my returns				
**					W.	Terr tells to constitute of class tell record, burners		4		
	400	Consult		102	85.	Sales become play weeks to sold year have regard				
- %	-	Built-Street and may be a began or	Toronto prop. info distanta		17	with				
	nda :	maker .				Non-concept type years		1		
	Swije	Soft, hard here shall from on			14.	Reproduct sports book host			4.	
		Digital Decision that only drags you		. 1	R.	Stringen drope had yet then say		-	*	
	Trips.	Participants may the wise from	in the Charles And the party	1	N.	Tel-residence to printer of chappings		4		
11	MA Private	age i			П	Topic below to provide the most start entering the property of			4	
	light	No Prisone	84		W.	Take better total poursy photos problègione freshall			¥	
,	man.				W.			4	-	
-		Tempo Despo (191)	4			Topin arrang freezing front after drapper preservants		4		
	- 1	No. pt (B)	1			Same rection may plus extragged problems				
	- 1	Trial Nation (TS)	1	1.5		Tape Non-one of test brompress would be made.	-	10.		
		Sugar Ties Suja (176)	1			Tayo bengat of the State of the comment		v		
	pH .	Seepa Sergic (SE)		0.9	H	Photos yang pint yang telam, sangs aiya berasaba			V	
		Protein Co.	3			Self-Self-Self-				
	: E	Total Resp. 276			-					
	-	Street Total Senior (C.S.)								

Jawaban Angket kelas Kontrol

		MILLIAN AND THE WORLD WITH MILLIANS
Myde	mpaks:	
Here:	, ite	Sotiguese
EAR:	1.00	MAN C
16. Since	1. 16	
freinge	- Fragility &	autoria.
3.8		gigt i merem une merimen denger sekserin merem seljen jampa Denger mankatikat tereb (Cycela kakur merem seljen jampa Denger mankatikat tereb (Cycela kakur un kondul anda
Reto	440	Common
**	Traige Traige	Half-places was superior desperience on the first and again.
5	Tracks	Note the sets became the compression of the first
76	Total Scools	Plant B. pita seda tribié volgio desgres por systems, recg sub-dellara -
100	Steps	State places and resign olds series diagnoper potential range and a

Ninget.	Auto Gregorian	- No
FreeET	Smile Smile (SS)	-
1000	begin(S)	-
	1980 See 1770	- 1
	Securities Imposition	100
February	Swigot Straige (SE)	1
	Seq. (9)	1
- 1	TURN SHOW (TELL	- 1
	Responsable Street (1976)	-

90	Facultus	Warnell hours					
_		59		Te	Ť9		
E	Taga marrilla kalutantan uruh sanyanyakan pelalam		4		Т		
1	Sign Subsper sorting contrary	. #					
6.	Says make dan altrid south out you manggin						
۴.	Sign protects solution to agariphise used				7		
1	Natio remain tertaining serial range place of yang cult-		40				
	Says herealts reregeration eager designs reads sometime		w.		t		
K.	Says mangelob near gone monitoribles inges			w	t		
E.	Says poten see near helps, potons palagarian.						
	Says persons morel despectant	*			t		
16.	Tays Ingle heal feeling upo exhalted	v			т		
EL.	Says hadd for whomas policions had married for thomas	14			t		
1	Start Section 8 (As comment many young start visigns)		-	L	t		
	-						
M.	Tays margarett tages to the			10	t		
14.	Trape tealer spekille hardfolger			w	Т		
H.	Tops you desgro had you have up.		$\overline{}$	40	т		
86.	Tayle tecople common as professor cellular polymers	40	-	-			
11.	They make beginned the term race recorder protect				T		
	yeig tolik linggi	l	_	4			
18.	Tops sampetajus pracyd referen produktywno director	+					
UC	Tops companyables PR of anticinal	-		- 40	Ħ		
×	New strong bettery half what designs from tops			60	Ħ		
p,	Speciment right the miniget progress	14			t		
10.	Sepa diset and differi brantopass south befores			v	Ħ		
30.	Sign interprise der jitz niler sage manuter			-			
24.	Present year president countries and because a			100	ţ-		
1	Military Regi			·V			

Lampiran 91 Surat Penunjukan Dosen Pembimbing

Surat Penunjukan Dosen Pembimbing

KEMENTERIAN AGAMA REPUBLIK INDONESIA UNIVERSITAS ISLAM NEGERI WALISONGO **FAKULTAS SAINS DAN TEKNOLOGI**

Jl. Prof. Dr. Hamka (Kampus III) Ngaliyan Semarang 50185 TelpiFax. (024) 76433366, Email: fst@walisongo.ac.id, Web: fst.walisongo.ac.id

Nomor: B-7878/Un.10.8/J5/ DA.04.01/11/2022

Semarang, 18 November 2022

Perihal: Penunjukan Pembimbing Skripsi

Kepada Yth: 1. Ulliya Fitriani , M.Pd Di tempat

Assalamu'alaikum Wr. Wb

Dengan hormat kami sampaikan, Berdasarkan hasil pembahasan usulan judul penelitian di Program Studi Pendidikan Matematika, Kami mohon berkenan Bapak/Ibu untuk membimbing Skripsi atas nama:

Nama: Choirul Aini Mustaghfiroh

NIM : 2008056009

Judul : Efektivitas Model Pembelajaran Discovery Learning Berbasis Geogebra Untuk Meningkatkan Kemampuan Berpikir Kritis dan Pemahaman Konsep Dalam Materi Dimensi 3 Pada Siswa Kelas XII Di MAN 2 Kota Semarang

Demikian Penunjukan pembimbing Skripsi ini kami sampaikan terima kasih dan untuk dilaksanakan dengan sebalk-baiknya,

Wassalamu'alaikum Wr. Wb

Yulia Romediastri, S.Si, M. Sc NIP, 198107152005012008

Eff Dekan

Ketua Prodi Pendidikan Matematika

Tembusan Yth.

- 1. Dekan Fakultas Sains dan Teknologi UIN Walisongo Semarang
- 2. Mahasiswa yang bersangkutan
- 3. Arsip

Lampiran 92 Surat Izin Pra Riset

Surat Izin Pra-riset

KEMENTERIAN AGAMA REPUBLIK INDONESIA UNIVERSITAS IELAM NEGERI WALISONGO FAKULTAS SAINS DAN TEKNOLOGI

JI Prof Dr Hamke (Kampus III) Ngaliyan Senatang 50185 Ernat (Michaelinogo, St. II. Web: Nt walkongo.....

Namor Lamp

; B.3905/Un.10.8/K/SP.01.08/05/2023

Semarang, 26 Mei 2023

Hall

: Permohonan Izin Observasi Pra Riset

Kepada Yth. Kepala Sekolah MAN 2 Kota Semarang di tempat

Assalamu'alalkum Wr. Wb.

Diberitahukan dengan hormat dalam rangka memenuhi tugas aklist Prodi Pendidikan Matematika pada Fakultas Sains dan Teknologi UIN Wallsongo Sunarang, bersama ini kami sampaikan saudara :

Nama

: Choirul Ain! Mustaghfiroh

NIM

: 2008056009 : Sains dan Teknologi / Pendidikan Matematika

Fakultas/Jurusan Judul Skripsi

; Efektivitas Model Discovery Learning Berbasis Geogebra Terhadap Kemampuan Berpikir Kritis dan Motivasi Belajar Siswa Kelas XII pada Materi Dimensi Tiga MAN 2 Kota Semarang

Untuk melaksanakan observasi pra-riset di sekolah yang Bapak/Ibu pimpin pada Tenggel Kamis, 2 Februari 2023, maka kami mohon berkenen dijinkan mahasiswa

Data Observasi tersebut dapat menjadi bahan kajian (analisis) bagi mahasiswa kami. Demikian atas perhatian dan kerjasamanya disampaikan terima kasih.

Wassalamu'alaikum Wr. Wb.

is, SH., MH 10171994031002

Tembusan Yth.

Dekan Fakultas Seins dan Teknologi UIN Walisongo (sebagai laporan)

2. Arsip

Lampiran 93 Surat Izin Riset Sekolah

Surat Melakukan Riset Sekolah

KEMENTERIAN AGAMA REPUBLIK INDONESIA KANTOR KEMENTERIAN AGAMA KOTA SEMARANG MADRASAH ALIYAH NEGERI 2 KOTA SEMARANG

Jalan Sangetayu Raya Genuk Semarang Telepon (034) 6505460 Faurinii (034) 6505460 e-maii <u>man2empiliumal non</u> Website www.man2emp.sch.al

SURAT KETERANGAN

Nomor : 1518/ Ma.11.33.02/TL.00/09/2023

izin riset dari UIN Walsongo Semarang, Nomor : B.5165/Un.10.8/K/SP.01.08/07/2023, Tanggal : 14 Juli 2023, Kepala MAN 2 Kota Semarang :

Name

: Drs. H. Junsed, M.Pd

Jebetan

Kepala Madrasah

Pangkat / Golongan : Pembina Tingkat I / IV b Unit Kerja

: MAN 2 Kota Semarang

Menerangkan bahwa mahasiswa atas :

Nama

Chairul Aini Mustaghfirch

NIM

2008055009

Universitas

: UIN Walisongo Semarang

Prodi

: St Pendidikan Matematika

Telah melaksanakan penelitian sesusi dengan prosedur untuk keperluan penulisan Skripsi di MAN 2 Kota Samarang pada tanggal 24 Juli -12 Agustus 2023 dengan judul :

Efektivitas Model Discovery Learning Berbasis Geogebra Terhadap Kemampuan Berpikir Kritis dan Motivasi Belajor Siswa Kelas XII pada Materi Dimensi Tiga MAN 2 Kota Semarang

Demikian surat keterangan ini dibuat untuk dapat dipergunakan sebagaimana mestinya.

Dis H. Juneed, M.Pd. NIP. 196506021996031001

Semarang, 4 September 2023

Lampiran 94 surat Penunjukan Dosen Pembimbing

KEMENTERIAN AGAMA REPUBLIK INDONESIA UNIVERSITAS ISLAM NEGERI WALISONGO FAKULTAS SAINS DAN TEKNOLOGI

Jl. Prof.Dr. Hamka (Kampus III) Ngaliyan Semarang 50185 Telp/Fax. (024) 76433366, Email: fst@walisongo.ac.id, Web: fst.walisongo.ac.id

Nomor: B-7878/Un.10.8/J5/ DA.04.01/11/2022

Semarang, 18 November 2022

Lamp : Perihal : Penunjukan Pembimbing Skripsi

Kepada Yth: 1. Ulliya Fitriani , M.Pd Di tempat

Assalamu'alaikum Wr. Wb

Dengan hormat kami sampaikan, Berdasarkan hasil pembahasan usulan judul penelitian di Program Studi Pendidikan Matematika, Kami mohon berkenan Bapak/lbu untuk membimbing Skripsi atas nama:

Nama: Choirul Aini Mustaghfiroh

NIM : 2008056009

Judul : Efektivitas Model Pembelajaran Discovery Learning Berbasis Geogebra
Untuk Meningkatkan Kemampuan Berpikir Kritis dan Pemahaman Konsep
Dalam Materi Dimensi 3 Pada Siswa Kelas XII Di MAN 2 Kota Semarang

Demikian Penunjukan pembimbing Skripsi ini kami sampaikan terima kasih dan untuk dilaksanakan dengan sebaik-baiknya,

Wassalamu'alaikum Wr. Wb

Ketua Prodi Pendidikan Matematika

Yulia Romadiastri, S.Si, M. Sc NIP 198107152005012008

Mª Dekan

Tembusan Yth.

- 1. Dekan Fakultas Sains dan Teknologi UIN Walisongo Semarang
- 2. Mahasiswa yang bersangkutan
- 3. Arsip

Lampiran 95 Daftar Riwayat Hidup

DAFTAR RIWAYAT HIDUP

A. Identitas Diri

1. Nama Lengkap : Choirul Aini Mustaghfiroh

2. Tempat & Tgl.lahir : Semarang, 23 September 2001

3. Alamat Rumah : Penggaron Lor RT 02 RW 01 Kec. Genuk Kota

Semarang

4. Hp : 089621382387

5. Email :

Choirul_aini_mustaghfiroh_2008056009@walisongo.ac.id

B. Riwayat Pendidikan

1. Pendidikan Formal

- a. RA Futuhiyyah
- b. MI Futuhiyyah 01
- c. MTs Al Wathoniyyah
- d. MAN 2 Kota Semarang
- e. Fakultas Sains dan Teknologi Jurusan Pendidikan Matematika UIN Walisongo Semarang

Semarang, 22 Desember 2023

Choirul Aini Mustaghfiroh