CHAPTER IV RESEARCH FINDINGS AND DISCUSSION

A. Description of Research Findings

In findings of the research, it was described that there were different results between experimental group which was taught by using movies as the teaching medium and control group which was taught by conventional technique on writing recount text. The research was conducted at the tenth graders of SMK Farmasi YPIB Brebes that located at Terlangu Jatibarang Brebes in the academic year of 2014/2015.

The research started on $14^{\text {th }}$ of May 2015 by asking permission to the school principal and choosing the sample used purposive sampling technique. From six classes of tenth grade, researcher got class X Pharmacy A which consist of 30 students as experimental group and class X Pharmacy B which consist of 26 students as control group. The number of students was gained from documentation of the school.

Pre-test was given in experimental group on $16^{\text {th }}$ of May 2015 and in control group on $18^{\text {th }}$ of May 2015. Before it, researcher prepared lesson plan and material of learning activity. Pre-test was conducted to know that both groups were normal and homogenous or not. After giving pretest, treatment was conducted for experimental group on $23^{\text {rd }}$ and $30^{\text {th }}$ November 2015 by using movie as the teaching medium.

Conventional teaching was conducted in control group on $25^{\text {th }}$ and $28^{\text {th }}$ May 2015. In control group, students were taught material without variation or special treatment.

Then, post test was given in the form which they have to write a recount text with time allotment for writing was 30 minutes. Post test for experimental group was conducted on $30^{\text {th }}$ May 2015 and the post test for control group was conducted on $28^{\text {th }}$ May 2015. After that, the data was collected. Worksheets that had been given to students were scored. The score was obtained from each item of element of writing. The data were analyzed to prove the truth of hypothesis that had been planned.

From the result, it could be concluded that there were a different results between experiment group and control group by hypothesis test which showed the value of $t_{\text {count }}$ was higher than $t_{\text {table }}$. It could be seen on the value of $t_{\text {count }}$ was 2.138 while the critical value of $t_{\text {table }}$ on $\mathrm{t}_{(0.05)(54)}$ was 2.001 , so the hypothesis was accepted. It means that there was a different result between students' achievements in writing recount text that had been taught by using movie aid and without using it.

B. Data Analysis

1. The Data Analysis of Pre-test Score

Table 4.1
Pre-test Score of Tenth Grade

No.	X Pharmacy A (Experiment)		X Pharmacy B (Control)	
	Code	Score	Code	Score
1	E-1	60	C-1	65
2	E-2	82	C-2	76
3	E-3	65	C-3	57
4	E-4	66	C-4	71
5	E-5	68	C-5	64
6	E-6	71	C-6	61
7	E-7	77	C-7	73
8	E-8	76	C-8	81
9	E-9	78	C-9	65
10	E-10	69	C-10	64
11	E-11	59	C-11	70
12	E-12	66	C-12	66
13	E-13	59	C-13	51
14	E-14	73	C-14	77
15	E-15	78	C-15	59
16	E-16	63	C-16	88
17	E-17	58	C-17	71
18	E-18	72	C-18	69
19	E-19	72	C-19	61
20	E-20	64	C-20	69
21	E-21	58	C-21	76
22	E-22	77	C-22	86
23	E-23	83	C-23	49
24	E-24	63	C-24	54
25	E-25	70	C-25	65
26	E-26	68	C-26	67
27	E-27	69		
28	E-28	68		

29	E-29	61		
30	E-30	66		
\sum	2059		1755	
N	30		26	
\bar{x}	68,63333		67,5	
Variants $\left(\mathrm{S}^{2}\right)$	50,65402		94,18	
S	7,117164		9,704638	

a. Normality of the Experimental Group Pre-test

Normality test was used to know whether the data obtained was normally distributed or not. Based on the table above, the normality test:

Hypothesis:
Ho: the distribution list was normal
Ha: the distribution list was not normal
Ho accepted if $\chi_{\text {count }}<\chi_{\text {table }}$ with $\alpha=5 \%, \mathrm{dk}=\mathrm{k}-3$
The formula that was used:

$$
\chi^{2}=\sum_{i=1}^{k} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

The computation of normality test:
Maximum score $=83$
Minimum score $=58$
Range (R) $\quad=83-58=25$
Number of class $(K) \quad=1+3.3 \log 30=5.87=6$
Length of class $\quad=25: 6=4.166=5$

Table 4.2

The Frequency Distribution of the Experimental Group Pre-test

Class	f_{i}	X_{i}	$x_{i}{ }^{2}$	$f_{i} x_{i}$	$f_{i} x_{i}{ }^{2}{ }^{2}$
$58-62$	6	60	3600	360	21600
$63-67$	7	65	4225	455	29575
$68-72$	9	70	4900	630	44100
$73-77$	4	75	5625	300	22500
$78-82$	3	80	6400	240	19200
$83-87$	1	85	7225	85	7225
Sum	30			2070	144200

Table 4.3

The Frequency Observation of the Experimental Group Pre-test

Class	B	Z_{i}	$\mathrm{P}\left(\mathrm{Z}_{\mathrm{i}}\right)$	Wide Area	Ei	Oi	$\frac{(O i-E i)^{2}}{E i}$
	57,5	$-1,6732$	$-0,4529$				
$58-62$				0,1250	3,75009881	6	1,3498459
	62,5	$-0,9457$	$-0,3278$				
$63-67$				0,2415	7,24411124	7	0,008226
	67,5	$-0,2182$	$-0,0864$				
$68-72$				0,2811	8,4323882	9	0,0382078
	72,5	0,5092	0,1947				
$73-77$				0,1972	5,91587049	4	0,6204598
	77,5	1,2367	0,3919				
$78-82$				0,0833	2,50037624	3	0,0998345
	82,5	1,9641	0,4752				
$83-87$				0,0212	0,63604212	1	0,208265
	87,5	2,6916	0,4964				
					$\chi^{2}=$		2,3248391

χ^{2} count $=2.3248391$
For $\alpha=5 \%, \mathrm{dk}=6-3=3, \chi^{2}$ table $=7.815$

With $\alpha=5 \%$ and $\mathrm{dk}=6-3=3$, from the chi-square table obtained χ^{2} table $=7.815$. Because χ^{2} count was lower than χ^{2} table $(2.3248391<7.815)$ so the distribution list was normal.

b. The Normality of the Control Group Pre-test

 Hypothesis:Ho : the distribution list was normal
На : the distribution list was not normal.
Ho accepted if $\chi_{\text {count }}^{2}<\chi_{\text {table }}^{2}$ with $\alpha=5 \%, \mathrm{dk}=\mathrm{k}-3$
The formula that was used:

$$
\chi^{2}=\sum_{i=1}^{k} \frac{\left(O_{1}-E_{1}\right)^{2}}{E_{1}}
$$

The computation of normality test:
Maximum score $=88$
Minimum score $=49$
Range (R) $\quad=83-58=39$
Number of class (K) $\quad=1+3.3 \log 26=5.67=6$
Length of class
$=39: 6=6.5=7$

Table 4.4
The Frequency Distribution of the Control Group Pre-test

Class	f_{i}	x_{i}	$x_{i}{ }^{2}$	$f_{i} x_{i}$	$f_{i} x_{i}{ }^{2}$
$49-55$	3	52	2704	156	8112
$56-62$	4	59	3481	236	13924
$63-69$	9	66	4356	594	39204
$70-76$	6	73	5329	438	31974
$77-83$	2	80	6400	160	12800
$84-90$	2	87	7569	174	15138
Sum	26			1758	121152

Table 4.5
The Frequency Observation of the Control Group Pre-test

Class	B	Z_{i}	$\mathrm{P}\left(\mathrm{Z}_{\mathrm{i}}\right)$	Wide Area	Ei	Oi	$\frac{(O i-E i)^{2}}{E i}$
	48,5	$-1,99982$	$-0,47724$				
$49-55$				0,07973	2,072982	3	0,414553
	55,5	$-1,26749$	$-0,39751$				
$56-62$				0,193779	5,038246	4	0,213954
	62,5	$-0,53516$	$-0,20373$				
$63-69$				0,281882	7,328934	9	0,381019
	69,5	0,197165	0,07815				
$70-76$				0,245532	6,383839	6	0,023079
	76,5	0,929493	0,32368				
$77-83$				0,128043	3,329105	2	0,530629
	83,5	1,66182	0,45173				
$84-90$				0,039945	1,038567	2	0,890027
	90,5	2,394148	0,49167				
					$\chi^{2}=$		2,453262

$\chi_{\text {count }}^{2}=2,453262$
For $\alpha=5 \%, \mathrm{dk}=6-3=3 \chi_{\text {table }}^{2}=1758$

With $\alpha=5 \%$ and $\mathrm{dk}=6-3=3$, from the chi-square table obtained $\chi_{\text {table }}^{2}=7.815$. Because χ^{2} count was lower than $\chi_{\text {table }}^{2}$ $(2,453262<7.815)$ so the distribution list was normal.

c. Homogeneity Test

The homogeneity test is one of crucial stages done in this research. This was done to know whether sample in the research come from population that had same variance or not. The analysis of homogeneity test could be seen in the following table.

Hypothesis:
Но $: \sigma_{1}^{2}=\sigma_{2}^{2}$
На $: \sigma_{1}^{2} \neq \sigma_{2}^{2}$
Ho is accepted if $\mathrm{F} \leq \mathrm{F}_{(1-\mathrm{a})(\mathrm{nb}-1) \text { :(nk-1) }}$
Calculation formula $=\mathrm{F} \frac{V b}{V k}$

Table 4.6
Result of Pre-test

Variation Source	X Pharmacy A (Experiment)	X Pharmacy B (Control)
\sum	2059	1755
N	30	26
\bar{X}	68,63333	67,5
Variants $\left(\mathrm{S}^{2}\right)$	50,65402	94,18
S	7,117164	9,704638

According to the formula above, it is obtained that;
$\mathrm{F}=\frac{94.18}{50.65402}=1.85927$
For $\alpha=5 \%$ with;
dk1 $=\mathrm{n}-1=26-1=25$
dk2 $=\mathrm{n}-1=30-1=29$
$\mathrm{F}_{(0.05)(25: 29)}=1.891$

With $\alpha=5 \%$ and $\mathrm{dk}=25: 29$, obtained $\mathrm{F}_{\text {table }}=1.891$. Because $\mathrm{F}_{\text {count }}$ was lower than $\mathrm{F}_{\text {table }}(1.859 \leq 1.891)$ so, Ho was accepted and both groups have same variant or homogeneous.

d. Average Test

In this research, because $\sigma_{1}^{2}=\sigma_{2}^{2}$ (both groups have same variant), the t-test formula was:

Ho: $\mu_{1}=\mu_{2}$
На : $\mu_{1} \neq \mu_{2}$
$\mu_{1}:$ average data of experiment class
μ_{2} : average data of control class
Ho is accepted if $-\mathrm{t}_{\text {table }} \leq \mathrm{t}_{\text {count }} \leq \mathrm{t}_{\text {table }}$
$t=\frac{\overline{X_{1}}-\overline{X_{2}}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}$
With
$S=\sqrt{\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}}$
According to the formula above, it was obtained that:
$S=\sqrt{\frac{(30-1) 50.6540+(26-1) 94.18}{30+26-2}}$
$S=8.4146$
$t=\frac{68.63-67.50}{8.4146 \sqrt{\frac{1}{30}+\frac{1}{26}}}$
$t=0.503$
for $\alpha=5 \%$ and $\mathrm{dk}=30+26-2=54, \mathrm{t}_{(0.05)(54)}=2.005$

With $\alpha=5 \%$ and $\mathrm{dk}=30+26=54$, obtained $t_{\text {table }}=$ 2.005. Because $t_{\text {count }}$ was lower than $t_{\text {table }}(0.503 \leq 2.005)$ so, Ho was accepted and there was no difference of the pre-test average from both groups.
2. The Data Analysis of Pot Test Score

Table 4.7
The Post Test Score of Tenth Grade

No.	X Pharmacy A (Experiment)		X Pharmacy B (Control)	
	Code	Score	Code	Score
1	E-1	86	C-1	75
2	E-2	83	C-2	52
3	E-3	76	C-3	65
4	E-4	64	C-4	55
5	E-5	60	C-5	66
6	E-6	60	C-6	63
7	E-7	61	C-7	53
8	E-8	70	C-8	63
9	E-9	69	C-9	72
10	E-10	81	C-10	62
11	E-11	67	C-11	80
12	E-12	67	C-12	63
13	E-13	70	C-13	48
14	E-14	66	C-14	81
15	E-15	73	C-15	67
16	E-16	74	C-16	81
17	E-17	59	C-17	56
18	E-18	71	C-18	61
19	E-19	69	C-19	68
20	E-20	68	C-20	73
21	E-21	69	C-21	89
22	E-22	78	C-22	65
23	E-23	73	C-23	66

24	E-24	66	C-24	64
25	E-25	83	C-25	61
26	E-26	77	C-26	69
27	E-27	85		
28	E-28	64		
29	E-29	71		
30	E-30	70		
	\sum	2130		1718
	N	30		26
\bar{x}	71		66,0769231	
Variants $\left(\mathrm{S}^{2}\right)$		56,0689655		94,5538462
S		7,48792131		9,7238802

a. The Normality of the Experimental Group Post Test

Hypothesis :
Ho : the distribution list was normal
Ha : the distribution list was not normal
Ho accepted if $\chi^{2}{ }_{\text {count }}<\chi^{2}$ table with $\alpha=5 \%, \mathrm{dk}=\mathrm{k}-3$
The formula:

$$
\chi^{2}=\sum_{i=1}^{k} \frac{\left(O_{1-}-E_{1}\right)^{2}}{E_{1}}
$$

The computation of normality test:
Maximum score $=86$
Minimum score $=59$
Range (R) $\quad=86-59=27$
Number of class (K) $\quad=1+3.3 \log 30=5.87=6$
Length of class $\quad=27: 6=4.5=5$

Table 4.8
The Frequency Distribution of the Experiment Group Post Test

Class	f_{i}	X_{i}	$x_{i}{ }^{2}$	$f_{i} x_{i}$	$f_{i} x_{i}{ }^{2}$
$59-63$	4	61	3721	244	14884
$64-68$	7	66	4356	462	30492
$69-73$	10	71	5041	710	50410
$74-78$	4	76	5776	304	23104
$79-83$	3	81	6561	243	19683
$83-88$	2	86	7396	172	14792
Sum	30			2135	153365

Table 4.9
The Frequency Observation of the Experiment Group Post Test

Class	B	Z_{i}	$\mathrm{P}\left(\mathrm{Z}_{\mathrm{i}}\right)$	Wide Area	Ei	Oi	$\frac{(O i-E i)^{2}}{E i}$
	58,5	$-1,8075$	$-0,4647$				
$59-63$				0,10163	3,04895	4	0,29665
	63,5	$-1,094$	$-0,363$				
$64-68$				0,2148	6,4441	7	0,04795
	68,5	$-0,3805$	$-0,1482$				
$69-73$				0,27864	8,35927	10	0,32204
	73,5	0,33296	0,13042				
$74-78$				0,22191	6,65716	4	1,06059
	78,5	1,04645	0,35232				
$79-83$				0,10847	3,25402	3	0,01983
	83,5	1,75994	0,46079				
$84-88$				0,03252	0,97553	2	1,07588
	88,5	2,47344	0,49331				
					$\chi^{2}=$		2,82294

$$
\chi_{\text {count }}^{2}=2.82294
$$

For $\alpha=5 \%, \mathrm{dk}=6-3=3, x_{\text {table }}^{2}=7.815$

With $\alpha=5 \%, \mathrm{dk}=6-3=3$, from chi-square table obtained χ^{2} table $=7.815$. Because χ^{2} count was lower than χ^{2} table
(2.82294 < 7.815) so the distribution list was normal.
b. The Normality of the Control Group Post Test

Hypothesis:
Ho : the distribution list was normal
Ha : the distribution list was not normal
Ho accepted if χ^{2} count $<\chi^{2}$ table with $\alpha=5 \%, \mathrm{dk}=\mathrm{k}-3$.
The formula:

$$
\chi^{2}=\sum_{i=1}^{k} \frac{\left(O_{1}-E_{1}\right)^{2}}{E_{1}}
$$

The computation of normality test:
Maximum score $=89$
Minimum score $=48$
Range $(\mathrm{R}) \quad=89-48=41$
Number of class $(K) \quad=1+3.3 \log 26=5.67=6$
Length of class $\quad=41: 6=6.83=7$

Table 4.10
The Frequency Distribution of the Control Group Post test

Class	f_{i}	x_{i}	$x_{i}{ }^{2}$	$f_{i} x_{i}$	$f_{i} x_{i}{ }^{2}$
$48-54$	3	51	2601	153	7803
$55-61$	4	58	3364	232	13456
$62-68$	11	65	4225	715	46475
$69-75$	4	72	5184	288	20736
$76-82$	3	79	6241	237	18723
$83-89$	1	86	7396	86	7396
Sum	26			1711	114589

Table 4.11

The Frequency Observation of the Control Group Post test

Class	B	Z_{i}	$\mathrm{P}\left(\mathrm{Z}_{\mathrm{i}}\right)$	Wide Area	Ei	Oi	$\frac{(O i-E i)^{2}}{E i}$
	47,5	$-2,05095$	$-0,47986$				
$48-54$				0,082484	2,144588	3	0,341198
	54,5	$-1,26676$	$-0,39738$				
$55-61$				0,212078	5,514034	4	0,415721
	61,5	$-0,48258$	$-0,1853$				
$62-68$				0,303827	7,899501	11	1,216924
	68,5	0,30161	0,118525				
$69-75$				0,24269	6,309942	4	0,845623
	75,5	1,085796	0,361215				
$76-82$				0,108041	2,809078	3	0,012976
	82,5	1,869982	0,469257				
$83-89$				0,026768	0,695966	1	0,132818
	89,5	2,654169	0,496025				
					$\chi^{2}=$		2,96526

$$
\chi_{\text {count }}^{2}=2,96526
$$

For $\alpha=5 \%, \mathrm{dk}=6-3=3 x_{\text {table }}=7.815$

2.96526
7.815

With $\alpha=5 \%$ and $\mathrm{dk}=6-3=3$, from the chisquare table obtained $\chi_{\text {table }}=7.815$. Because $\chi_{\text {count }}^{2}$ was lower than $\chi^{2}{ }_{\text {table }}(2,96526<7.815)$ so the distribution list was normal.
c. Homogeneity Test

Hypothesis:
Но

$$
: \sigma_{1}^{2}=\sigma_{2}^{2}
$$

$\mathrm{Ha} \quad: \sigma_{1}^{2} \neq \sigma_{2}^{2}$
Ho is accepted if $\mathrm{F} \leq \mathrm{F}_{(1-\mathrm{a})(\mathrm{nb}-1) \text { :(nk-1) }}$
Calculation formula $=\mathrm{F} \frac{V b}{V k}$
Table 4.12
Result of Post Test

Variation Source	X Pharmacy A (Experiment)	X Pharmacy B (Control)
\sum	2130	1718
N	30	26
\bar{X}	71	66,0769231
Variants $\left(\mathrm{S}^{2}\right)$	56,0689655	94,55384615
S	7,48792131	9,723880201

According to the formula above, it is obtained that:

$$
\mathrm{F}=\frac{94.55384615}{56.0689655}=1.6863847
$$

For $\alpha=5 \%$ with:
$\mathrm{dk} 1=\mathrm{n}-1=26-1=25$
$\mathrm{dk} 2=\mathrm{n}-1=30-1=29$
$\mathrm{F}_{(0.05)(25: 29)}=1.891$

Since $\mathrm{F}_{\text {count }} \leq \mathrm{F}_{\text {table }}$, the experimental group and control group have same variants. With $\alpha=5 \%$ and $\mathrm{dk}=25: 29$, obtained $\mathrm{F}_{\text {table }}=1.891$. Because $\mathrm{F}_{\text {count }}$ was lower than $\mathrm{F}_{\text {table }}$ ($1.686 \leq 1.891$), Ho was accepted and both groups had same variant or homogeneous.
d. Hypothesis Test

In this research, because $\sigma_{1}^{2}=\sigma_{2}^{2}$ (both groups have same variants), the t -test formula was:

Но: $\mu_{1}=\mu_{2}$
На: $\mu_{1} \neq \mu_{2}$
μ_{1} : average data of experiment class
μ_{2} : average data of control class Ho is accepted if $-\mathrm{t}_{\text {table }} \leq$

$$
\mathrm{t}_{\text {count }} \leq \mathrm{t}_{\text {table }}
$$

$$
\begin{aligned}
& t=\frac{\overline{X_{1}}-\overline{X_{2}}}{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}} \\
& \mathrm{~S}=\sqrt{\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}}
\end{aligned}
$$

According to the formula above, it was obtained that:

$$
\begin{aligned}
& \mathrm{S}=\sqrt{\frac{(30-1) 56.0690+(26-1) 94.55385}{30+26-2}} \\
& \mathrm{~S}=8.5957 \\
& t=\frac{71.00-66.08}{8.5957 \sqrt{\frac{1}{30}+\frac{1}{26}}}
\end{aligned}
$$

$$
t=2.1375
$$

$$
\text { for } \alpha=5 \% \text { and } \mathrm{dk}=30+26-2=54, \mathrm{t}_{(0.05)(54)}=2.005
$$

With $\alpha=5 \%$ and $\mathrm{dk}=54$, obtained $\mathrm{t}_{\text {table }}=2.005$. Because $\mathrm{t}_{\text {count }}$ was higher than $\mathrm{t}_{\text {table }}(2.138>2.005)$ so, Ho was rejected and there was a difference of the post test average from both groups.

C. Discussion of the Research Findings

1. Hypothesis

According to the problem and literature, the hypothesis of this research can be formulated as follow.

Ho: Using movie as a teaching medium is not effective in the teaching writing of recount text at the tenth grade students of SMK Farmasi YPIB Brebes year 2014/2015.

Ha: Using movie as a teaching medium is effective in the teaching writing of recount text at the tenth grade students of SMK Farmasi YPIB Brebes year 2014/2015.

2. The students' achievement of pre-test

Based on the result of pre-test, it can be known that both experiment group and control group are normal distribution and homogenous. The normality test of experiment group with chi-square is $\chi_{\text {count }}^{2}(2.3248391)<\chi_{\text {table }}^{2}$ (7.815) while control group is $\chi_{\text {count }}^{2}(2.453262)<\chi_{\text {table }}^{2}$ (7.815). the homogeneity test in pre-test shows that $\mathrm{F}_{\text {count }}$ is lower than $\mathrm{F}_{\text {table }}(1.859<1.891)$.

In addition, the result of calculation t-test of pre-test is obtained $t_{\text {count }} 0.503$ and $t_{\text {table }} 2.005$. it shows that there is no different average between experiment and control group before the treatment.

3. The students' achievement of post-test

The normality test of experiment group with chisquare is $\chi_{\text {count }}^{2}(2.82294)<\chi_{\text {table }}^{2}(7.815)$ while control group
is $\chi_{\text {count }}^{2}(2.96526)<\chi_{\text {table }}^{2}(7.815)$. The homogeneity test of pre-test shows that $\mathrm{F}_{\text {count }}$ is lower than $\mathrm{F}_{\text {table }}(1.686<1.891)$. It means that both experiment and control group of post test is normal distribution and homogenous.

Based on the result of t-test calculation shows that $\mathrm{t}_{\text {count }}$ is higher than $\mathrm{t}_{\text {table }}(2.138>2.005)$. It means that there is a difference of the post test average between experiment group which has been taught recount text by using movie medium and control group which has taught without using any aids. So, it can be concluded that using movie as a teaching medium is effective to teach recount text.

D. Limitation of the Research

The researcher realized that in this research was still far from perfect. There were constraints and obstacles faced during the research process. The research was limited in teaching writing of recount text in the second semester of tenth grade students of SMK Farmasi YPIB Brebes in the academic year of 2014/2015. It is still possible that the different result will be gained when the same research is held in other schools or other periods.

This research is implemented in short time. It makes this research could not be done maximally. But it was enough to fulfill all requirements for a research. Because of the lacks of experience from the researcher, the implementation of this research was less smooth. But the researcher tries to do this study as optimal as possible accordance with guidance from the advisor.

Considering all those limitations, it is a need to do further research about using movie in teaching English. By the hope it will be more great and success in developing English teachinglearning.

