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ABSTRAK

Berdasarkan karakteristiknya, fluida dibedakan menjadi dua
tipe yaitu fluida Newtonian dan non-Newtonian. Pada penelitian
ini akan dibahas mengenai fluida non-Newtonian yaitu fluida
casson nano. Fluida casson nano adalah campuran fluida darah
sebagai fluida dasar dengan partikel nano solid berukuran kecil
1 sampai 100 nanometer (nm), dan fluida casson. Penelitian ini
bertujuan untuk mengkaji mengenai aliran fluida nano melalui
silinder berpori dibawah pengaruh parameter frkasi volume
(χ), parameter casson (β), dan parameter porositas (ϕ) secara
teori dengan model matematika dibangun oleh persamaan
kontinuitas dan persamaan momentum. Selanjutnya model
yang telah dibangun diselesaikan secara numerik dengan Skema
Keller-Box, yang disimulasikan secara numerik untuk menganalisa
pengaruh arameter frkasi volume (χ), parameter casson (β), dan
parameter porositas (ϕ) terhadap kecepatan aliran fluida. Hasil
yang diperoleh yaitu semakin meningkatnya variasi nilai parameter
fraksi volume ditingkatkan (χ) = 0.1, 0.125, 0.15, 0.175, 0.2
maka kecepatan aliran fluida terhadap partikel nano Cu
mengalami peningkatan sedangkan terhadap partikel nano
Al2O3 mengalami penurunan. Apabila variasi nilai parameter
casson ditingkatkan (β) = 0.5, 0.8, 1, 1.3, 1.6 maka kecepatan
aliran fluida terhadap partikel nano Cu dan Al2O3 sama-sama
mengalami peningkatan. Apabila variasi nilai parameter porositas
ditingkatkan (ϕ) = 0.1, 0.2, 0.5, 0.7, dan0.9 maka kecepatan aliran
fluida terhadap partikel nanoCu danAl2O3 sama-sama mengalami
penurunan. Kata kunci : Fluida Casson Nano, Silinder Berpori,

Keller-Box
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BAB I

PENDAHULUAN

A. Latar Belakang Masalah

Fluida merupakan zat yang mempunyai kemampuan untuk

mengalir. Zat-zat yang ada di alam tidak hanya dalam bentuk

padat, tetapi juga bisa berupa cairan dan gas. Berdasarkan

sifat alirannya, fluida terbagi menjadi dua kategori: aliran

fluida Newtonian dan aliran fluida non-Newtonian (Widodo dkk,

2017). Pengaplikasian aliran fluida non-Newtonian menawarkan

keunggulan dibandingkan fluida Newtonian dengan aplikasi yang

lebih luas dalam industri, termasuk desain bantalan dorong pada

mesin, diffuser radial, pengurangan drag, pendinginan transpirasi,

pemulihan minyak termal, dan lain-lain. Pada beberapa fluida

non-Newtonian, tegangan geser yang rendah membuat fluida

berperilaku seperti padatan elastis, sehingga gerakannya menjadi

terbatas. Sebagai contoh, fluida casson adalah jenis fluida yang

memiliki karakteristik ini. Agar fluida dapat mengalir, tegangan

geser yang diterapkan harus lebih besar dari tegangan luluh; jika

tidak, fluida tersebut akan berfungsi seperti benda padat (Rahman

dkk, 2016).

Salah satu sifat khas dari fluida casson adalah jika tegangan

yang diberikan pada fluida casson belum melampaui atau

mencapai nilai batas tertentu maka tidak akan ada aliran yang

terjadi yang dikenal sebagai tegangan luluh (Ali dkk, 2023).

Penelitian Nagarani dkk (2024) menunjukkan bahwa model

fluida casson efektif dalam pemodelan aliran darah, terutama

dalam memprediksi pergerakan obat dan nutrisi. Fluida casson,

1
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dengan sifat kekentalannya (kemampuan kembali ke bentuk

semula setelah diberi tekanan), memberikan gambaran yang

lebih akurat tentang bagaimana zat terlarut seperti obat dan

nutrisi berperilaku dalam aliran darah. Hasil penelitian ini

menggarisbawahi pentingnya mempertimbangkan efek fluida

casson dalam kajian aliran darah dan aplikasi medis seperti

distribusi obat.

Choi dkk pada tahun 1955, memperkenalkan konsep fluida

nano yang menggabungkan partikel nano dengan fluida dasar.

Penelitian Norasia dkk (2024), meneliti aliran fluida nano dengan

fluida dasar darah, serta dua partikel nano yaitu Cu (tembaga)

dan Al2O3 (alumina). Menurut hasil penelitian kedua partikel

nano dapat mempercepat aliran darah dan meningkatkan suhu,

yang berkontribusi pada distribusi obat yang lebih efisien dalam

tubuh. Penelitian yang dilakukan oleh Ismaeel dkk (2023), fluida

nano terbukti lebih efektif dalam meningkatkan perpindahan

konveksi dibandingkan cairan lain, yang dapat meningkatkan

hasil pengobatan kanker, mengatasi pembekuan darah, dan

mengoptimalkan keberhasilan terapi tumor.

Aplikasi industri dan medis, fluida casson nano menunjukkan

peran yang penting. Fluida casson nano, sebagaimana

diungkapkan oleh Reddy dkk (2023) dan Ali dkk (2023), memiliki

peran penting dalam berbagai sektor industri dan medis, termasuk

pembuatan kaca, pemurnian minyak mentah, pelumasan, produksi

kertas, serta dalam transportasi darah dan terapi kanker, terutama

karena kemampuannya dalam sebuah proses yang memerlukan

suhu tinggi. Manvi dkk (2023) menganalisis fluida casson nano

pada plat datar berpori yang mengalami regangan. Hasil penelitian

mereka menunjukkan bahwa parameter fluida memengaruhi
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kecepatan dan suhu fluida pada plat datar yang meregang baik

secara langsung maupun tidak langsung. Peningkatan parameter

fluida casson nano menyebabkan peningkatan profil suhu,

sementara medan kecepatan justru menurun. Yousef dkk (2022)

melakukan penelitian fluida casson nano pada plat datar yang

meregang dalam media berpori. Hasilnya terlihat pada pergerakan

fluida casson nano yang melambat ketika parameter medan

magnet dan parameter porositas media berpori ditingkatkan.

Penelitian model matematika fluida casson nano melalui media

berpori dengan pengaruh tiga parameter, yaitu parameter fraksi

volume, parameter casson, dan parameter porositas diharapkan

memberikan pengaruh positif dan dapat diaplikasikan secara

optimal untuk berbagai sektor kehidupan manusia. Ketertarikan

peneliti ditemukan pada peluang signifikan yang bisa ditingkatkan

dengan menggunakan metode yang sesuai, diharapkan mampu

memberikan pandangan yang bermanfaat untuk masa yang akan

datang mengenai pengembangan ilmu matematika terapan. Pada

penelitian ini berawal dari persamaan lapisan batas sehingga

memperoleh dua persamaan dimensi, yaitu pesamaan kontinuitas

dan persamaan momentum. Kemudian didapat persamaan

similaritas dengan mengubah persamaan dimensi menjadi

persamaan non-dimensi. Simulasi numerik akan diselesaikan

dengan bantuan software MATLAB R2024b menerapkan metode

beda hingga yang berskema Keller-box.

B. Rumusan Masalah

Berikut beberapa rumusan masalah yang didapatkan dari latar

belakang yang sudah dipaparkan.
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1. Bagaimana model matematika pada aliran fluida casson nano

melalui media silinder berpori?

2. Bagaimana penyelesaian numerik model matematika pada

aliran fluida casson nano melalui media silinder berpori

menerapkan metode beda hingga yang berskema Keller-Box?

3. Bagaimana analisis hasil simulasi numerik dari model

matematika pada aliran fluida casson nano melalui media

silinder berpori?

C. Tujuan Penelitian

Tujuan penelitian berikut dirumuskan berdasarkan masalah

yang telah diuraikan:

1. Membangun model matematika pada aliran fluida casson

nano melalui silinder berpori.

2. Model matematika pada aliran fluida casson nano yang

melewati silinder berpori diselesaikan secara numerik

menerapkan metode beda hingga yang berskema Keller-Box.

3. Menganalisis hasil simulasi numerik pada model matematika

aliran fluida casson nano melalui media silinder berpori.

D. Manfaat Penelitian

Manfaat penelitian ini dilakukan, diharapkan dapat

memberikan kontribusi penelitian tentang matematika terapan

baik secara pengetahuan ataupun keilmuan. Khususnya pada

pemodelan aliran fluida casson nano melalui media berpori
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dengan mempertimbangkan parameter casson, parameter fraksi

volume, dan parameter porositas menerapkan metode beda hingga

yang berskema Keller-Box.

E. Batasan Masalah

Pada penelitian ini memiliki beberapa batasan masalah sebagai

berikut.

1. Silinder berpori adalah media yang digunakan pada

penelitian ini.

2. Terdapat dua partikel nano dalam penelitian yaitu: Cu

(tembaga) dan Al2O3 (alumina).

3. Penyelesaian secara numerik menerapkan metode beda

hingga yang berskema Keller-Box dengan bantuan software

MATLAB R2024b.



BAB II

LANDASAN PUSTAKA

A. Fluida

Zat-zat di alam dikelompokkan kedalam tiga wujud, yaitu

wujud cair, gas, dan padat. Wujud cair dan gas adalah wujud

dengan kemampuan yang sama untuk mengalir dan bentuknya

selalu berubah-ubah atau sering disebut sebagai fluida. Fluida

merupakan suatu zat, yang mana jika diberikan gaya sekecil

apapun berakibat perubahan bentuk terus-menerus karena tidak

dapat menahan gaya yang diberikan (Bambang, 2016). Dalam

aliran fluida, terdapat dua aspek utama, yakni tegangan geser

yang menunjukkan gaya penyebab pergeseran, serta regangan

geser yang menunjukkan perubahan bentuk akibat gaya itu, yang

mengakibatkan pembagian fluida menjadi dua kategori, yaitu

(Widodo dkk, 2017)

1. Aliran Fluida Newtonian

Jika aliran fluida menerapkan hukum pertama Newton

(benda akan terus diam jika tidak diberikan gaya) atau

hubungan di antara laju regangan geser dan tegangan geser

berbanding lurus, maka disebut aliran fluida Newtonian.

Contohnya seperti oli, bensin, minyak, air, dan udara. Bentuk

persamaan fluida Newtonian:

τ = µ
du

dy

dimana:

6
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τ : tegangan geser pada fluida
du
dy : laju regangan geser

µ : kekentalan dinamik fluida

2. Aliran Fluida non-Newtonian

Aliran fluida non-Newtonian adalah kebalikan dari aliran

fluida Newtonian. Hukum pertama Newton tidak dapat

diterapkan karena tegangan geser dan laju regangan

gesernya tidak berbanding lurus. Dalam kehidupan

sehari-hari, kita dapat menemui beberapa contoh aliran

fluida non-Newtonian, seperti campuran air dan tepung

maizena, cat lateks, pasta gigi, dan lain-lain. Bentuk

persamaan fluida non-Newtonian:

τ = k

(
du

dy

)n

dimana:

τ : tegangan geser pada fluida

n : indeks perilaku kekentalan fluida ketika tegangan geser

berubah

k : koefisien indeks kekentalan fluida pada tegangan geser
du
dy : laju regangan geser

Jenis aliran fluida yang digunakan dalam penelitian ini adalah

fluida non-Newtonian karena aliran fluida adalah fluida casson

nano.

B. Fluida Casson

Fluida non-Newtonian yang mempunyai perilaku khusus

adalah fluida casson. Perilaku khusus fluida casson yaitu akan
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mengalami tegangan geser sampai mencapai tegangan tertentu

sebelum memulai aliran. Fluida casson juga memiliki tegangan

luluh (yield stress) yaitu nilai dari tegangan geser yang harus

dicapai agar aliran fluida dapat mengalir. Jika tegangan luluh

sudah tercapai maka aliran fluida casson akan mengallir sesuai

dengan sifat kekentalannya (Nagarani dkk, 2024).

Perilaku khusus fluida casson yang membutuhkan

tercapainya nilai tegangan luluh tertentu sebelum memulai

aliran memunculkan sebuah parameter yaitu paramater casson.

Perilaku khusus ini juga memerlukan pendekatan khusus untuk

memahami perilaku aliran fluidanya. Menyebabkan aliran fluida

yang memiliki perilaku khusus tidak bisa didekati dengan model

Newtonian sederhana.

Kasus aliran fluida casson, kecepatan aliran biasanya

dipengaruhi oleh tegangan geser yang melampaui tegangan

luluh, yang diwakili oleh parameter (τy). Nagarani dkk (2024)

Menyatakan rumus umum yang digunakan untuk mendeskripsikan

perilaku fluida casson adalah

τ = τy + µ

(
du

dy

)
dimana:

τ : tegangan geser

τy : tegangan luluh

µ : kekentalan dinamis
du
dy : gradien/perubahan kecepatan

Fluida casson memberikan berbagai keuntungan dalam

meningkatkan perpindahan panas dan massa dalam media

berpori, khususnya di bawah pengaruh medan magnet dan reaksi
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kimia. Manfaat ini mendukung aplikasi yang membutuhkan

kontrol suhu dan pengolahan kimia dengan akurasi tinggi.

Fluida ini memungkinkan pengendalian aliran dan suhu melalui

penyesuaian viskositas dan porositas, yang sangat relevan

untuk proses industri dengan pengawasan operasi yang ketat.

Aplikasinya meluas ke sektor farmasi, kimia, serta simulasi aliran

darah dalam desain sistem peredaran darah untuk mengkaji

jaringan tubuh (Reddy dkk, 2023).

C. Fluida Nano

Aliran fluida nano adalah gabungan dari aliran fluida dasar dan

partikel nano. Choi dan Eastman pertama kali mengemukakan

konsep ini pada tahun 1995. Fluida dasar yang dimaksud dapat

berupa darah, air, minyak, alkohol, oli, serta berbagai jenis cairan

lainnya. Sedangkan partikel nano sendiri dapat berupa Ag, Al, Zn,

Fe, Cu, Al2O3, dan lain sebagainya (Norasia dkk, 2019). Fluida dasar

yang digunakan penelitian ini berupa darah karena sifatnya yang

kompleks dan akan bertambah kompleks ketika penggunaannya

digabungkan dengan partikel nano (Norasia dkk, 2024).

Penelitian ini menggunakan partikel nano yang berupa Cu

(tembaga) serta Al2O3 (alumina). Dalam aplikasi medis, tembaga

memiliki manfaat penting karena memiliki sifat antimikorba

yang mana sangat efektif dalam memusnahkan virus dan bakteri.

Tembaga juga memiliki fungsi dalam memusnahkan sel-sel

kanker tetapi tidak merusak jaringan yang sehat karena memiliki

kemampuan fototermal, yaitu menyerap energi cahaya infra merah

dan mengubahnya menjadi panas (Wei dkk, 2024).

Sedangkan Al2O3 (alumina) adalah partikel nano yang mudah



10

ditemukan dan termasuk bahan yang aman untuk manusia dan

hewan (Heris dkk, 2006). Partikel nano Al2O3 (alumina) memiliki

sifat biokompatibel (untuk implan dan alat bedah karena alumina

tidak menimbulkan reaksi toksik atau merugikan pada tubuh),

kemampuan penghantaran panas yang tinggi (terapi kanker), dan

fleksibel dalam berbagai aplikasi medis seperti bidang kesehatan

dan kedokteran modern (Islam dkk, 2024)

Alasan tembaga dan alumina digunakan bersama dalam

bidang medis dapat menjadikan tambahan keuntungan.

Dengan menggabungkan tembaga yang secara signifikan

dapat mengoptimalkan konduktivitas termal dan alumina

yang menambah biokompabilitas serta stabilitas, keduanya

menghasilkan suatu sistem aplikasi medis yang lebih stabil dan

efesien (Ketchate dkk, 2021).

Menurut Norasia dkk (2021) aliran fluida dasar dan partikel

nano memiliki sifat-sifat yang berhubungan, yaitu.

1. Massa Jenis Fluida Nano

Fluida dinyatakan dengan massa fluida per satuan volume

disebut massa Jenis. Massa fluida sendiri adalah banyaknya

besaran massa dalam suatu volume pada suatu fluida. Massa

Jenis fluida nano dituliskan pada persamaan berikut.

ρnf = (1− χ)ρf + χρs

dimana:

ρnf : massa jenis fluida nano (kg/m3)

χ : fraksi volume fluida nano

ρf : massa jenis fluida dasar (kg/m3)

ρs : massa jenis partikel nano (kg/m3)
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2. Kekentalan Fluida Nano

Pergerakan aliran fluida terdapat suatu gesekan antar

partikelnya, hal ini disebut kekentalan. Aliran fluida akan

mengalir lebih mudah jika kekentalannya rendah. Sehingga,

besar kecilnya tekanan pada aliran fluida disebabkan oleh

kekentalan.

Pada dasarnya fluida nano adalah gabungan dari partikel

nano dan fluida dasar. Hal ini menyebabkan adanya

hubungan langsung antar kekentalannya, ditunjukkan pada

persamaan berikut:

µnf =
µf

(1− χ)2.5

dimana:

µnf : kekentalan fluida nano (Pa·s)

µf : kekentalan fluida dasar (kg/m·s)

χ : fraksi volume partikel nano

3. Kalor Khusus Fluida Nano

Fluida nano memiliki karakteristik kalor spesifik yang

menggambarkan berapa banyak energi yang diperlukan

untuk meningkatkan suhu fluida hingga 1◦C. Apabila tekanan

fluida konstan, interaksi antara partikel nano dan fluida

dasar dapat digunakan untuk memperkirakan kapasitas

kalor fluida nano yang mana dituliskan dalam persamaan

berikut.

(ρcp)nf = (1− χ)(ρcp)f + χ(ρcp)s

dimana:
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(ρcp)nf : kalor khusus fluida nano (J/kg·K)

(ρcp)f : kalor khusus fluida dasar (J/kg·K)

(ρcp)s : kalor khusus partikel (kJ/kg.K)

χ : fraksi volume partikel nano

ρf : massa jenis fluida dasar (kg/m3)

ρs : massa jenis partikel nano (kg/m3)

ρnf : massa jenis fluida nano (kg/m3)

4. Kondivitas Termal Fluida Nano

Konduktivitas termal merupakan indikator kemampuan

bahan dalam menghantarkan energi panas. Hal ini

menunjukkan seberapa cepat dan efisien panas dapat

bergerak melalui bahan tersebut. Konduktivitas termal

dari fluida nano dapat dituliskan dalam bentuk persamaan

berikut.
knf
kf

=
(ks + 2kf )− 2χ(kf − ks)

(ks + 2kf ) + χ(kf − ks)

dimana:

knf : konduktivitas termal fluida nano (W/m·K)

kf : konduktivitas termal fluida dasar (W/m·K)

ks : konduktivitas termal partikel (W/m·K)

χ : fraksi volume dari partikel nano

Parameter χ fraksi volume didapat dari pembagian antara

volume partikel nano (Vs) dengan volume keseluruhan (Vtotal)

(Mahdi dkk, 2015).

χ =
Vs
Vtotal

Karakteristik fisik dari fluida dasar (darah) serta partikel nano

Cu dan Al2O3, disajikan dalam tabel sebagai berikut.



13

Tabel 2.1. Tabel Karakteristik Fisik (Norasia dkk, 2024)

Parameter Alumina Temabaga Fluida Dasar (Darah)
massa Jenis 3970 8933 1063
Kapasitas Panas 765 385 3594
Konduktivitas Termal 40 400 0.492

D. Fluida Casson Nano

Yousef dkk pada tahun 2022, menjelaskan karakteristik khusus

dari fluida casson yang memiliki nilai ambang atau tegangan luluh.

Fluida casson nano adalah gabungan dari beberapa atau salah satu

partikel nano dan fluida casson. Fluida casson akan mengalami

pergerakan jika tegangan luluh melebihi tegangan geser. Dapat

digambarkan bahwa perilaku aliran fluida casson memerlukan

tegangan geser minimum sebelum aliran terjadi.

Penelitian ini berfokus pada penggunaan partikel nano Cu

(tembaga) dan Al2O3 (alumina). Keduanya memiliki konduktivitas

termal yang cukup baik, menyebabkan transfer panas menjadi

lebih efektif dalam pengaplikasiannya. Tembaga sendiri dapat

diaplikasikan dalam dunia medis karena mempunyai sifat

antimikroba alami yang membantu meminimalisir risiko dari

infeksi. Sedangkan alumina sangat cocok jika diterapkan untuk

aplikasi jangka panjang karena sulit bereaksi dengan fluida dasar

(Das dkk, 2003).

Manvi dkk pada tahun 2023, meneliti fluida casson nano

dengan aplikasinya dalam berbagai bidang khususnya dalam

bidang medis. Fluida casson nano sangat bermanfaat untuk

penyaluran obat secara tepat, terapi hipertermia dalam

pengobatan kanker, dan sistem pendingin untuk peralatan medis

karena memiliki kemampuan untuk meningkatkan perpindahan
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panas dan massa. Penggunaan partikel nano Cu (tembaga) dan

Al2O3 (alumina) dapat mengoptimalkan konduktivitas termal dan

memungkinkan pengendalian suhu yang lebih presisi, yang sangat

penting dalam proses medis sensitif seperti terapi hipertermia

dalam pengendalian jaringan kanker.

E. Aliran Fluida Berdasarkan Waktu

Aliran fluida mengalami perubahan berdasarkan

waktu (Norasia, 2018). Menurut Norasia (2018) dengan

mempertimbangkan perubahan waktu, aliran fluida dibedakan

menjadi dua jenis, yaitu:

1. Fluida Tunak (Steady State)

Fluida tunak adalah aliran fluida dimana turunannya sama

dengan nol atau tidak berpengaruh terhadap perubahan

waktu. Hal ini berarti kecepatan aliran setiap waktu bernilai

konstan. Persamaan fluida tunak adalah sebagai berikut.

∂u

∂t
= 0

2. Fluida Tak Tunak (Unsteady State)

Fluida tak tunak merupakan aliran fluida yang berubah

seiring waktu, sehingga turunannya tidak bernilai nol. Hal ini

berarti kecepatan aliran setiap waktu bernilai tidak konstan.

Berikut berlaku persamaan fluida tak tunak:

∂u

∂t
̸= 0

Namun pada penelitian ini, difokuskan pada fluida tak tunak
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(Unsteady State). Dalam memahami tentang dinamika fluida

casson nano, penting untuk mempertimbangkan karakteristik

aliran lapisan batas yang memiliki dampak signifikan.

F. Porositas Media Silinder Berpori

Media berpori adalah media yang memiliki lubang-lubang kecil

atau pori-pori yang mana tiap lubang-lubang kecil ini memiliki

tingkat porositas tertentu. Sedangkan porositas sendiri adalah

ukuran seberapa baik air dapat mengalilr melalui media berpori

tersebut. Tingkat atau nilai porositas dilambangkan dengan ϕ

(Triatmojo dkk, 2020).

Porositas pada model aliran fluida melalui silinder berpori

memberikan manfaat serta aplikasi yang luas dalam berbagai

bidang, khususnya bidang medis. Porositas memiliki peran untuk

mengontrol aliran panas dan silinder berpori menyebarkan aliran

panas secara merata. Silinder berpori juga bermanfaat sebagai

implan karena porositas yang dimiliki dapat mengoptimalkan

pertumbuhan jaringan tubuh. Selain itu, silinder berpori berguna

dalam terapi jangka panjang atau pori-pori silinder berguna untuk

penyaluran obat secara bertahap (Jamil dkk, 2023).

Darcy pada tahun (1856), menemukan bahwa tekanan yang

terjadi sepanjang media berpori berkaitan dengan seberapa

cepat fluida mengalir melaluinya. Penelitian lebih lanjut

mengungkapkan bahwa kecepatan rata-rata fluida yang mengalir

melalui media berpori tidak memiliki hubungan linear dengan

viskositas fluida (µ). Berdasarkan temuan Darcy (1856), dapat
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dirumuskan persamaan porositas berikut.

ϕ =
aµ

ρU∞K∗

dimana:
ϕ : parameter porositas

a : konstanta

µ : kekentalan

ρ : massa Jenis fluida

U∞ : kecepatan aliran bebas

K∗ : permeabilitas (daya serap)

Dalam penelitian ini, peneliti mempelajari bentuk dan struktur

silinder berpori berdasarkan parameter porositasnya.

G. Lapisan Batas (Boundary Layer)

Lapisan batas merupakan jenis aliran yang terbagi menjadi tiga,

yaitu aliran laminar, aliran transisi, serta aliran turbulen. Aliran

lapisan batas terbentuk di wilayah sempit di dekat permukaan

yang dipengaruhi oleh gaya inersia (hasil gaya dari pergerakan zat

cair) dan viskositas suatu benda (Widodo, 2012).

Aliran laminar merupakan pergerakan partikel-partikel cairan

secara teratur dan sejajar satu sama lain sepanjang lintasan. Ketika

partikel-partikel tidak bergerak secara teratur disebut aliran

turbulen. Aliran transisi, atau aliran peralihan terjadi ketika aliran

mulai berubah dari keadaan laminar yang teratur ke turbulen yang

tidak stabil (Norasia dkk, 2018).
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H. Metode Beda Hingga

Persamaan difirensial dapat didekati dengan simulasi numerik,

salah satunya dengan metode beda hingga. Terdapat titik-titik

diskrit dilambangkan dengan indeks (i), fungsi y′(x) pada titik xi
ditulis fi, dan jarak antara dua titik diskrit (h). Titik diskrit menjadi

kunci simulasi numerik karena dapat direpresentasikan ke dalam

bahasa komputer. Menurut Davis (2001) secara umum metode

beda hingga dibagi menjadi tiga, yaitu:

1. Pendekatan Beda Maju

y′(xi) =
yi+1 − yi

h

2. Pendekatan Beda Mundur

y′(xi) =
yi − yi−1

h

3. Pendekatan Beda Pusat

y′(xi) =
yi+1 − yi−1

2h

I. Skema Keller-Box

Skema Keller-Box digunakan dalam simulasi numerik untuk

menyelesaikan persamaan lapisan batas dengan menerapkan

metode beda hingga. Abu (2018) menjelaskan tentang

langkah-langkah penyelasaian skema Keller-Box sebagai berikut.

1. Melakukan pengubahan pada persamaan diferensial berordo

tinggi menjadi ordo pertama dapat mengubah persamaan
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yang awalnya kompleks menjadi lebih sederhana sehingga

mempermudah metode numerik. Berikut diberikan contoh

dalam mengubah sebuah persamaan diferensial berordo

tinggi menjadi ordo pertama:

∂u

∂t
= α

∂2u

∂x2

didefinisikan bahwa

v =
∂u

∂x

sehingga persamaan diperoleh

∂u

∂t
= α

∂

∂x
(
∂u

∂x
)

∂u

∂t
= α

∂v

∂x

kemudian dapat dituliskan bentuk persamaan berikut.

∂v

∂x
= h

∂u

∂t
= α

∂v

∂x

2. Menerapkan diskritisasi persamaan dengan metode beda

hingga pusat terhadap sumbu- x dan sumbu- y.

3. Hasil persamaan diskritisasi kemudian digunakan metode

newton yang diubah menjadi bentuk matriks vektor untuk

dilinearisasikan.

4. Langkah terakhir mengeliminasi matriks blok tridiagonal

sehingga memperoleh solusi dari hasil linierisasi.
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Berikut ini adalah contoh skema Keller-Box:

Gambar 2.1. Skema Keller-Box (Al-Shibani dkk, 2012)

J. Penelitian Terdahulu

Pada penelitian ini terdapat beberapa penelitian terdahulu

yang relevan, dijelaskan sebagai berikut.

1. "The Effect of Nanoparticles on Drug Distribution in The

Mathematical Model of Blood Flow" (Yolanda Norasia dkk,

2024).

Studi ini menunjukkan bahwa bahwa nanopartikel seperti

Cu Cu (tembaga) dan Al2O3 (alumina) dapat mempercepat

aliran darah dan meningkatkan suhu, yang berkontribusi

pada distribusi obat yang lebih efisien dalam tubuh.

2. “Chemical reaction impact on MHD dissipative casson

Williamson nanofluid flow over a slippery stretching sheet

through porous medium” (N. S. Yousef dkk, 2022).
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Studi ini membahas konsentrasi fluida nano yang berdampak

pada pergerakan partikel nano. Kecepatan fluida casson

nano dipengaruhi oleh medan magnet. Jika mengandung

medan magnet, kecepatan fluida lebih lambat dibandingkan

fluida yang tidak mengandung medan magnet.

3. “Numerical simulation for a casson nanofluid over an inclined

vessel surrounded by hot tissue at the microscale” (A.M.

Ismaeel dkk, 2023).

Studi ini menghasilkan bahwa ada beberapa parameter

partikel nano yang mempengaruhi kecepatan fluida

nano, diantaranya koefisien kelengkungan silinder

(K) dan radiasi termal (Rd). Peningkatan nilai K

menghambat aliran fluida karena adanya peningkatan gaya

elektromagnetik. Sementara itu, peningkatan parameter Rd

juga meningkatkan kecepatan fluida dan penyebaran partikel

nano di dalam jaringan. Partikel nano yang tersebar lebih

maksimal dapat mengurangi gaya viskos, sehingga partikel

nano lebih mudah mencapai jaringan tumor. Beberapa

parameter yang disesuaikan mengakibatkan penyebaran

partikel nano lebih efesien dalam bidang biomedis.

4. “Hydromagnetic flow of casson nano-fluid across a stretched

sheet in the presence of thermoelectric and radiation” (Md.

Yousuf Ali dkk, 2023).

Hasil studi diperoleh bahwa kecepatan fluida nano

dipengaruhi oleh berbagai parameter fisik seperti

konsentrasi partikel nano, parameter slip velocity, dan

medan magnet. Parameter yang ditingkatkan dapat

memperlambat kecepatan fluida tetapi dapat meningkatkan
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persebaran suhu dan perpindahan panas di dalam

media yang digunakan. Pengaruh media berpori juga

signifikan dalam menentukan kinerja fluida nano dalam

aplikasi praktis, terutama dalam meningkatkan efisiensi

perpindahan panas di aplikasi biomedis.

5. “MHD casson nanofluid boundary layer flow in presence of

radiation and non-uniform heat source/sink” (Bharatkumar

K. Manvi dkk, 2023).

Hasil studi mengungkapkan bahwa parameter fluida

pada lembar yang diregangkan baik secara langsung

maupun tidak langsung mempengaruhi kecepatan dan

suhu fluida. Parameter fluida casson nano yang ditingkatkan

menyebabkan suhu naik, namun kecepatan fluida berkurang.

6. “A finite difference study of radiative mixed convection MHD

heat propagating casson fluid past an accelerating porous

plate including viscous dissipation and Joule heating effects”

(B. Prabhakar Reddy dkk, 2023).

Studi ini mengungkapkan bahwa peningkatan nilai

parameter mengurangi pergerakan fluida karena adanya

peningkatan parameter magnetik. Sementara itu,

peningkatan porositas pada media berpori mempercepat

aliran fluida.

7. “The effect of peristalsis on dispersion in casson fluid flow” (P.

Nagarani dkk, 2024).

Studi ini menemukan bahwa penggunaan model fluida

casson memperdalam wawasan mengenai sifat darah

non-Newtonian dan dampaknya terhadap distribusi obat
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dalam tubuh. Fluida casson secara signifikan memengaruhi

perilaku zat terlarut.

Beberapa penelitian terdahulu yang digunakan terdapat

persamaan dan perbedaan dengan penelitian yang sedang

dilakukan. Berikut disajikan dalam Tabel 2.2

Tabel 2.2. Tabel Persamaan dan Perbedaan Penelitian Terdahulu
dengan Penelitian yang sedang Dilakukan

No Penelitian

Terdahulu

Persamaan Perbedaan

1. Yolanda Norasia

dkk (2024)

“The Effect of

Nanoparticles on

Drug

Distribution in

The

Mathematical

Model of Blood

Flow”

a. Fluida yang

digunakan

sama-sama

fluida nano.

b. Dipengaruhi

oleh parameter

fraksi volume.

c. Terdapat

partikel nano Cu

dan Al2O3.

d. Media yang

digunakan

silinder berpori.

a. Peneliti terdahulu

tidak menggunakan

parameter porositas.

b. Penelitian terdahulu

menggunakan metode

Euler mundur

(Backward Euler) dan

Algoritma Thomas,

penelitian ini metode

beda hingga skema

Keller-Box.
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No Penelitian

Terdahulu

Persamaan Perbedaan

2. N. S. Yousef dkk

(2022)

“Chemical

reaction impact

on MHD

dissipative

Casson

Williamson

nanofluid flow

over a slippery

stretching sheet

through porous

medium”

a. Jenis fluida

yang digunakan

fluida casson

nano.

b. Dipengaruhi

oleh parameter

fraksi volume,

parameter

casson, dan

parameter

porositas.

c. Media yang

digunakan

adalah media

berpori.

a. Peneliti terdahulu

menggunakan aliran

fluida nano williamson,

penelitian ini hanya

menggunakan fluida

nano yang

mengandung partikel

Cu dan Al2O3.

b. Metode peneliti

terdahulu adalah

runge-kutta, penelitian

ini menggunakan

metode beda hingga

skema Keller-Box.
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No Penelitian

Terdahulu

Persamaan Perbedaan

3. A.M. Ismaeel dkk

(2023)

“Numerical

simulation for a

Casson nanofluid

over an inclined

vessel

surrounded by

hot tissue at the

microscale”

a. Jenis fluida

yang digunakan

sama-sama

fluida casson

nano.

b. Terdapat

parameter

casson dan

fraksi volume.

c. Media yang

dipakai

sama-sama

silinder.

a. Media silinder

miring digunakan oleh

peneliti terdahulu,

penelitian ini

meggunakan media

silinder berpori.

b. Metode peneliti

terdahulu adalah

bvp4c, penelitian ini

metode beda hingga

skema Keller-Box.

c. Tidak terdapat

parameter porositas
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No Penelitian

Terdahulu

Persamaan Perbedaan

4. Md. Yousuf Ali

dkk (2023)

“Hydromagnetic

flow of Casson

nano-fluid across

a stretched sheet

in the presence of

thermoelectric

and radiation”

a. Jenis fluida

yang digunakan

sama-sama

fluida casson

nano.

b. Metode yang

digunakan

sama-sama

metode beda

hingga skema

Keller-Box.

c. Parameter

sama-sama

menggunakan

parameter

casson dan

parameter fraksi

volume.

a. Media plat datar

yang diregangkan

adalah media peneliti

terdahulu, penelitian

ini meggunakan media

silinder berpori.

b. Pada penelitian

terdahulu tidak

memuat parameter

porositas, sedangkan

penelitian ini memuat

parameter porositas

karena menggunakan

media berpori.
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No Penelitian

Terdahulu

Persamaan Perbedaan

5. Bharatkumar

K. Manvi dkk

(2023)

“MHD Casson

nanofluid

boundary layer

flow in presence

of radiation and

non-uniform

heat

source/sink”

a. Jenis fluida

yang digunakan

sama-sama

fluida casson

nano.

b. Media yang

digunakan

adalah media

berpori.

c. Terdapat

parameter fraksi

volume,

parameter

casson, dan

parameter

porositas.

a. Metode yang

digunakan peneliti

terdahulu adalah

runge-kutta, penelitian

ini menggunakan

metode beda hingga

skema Keller-Box.

b. Partikel nano pada

penelitian terdahulu

adalah perak dan

tembaga, penelitian ini

menggunakan

tembaga dan alumina.

c. Media berpori pada

penelitian terdahulu

adalah plat datar

berpori yang

diregangkan,

sedangkan penelitian

ini menggunakan

silinder berpori.
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No Penelitian

Terdahulu

Persamaan Perbedaan

6. B. Prabhakar

Reddy dkk

(2023)

“A finite

difference study

of radiative

mixed convection

MHD heat

propagating

Casson fluid past

an accelerating

porous plate

including viscous

dissipation and

Joule heating

effects”

a. Media yang

digunakan

adalah media

berpori.

b. Fluida yang

digunakan fluida

casson.

c. Sama- sama

terdapat

parameter

casson dan

paramater

porositas.

a. Skema yang

digunakan pada

penelitian terdahulu

adalah beda hingga

Crank Nicolson,

penelitian ini skema

beda hingga Keller Box.

b. Media berpori pada

penelitian terdahulu

adalah plat berpori

bergerak, sedangkan

penelitian ini

menggunakan silinder

berpori.

c. Fluida yang

digunakan penelitian

terdahulu hanya fluida

casson, penelitian ini

menggunakan fluida

casson nano.
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No Penelitian

Terdahulu

Persamaan Perbedaan

7. P. Nagarani dkk

(2024)

“The effect of

peristalsis on

dispersion in

Casson fluid

flow”

a. Fluida yang

digunakan

sama-sama

fluida casson

b. Terdapat

parameter

casson.

a. Metode elemen

hingga (FEM)

digunakan oleh

peneliti terdahulu,

penelitian ini

menggunakan metode

beda hingga skema

Keller-Box.

b. Parameter peneliti

terdahulu hanya

parameter casson,

penelitian ini

menggunakan

paramater fraksi

volume dan porositas.

c. Media yang

digunakan pada

penelitian terdahulu

berbnetuk tabung

sedangkan penelitian

ini silinder berpori.



BAB III

METODE PENELITIAN

A. Langkah-langkah Penelitian

Proses penelitian yang dilakukan terdiri dari beberapa langkah

utama yang harus dilakukan, diantaranya:

1. Studi Literatur

Untuk mendukung penelitian, studi literatur mengkaji

model-model aliran fluida casson nano pada media berpori

dengan mengacu pada sumber-sumber terpercaya, termasuk

buku dan jurnal-jurnal ilmiah yang relevan. Selanjutnya

dilakukan pengembangan lebih lanjut tentang model

matematika aliran fluida casson nano dalam media berpori

dari penelitian yang telah dilakukan sebelumnya.

2. Pembangunan Model Matematika

Langkah-langkah berikut adalah proses dalam membangun

model matematika:

i. Membangun model matematika sehingga

menghasilkan persamaan kontinuitas dan persamaan

momentum dengan melakukan penurunan rumus pada

hukum-hukum fisika yang berkaitan.

ii. Persamaan dimensional pada persamaan kontinuitas

dan momentum ditransformasikan menjadi persamaan

non-dimensional, fungsi alir, dan persamaan

similaritas secara berturut-turut. Tujuannya supaya

mempermudah penyelesaian simulasi numerik.
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iii. Selanjutnya akan ditentukan kondisi batas pada

persamaan-persamaan yang telah diperoleh.

3. Penyelesaian Model Matematika

Model matematika yang telah didapatkan yaitu dalam bentuk

persamaan similaritas. Selanjutnya diselsaikan secara

numerik menggunakan metode beda hingga yang bersekma

Keller-Box. Berikut langkah-langkah dari penyelesaian

numerik.

i. Hasil analisis lapisan batas pada media berpori dengan

fluida casson nano, didapatkan persamaan similaritas

ordo tinggi yang mana akan dilakukan penyederhanaan

dengan mengubah persamaan ordo tinggi menjadi ordo

pertama untuk memudahkan simulasi numerik yang

akan dilakukan pada langkah selanjutnya.

ii. Ordo pertama persamaan similaritas yang diperoleh

selanjutnya diterapkan metode beda hingga melalui

proses diskritisasi guna memperkirakan persamaan.

iii. Persamaan yang diperoleh dari proses diskritisasi

kemudian digunakan metode newton yang diubah

menjadi bentuk matriks vektor untuk dilinearisasikan.

iv. Untuk mendapatkan solusi, persamaan hasil linierisasi

dipecahkan dengan cara menerapkan eliminasi matriks

yang berbentuk blok tridiagonal.

4. Simulasi Numerik Model Matematika Aliran Fluida Casson

Nano

Model pada penelitian ini, selanjutnya dilakukan proses

simulasi secara numerik dengan algoritma program
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yang akan disimulasikan menggunakan bantuan software

MATLAB R2024b sebagai berikut.

i. Melakukan proses simulasi secara numerik

menerapkan metode beda hingga yang berskema

Keller-Box terhadap model matematika yang sudah

dibangun pada aliran fluida casson nano dalam

media berpori kemudian disimulasikan menggunakan

software MATLAB R2013b.

ii. Langkah berikutnya melakukan simulasi yang akan

menghasilkan data berupa grafik pengaruh parameter

fraksi volume terhadap partikel nano tembaga (Cu) dan

alumina (Al2O3), parameter casson terhadap partikel

nano tembaga (Cu) dan alumina (Al2O3), dan parameter

porositas terhadap partikel nano tembaga (Cu) dan

alumina (Al2O3) dengan memasukkan semua nilai

parameter dan partikel nano.

iii. Apabila simulasi numerik yang dijalankan berjalan

lancar, langkah penelitian dapat diteruskan ke langkah

berikutnya. Namun, jika terjadi simulasi numerik

yang dijalankan terdapat kendala/masalah/gagal,

maka simulasi numerik tersebut harus diperbaiki atau

diulang kembali sampai tidak terdapat kendala.

5. Analisis Pembahasan dan Hasil yang diperoleh

Pada bagian pembahasan akan menganalisis lebih lanjut

hasil simulasi numerik yang telah dilakukan. Hasil analisis

akan mengetahui bagaimana pengaruh tiga parameter

terhadap dua partikel nano yang sudah disimulasikan, yaitu

parameter fraksi volume terhadap partikel nano tembaga
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(Cu) dan alumina (Al2O3), parameter casson terhadap

partikel nano tembaga (Cu) dan alumina (Al2O3), dan

parameter porositas terhadap partikel nano tembaga (Cu)

dan alumina (Al2O3). Setelah mendapatkan hasil analisis

simulasi numerik, selanjutnya diambil beberapa kesimpulan.

6. Penyusunan Laporan Penelitian

7. Penerbitan Hasil Laporan Penelitian

Beberapa langkah penelitian disajikan dalam diagram berikut:

Gambar 3.1. Diagram Langkah Penelitian



BAB IV

HASIL PENELITIAN DAN PEMBAHASAN

A. Persamaan Pembangun Model Matematika Dimensional

Di bagian ini, peneliti akan menguraikan persamaan dasar

yang membentuk persamaan pembangun dari model pergerakan

fluida casson nano di sepanjang media silinder berpori. Persamaan

dasar meliputi persamaan pembangun kontinuitas dan persamaan

pembangun momentum

4.1 Persamaan Kontinuitas

Hukum dasar fisika yang membangun persamaan

kontinuitas adalah turunan dari hukum kekekalan massa

yang menyebutkan laju perubahan massa terhadap waktu

akan bersifat tetap atau konstan (Purnaditya, 2020).

m = konstan→ dMsys

dt
= 0 (4.1)

dengan Msys adalah massa dalam sistem yaitu jumlah

perkalian antara massa jenis fluida dengan volume fluida

yang dituliskan dalam persamaan berikut.

Msys =

∫
sys

ρ dV (4.2)

dimana:

ρ : massa jenis fluida nano

V : volume fluida
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Selanjutnya mensubtitusikan persamaan (4.1) ke (4.2)

sehingga diperoleh.

dMsys

dt
=

d

dt

∫
sys

ρ dV = 0 (4.3)

Teori pengangkut Reynold menuliskan persamaan laju

perubahan massa terhadap waktu dari suatu sistem sebagai

berikut.
dMsys

dt
=

∫
cv

∂ρ

∂t
dV +

∫
cs
ρun̂ dA (4.4)

dimana:

cv : control volume (dV)

cs : control surface (dA)

u : vektor kecepatan volume terkontrol

n̂ : vektor normal keluar masuk volume kendali

dA : luas bidang permukaan fluida∫
cv

∂
∂tρ dV : total besaran dalam volume kendali∫

cs ρun̂ dA : total besarann yang masuk dan keluar

dari bidang permukaan kendali

dikarenakan dMsys

dt = 0, maka persamaan (4.4) dapat ditulis

seperti berikut. ∫
cv

∂ρ

∂t
dV = −

∫
cs
ρun̂ dA∫

cv

∂ρ

∂t
dV +

∫
cs
ρun̂ dA = 0

(4.5)

Persamaan (4.5) menunjukkan rerata dari perubahan

jumlah seluruh massa dalam kontrol volume. Selanjutnya

persamaan (4.5) dikenai teorema Gauss, sehingga menjadi.
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∫
cv

∂ρ

∂t
dV +

∫
cv
∇ · (ρu) dv = 0∫

cv

(
∂ρ

∂t
+∇ · (ρu)

)
dv = 0

∂ρ

∂t
+∇ · (ρu) = 0

∂ρ

∂t
+
∂(ρū)

∂x̄
+
∂(ρv̄)

∂ȳ
+
∂(ρw̄)

∂z̄
= 0

∂ρ

∂t
+ ū

∂ρ

∂x̄
+ ρ

∂ū

∂x̄
+ v̄

∂ρ

∂ȳ
+ ρ

∂v̄

∂ȳ
+ w̄

∂ρ

∂z̄
+ ρ

∂w̄

∂z̄
= 0

∂ρ

∂t
+ ū

∂ρ

∂x̄
+ v̄

∂ρ

∂ȳ
+ w̄

∂ρ

∂z̄
+ ρ

(
∂ū

∂x̄
+
∂v̄

∂ȳ
+
∂w̄

∂z̄

)
= 0

(4.6)

Penelitian aliran fluida casson nano ini bersifat tidak

mampu mampat atau kekentalan fluida pada penelitian

ini bergantung pada tegangan geser bukan tekanan yang

mengakibatkan (ρ) bernilai konstan dan pengaruhnya tidak

signifikan karena massa jenis fluida sangat kecil. Persamaan

(4.6) dapat ditulis menjadi.

ρ

(
∂ū

∂x̄
+
∂v̄

∂ȳ
+
∂w̄

∂z̄

)
= 0

ρ(∇ · u) = 0

∇ · u = 0

(4.7)

atau dapat ditulis dalam bentuk 3 dimensi

∂ū

∂x̄
+
∂v̄

∂ȳ
+
∂w̄

∂z̄
= 0 (4.8)
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persamaan kontinuitas dalam bentuk 2 dimensi adalah

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0 (4.9)

Dalam penelitian aliran fluida casson nano ini, menggunakan

persamaan kontinuitas 2 dimensi pada persamaan (4.9).

4.2 Persamaan Momentum

Hukum kedua newton membangun persamaan momentum.

Menurut Hukum kedua newton, percepatan suatu benda

berbanding lurus dengan gaya total yang bekerja padanya

dan berbanding terbalik dengan massanya. Dinyatakan

sebagai berikut:

∂

∂t

∫∫∫
cv
ρu dv +

∫∫
cs
ρu dv =

∫∫∫
cv
F dv (4.10)

Persamaan (4.10) dapat ditulis dengan bentuk turunan,

yaitu.

ρ
Du

Dt
=
∑

F (4.11)

dengan
D

Dt
= u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
+
∂

∂t

=
∂

∂t
+ u · ∇

dengan u = u, v, w, Dv adalah kecepatan aliran keluar

(divergensi) pada seluruh waktu dimensi (δx, δy, δz).

Sedangkan Dt adalah kecepatan aliran keluar pada

waktu.
∑
F adalah unsur-unsur gaya yang mempengaruhi

pada fluida casson nano dengan media silinder berpori.
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Unsur-unsur gaya yang berpengaruh yaitu (Fs) gaya

permukaan dan (Fm) gaya magnetik. Gaya (Fs) berasal dari

pengaruh tekanan dan sifat kekentalan fluida, sementara

gaya (Fm) dihasilkan oleh interaksi langsung magnet dengan

fluida. Sehingga persamaan (4.11) dalam penelitian ini

diperoleh persamaan berikut.

ρ

(
∂u

∂t
+ u(∇u)

)
= Fs − Fm (4.12)

Gambar 4.1. Komponen Tegangan pada Permukaan Fluida

Pada control surface, tegangan normal (σ) dan tegangan

geser (τ) mempengaruhi gaya permukaan. Ketika sumbu −x
dijumlahkan, diperoleh persamaan berikut.

Fsx =

(
∂σxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

)
δxδyδz
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jumlah gaya pada sumbu −y diperoleh.

Fsy =

(
∂σyy
∂y

+
∂τxy
∂x

+
∂τzy
∂z

)
δxδyδz

selanjutnya, jumlah gaya pada sumbu −z diperoleh.

Fsz =

(
∂σzz
∂z

+
∂τxz
∂x

+
∂τyz
∂y

)
δxδyδz

sehingga total gaya permukaan dari tiga sumbu, dituliskan

dalam persamaan berikut.

Fs = Fsxi+ Fsyj + Fsxk

Fs =

(
−∂ρ
∂x

+
∂σxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

)
î+(

−∂ρ
∂y

+
∂σyy
∂y

+
∂τxy
∂x

+
∂τzy
∂z

)
ĵ+(

−∂ρ
∂z

+
∂σzz
∂z

+
∂τxz
∂x

+
∂τyz
∂y

)
k̂

(4.13)

Asumsi yang digunakan pada penelitian ini yaitu

menggunakan aliran fluida casson nano yang bersifat

tidak mampu mampat dengan pengaruh dari sifat khusus

fluida casson yaitu tegangan luluh, dimana fluida tidak dapat

mengalir sebelum mencapai nilai tertentu. Didefinisikan

fluida casson nano yang tidak dapat dimampatkan (Ismaeel

dkk, 2023). Sehingga didapatkan model casson sebagai

berikut:

τij =

2
(
kc+ τ0√

2πc

)
eij , jika π > πc

2
(
kc+ τ0

2
√
2πc

)
eij , jika π < πc

(4.14)
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dengan (τij) adalah nilai tegangan geser fluida casson. (τ0)

adalah nilai dari tegangan luluh fluida casson. (kc) adalah

koefisien kekentalan fluida casson. (πc) adalah nilai ambang

dari tegangan geser. Pada fluida casson, menggunakan (τij)

pada bagian (π > πc) dikarenakan fluida casson tidak akan

mengalir samppai tegangan melebihi tegangan luluh.

Penelitian ini juga dipengaruhi oleh parameter casson yang

disimbolkan β, dengan

β = kc+

√
2πc

τ0

sehingga didapatkan tegangan normal dan tegangan geser

fluida casson nano yang dipengaruhi oleh tegangan luluh dan

paramater casson dalam persamaan berikut.

a. Tegangan normal

σxx = 2µ

(
1 +

1

β

)
∂u

∂x

σyy = 2µ

(
1 +

1

β

)
∂v

∂y

σzz = 2µ

(
1 +

1

β

)
∂w

∂z

(4.15)

b. Tegangan geser

τxy = τyx = µ

(
1 +

1

β

)(
∂u

∂y
+
∂v

∂x

)
τxz = τzx = µ

(
1 +

1

β

)(
∂u

∂z
+
∂v

∂z

)
τyz = τzy = µ

(
1 +

1

β

)(
∂w

∂y
+
∂v

∂z

) (4.16)
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Berikut ini merupakan turunan dari σxx terhadap x.

∂σxx
∂x

=
∂

∂x

(
2µ

(
1 +

1

β

)
∂u

∂x

)
= 2µ

(
1 +

1

β

)
∂2u

∂x2

(4.17)

Berikut ini merupakan turunan dari σyy terhadap y.

∂σyy
∂y

=
∂

∂y

(
2µ

(
1 +

1

β

)
∂v

∂y

)
= 2µ

(
1 +

1

β

)
∂2v

∂y2

(4.18)

Berikut ini merupakan turunan dari σzz terhadap y.

∂σzz
∂z

=
∂

∂y

(
2µ

(
1 +

1

β

)
∂w

∂z

)
= 2µ

(
1 +

1

β

)
∂2w

∂z2

(4.19)

Berikut ini merupakan turunan dari τxy terhadap x.

∂τxy
∂x

=
∂

∂x

(
µ

(
1 +

1

β

)(
∂u

∂y
+
∂v

∂x

))
= µ

(
1 +

1

β

)(
∂2u

∂x∂y
+
∂2v

∂x2

) (4.20)

Berikut ini merupakan turunan dari τyx terhadap y.

∂τyx
∂y

=
∂

∂y

(
µ

(
1 +

1

β

)(
∂u

∂y
+
∂v

∂x

))
= µ

(
1 +

1

β

)(
∂2u

∂y2
+

∂2v

∂x∂y

) (4.21)
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Berikut ini merupakan turunan dari τxz terhadap x.

∂τxz
∂x

=
∂

∂x

(
µ

(
1 +

1

β

)(
∂u

∂z
+
∂w

∂x

))
= µ

(
1 +

1

β

)(
∂2u

∂x∂z
+
∂2w

∂x2

) (4.22)

Berikut ini merupakan turunan dari τzx terhadap z.

∂τzx
∂z

=
∂

∂z

(
µ

(
1 +

1

β

)(
∂u

∂z
+
∂w

∂x

))
= µ

(
1 +

1

β

)(
∂2u

∂z2
+

∂2w

∂x∂z

) (4.23)

Berikut ini merupakan turunan dari τyz terhadap y.

∂τyz
∂y

=
∂

∂y

(
µ

(
1 +

1

β

)(
∂w

∂y
+
∂v

∂z

))
= µ

(
1 +

1

β

)(
∂2w

∂y2
+

∂2v

∂y∂z

) (4.24)

Berikut ini merupakan turunan dari τzy terhadap z.

∂τzy
∂z

=
∂

∂z

(
µ

(
1 +

1

β

)(
∂w

∂y
+
∂v

∂z

))
= µ

(
1 +

1

β

)(
∂2w

∂y∂z
+
∂2v

∂z2

) (4.25)

Selanjutnya, subtitusikan persamaan (4.17)-(4.25) ke
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persamaan (4.13) didapatkan.

Fs = Fsxi+ Fsyj + Fsxk

=

(
− ∂ρ

∂x
+ 2µ

(
1 +

1

β

)
∂2u

∂x2
+ µ

(
1 +

1

β

)(
∂2u

∂y2
+

∂2v

∂x∂y

)

+ µ

(
1 +

1

β

)(
∂2u

∂z2
+

∂2w

∂x∂z

))
i+

(
− ∂ρ

∂y
+ 2µ

(
1 +

1

β

)
∂2v

∂y2
+ µ

(
1 +

1

β

)(
∂2u

∂x∂y
+
∂2v

∂x2

)
+ µ

(
1 +

1

β

)(
∂2w

∂y∂z
+

∂2v

∂z2

))
j +

(
− ∂ρ

∂x
+ 2µ

(
1 +

1

β

)
∂2w

∂z2
+ µ

(
1 +

1

β

)
(
∂2u

∂x∂z
+
∂2w

∂x2

)
+ µ

(
1 +

1

β

)(
∂2w

∂y2
+

∂2v

∂y∂z

))
k

(4.26)

didapatkan jumlah dari tegangan normal dan tegangan

geser yang dipengaruhi oleh tegangan luluh adalah sebagaai
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berikut.

2µ

(
1 +

1

β

)
∂2u

∂y2
+ µ

(
1 +

1

β

)(
∂2u

∂y2
+

∂2v

∂x∂y

)
+

µ

(
1 +

1

β

)(
∂2u

∂z2
+

∂2w

∂x∂z

)
= µ

(
1 +

1

β

)(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ µ

(
1 +

1

β

)
(
∂2u

∂x2
+

∂2v

∂x∂y
+

∂2w

∂x∂z

)
= µ

(
1 +

1

β

)(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ µ

(
1 +

1

β

)
∂

∂x

(
∂2u

∂x
+
∂2u

∂y

∂2u

∂z

)
= µ

(
1 +

1

β

)
∇2u+ µ

(
1 +

1

β

)
∂

∂x
(∇ · u)

Karena nilai ∇ · u = 0 maka persamaan menjadi.

µ

(
1 +

1

β

)
∇2u

Sehingga didapatkan gaya geser pada sumbu x, y, dan z

adalah

Fsx = −∂ρ
∂x

+ µ

(
1 +

1

β

)
∇2u

Fsy = −∂ρ
∂y

+ µ

(
1 +

1

β

)
∇2v

Fsz = −∂ρ
∂z

+ µ

(
1 +

1

β

)
∇2u

Sehingga didapatkan persamaan gaya permukaan pada
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fluida casson nano sebagai berikut.

Fs = −∇ρ+ µ

(
1 +

1

β

)
∇2u (4.27)

Penelitian ini menggunakan geometri benda berbentuk

silinder berpori yang dilalui aliran fluida nano. Maka aliran

tersebut terinduksi magnet dan sumber magnetnya berasal

dari silinder berpori. Oleh karena itu berlaku hukum Darcy
µnf

K∗ . Sehingga dapat dituliskan gaya magnetik yang bekerja

seperti berikut.

Fm = J ×B −
µnf
K∗ u (4.28)

dengan (J) yaitu kepadatan arus listrik serta (B)merupakan

medan magnet fluida nano berasal dari silinder berpori yang

terinduksi magnet. Gaya magnetik pada aliran fluida nano

juga terdapat gaya lorentz dituliskan seperti berikut.

Fm = J ×B (4.29)

Kepadatan arus listrik menurut hukum Ohm adalah

J = σ(E + u×B) (4.30)

medan magnet yang dihasilkan silinder berpori (E),

nilai medan magnet total (B), serta daya hantar listrik

disimbolkan (σ). Dikarenakan tidak terdapat medan listrik

dari luar aliran fluida, maka nilai E = 0.

Substitusikan persamaan (4.30) ke (4.28), sehingga
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diperoleh persamaan berikut.

Fm = σ(u×B)×B −
µnf
Kx

(u, v, w) (4.31)

dengan mensubtitusikan B = b+Bo, dengan diketahui.

b = besarnya medan magnet dari fluida yang

terbentuk oleh silinder berpori

B0 = medan magnet dari silinder berpori yang

menghasilkan magnet

b = 0 = besaran besar induksi magnet pada fluida nano

sehingga persamaan (4.31) menjadi

Fm = σ(u× (b+B0))× (b+B0)−
µnf
Kx

(u, v, w)

= σ((u× (b)) + (u ×B0))× (b+B0)−
µnf
Kx

(u, v, w)

= σ(u× b)× (B0)−
µnf
Kx

(u, v, w)

(4.32)

dengan

(u×B0) =

∣∣∣∣∣∣∣
i j k

u v w

0 0 B0

∣∣∣∣∣∣∣
= (vB0)i− (uB0)j + 0k

(4.33)

Selanjutnya

(u×B0)× (B0) =

∣∣∣∣∣∣∣
i j k

vB0 −uB0 0

0 0 B0

∣∣∣∣∣∣∣
= −(uB0

2)i− (vB0
2)j + 0k

= (−uB0
2,−vB0

2, 0)

(4.34)
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Persamaan (4.34) yang telah didapat disubtitusikan ke

persamaan (4.28), sehingga diperoleh

Fm = σ(−uB0
2,−vB0

2, 0)−
µnf
K∗ (u, v, w)

Fm = −σB0
2u−

µnf
K∗ u

(4.35)

Persamaan dari (Fs) gaya permukaan dan (Fm) gaya magnet

yang telah diperoleh, kemudian disubtitusikan ke persamaan

(4.12). Sehingga dituliskan persamaan momentum sebagai

berikut.

ρ

(
∂ū

∂t̄
+ u∇u

)
=
∑

F

ρ

(
∂ū

∂t̄
+ u∇u

)
=
∑

Fs − Fm

= −∇ρ+ µ

(
1 +

1

β

)
∇2u+ σB2

0u−
µnf
k∗

u

(4.36)

Langkah selanjutnya persamaan (4.36) dituliskan dalam

arah −x dan −y. Maka persamaan momentum arah −x
adalah

ρ

(
∂ū

∂t̄
+ ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ

)
= −∂p̄

∂x̄
+ µ

(
1 +

1

β

)(
∂2ū

∂x̄2
∂2ū

∂ȳ2

)
+ σB2

0 ū+
µnf
k∗

ū

(4.37)
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Persamaan momentum arah −y adalah

ρ

(
∂v̄

∂t̄
+ ū

∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ

)
= −∂p̄

∂ȳ
+ µ

(
1 +

1

β

)(
∂2v̄

∂x̄2
∂2v̄

∂ȳ2

)
+ σB2

0 v̄ −
µnf
k∗

v̄

(4.38)

Diasumsikan fluida dalam keadaan diam jika t̄ = 0 sehingga

tidak ada kecepatan yang terjadi dari arah x̄ dan ȳ yaitu

ū = v̄ = 0. Jika t̄ > 0 ketika fluida mendapat pengaruh

berupa panas di sekitar permukaan silinder tetapi fluida

tidak bergerak sehingga kecepatan ū = v̄ = 0 saat ȳ = 0.

Dimana ȳ adalah posisi terjadinya perpindahan panas aliran

fluida casson nano melalui silinder berpori. Sedangkan t̄

menggambarkan aliran fluida dari kondisi diam (ū = v̄ = 0)

hingga membentuk kecepatan (ū = ūe(x)) yang merupakan

perwakilan aliran bebas dengan kecepatan konstan saat ȳ

menuju tak hingga. Kondisi batas persamaan dimensional

sebagai berikut.

jika t̄ = 0 ; ū = v̄ = 0, ∀ x̄, ȳ,

jika t̄ > 0 ; ū = v̄ = 0, saat ȳ = 0,

ū = ūe(x̄), saat ȳ → ∞.

B. Model Matematika Non-Dimensional

Persamaan model matematika pada aliran fluida casson

nano yang awalnya berbentuk persamaan dimensional akan

dilakukan tranformasi menjadi persamaan non-dimensional.

Tujuannya agar memudahkan dalam proses simulasi



48

numerik. Transformasi persamaan menggunakan

perubahan parameter dan variabel dimensional menjadi

non-dimensional sebagai berikut (Norasia dkk, 2021)(Jamil

dkk, 2023).

x =
x̄

a
(4.39)

dengan
x = sumbu -x non-dimensional

x̄ = sumbu -x dimensional

a = jari jari silinder

y = Re
1
2
ȳ

a
(4.40)

dengan
y = sumbu -y non-dimensional

Re
1
2 = bilangan reynolds

ȳ = sumbu -y dimensional

a = jari-jari silinder

u =
ū

U∞
(4.41)

dengan
u = kecepatan searah sumbu -x non-dimensional

ū = kecepatan searah sumbu -x dimensional

U∞ = kecepatan aliran bebas

v = Re
1
2
v̄

U∞
(4.42)
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dengan
v = kecepatan searah sumbu -y non-dimensional

Re
1
2 = bilangan reynolds

v̄ = kecepatan searah sumbu -y dimensional

U∞ = kecepatan aliran bebas

t =
t̄U∞
a

(4.43)

dengan
t = waktu non-dimensional

t̄ = waktu dimensional

U∞ = kecepatan aliran bebas

a = jari-jari silinder

p =
p̄

ρU∞
(4.44)

dengan
p = tekanan non-dimensional

p̄ = tekanan dimensional

ρnf = massa jenis

U∞ = kecepatan aliran bebas

r =
r̄

a
(4.45)

dengan
r = jari-jari non-dimensional

r̄ = jari-jari dimensional

a = jari-jari silinder

Beberapa parameter non-dimensioanl yang digunakan

sebagai berikut:

M =
σaB2

0

ρnfU∞
(4.46)
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dengan
M = parameter magnetik

σ = daya hantar listrik

a = jari-jari silinder

B2
0 = medan magnet

ρnf = massa jenis fluida

U∞ = kecepatan aliran bebas

ϕ =
aµnf
ρnfK∗ (4.47)

dengan
ϕ = parameter porositas

a = koefisien media berpori

µnf = kekentalan fluida nano

ρnf = massa jenis fluida nano

K∗ = daya serap media berpori

Re =
U∞a

vnf
(4.48)

dengan
Re = bilangan reynolds

U∞ = kecepatan aliran bebas

a = koefisien media berpori

vnf = kekentalan kinematik

vnf =
µnf
ρnf

(4.49)

dengan
vnf = kekentalan kinematik

µnf = kekentalan fluida nano

ρnf = massa jenis fluida nano
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Selanjutnya persamaan (4.39) - (4.49 ) disubtitusikan ke

persamaan (4.9), (4.37), dan (4.38) terdapat pada lampiran

2. Sehingga diperoleh persamaan berikut.

a. Persamaan Kontinuitas

∂ru

∂x
+
∂rv

∂y
= 0 (4.50)

b. Persamaan Momentum Sumbu −x

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂ρ

∂x
+

1

Re

vnf
vf

(
1 +

1

β

)
∂2u

∂x2
+

vnf
vf

(
1 +

1

β

)
∂2u

∂y2
+ (M + ϕ)u

(4.51)

c. Persamaan Momentum Sumbu −y

1

Re

(
∂u

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂ρ

∂y
+

1

Re

vnf
vf

(
1 +

1

β

)
∂2v

∂x2
+

vnf
vf

(
1 +

1

β

)
∂2v

∂y2
+

1

Re
(M + ϕ)u

(4.52)

untuk menyederhanakan dan mempresentasikan perilaku

fluida maka dibuat beberapa asumsi untuk menentukan

kondisi awal dan kondisi batas berdasarkan variabel

non-dimensional sebagai berikut.

jika t = 0 ; u = v = 0, ∀x, y,

jika t > 0 ; u = v = 0, saat y = 0,

u = ue(x), saat y → ∞.

Diasumsikan fluida dalam keadaan diam jika t = 0 sehingga
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tidak ada kecepatan yang terjadi dari arah x dan y yaitu

u = v = 0. Jika t > 0 ketika fluida mendapat pengaruh

berupa panas di sekitar permukaan silinder tetapi fluida

tidak bergerak sehingga kecepatan u = v = 0 saat y = 0.

Dimana y adalah posisi terjadinya perpindahan panas aliran

fluida casson nano melalui silinder berpori. Sedangkan t

menggambarkan aliran fluida dari kondisi diam (u = v = 0)

hingga membentuk kecepatan (u = ue(x)) yang merupakan

perwakilan aliran bebas dengan kecepatan konstan saat y

menuju tak hingga.

C. Teori Lapisan Batas

Pendekatan lapisan batas digunakan untuk

menyederhanakan persamaan non-dimensional dengan

mensubtitusikan nilai bilangan reynolds. Bilangan Reynolds

adalah angka tanpa satuan yang digunakan dalam dinamika

fluida untuk memprediksi pola aliran (Nadeem dkk, 2023).

Secara umum, bilangan reynolds didefinisikan sebagai

perbandingan antara gaya inersia terhadap gaya viskos

dalam fluida. Pada penelitian ini untuk memungkinkan

penyerdehanaan persamaan momentum menjadi bentuk

yang lebih sederhana akan disubtitusikan bilangan reynolds

menuju tak hingga. Hasilnya ketebalan lapisan batas akan

menuju nol dan memberikan batas-batas pada perilaku

fluida (Schlichting dkk, 2007). Selanjutnya mensubtitusikan

nilai bilangan Reynolds (Re→ ∞) maka ( 1
Re → 0), sehingga

persamaan (4.50) - (4.52) menjadi.
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a. Persamaan Kontinuitas

∂ru

∂x
+
∂rv

∂y
= 0 (4.53)

b. Persamaan Momentum Sumbu −x

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+
vnf
vf

(
1 +

1

β

)
∂2u

∂y2

+ (M + ϕ)u
(4.54)

c. Persamaan Momentum Sumbu −y

−∂p
∂y

= 0 (4.55)

Pada persamaan momentum sumbu y didapatkan pengaruh

tekanan pada sumbu y = 0, maka aliran yang fluida hanya

dianggap bergerak pada arah x dengan kecepatan di dalam

lapisan batas arah x = u. Langkah selanjutnya mengganti

kecepatan di dalam lapisan batas (u) menjadi kecepatan

di luar lapisan batas (ue). Tujuan langkah ini adalah

untuk menyederhanakan lapisan batas pada persamaan

momentum. Penelitian ini menggunakan silinder berpori,

dimana kecepatan aliran di luar lapisan batasnya adalahue =

sinx (Ingham dan Merkin, 1981). Maka persamaan (4.54)

menjadi.

∂ue
∂t

+ ue
∂ue
∂x

+ v
∂ue
∂y

= −∂p
∂x

+
vnf
vf

(
1 +

1

β

)
∂2ue
∂y2

+ (M + ϕ)ue
(4.56)
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Setelah dilakukan subtitusi ue = sinx ke dalam persamaan

momentum. Didapatkan beberapa turunan yang bernilai

nol dikarenakan ue hanya bergantung pada x dan tidak

bergantung pada y serta tidak ada variabel t pada ue = sinx

karena aliranue tidak berubah terhadap waktu maka didapat

turunan terhadap t = 0. kecepatan aliran bebas dalam

bentuk silinder yaitu ue(x) = sinx, diperoleh:

∂ue
∂t

= 0;
∂ue
∂y

= 0;
∂2ue
∂y2

= 0 (4.57)

kemudian dilakukan substitusi pada persamaan (4.57) ke

(4.56), sehingga didapatkan.

ue
∂ue
∂x

= −∂p
∂x

+ (M + ϕ)ue

⇐⇒ −∂p
∂x

= ue
∂ue
∂x

− (M + ϕ)ue

(4.58)

Substitusikan lagi persamaan (4.58) ke (4.54), maka

persamaan dapat ditulis.

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ue

∂ue
∂x

+
vnf
vf

(
1 +

1

β

)
∂2u

∂y2

+ (M + ϕ)(u− ue)

(4.59)

D. Fungsi Alir

Fungsi alir adalah suatu fungsi yang digunakan untuk

menghubungkan dua fungsi kecepatan yaitu kecepatan u

yang alirannya berada pada arah x dan v berada pada arah

y, dengan adanya fungsi alir (ψ) dapat menyederhanakan
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banyak persamaan dan secara komputasi dapat dibuat dalam

satu variabel. Variabel fungsi alir adalah sebagai berikut

(Mohammad, 2014).

u =
1

r

∂ψ

∂y
, v = −1

r

∂ψ

∂x
(4.60)

Substitusikan persamaan fungsi alir (4.60) pada persamaan

kontinuitas (4.53) dan persamaan momentum sumbu -x

(4.59). Diperoleh persamaan berikut.

a. Persamaan Kontinuitas

∂ru

∂x
+
∂rv

∂y
= 0

∂

∂x

(
r
1

r

∂ψ

∂y

)
+

∂

∂y

(
−r1

r

∂ψ

∂x

)
= 0

∂2ψ

∂x∂y
− ∂2ψ

∂y∂x
= 0

∂2ψ

∂x∂y
=

∂2ψ

∂y∂x

(4.61)

b. Persamaan Momentum

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ue

∂ue
∂x

+
vnf
vf

(
1 +

1

β

)
+ (M + ϕ)(u− ue)

1

r

∂2ψ

∂t∂y
+

1

r2
∂ψ

∂y

∂2ψ

∂x∂y
− 1

r3
∂r

∂x

(
∂ψ

∂y

)2

− 1

r2
∂ψ

∂x

∂2ψ

∂y2
=

ue
∂ue
∂x

+
vnf
vf

(
1 +

1

β

)
1

r

∂3ψ

∂y3
+ (M + ψ)(

1

r

∂ψ

∂y
− ue)

(4.62)
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Setelah persamaan kontinuitas dan persamaan momentum

disubtitusikan dengan variabel fungsi alir. Maka

ditentukan kondisi batas yang dapat digunakan untuk

menyederhanakan perhitungan.

jika t = 0 ; ψ =
∂ψ

∂y
= 0, ∀x, y,

jika t > 0 ; ψ =
∂ψ

∂y
= 0 saat y = 0,

∂ψ

∂y
= ue(x), saat y → ∞.

Saat t = 0, fungsi alir (ψ) dan turunannya terhadap y bernilai

0 untuk semua x dan y karena menunjukkan saat awal fluida

keadaan diam atau tidak ada alliran yang terbantuk.

Saat t > 0 pada permukaan y = 0, fungsi alir (ψ) terhadap

y bernilai 0 karena kecepatan fluida dipengaruhi kekentalan

fluida. disebut kondisi no-slip yang berarti fluida tidak

bergerak disepanjang permukaan silinder berpori.

Saat t > 0 pada permukaan y menuju tak hingga

kecepatan aliran fluida adalah kecepatan di luar lapisan batas

dimana fluida tidak lagi dipengaruhi oleh gesekan dengan

permukaan dan bergerak dengan kecepatan aliran bebas

ue(x). Ini menunjukkan bahwa fluida di luar lapisan batass

memiliki kecepatan yang sudah ditentukan sebagai ue(x).

E. Persamaan Similaritas

Persamaan similaritas dalam analisis fluida digunakan untuk

menyederhanakan persamaan parsial menjadi persamaan
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diferensial biasa. Pendekatan ini pertama kali diperkenalkan

oleh Ludwig Prandtl dan kemudian dikembangkan oleh

Henrich Blacius yang memperkenalkan variabel similaritas

(Schlichting dkk, 2007).

ψ = t1/2ue(x)r(x)f(x, η, t), η =
y

t1/2
(4.63)

Penelitian ini menggunakan jenis fluida unsteady sehingga

solusi dari lapisan batas bergantung pada waktu t(1/2).

Dimana ue(x) adalah kecepatan aliran bebas yang

bergantung pada x. r(x) adalah faktor skala dari silinder

berpori. f(x, η, t) adalah fungsi yang menyatakan semua

variabel dalam satu ekspresi yang memungkinkan untuk

merubah persamaan parsial menjadi persamaan diferensial

biasa. Sedangkan η sendiri adalah variabel yang digunakan

untuk menyederhanakan persamaan diferensial yang

kompleks. Penggunaan variabel η berfungsi untuk

mendapatkan solusi universal yang tidak bergantung

pada waktu (t), tetapi hanya bergantung pada (η). Membagi

y dengan t(1/2) dapat mempermudah menyederhanakan

persamaan lapisan batas. Subtitusikan variabel similaritas

(4.63) pada persamaan (4.62) terdapat pada lampiran 3,
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maka diperoleh.

vnf
vf

(
1 +

1

β

)
∂3f

∂η3
+
η

2

∂2f

∂η2
+ t

∂ue
∂x

1−(∂f
∂η

)2

+ f
∂2f

∂η2

 =

t
∂2f

∂t∂η
+ tue

(
∂f

∂η

∂2f

∂x∂η
− ∂f

∂x

∂2f

∂η2
− 1

r

∂r

∂x

∂2f

∂η2

)
−

t(M + ϕ)

(
∂f

∂η
− 1

)
(4.64)

Untuk memudahkan analisis persamaan momentum

langkah selanjutnya adalah menentukan titik stagnasi,

yaitu titik dimana kecepatan fluida bernilai nol. Pada

penelitian ini diambil titik stagnasi x ≈ 0 dikarenakan

adanya kaitan dengan efek kekentalan dan porositas silinder.

Selanjutnya menentukan nilai ue (kecepatan aliran bebas)

dan ∂ue
∂x (bentuk turunannya) untuk disubtitusikan ke dalam

persamaan momentum (Ingham dan Merkin). ue = sinx = 0

dan turunannya ∂ue
∂x = cosx = 1 pada saat x = 0, hal ini

sesuai dengan konsep titik stagnasi dimana fluida melambat

hingga berhenti begitu juga dengan turunannya. Tujuannya

untuk menyederhanakan persamaan. Maka persamaan

momentum menjadi.

vnf
vf

(
1 +

1

β

)
∂3f

∂η3
+
η

2

∂2f

∂η2
+ t

∂ue
∂x

[
1− (

∂f

∂η
)2 + f

∂2f

∂η2

]
= t

∂2f

∂t∂η
+ 0− t(M + ϕ)

(
∂f

∂η
− 1

)

Kemudian profil kecepatan non-dimensional aliran fluida

yaitu ∂f
∂η akan dimisalkan f ′ Ṗrofil ini menunjukkan
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perubahan kecepatan fluida dari nol di permukaan hingga

mencapai kecepatan bebas di luar lapisan batas. Persamaan

(4.64) menjadi.

vnf
vf

(
1 +

1

β

)
f ′′′ +

η

2
f ′′ + t(1− (f)2 + f · f ′′)

= t
∂f ′

∂t
− t(M + ϕ)(f ′ − 1)

(4.65)

dengan kondisi batas persamaan similaritas sebagai berikut.

jika t = 0 ; f = f ′ = 0, ∀x, η,

jika t > 0 ; f = f ′ = 0, saat η = 0,

f ′ = 1, saat η → ∞.

(4.66)

Saat kondisi batas t = 0 menunjukkan bahwa belum ada

pergerakan fluida yang terjadi. Sehingga mengakibatkan

fungsi f dan turunannya ∂f
∂η bernilai 0. Sedangkan saat

kondisi batas t > 0 saat berada di permukaan η = 0

terjadi kondisi no-slip yaitu kecepatan fluida = kecepatan

permukaan bernilai 0. Jika aliran terjadi jauh dari

permukaan η → ∞ maka kecepatan fluida mencapai

kecepatan bebas ue(x) di luar lapisan batas.

Terdapat beberapa variabel yang memiliki hubungan antara

fluida nano dengan fluida dasar yaitu massa jenis fluida

nano, kekentalan fluida nano, kalor khusus fluida nano serta

konduktivitas termal fluida nano (Norasia dkk, 2021). Maka
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diperoleh persamaan berikut.

vnf =
µnf
ρ

vnf =
µnf

(1− χ)2.5
1

(1− χ)ρf + χρs

vnf = vf

(
1

(1− χ)2.5
1

(1− χ) + χ( ρsρf )

)
vnf
vf

=
1

(1− χ)2.5((1− χ) + χ( ρsρf ))

Pada persamaan (4.65) subtitusikan nilai t = 0 untuk

memperoleh kondisi awal fungsi f, f ′, f ′′, f ′′′ yang

selanjutnya dapat diselesaikan dengan kondisi batas dari

persamaan similaritas (4.66). Kondisi batas terlampir pada

lampiran 4, didapatkan kondisi awal fungsi f, f ′, f ′′, f ′′′

sebagai berikut.

f = ηerf

(
η

2
vnf

vf
(1 + 1

β )

)
+ 2

√
vnf

vf
(1 + 1

β )

π

(
e−

η
4A − 1

)

f ′ = erf

(
η

2
vnf

vf
(1 + 1

β )

)

f ′′ =
1√

π
vnf

vf
(1 + 1

β )
e
− η2

4
vnf
vf

(1+ 1
β
)

f ′′′ =
η

2
vnf

vf
(1 + 1

β )
√
π
vnf

vf
(1 + 1

β )
e
− η2

4
vnf
vf

(1+ 1
β
)

Setelah dilakukan perumusan model aliran fluida casson
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nano melalui silinder berpori, diperoleh persamaan akhir

model sebagai berikut.

vnf
vf

(
1 +

1

β

)
f ′′′ +

η

2
f ′′ + t(1− (f)2 + f · f ′′)

= t
∂f ′

∂t
− t(M + ϕ)(f ′ − 1)

F. Penyelesaian Numerik Model Matematika

Setelah mendapatkan model matematika, langkah

berikutnya adalah mensimulasikan aliran fluida Casson

nano yang melewati silinder berpori dengan solusi

numerik. Setelah itu menyelesaikannya menggunakan

metode Keller-Box. Berikut langkah-langkah yang terdapat

dalam skema Keller-Box (Cebeci, 2002).

1. Melakukan pemisalan agar persamaan yang

sebelumnya berorde tinggi menjadi orde pertama.

Menghasilkan sistem yang lebih mudah dipecahkan

dengan teknik numerik dan memudahkan langkah

diskritisasi.

2. Melakukan proses diskritisasi menggunakan metode

beda hingga pusat.

3. Menerapkan metode Newton yang berbentuk

matriks vektor digunakan untuk memperoleh

persamaan-persamaan melalui proses linearisasi.

Digunakan untuk mendekati solusi non-linear dengan

iterasi sehingga sistem menjadi lebih mudah dihitung

dalam setiap iterasi.
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4. Melakukan eliminasi matriks blok tridiagonal setelah

mendapatkan hasil dari proses linearisasi.Tujuannya

agar sistem linier dapat diselesaikan dengan lebih cepat

dan akurat.

Simulasi model matematika selanjutnya dilakukan dengan

memasukkan data ke dalam software MATLAB r2024b,

yang menghasilkan output yang menunjukkan pengaruh

parameter fraksi volum (χ) , parameter casson (β) , dan

parameter porositas (ϕ) terhadap partikel nano tembaga dan

alumina.

a. Pemisalan Notasi

Pemisalan notasi dilakukan untuk mempermudah

penyelesaian skema Keller-Box yang harus berbentuk

persamaan orde satu. Berikut persamaan dalam pemisalan

notasi.
f ′ = u

u′ = v
(4.67)

Subtitusi persamaan (4.67) ke (4.65), persamaan ordo satu

didapatkan seperti berikut

vvf
vf

(
1 +

1

β

)
v′ +

η

2
v + t(1− (u)2 + fv)+

t(M + ϕ)(u− 1) = t
∂u

∂t

(4.68)

b. Diskritisasi Model

Pada persamaan (4.67) - (4.68) akan dilakukan

pendiskritisasian melalui metode beda hingga. Persamaan

(4.67) berbentuk linear sehingga proses diskritisasi



63

terdapat pada titik tengah atau titik pusat garis V1, V2

yaitu (yi−1/2, tn). Persamaan (4.68) berbentuk non-linear

sehingga diskritisasi terlatak pada titik pusat garis

V1, V2, V3, V4 yaitu (yi−1/2, tn−1/2). Sehingga didapatkan

hasil diskritasi sebagai berikut.

(fnj − fnj−1)

lj
= un

j− 1
2

→ 1

lj

(
fnj + fnj−1

)
=

1

2

(
unj + unj−1

)
(4.69)

(unj − unj−1)

lj
= vn

j− 1
2

→ 1

lj

(
unj + unj−1

)
=

1

2

(
vnj + vnj−1

)
(4.70)

Diskritisasi persamaan (4.68) diperoleh:

1

2

[
(L1)

n
j− 1

2

+ (L1)
n−1
j− 1

2

]
= tn−

1
2

unj− 1
2

− un−1
j− 1

2

kn


dengan

(L1)
n
j− 1

2

=

[
vnf
vf

(
1 +

1

β

)
v′ +

η

2
v ++t(1− (u)2 + fv)

+ t(M + ϕ)(u− 1) = t
∂u

∂t

]n
j− 1

2

=
vnf
vf

(
1 +

1

β

)(
(vnj − vnj−1)

lj

)
+
ηn
j− 1

2

2
vn
j− 1

2

+ tn(1− (un
j− 1

2

)2 + fn
j− 1

2

vn
j− 1

2

) + tn(M + ϕ)

(un
j− 1

2

− 1)
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(L1)
n
j− 1

2

=

[
vnf
vf

(
1 +

1

β

)
v′ +

η

2
v ++t(1− (u)2 + fv)

+ t(M + ϕ)(u− 1) = t
∂u

∂t

]n−1

j− 1
2

=
vnf
vf

(
1 +

1

β

)(
(vn−1

j − vn−1
j−1 )

lj

)
+
ηn
j− 1

2

2
vn−1
j− 1

2

+ tn−1(1− (un−1
j− 1

2

)2 + fn−1
j− 1

2

vn−1
j− 1

2

) + tn−1

(M + ϕ)(un−1
j− 1

2

− 1)

Sehingga diperoleh:

vnf
vf

(
1 +

1

β

)(
(vnj − vnj−1)

lj

)
+
ηn
j− 1

2

2
vn
j− 1

2

+ tn

(1− (un
j− 1

2

)2 + fn
j− 1

2

vn
j− 1

2

) + tn(M + ϕ)(un
j− 1

2

− 1)+

vnf
vf

(
1 +

1

β

)(
(vn−1

j − vn−1
j−1 )

lj

)
+
ηn
j− 1

2

2
vn−1
j− 1

2

+ tn−1

(1− (un−1
j− 1

2

)2 + fn−1
j− 1

2

vn−1
j− 1

2

) + tn−1(M + ϕ)(un−1
j− 1

2

− 1)

= 2
tn−

1
2

kn
un
j− 1

2

− 2
tn−

1
2

kn
un−1
j− 1

2
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atau dapat ditulis:

vnf
vf

(
1 +

1

β

)(
(vnj − vnj−1)

lj

)
+
ηn
j− 1

2

2
vn
j− 1

2

+ tn

(1− (un
j− 1

2

)2 + fn
j− 1

2

vn
j− 1

2

) + tn(M + ϕ)(un
j− 1

2

− 1)−

2
tn−

1
2

kn
un
j− 1

2

=
vnf
vf

(
1 +

1

β

)(
(vn−1

j − vn−1
j−1 )

lj

)
+

ηn
j− 1

2

2
vn−1
j− 1

2

+ tn−1(1− (un−1
j− 1

2

)2 + fn−1
j− 1

2

vn−1
j− 1

2

) + tn−1

(M + ϕ)(un−1
j− 1

2

− 1)− 2
tn−

1
2

kn
un−1
j− 1

2

(4.71)

c. Linearisasi Model

Setelah mendapatkan hasil dari diskritisasi model, kemudian

dilakukan linierisasi model pada persamaan (4.69) - (4.71)

dilinearisasi dengan metode Newton. Bentuk iterasi (i) dari

metode Newton, yaitu:

f i+1
j = f ij + δf ij

ui+1
j = uij + δuij

vi+1
j = vij + δvij

(4.72)

Substitusikan (4.72) ke (4.69) - (4.71), diperoleh

(
δfnj − δfnj−1

)
− lj

2
(δpj − δpj−1)

= −
(
fnj − fnj−1

)
+
lj
2

(
unj − unj−1

) (4.73)
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(
δunj − δunj−1

)
− lj

2
(δvj − δvj−1)

= −
(
unj − unj−1

)
+
lj
2

(
vnj − vnj−1

) (4.74)

vnf
vf

(
1 +

1

β

)(
(vnj − vnj−1)

lj
+

(δvj − δvj−1)

lj

)
+
ηn
j− 1

2

2(
vn
j− 1

2

+
(δuj − δuj−1)

lj

)
+ tn

[
1− (un

j− 1
2

+

(δuj − δuj−1)

lj
)2 +

(
fn
j− 1

2

+
(δfj − δfj−1)

lj

)
(vn

j− 1
2

+

(δvj − δvj−1)

lj
)

]
+ tn(M + ϕ)((un

j− 1
2

+
(δuj − δuj−1)

lj
− 1)

− 2
tn−

1
2

kn
un
j− 1

2

= R1

vnf
vf

(
1 +

1

β

)(
δj − δvj−1

lj

)
− tn2un

j− 1
2

(
δuj + δuj−1

2

)
− tn

(
δuj + δuj−1

2

)2

+
ηj− 1

2

2

(
δvj + δvj−1

2

)
+ tnfn

j− 1
2(

δvj + δvj−1

2

)
+ tnvn

j− 1
2

(
δfj + δfj−1

2

)
+ tn(

δfj + δfj−1

2

)(
δvj + δvj−1

2

)
+ tn(M + ϕ)(

δuj + δuj−1

2

)
− 2

tn−
1
2

kn

(
δuj + δuj−1

2

)
=
vnf
vf

(
1 +

1

β

)
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(
δvj + δvj−1

2

)
−
ηj− 1

2

2
vn
j− 1

2

− tnfn
j− 1

2

vn
j− 1

2

− tn(M + ϕ)

(un
j− 1

2

− 1) + tn(un
j− 1

2

)2 + 2
tn−

1
2

kn
un
j− 1

2

+R1

(4.75)

Selanjutnya menghilangkan orde tinggi pada δf ij , δp
i
j , δq

i
j

yaitu dengan menyederhanakan persamaan sehingga

diperoleh.

(δfj − δfj−1)−
lj
2
(δuj − δuj−1) = (r1)j (4.76)

(δuj − δuj−1)−
lj
2
(δvj − δvj−1) = (r2)j (4.77)

(a1)jδfj + (a2)jδfj−1 + (a3)jδuj + (a4)jδuj−1

+ (a5)jδvj + (a6)jδvj−1 = (r3)j
(4.78)

dengan

(r1)j = −
(
fnj − fnj−1

)
+
lj
2

(
unj − unj−1

)
(r2)j = −

(
unj − unj−1

)
+
lj
2

(
vnj − vnj−1

)
(r3)j = −

vnf
vf

(
1 +

1

β

)(
(vnj − vnj−1)

lj

)
−
ηn
j− 1

2

2
vn
j− 1

2

− tn

(1− (un
j− 1

2

)2 + fn
j− 1

2

vn
j− 1

2

)− tn(M + ϕ)(un
j− 1

2

− 1)

+ 2
tn−

1
2

kn
un
j− 1

2

−
vnf
vf

(
1 +

1

β

)(
(vn−1

j − vn−1
j−1 )

lj

)

−
ηn
j− 1

2

2
vn−1
j− 1

2

− tn−1(1− (un−1
j− 1

2

)2 + fn−1
j− 1

2

vn−1
j− 1

2

)

− tn−1(M + ϕ)(un−1
j− 1

2

− 1)− 2
tn−

1
2

kn
un−1
j− 1

2
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dimisalkan V = −vnf

vf

(
1 + 1

β

)
(a1)j =

1

2
tnvn

j− 1
2

(a2)j = (a1)j

(a3)j = tnun
j− 1

2

− (M + ϕ)tn − tn−
1
2

kn

(a4)j = −tnun
j− 1

2

− (M + ϕ)tn − tn−
1
2

kn

(a5)j =
V

lj
+
ηj− 1

2

4
+

1

2
tnfn

j− 1
2

(a6)j = −V
lj

+
ηj− 1

2

4
+

1

2
tnfn

j− 1
2

dengan melihat kondisi batas pada persamaan similaritas,

diperoleh persamaan kondisibatas berikut ini.

δf0 = 0, δp0 = 0, δpN = 0

d. Penyelesaian Linearisasi Model

Untuk menyelesaikan persamaan (4.76)-(4.78), teknik yang

digunakan adalah mengeliminasi blok yang terbentuk oleh

elemen-elemen matriks dengan pendekatan Keller-Box.

Untuk menyelesaikan masalah ini, elemen-elemen

matriks pada blok tridiagonal dalam persamaan

(4.76)-(4.78) harus ditentukan terlebih dahulu dengan

cara mengklasifikasikannya menjadi tiga kondisi berikut.

1. J = 1
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2. J = N − 1

3. J = N

1.) Kondisi saat J = 1, maka diperoleh persamaan (4.76) - (4.78)

sebagai berikut/

(δf1 − δf0)−
l1
2
(δu1 − δu0) = (r1)1 (4.79)

(δu1 − δu0)−
l1
2
(δv1 − δv0) = (r2)1 (4.80)

(a1)1δf1 + (a2)1δf0 + (a3)1δu1 + (a4)1δu0

+ (a5)1δv1 + (a6)1δv0 = (r3)1
(4.81)

dari kondisi batas yang sudah diketahui bahwa δf0 =

0, δu0 = 0. Persamaan (4.79) - (4.81) dapat diubah dalam

bentuk matriks 0 1 0

− l1
2 0 − l1

2

(a2)1 (a3)1 (a1)1


δf0δu1

δv1

+

 − l1
2 0 0

1 0 0

(a5)1 0 0


δf1δu2

δv2

 =

(r1)1(r2)2

(r3)3


pada kondisi ini, matriks dapat ditulis dalam persamaan berikut.

[A1][δ1] + [C1][δ3] = [r1]

2.) Kondisi saat J = N-1, maka dapat dituliskan persamaan
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(4.76) - (4.78) sebagai berikut.

(δfN−1 − δfN−2)−
lN−1

2
(δuN−1 − δuN−2) = (r1)N−1 (4.82)

(δuN−1 − δuN−2)−
lN−1

2
(δvN−1 − δvN−2) = (r2)N−1 (4.83)

(a1)N−1δfN−1 + (a2)N−1δfN−2 + (a3)N−1δuN−1+

(a4)N−1δuN−2 + (a5)N−1δvN−1 + (a6)N−1δvN−2 = (r3)N−1

(4.84)

dibentuk matriks:0 −1 0

0 0 − l(N−1)

2

0 (a4)(N − 1) (a2)(N − 1)


δf(N − 3)

δu(N − 2)

δv(N − 2)

+

 − l(N−1)

2 0 0

−1 0 − l(N−1)

2

(a2)(N − 1) (a3)(N − 1) (a1)(N − 1)


δf(N − 2)

δu(N − 1)

δv(N − 1)

+

 − l(N−1)

2 0 0

1 0 0

(a5)(N − 1) 0 0


δf(N − 1)

δu(N − 2)

δv(N − 3)

 =

(r1)(N − 1)

(r2)(N − 2)

(r3)(N − 3)


pada kondisi ini, dapat dituliskan matriks menjadi persamaan

berikut.

[Bj ][δj−1] + [Aj ][rj ] + [Cj ][δj+1] = [rj ],∀J = 2, 3, ...N − 1

3.) Kondisi saat J = N, maka persamaan (4.76) sampai (4.78)

diperoleh.

(δfN − δfN−1)−
lN
2

(δuN − δuN−1) = (r1)N (4.85)
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(δuN − δuN−1)−
lN
2

(δvN − δvN−1) = (r2)N (4.86)

(a1)NδfN + (a2)NδfN−1 + (a3)NδuN + (a4)NδuN−1

+ (a5)NδvN + (a6)NδvN−1 = (S3)N
(4.87)

dari kondisi batas yang telah diketahui bahwa δf0 = 0, δu0 =

0. Persamaan (4.85) sampai (4.87) dapat diubah dalam bentuk

matriks: 0 −1 0

− lN
2 0 − lN

2

0 (a4)N (a2)N


δfN−2

δuN−1

δvN−1

+

 − lN
2 1 0

−1 0 − lN
2

(a6)N (a3)N (a1)N


δfN−1

δuN

δvN

 =

(r1)N(r2)N

(r3)N


pada kondisi ini, dituliskan matriks dalam bentuk persamaan

seperti berikut.

[Bj ][δj−1] + [Aj ][δj ] = [rj ]

persamaan dapat ditulis lebih sederhana seperti berikut.

J = 1 ⇒ [A1][S1] + [C1][S2] = [r1]

J = 2 ⇒ [B2][S1] + [A2][S2] + [C2][S3] = [r2]

J = 3 ⇒ [B3][S2] + [A3][S3] + [C3][S4] = [r3]

...

J = N − 1 ⇒ [BN−1][SN−2] + [AN−1][SN−1] + [CN−1][SN ] = [rN−1]

J = N ⇒ [BN ][SN−1] + [AN ][SN ] = [rN ]
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atau dapat ditulis menjadi.

Aδ = p (4.88)

dengan

A =



[A1] [C1]

[B2] [A2] [C2]

[B3] [A2]
...

...
... [CN−2]

[BN−1] [AN−1] [CN−1]

[BN ] [AN ]



δ =



[δ1]

[δ2]
...

[δN−1]

[δN ]



p =



[p1]

[p2]
...

[pN−1]

[pN ]


Pada persamaan (4.88) diketahui bahwa elemen-elemen

bukan nol pada matriks A terdapat pada tiga diagonal utama,

sementara elemen bernilai nol terdapat pada elemen lainnya.

Sehingga persamaan (4.88) diselesaikan menggunakan teknik

yang mengeliminasi blok-bloknya (Widodo dkk, 2017). Matriks A
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diasumsikan tidak singular agar dapat dilakukan faktorisasi.

A = LU (4.89)

dimana matriks L dan U seperti berikut.

L =



[α1]

[B2] [α2]

[B3]
...
...

...

[BN−1] [αN−1]

[BN ] [aN ]



U =



[I] [Γ1]

[I] [Γ2]
...

...

...
...

[I] [ΓN−1]

[I]


dimana matriks[I] merupakan matriks identitas yang memiliki

ukuran 3×3, sedangkan untuk matriks [α1] dan [Γj ] adalah matriks

dengan ukuran 3 × 3 yang elemen-elemennya ditentukan dalam

persamaan berikut.

[α1] = [A1]

[α1][Γ1] = [C1]

[αj ] = [Aj ]− [Bj ][Γj−1], j = 2, 3, ..., N

[αj ][Γj ] = [Cj ], j = 2, 3, ..., N − 1
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Selanjutanya persamaan (4.89) disubtitusikan ke (4.88)

sehingga diperoleh persamaan.

LUδ = p (4.90)

dengan definisi berikut.

Uδ =W (4.91)

sehingga persamaan (4.90) menjadi

LW = p (4.92)

dimana

W =



[W1]

[W2]
...

[WN−1]

[WN ]


Matriks [Wj ] adalah matriks yang memiliki ukuran 3×1dimana

setiap elemennya didapatkan dari persamaan (4.92) berikut.

[α1][W1] = [p1]

[αj ][Wj ] = [pj ]− [Bj ][Wj−1], 2 ≤ j ≤ N − 1

Saat nilai δsudah didapatkan, persamaan (4.76)-(4.78)

dipakai untuk menyelesaikan persamaan (4.72) sampai iterasi

menunjukkan konvergensi. Alwawi dkk (2020) menyatakan

bahwa kriteria konvergen ditunjukkan oleh parameter v(0, t), yang

mengharuskan perulangan perhitungan sampai terpenuhi kriteria

konvergen serta perhitungan dihentikan saat

[
δv

(i)
0

]
< ε1. Untuk
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penelitian aliran fluida casson nano ini menggunakan ε1 = 10(−5)

(Abu, 2018).

G. Analisis Hasil Simulasi Numerik

Analisis hasil dilakukan setelah menyelesaikan simulasi

numerik menggunakan metode beda hingga skema Keller-Box,

kemudian tahapan selanjutnya adalah melakukan simulasi

numerik dengan menggunakan software MATLAB. Pada tahap

simulasi numerik ini digunakan beberapa variasi dan beberapa

parameter guna melihat bagaimana pengaruhnya terhadap

kecepatan dan temperatur aliran fluida nano melalui silinder

berpori dibawah pengaruh parameter fraksi volume, parameter

casson, dan parameter porositas. Pada tahap simulasi ini, simulasi

dilakukan dengan banyak partisi η = 60 (banyaknya jumlah

grid untuk menghitung solusi di setiap titik diskrit) dengan

δη = lj = 0.1 (jarak antara 2 grid partisi η) sehingga jumlah grid η

adalah (δη · η = 60 · 0.05 = 6). Serta partisi t = 33 (variasi waktu

untuk menghitung solusi) dengan δt = 0.05 . Pada penelitian

ini, partikel nano yang digunakan dalam simulasi numerik adalah

Cu dan Al2O3 dengan fluida dasarnya adalah darah. Berikut

ini merupakan nilai dari kapasitas panas cp, densitas ρ, dan

konduktivitas termal k dari fluida nano.

Tabel 4.1. Tabel Karakteristik Fisik (Norasia dkk, 2024)

Parameter Alumina Temabaga Fluida Dasar (Darah)
Densitas 3970 8933 1063
Kapasitas Panas 765 385 3594
Konduktivitas Termal 40 400 0.492

Tabel 4.1 menunjukkan nilai-nilai yang nantinya akan
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digunakan dalam proses simulasi numerik. Tujuannya untuk

mengetahui pengaruh parameter fraksi volume, parameter casson,

dan parameter prositas terhadap aliran fluida casson nano melalui

silinder berpori. Hasil akhir simulasi menunjukan kurva kecepatan

aliran fluida yang dirumuskan pada persamaan berikut.

∂f

∂η
=

−∂P
∂x

µnf

dengan (∂f∂η ) menggambarkan profil kecepatan berubah di

sepanjang lapisan batas. (−∂P
∂x ) adalah tekanan dalam aliran.

(µnf ) adalah kekentalan fluida nano. Dari rumus ini, kecepatan

fluida berbanding terbalik dengan kekentalan. Jika kekentalan

meningkat maka kecepatan fluida menurun. Sebaliknya, jika

kekentalan menurun maka kecepatan fluida meningkat.

Berikut ini adalah hasil simulasi dari model matematika aliran

fluida casson nano melalui silinder berpori.

1. Pengaruh parameter fraksi volume (χ) pada fluida

dengan partikel nano Cu

Pada simulasi ini diperoleh bagaimana pengaruh parameter

fraksi volume terhadap kecepatan fluida casson nano dengan

partikel nano Cu dan fluida dasar darh dengan menggunakan

variasi fraksi volume yaituχ = 0.1, 0.125, 0.15, 0.175 dan 0.2. Selain

parameter fraksi volume, parameter lain yang digunakan dalam

penelitian ini adalah magnetik dengan nilai awalM = 1, parameter

porositas ϕ = 1, dan parameter casson β = 1.

Gambar 4.2 Menunjukkan adanya kenaikan kecepatan berawal

dari nilai ∂f
∂η = 0 sampai ∂f

∂η = 5.83 mulai stabil pada ∂f
∂η ≈ 1.

Dimana ∂f
∂η berhubungan langsung dengan dengan fraksi volume
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Gambar 4.2. Kecepatan parameter fraksi volume (χ) dengan
partikel nano Cu

(χ) melalui kekentalan fluida nano µnf =
µf

(1−χ)2.5
. Sehingga ketika

(χ) meningkat, kekentalan fluida bertambah tetapi tidak secara

signifikan dikarenakan sifat Cu memiliki konduktivitas termal

yang cukup tinggi. Mengakibatkan ∂f
∂η tetap tinggi dan kecepatan

meningkat.

2. Pengaruh parameter fraksi volume (χ) pada fluida

dengan partikel nano Al2O3

Hasil simulasi ini diperoleh pengaruh perubahan parameter

fraksi volume terhadap kecepatan fluida casson nano yang

mengandung partikel nano Al2O3 dan fluida dasar darah, dengan

variasi nilai fraksi volume yang digunakan (χ) = 0.1, 0.125, 0.15,

0.175, dan 0.2. Terdapat juga parameter lain selain fraksi volume,

dimana penelitian ini juga mempertimbangkan parameter dengan

nilai awal M = 1, parameter porositas ϕ = 1, dan parameter casson
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Gambar 4.3. Kecepatan parameter fraksi volume (χ) dengan
partikel nano Cu pada jarak (1.4 - 2.5)

Gambar 4.4. Pengaruh parameter fraksi volume (χ) dengan
partikel nano Al2O3
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β = 1.

Gambar 4.4 Menunjukkan adanya penurunan kecepatan

berawal dari nilai ∂f
∂η = 2.43 sampai ∂f

∂η = 1.95 mulai stabil pada
∂f
∂η ≈ 1. Kecepatan fluida mengalami penurunan dikarenakan

meningkatnya variasi fraksi volume yang berakibat pada nilai

kekentalan fluida semakin meningkat. Ketika kekentalan fluida

semakin meningkat, maka akan terjadi gesekan antar partikel yang

semakin besar. Hal ini mengakibatkan kecepatan akan berkurang

seiring dengan peningkatan nilai fraksi volume.

Gambar 4.5. Pengaruh parameter fraksi volume (χ) dengan
partikel nano Al2O3 pada jarak (1.8 - 3.6)

3. Pengaruh parameter casson (β) pada fluida dengan

partikel nano Cu
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Simulasi ini menunjukkan pengaruh dari variasi parameter

Casson terhadap kecepatan fluida nano yang berisi partikel nano

Cu dan fluida dasar darah dengan dengan nilai parameter Casson

yang digunakan adalahβ = 0.5, 0.8, 1, 1.3 dan 1.6. Selain parameter

casson, penelitian ini juga mempertimbangkan parameter dengan

nilai awal M = 1, parameter porositas ϕ = 1, dan parameter fraksi

volume χ = 0.1.

Gambar 4.6. Kecepatan parameter casson (β) partikel nano Cu

Gambar 4.6 Menunjukkan terjadinya peningkatan kecepatan

berawal dari nilai ∂f
∂η = 0 sampai ∂f

∂η = 7.4 mulai stabil pada
∂f
∂η ≈ 1. Selain itu, saat nilai parameter casson β ditingkatkan,

dapat diamati bahwa kecepatan aliran fluida semakin meningkat.

Peningkatan kecepatan ini disebabkan karena adanya pengaruh

tegangan luluh fluida casson (τ0) yang tidak berbanding lurus
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dengan kekentalan fluida casson (kc). Sehingga meningkatnya

parameter (β) mengakibatkan kecepatan aliran fluida semakin

meningkat dimana β = kc+
√
2πc
τ0

.

4. Pengaruh parameter casson pada fluida dengan partikel

nano Al2O3

Pada simulasi ini diperoleh bagaimana pengaruh parameter

casson terhadap kecepatan fluida nano dengan partikel nano

Al2O3 dan fluida dasar darah dengan menggunakan variasi

parameter casson yaituβ = 0.5, 0.8, 1, 1.3 dan 1.6. Selain parameter

casson, parameter lain yang digunakan dalam penelitian ini adalah

magnetik dengan nilai awal M = 1, parameter porositas ϕ = 1, dan

parameter fraksi volume χ = 0.1.

Gambar 4.7. Kecepatan parameter casson (β) partikel nano Al2O3
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Gambar 4.7 Menunjukkan terjadinya peningkatan kecepatan

berawal dari nilai ∂f
∂η = 0 sampai ∂f

∂η = 4.1 mulai stabil pada ∂f
∂η ≈

1. Selain itu, saat nilai parameter casson β ditingkatkan, maka

didapatkan juga bahwa terjadi peningkatan pada kecepatan fluida.

Peningkatan ini disebabkan karena adanya pengaruh tegangan

luluh fluida casson (τ0) yang tidak berbanding lurus dengan

kekentalan fluida casson (kc). Sehingga meningkatnya parameter

(β) mengakibatkan kecepatan aliran fluida semakin meningkat

dimana β = kc+
√
2πc
τ0

.

5. Pengaruh parameter porositas (ϕ) pada fluida partikel

nano Cu

Gambar 4.8. Kecepatan parameter porositas (ϕ) dengan partikel
nano Cu

Hasil simulasi ini akan menunjukkan kecepatan fluida dengan

parameter porositas silinder berpori yang menggunakan partikel

nano Cu serta fluida dasar darah. Nilai dari variasi parameter



83

porositas yang digunakan yaitu ϕ = 0.1, 0.2, 0.5, 0.7 dan 0.9. Serta

parameter lain dengan nilai awal magnetik M=1, casson (β) = 1,

dan fraksi volume χ = 0.1.

Gambar 4.9. Kecepatan parameter porositas (ϕ) dengan partikel
nano Cu pada jarak (0.5 - 3.25)

Gambar 4.8 Menunjukkan terjadinya penurunan kecepatan

berawal dari nilai ∂f
∂η = 8.8 sampai ∂f

∂η = 5.6 mulai stabil pada
∂f
∂η ≈ 1. Kecepatan aliran fluida mengalami penurunan seiring

meningkatnya nilai parameter porositas. Hal ini disebabkan

oleh hubungan dari kekentalan dinamik (µnf ) yang berbanding

terbalik dengan massa jenis fluida nano (ρnf ). Sehingga parameter

porositas yang meningkat akan meingkatkan nilai kekentalan

dinamik yang menurunkan massa jenis fluida. Akibat penurunan

massa jenis dan peningkatan porositas, kecepatan aliran fluida juga
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berkurang.

6. Pengaruh parameter porositas (ϕ) pada fluida dengan

partikel nano Al2O3

Hasil simulasi ini akan menunjukkan kecepatan fluida dengan

parameter porositas silinder berpori yang menggunakan partikel

nano Cu serta fluida dasar darah. Nilai dari variasi parameter

porositas yang digunakan yaitu ϕ = 0.1, 0.2, 0.5, 0.7 dan 0.9. Serta

parameter lain dengan nilai awal magnetik M=1, casson (β) = 1,

dan fraksi volume χ = 0.1.

Gambar 4.10. Kecepatan parameter porositas (ϕ) dengan partikel
nano Al2O3

Gambar 4.10 Menunjukkan terjadinya penurunan kecepatan

berawal dari nilai ∂f
∂η = 5.4 sampai ∂f

∂η = 2.8 mulai stabil

pada ∂f
∂η ≈ 1. Peningkatan nilai parameter porositas yang
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menyebabkan penurunan kecepatan aliran fluida terjadi karena

porositas berhubungan langsung dengan kekentalan dinamik µnf
dan berbanding terbalik dengan massa jenis fluida nano ρnf .

Seiring bertambahnya nilai porositas, kekentalan dinamik fluida

nano juga meningkat, yang menyebabkan penurunan massa jenis

fluida. Penurunan massa jenis dan peningkatan porositas tersebut

menyebabkan kecepatan fluida menurun.

Gambar 4.11. Kecepatan parameter porositas (ϕ) dengan partikel
nano Al2O3 pada jarak (1 - 4.25)



BAB V

PENUTUP

A. Kesimpulan

Hasil analisis dan pembahasan mengenai pengaruh parameter

fraksi volume, parameter casson, dan parameter porositas

terhadap perilkau partikel nanoCu danAl2O3 yang menggunakan

fluida dasar darah menghasilkan beberapa kesimpulan dan saran

berikut.

1. Pemodelan matematika aliran fluida casson nano dengan

fluida dasar darah serta partikel nano Cu dan Al2O3

di bawah pengaruh parameter fraksi volume, parameter

casson, dan parameter porositas melalui silinder berpori.

Persamaan kontinuitas dan momentum diperoleh dari

penerapan hukum konservasi massa serta hukum II

Newton pada aliran melalui silinder berpori, kemudian

disederhanakan menjadi bentuk non-dimensional dan

similaritas untuk memperoleh model akhir.

vnf
vf

(
1 +

1

β

)
f ′′′ +

η

2
f ′′ + t(1− (f)2 + f · f ′′)

= t
∂f ′

∂t
− t(M + ψ)(f ′ − 1)

2. Hasil persamaan similaritas pada model matematika aliran

fluida casson nano melalui silinder berpori diselesaikan

menggunakan skema Keller Box dengan metode beda

hingga pusat. Persamaan similaritas orde tinggi diubah

menjadi persamaan orde pertama dengan pemisalan notasi,

86
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selanjutnya dilakukan diskritasi persamaan, dan dilinearkan

dengan metode Newton yang disajikan dalam bentuk

matriks blok tridiagonal.

vnf
vf

(
1 +

1

β

)(
(vnj − vnj−1)

lj

)
+
ηn
j− 1

2

2
vn
j− 1

2

+ tn

(1− (un
j− 1

2

)2 + fn
j− 1

2

vn
j− 1

2

) + tn(M + ϕ)(un
j− 1

2

− 1)−

2
tn−

1
2

kn
un
j− 1

2

=
vnf
vf

(
1 +

1

β

)(
(vn−1

j − vn−1
j−1 )

lj

)
+

ηn
j− 1

2

2
vn−1
j− 1

2

+ tn−1(1− (un−1
j− 1

2

)2 + fn−1
j− 1

2

vn−1
j− 1

2

) + tn−1

(M + ϕ)(un−1
j− 1

2

− 1)− 2
tn−

1
2

kn
un−1
j− 1

2

3. Hasil pemodelan numerik terhadap aliran fluida casson nano

melalui silinder berpori yang melibatkan parameter fraksi

volume (χ), parameter casson (β), dan parameter porositas

(ϕ) terhadap perilaku partikel nano Cu dan Al2O3 yang

menggunakan fluida dasar darah. Diperoleh hasil sebagai

berikut.

a. Apabila variasi nilai parameter fraksi volume

ditingkatkan (χ) = 0.1, 0.125, 0.15, 0.175, 0.2 maka

kecepatan aliran fluida terhadap partikel nano Cu

mengalami peningkatan sedangkan terhadap partikel

nano Al2O3 mengalami penurunan.

b. Apabila variasi nilai parameter casson ditingkatkan

(β) = 0.5, 0.8, 1, 1.3, 1.6 maka kecepatan aliran fluida

terhadap partikel nano Cu dan Al2O3 sama-sama

mengalami peningkatan.
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c. Apabila variasi nilai parameter porositas ditingkatkan

(ϕ) = 0.1, 0.2, 0.5, 0.7, 0.9 maka kecepatan aliran

fluida terhadap partikel nanoCudanAl2O3 sama-sama

mengalami penurunan.

B. Saran

Berdasarkan hasil penelitian ini, diharapkan peneliti

selanjutnya dapat mengkaji aliran fluida pada wilayah yang

tidak berada di titik stagnasi atau (x ̸= 0), sehingga dapat

diperoleh kurva kecepatan disekitar silinder berpori. Diharapkan

untuk penelitian selanjutnya juga melibatkan temperatur

yang menghasilkan persamaan energi, sehingga simulasi yang

dihasilkan tidak hanya kurva kecepatan tetapi juga kurva

temperatur.
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Lampiran 1. Pembuktian Awal Mula Parameter Casson β

Membuktikan bahwa kc+ τ0√
2πc

=
(
1 + 1

β

)
kc+

τ0√
2πc

√
2πc√
2πc

⇐⇒ kc+
τ0
√
2πc

2πc

⇐⇒ kc2πc+ τ0
√
2πc

2πc

⇐⇒ kc2πc

kc2πc
+
τ0
√
2πc

kc2πc

⇐⇒ 1 +
τ0
√
2πc

kc2πc

⇐⇒ 1 +
τ0
√
2πc

kc2πc

⇐⇒ 1 +

(
τ0
√
2πc

kc2πc

√
2πc√
2πc

)

⇐⇒ 1 +

(
τ02πc

2πckc
√
2πc

)
⇐⇒ 1 +

(
τ0

kc
√
2πc

)
Selanjutnya, subtitusikan nilai β = kc

√
2πc

τ0
ke dalam persamaan

diatas sehingga diperoleh

τ0

kc
√
2πc

=
1

β
=

1
kc

√
2πc

τ0

⇐⇒ kc+
τ0√
2πc

=

(
1 +

1

β

)

Sehingga terbukti bahwa kc+ τ0√
2πc

=
(
1 + 1

β

)
.
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Lampiran 2. Transformasi Persamaan Dimensional menjadi

Persamaan Non-Dimensional

Persamaan non-dimensional diperoleh dengan mensubtitusi

nilai parameter dan variabel dimensional (4.39)-(4.49) ke

persamaan kontinuitas dan momentum dimensional.

1. Persamaan kontinuitas non-dimensional

∂r̄ū

∂x̄
+
∂r̄v̄

∂ȳ
= 0

∂(aruU∞)

∂(xa)
+
∂(arvU∞Re

1
2 )

∂(ayRe
1
2 )

= 0

∂ru

∂x

aU∞
a

+
∂rv

∂y

aU∞Re
1
2

aRe
1
2

= 0

∂ru

∂x
U∞ +

∂rv

∂y
U∞ = 0

U∞

(
∂ru

∂x
+
∂rv

∂y

)
= 0

∂ru

∂x
+
∂rv

∂y
= 0

2. Persamaan momentum non-dimensional sumbu -x

ρ

(
∂ū

∂t̄
+ ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ

)
= −∂p̄

∂x̄
+ µnf

(
1 +

1

β

)(
∂2ū

∂x̄2

+
∂2ū

∂ȳ2

)
+ σB2

0 ū−
µnf
k∗

ū
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Ruas Kiri

ρ

(
∂ū

∂t̄
+ ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ

)
⇐⇒ ρ

(
∂(uU∞)

∂(atU−1
∞ )

+ uU∞
∂(uU∞)

∂(xa)
+ vU∞Re−

1
2
∂(uU∞)

∂(yaRe−
1
2 )

)

⇐⇒ ρ

(
∂u

∂t

U∞

aU−1
∞

+ u
∂u

∂x

tU2
∞
a

+ v
∂u

∂y

tU2
∞
a

)

⇐⇒ ρ

(
∂u

∂t

U2
∞a

+
u
∂u

∂x

tU2
∞
a

+ v
∂u

∂y

tU2
∞
a

)

⇐⇒ ρU2
∞
a

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)

Ruas Kanan

− ∂p̄

∂x̄
+ µnf

(
1 +

1

β

)(
∂2ū

∂x̄2
+
∂2u

∂y2

)
+ σB2

0 ū+
µnf
k∗

ū

⇐⇒ −∂(pρU
2
∞)

∂(xa)
+ µnf

(
1 +

1

β

)(
∂2(uU∞)

∂(xa)2
+
∂2(uU∞
∂( ya

Re
1
2
)2

)
+ σB2

0uU
2
∞ +

µnf
k∗

uU2
∞

⇐⇒ −∂p
∂x

ρU2
∞
a

+ µnf

(
1 +

1

β

)(
∂2u

∂x2
U∞
a2

+
∂2u

∂y2
U∞Re

a2

)
+ σB2

0uU
2
∞ +

µnf
k∗

uU2
∞

⇐⇒ −∂p
∂x

ρU2
∞
a

+ µnf

(
1 +

1

β

)
U∞
a2

(
∂2u

∂x2
+
∂2u

∂y2
1

Re−1

)
+ σB2

0uU
2
∞ +

µnf
k∗

uU2
∞

Diperoleh persamaan dengan menggabungkan kedua ruas yaitu
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ruas kiri = ruas kanan.

ρ
U2
∞
a

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x

ρU2
∞
a

+ µnf

(
1 +

1

β

)
U∞
a2

(
∂2u

∂x2
+
∂2u

∂y2
1

Re−1

)
+ σB2

0uU
2
∞ +

µnf
k∗

uU2
∞

Selanjutnya kedua ruas dibagi dengan ρU∞
a maka diperoleh

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

µnf
ρU∞a

(
1 +

1

β

)(
∂2u

∂x2

+
∂2u

∂y2
1

Re−1

)
+

σa

ρU∞
B2

0u+
aµnf
ρk∗

u

= −∂p
∂x

+
vnf
aU∞

(
1 +

1

β

)(
∂2u

∂x2

+
∂2u

∂y2
1

Re−1

)
+Mu+ ϕu

= −∂p
∂x

+
vnf
Revf

(
∂2u

∂x2
+Re

∂2u

∂y2

)
+ (M + ϕ)u

= −∂p
∂x

+
1

Re

vnf
vf

∂2u

∂y2
+ (M + ϕ)u

dengan aU∞ = ReVf
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3. Persamaan momentum non-dimensional sumbu −y

ρ

(
∂v̄

∂t̄
+ v̄

∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ

)
= −∂p̄

∂x̄
+ µnf

(
1 +

1

β

)(
∂2v̄

∂x̄2

+
∂2v̄

∂ȳ2

)
+ σB2

0 v̄ −
µnf
k∗

v̄

Ruas Kiri

ρ

(
∂v̄

∂t̄
+ v̄

∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ

)
⇐⇒ ρ

(
∂(vU∞Re

− 1
2 )

∂(atU−1
∞ )

+ uU∞
∂(vU∞Re

− 1
2 )

∂(xa)

+ vU∞Re
1
2
∂(vU∞Re

− 1
2 )

∂(yaRe−
1
2 )

)

⇐⇒ ρ

(
Re−

1
2
∂v

∂t

U2
∞
a

+ u
∂v

∂x
Re−

1
2
U2
∞
a

+ v
∂v

∂y
Re−

1
2
U2
∞
a

)

⇐⇒ ρRe−
1
2
U∞2

a

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
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Ruas Kanan

− ∂p̄

∂x̄
+ µnf

(
1 +

1

β

)(
∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2

)
+ σB2

0 v̄ −
µnf
k∗

v̄

= − ∂(pρU2
∞)

∂(yaRe−
1
2 )

+ µ

(
1 +

1

β

)(
∂2(vU∞Re

− 1
2 )

∂(xa)2

+
∂2(vU∞Re

− 1
2 )

∂(yaRe−
1
2 )2

)
+ σB2

0vU∞Re
− 1

2 +
µnf
K∗ vU∞Re

− 1
2

= −ρ U2
∞

aRe−
1
2

∂p

∂y
+ µ

(
1 +

1

β

)(
U∞

a2Re−
1
2

∂2v

∂x2

+
U∞Re

− 1
2

a2Re−1

∂2v

∂y2

)
+ σB2

0vU∞Re
− 1

2 +
µnf
K∗ vU∞Re

− 1
2

= −ρ U2
∞

aRe−
1
2

∂p

∂y
+ µ

(
1 +

1

β

)
U∞

a2Re−
1
2

(
∂2v

∂x2
+Re

∂2v

∂y2

)
+ σB2

0vU∞Re
− 1

2 +
µnf
K∗ vU∞Re

− 1
2

Diperoleh persamaan dengan menggabungkan kedua ruas yaitu

ruas kiri = ruas kanan.

ρRe−
1
2
U∞2

a

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −ρ U2

∞

aRe−
1
2

∂p

∂y
+ µ(

1 +
1

β

)
U∞

a2Re−
1
2(

∂2v

∂x2
+Re

∂2v

∂y2

)
+ σB2

0vU∞Re
− 1

2

+
µnf
K∗ vU∞Re

− 1
2
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Selanjutnya kedua ruas dibagi dengan ρ U2
∞

aRe−
1
2

maka didapatkan.

1

Re

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
1 +

1

β

)
Re−1

ρaU∞

(
∂2v

∂x2

+Re
∂2v

∂y2

)
+
aRe−1

ρU∞
σB2

0v

+
aµnf
ReρK∗ v

= −∂p
∂y

+ µ

(
1 +

1

β

)
Re−1

ρaU∞

(
∂2v

∂x2

+Re
∂2v

∂y2

)
+
aRe−1

ρU∞

+Re−1

(
σaB2

0

ρU∞

)
v +

1

Re
ϕv

= −∂p
∂y

+
vnf
vf

(
1 +

1

β

)
1

Re

∂2v

∂x2

+
vnf
vf

(
1 +

1

β

)
∂2v

∂y2
+

1

Re
Mv

+
1

Re
ϕv
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Lampiran 3. Persamaan Similaritas

Persamaan Momentum

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ue

∂ue
∂x

+
vnf
vf

(
1 +

1

β

)
∂3ψ

∂y3

+ (M + ϕ)(
1

r

∂ψ

∂y
− ue)

1

r

∂2ψ

∂t∂y
+

1

r2
∂ψ

∂y

∂2ψ

∂x∂y
− 1

r3
∂r

∂x

(
∂ψ

∂y

)2

− 1

r2
∂ψ

∂x

∂2ψ

∂y2
=

ue
∂ue
∂x

+
vnf
vf

(
1 +

1

β

)
1

r

∂3ψ

∂y3
+ (M + ψ)(

1

r

∂ψ

∂y
− ue)

dengan

∂η

∂y
=

∂

∂y

( y

t1/2

)
=

1

t1/2

∂η

∂t
=

∂

∂t

( y

t1/2

)
= −1

2

t

t1/2
1

t
= −1

2

η

t

∂ψ

∂y
=
∂ψ

∂η

∂η

∂y

=
∂

∂η

(
t1/2ue(x)r(x)f(x, η, t)

1

t1/2

)
=
t1/2ue(x)r(x)

t1/2
∂f(x, η, t)

∂η

= ue(x)r(x)
∂f(x, η, t)

∂η
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∂ψ

∂x
=

∂

∂x

(
t1/2ue(x)r(x)f(x, η, t)

)
= t1/2

∂

∂x
(ue(x)r(x)f(x, η, t))

= r(x)t1/2f(x, η, t)
∂ue(x)

∂x
+ t1/2ue(x)f(x, η, t)

∂r(x)

∂x

+ t1/2ue(x)r(x)
∂f(x, η, t)

∂x
+ t1/2ue(x)

∂f(x, η, t)

∂x

∂2ψ

∂y2
=

∂

∂y

(
∂ψ

∂y

)
=

∂

∂y

(
ue(x)r(x)

∂f(x, η, t)

∂η

)
=

∂

∂η

(
ue(x)r(x)

∂f(x, η, t)

∂η

)
∂η

∂y

= ue(x)r(x)
∂

∂η

(
∂f(x, η, t)

∂η

)
1

t(1/2)

=
ue(x)r(x)

t(1/2)

∂

∂η

(
∂f(x, η, t)

∂η

)
=
ue(x)r(x)

t(1/2)

∂2f(x, η, t)

∂η2

∂2ψ

∂x∂y
=

∂

∂x

(
∂ψ

∂y

)
=

∂

∂x

(
ue(x)r(x)

∂f(x, η, t)

∂η

)
=
∂ue(x)

∂x
r(x)

∂f(x, η, t)

∂η
+ ue(x)

∂r(x)

∂(x)

∂f(x, η, t)

∂η

+ ue(x)r(x)
∂2f(x, η, t)

∂x∂η
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∂2ψ

∂t∂y
=

∂

∂t

(
∂ψ

∂y

)
=

∂

∂t

(
ue(x)r(x)

∂f(x, η, t)

∂η

)
=

∂

∂η

(
ue(x)r(x)

∂f(x, η, t)

∂η

)
∂η

∂t

+
∂

∂t

(
ue(x)r(x)

∂f(x, η, t)

∂η

)
= ue(x)r(x)

(
∂2(x, η, t)

∂η2

)(
−1

2

η

t

)
+ ue(x)r(x)

(
∂2f(x, η, t)

∂t∂η

)
= −ue(x)r(x)

t

η

2

(
∂2f(x, η, t)

∂η2

)
+ ue(x)r(x)

(
∂2f(x, η, t)

∂t∂η

)

∂3ψ

∂y3
=

∂

∂y

(
∂2ψ

∂y2

)
=

(
ue(x)r(x)

t1/2
∂2f(x, η, t)

∂η2

)
=

∂

∂η

(
ue(x)r(x)

t1/2
∂2f(x, η, t)

∂η2

)
∂η

∂y

=
ue(x)r(x)

t

∂3f(x, η, t)

∂η3

Selanjutnya ue(x) = ue, r(x)=r, dan f(x, η, t) = f sehingga

diperoleh persamaan similaritas untuk persamaan momentum

sebagai berikut.
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Ruas Kiri

1

r

∂2ψ

∂t∂y
+

1

r2
∂ψ

∂y

∂2ψ

∂x∂y
− 1

r3
∂r

∂x

(
∂ψ

∂y

)2

− 1

r2
∂ψ

∂x

∂2ψ

∂y2

=
1

r

(
−uer

t

η

2

∂2f

∂η2
+ uer

∂2f

∂t∂η

)
+

1

r2

(
uer

∂f

∂η

)(
due
dr

r
∂f

∂η

+ ue
dr

dx

∂f

∂η
+ uer

∂2f

∂x∂η

)
− 1

r3
dr

dx

(
uer

∂f

∂η

)2

− 1

r2

(
t1/2

due
dr

rf + t1/2ue
dr

dx
f + t1/2uer

∂f

∂x

)(
uer

t1/2
∂2f

∂η2

)
= −1

r

uer

t

η

2

∂2f

∂η2
+

1

r
uer

∂2f

∂t∂η
+

1

r2
uer

2due
dr

(
∂f

∂η

)2

+
1

r2
(ue)

2r
∂ue
∂x

(
∂f

∂η

)2

+
1

r2
(ue)

2r2
∂f

∂η

∂2f

∂x∂η

− 1

r3
∂r

∂x
(ue)

2r2
(
∂f

∂η

)2

− t1/2fr
∂ue
∂x

∂2f

∂η2
ue

1

r
c

− t1/2fue
∂r

∂x

∂2f

∂η2
ue

1

r

1

t1/2
− t1/2uer

∂f

∂x

∂2f

∂η2
ue
∂2f

∂η2

= −ue
t

η

2

∂2f

∂η2
+ ue

∂2f

∂t∂η
+ ue

due
dr

(
∂f

∂η

)2

+ (ue)
2∂f

∂η

∂2f

∂x∂η

− uef
due
dx

∂2f

∂η2
− f(ue)

2 ∂r

∂x

∂2f

∂η2
1

r
− (ue)

2∂f

∂x

∂2f

∂η2

Ruas Kanan

ue
∂ue
∂x

+
vnf
vf

(
1 +

1

β

)
∂3ψ

∂y3
+ (M + ϕ)(

1

r

∂ψ

∂y
− ue)

= ue
∂ue
∂x

+
vnf
vf

(
1 +

1

β

)
1

r

1

t
uer

∂3f

∂η3
+ (M + ϕ)(

1

r
uer

∂f

∂η
− ue)

= ue
∂ue
∂x

+
vnf
vf

(
1 +

1

β

)
ue
t

∂3f

∂η3
+ ue(M + ϕ)(

∂f

∂η
− 1)
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Diperoleh ruas kiri = ruas kanan sebagai berikut.

− ue

t

η

2

∂2f

∂η2
+ ue

∂2f

∂t∂η
+ ue

due
dr

(
∂f

∂η

)2

+ (ue)
2∂f

∂η

∂2f

∂x∂η

− uef
due
dx

∂2f

∂η2
− f(ue)

2 ∂r

∂x

∂2f

∂η2
1

r
− (ue)

2∂f

∂x

∂2f

∂η2
= ue

∂ue
∂x

+
vnf
vf

(
1 +

1

β

)
ue
t

∂3f

∂η3
+ ue(M + ϕ)(

∂f

∂η
− 1)

Kemudian kedua ruas dibagi dengan ue
t maka diperoleh.

− η

2

∂2f

∂η2
+ t

∂2f

∂t∂η
+ t

due
dr

(
∂f

∂η

)2

+ uet
∂f

∂η

∂2f

∂x∂η

− tf
due
dx

∂2f

∂η2
− fuet

∂r

∂x

∂2f

∂η2
1

r
− uet

∂f

∂x

∂2f

∂η2
= t

∂ue
∂x

+
vnf
vf

(
1 +

1

β

)
∂3f

∂η3
+ t(M + ϕ)(

∂f

∂η
− 1)

=
vnf
vf

(
1 +

1

β

)
∂3f

∂η3
+
η

2

∂2f

∂η2
+ t

∂ue
∂x

[
1−

(
∂f

∂η

)2

+ f
∂2f

∂η2

]
= t

∂2f

∂t∂η
+ tue

[
∂f

∂η

∂2f

∂x∂η
− ∂f

∂x

∂2f

∂η2

− 1

r

∂r

∂x

∂2f

∂η2

]
− t(M + ϕ)

(
∂f

∂η
− 1

)
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Lampiran 4. Penurunan Kondisi Awal

Persamaan momentum

vnf
vf

(
1 +

1

β

)
f ′′′ +

η

2
f ′′ + t(1− (f)2 + f · f ′′)

= t
∂f ′

∂t
− t(M + ϕ)(f ′ − 1)

dengan mensubtitusikan t = 0 maka diperoleh persamaan

sebagai berikut.

vnf
vf

(
1 +

1

β

)
f ′′′ +

η

2
f ′′ = 0

Selanjutnya, dilakukan penyelesaian untuk mendapatkan f ′

dengan memisalkan f ′′ = z sehingga diperoleh persamaan sebagai

berikut:

dengan z′ = dz
dη maka diperoleh persamaan berikut.

vnf
vf

(
1 +

1

β

)
dz

dη
+
η

2
z = 0

vnf
vf

(
1 +

1

β

)
dz +

η

2
zdη = 0

selanjutnya kedua ruas dibagi dengan z maka diperoleh.

vnf
vf

(
1 +

1

β

)
1

z
dz +

η

2
dη = 0
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kemudian kedua ruas diintegralkan, diperoleh.∫
vnf
vf

(
1 +

1

β

)
1

z
dz +

∫
η

2
dη =

∫
0dη

vnf
vf

(
1 +

1

β

)
lnz +

η2

4
= C1

dilakukan pemisalan

A =
vnf
vf

(
1 +

1

β

)
persamaan diperoleh.

A ln z = C1 −
η2

4

ln z =
C1

A
− η2

4A

z = e
C1
A

− η2

4A

karena z = f ′′, maka persamaan menjadi

f ′′ = e
C1
A

− η2

4A

f ′ =

∫
e

C1
A

− η2

4Adη

f ′ = e
C1
A

∫
e−

η2

dAdη

dengan menggunakan rumus integral eksponensial yang

melibatkan fungsi error erf yaitu.∫
e−cx2

dx =

√
π

4c
erf(

√
cx)
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dengan c = 1
A dan x2 = η2, diperoleh.

f ′ = e
C1
A

(√
π

4 1
4A

erf

√
η2

4A

)

f ′ =
√
πAerf

(
η

2A

)
e

C1
A + C2

dengan menggunakan kondisi batas sebagai berikut.

t > 0; f = f ′ = 0, pada η = 0

f ′ = 1, pada η → ∞

Selanjutnya, akan ditentukan nilai dari C2 dengan

mensubtitusikan kondisi batass f ′ = 0 pada saat η = 0.

f ′ =
√
πAerf

(
η

2A

)
e

C1
A + C2

C2 = 0

Selajutnya pada saat f ′ = 1 dan η → ∞ diperoleh e
C1
A , dengan

erf(∞) = 1, maka diperoleh.

f ′ =
√
πAerf

(
η

2A

)
e

C1
A

1 =
√
πAerf(∞)e

C1
A

1 =
√
πAe

C1
A

e
C1
A =

1√
πA

Selanjutnya, dengan melakukan subtitusi C2 dan e
C1
A pada f ′,
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maka diperoleh.

f ′ =
√
πAerf

(
η

2A

)
e

C1
A

f ′ = erf

(
η

2A

)

Selanjutnya dengan mengintegralkan f ′, maka diperoleh.

f = erf

(
η

2A

)
dη

f = ηerf

(
η

2A

)
+ 2

√
A

π

(
e−

η
4A

)
+ C3

Selanjutnya dengan mensubtitusikan f = 1 pada saat η → ∞,

maka diperoleh

1 = ηerf

(
η

2A

)
+ 2

√
A

π

(
e−

η
4A

)
+ C3

C3 = −1

Sehingga diperoleh.

f = ηerf

(
η

2A

)
+ 2

√
A

π

(
e−

η
4A − 1

)
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Selanjutnya dengan menurunkan f ′ maka diperoleh.

f ′′ =
df ′

dη

f ′′ =
d

dη

(
erf(

η

2A
)

)

f ′′ = erf

(
η

2A

)
f ′′ =

1√
πA

e−
η2

4A

Selanjutnya dengan menurunkan f ′′, maka diperoleh.

f ′′′ =
d

dη

(
1√
πA

e−
η2

4A

)
f ′′′ = − η

2A
√
πA

e−
η2

4A

Didapatkan kondisi awal fungsi f, f ′, f ′′, f ′′′ dengan

mensubtitusikan kembali A =
vnf

vf

(
1 + 1

β

)
sebagai berikut.
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f = ηerf

(
η

2
vnf

vf

(
1 + 1

β

))+ 2

√√√√√√ vnf

vf

(
1 + 1

β

)
π

(
e−

η
4A − 1

)

f ′ = erf

(
η

2
vnf

vf

(
1 + 1

β

))

f ′′ =
1√√√√π

vnf

vf

(
1 + 1

β

)e
− η2

4
vnf
vf

(
1+ 1

β

)

f ′′′ =
η

2
vnf

vf

(
1 + 1

β

)√√√√π
vnf

vf

(
1 + 1

β

)e
− η2

4
vnf
vf

(
1+ 1

β

)
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Lampiran 5. Program Matlab
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