PERAMALAN JUMLAH WISATAWAN DI JAWA TENGAH DENGAN METODE DOUBLE MOVING AVERAGE DAN METODE DOUBLE EXPONENTIAL SMOOTHING

SKRIPSI

Diajukan untuk Memenuhi Syarat Guna Memperoleh Gelar Sarjana Matematika Dalam Ilmu Matematika

Disusun oleh:

ENI ROFIKHOH NIM. 1708046010

PROGRAM STUDI MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI WALISONGO SEMARANG 2023

PERNYATAAN KEASLIAN

PERNYATAAN KEASLIAN

Yang bertanda tangan dibawah ini:

Nama : Eni Rofikhoh

NIM : 1708046010

Jurusan : Matematika

Menyatakan bahwa skripsi yang berjudul:

PERAMALAN JUMLAH WISATAWAN DI JAWA TENGAH DENGAN METODE DOUBLE MOVING AVERAGE DAN METODE DOUBLE EXPONENTIAL SMOOTHING

Secara keseluruhan adalah hasil penelitian/karya saya sendiri, kecuali bagian tertentu yang dirujuk sumbernya.

Semarang, 11 Juni 2023

Pembuat Pernyataan,

Eni Rofikhoh

NIM: 1708046010

PENGESAHAN

KEMENTERIAN AGAMA

UNIVERSITAS ISLAM NEGERI WALISONGO

FAKULTAS SAINS DAN TEKNOLOGI

Jl. Prof. Dr. Hamka Ngaliyan Semarang Telp.024-7601295 Fax.7615387

PENGESAHAN

Naskah skripsi berikut ini:

: Peramalan Jumlah Wisatawan Di Jawa Tengah Dengan Metode Double Judul

Moving Average Dan Metode Double Exponential Smoothing

: Eni Rofikhoh Nama

: 1708046010 NIM Jurusan : Matematika

Telah diujikan dalam sidang tugas akhir oleh Dewan Penguji Fakultas Sains dan Teknologi UIN Walisongo dan dapat diterima sebagai salah satu syarat memperoleh gelar sarjana dalam Ilmu Matematika.

Semarang, 19 Juni 2023

DEWANPENGUII

Ketua Sidang

Sekretaris Sidang,

Yulia Romadiastri, M.Sc.

NIP: 198107152005012008

Emy Siswanah, M. Sc NIP: 19870202 201101 2 014

Penguji Utama 1

Penguji Utama I,

Seftina Diyah Miasary, N

Khoirun Msa, M.Si. IP: 198701022019032010

NIP: 19870921201902010

Pembimbing I,

Pembimbing II,

Emy Siswanah, M. Sc

Ariska Kurnia Rachmawati, M. Sc

NIP: 198702022011012014

NIP: 198908112019032019

NOTA PEMBIMBING

NOTA PEMBIMBING

Semarang, 12 Juni 2023

Yth. Ketua Program Studi Matematika Fakultas Sains dan Teknologi **UIN Walisongo Semarang**

Assalamualaikum. Wr. Wb.

Dengan ini diberitahukan bahwa saya telah melakukan bimbingan, arahan dan koreksi naskah skripsi dengan:

Judul

: Peramalan Jumlah Wisatawan di Jawa Tengah Dengan Metode Double

Moving Average dan Metode Double Exponential Smoothing

Nama

: Eni Rofikhoh

NIM ·

: 1708046010

: Matematika Saya memandang bahwa naskah skripsi tersebut sudah dapat diajukan kepada Fakultas

Sains dan Teknologi UIN Walisongo Semarang untuk diujikan dalam Sidang

Munaqasyah.

Wassalamualaikum. Wr. Wb.

Pembimbing I,

Emy Siswanah, M. Sc

NIP. 19870202 201101 2 014

NOTA PEMBIMBING

NOTA PEMBIMBING

Semarang, /2 Juni 2023

Yth. Ketua Program Studi Matematika Fakultas Sains dan Teknologi UIN Walisongo Semarang

Assalamualaikum. Wr. Wb.

Dengan ini diberitahukan bahwa saya telah melakukan bimbingan, arahan dan koreksi naskah skripsi dengan:

Judul

: Peramalan Jumlah Wisatawan Di Jawa Tengah Dengan Metode Double

Moving Average Dan Metode Double Exponential Smoothing

Nama NIM : Eni Rofikhoh : 1708046010

Jurusan : Matematika

Saya memandang bahwa naskah skripsi tersebut sudah dapat diajukan kepada Fakultas

Sains dan Teknologi UIN Walisongo Semarang untuk diujikan dalam Sidang

Munaqasyah.

Wassalamualaikum. Wr. Wb.

Pembimbing II,

Ariska Kurnia Rachmawati, M. Sc

NIP. 19890811 201903 2 019

ABSTRAK

Peramalan vaitu suatu metode vang digunakan untuk memperkirakan ketidakpastian masa depan sebagai bentuk upaya untuk mengambil suatu keputusan yang lebih baik. Peramalan diperlukan untuk menentukan kapan suatu peristiwa akan terjadi sehingga keputusan yang tepat dapat diterapkan. Akibat covid 19 yang melanda Indonesia, pendapatan pariwisata di Jawa Tengah mengalami penurunan. Oleh karena itu perlu adanya peramalan jumlah kunjungan objek wisata di Jawa Tengah untuk menaikkan pendapatan pemerintah di tahun yang akan datang. Pada data time series, metode yang tepat untuk data yang mengandung unsur trend seperti data jumlah wisatawan adalah metode double moving average dan double exponential smoothing. Penelitian ini bertujuan untuk membandingkan hasil peramalan dari kedua metode tersebut untuk memilih metode mana yang dapat meramalkan jumlah wisatawan di Jawa Tengah menurut nilai MAPE terkecil. Penelitian ini menggunakan data sekunder jumlah wisatawan di Jawa Tengah dari tahun 1992 sampai tahun 2022 yang diambil dari Badan Pusat Statistik (BPS) Provinsi Jawa Tengah. Menurut hasil penelitian metode double moving average memperoleh nilai MAPE 18,9% dari periode rataan waktu 3 periode. exponential smoothing Sedangkan metode double memperoleh nilai MAPE 15,1% pada saat parameter α =0.6. maka kesimpulan dari penelitian ini adalah bahwa metode terbaik vang digunakan untuk meramalkan jumlah wisatawan adalah menggunakan metode double expnential smoothing.

Kata kunci: *Jumlah Wisatawan, Double Moving Average, Double Exponential Smoothing*

PEDOMAN TRANSLITERASI ARAB-LATIN

Transliterasi kata-kata Arab yang dipakai dalam penyusunan skripsi ini berpedoman pada Syrat Keputusan Bersama Menteri Agama dan Menteri Pendidikan dan Kebudayaan Republik Indonesia Nomor: 158/1987 dan 0543b/U/1987. Penyimpangan kata sandang [al-] disengaja secara konsisten supaya sesuai teks Arabnya.

Huruf Arab	Nama	Huruf Latin	Keterangan
1	Alif	A	A
ب	Ba'	В	Be
ت	Ta'	T	Те
ث	sa'	Ś	es (dengan titik di atas)
ح	Jim	J	Je
۲	ha'	ķ	ha (dengan titik di bawah)
Ċ	Kha'	Kh	ka dan ha
7	Dal	D	De
ذ	Zal	Ż	zet (dengan titik di atas)
J	Ra'	R	Er
ز	Zai	Z	Zet
<u>"</u>	Sin	S	Es
ů	Syin	Sy	es dan ye

ص	Sad	Ş	es (dengan titik di bawah)
ض	Dad	ģ	de (dengan titik dibawah)
ط	ta'	ţ	te (dengan titik di bawah)
ظ	za'	Ż	zet (dengan titik di bawah)
ع	ʻain	(koma terbalik di atas
غ	Gain	G	Ge
ف	Fa	F	Ef
ق	Qaf	Q	Qi
ك	Kaf	K	Ка
J	Lam	L	El
م	Mim	M	Em
ن	Nun	N	En
е	wawu	W	W
٥	ha'	Н	На
۶	Hamzah	`	aprostof
ي	Ya	Y	ye

Bacaan Madd: Bacaan Diftong:

 $\bar{a} = a panjang$ $au = \tilde{b}$

 $\bar{i} = i \text{ panjang}$ $ai = \hat{i}$

 $\bar{\mathbf{u}} = \mathbf{u} \text{ panjang}$ $\mathbf{i} \mathbf{y} = \mathbf{y}$

KATA PENGANTAR

بسم الله الرحمن الرحيم

Alhamdulillahi robbil Alamin. Dengan menyebut asma Allah SWT yang Maha Pengasih lagi Maha Penyayang. Puji syukur penulis panjatkan atas kehadirat Allah SWT, atas limpahan nikmat dan rahmat-Nya sehingga penulis dapat menyusun dan menyelesaikan laporan tugas akhir dengan judul "Peramalan Jumlah Wisatawan Di Jawa Tengah Dengan Metode Double Moving Average Dan Metode Double Exponential Smoothing" di UIN Walisongo Semarang dengan baik. Tidak lupa Sholawat serta salam penulis haturkan kepada baginda Nabi Muhammad SAW semoga semua mendapatkan syafaatnya kelak di hari kiamat, Amiiin.

Proses penyusunan skripsi tidak terlepas dari bantuan, bimbingan, motivasi, doa, dan peran dari berbagai pihak. Oleh karena itu, penulis mengucapkan berterimakasih kepada:

- Bapak Dr. H. Ismail, M.Ag., selaku Dekan Fakultas Sains dan Teknologi UIN Walisongo Semarang
- Ibu Emy Siswanah, M.Sc., selaku Ketua Jurusan Matematika UIN Walisongo Semarang sekaligus

- dosen pembimbing I yang senantiasa memberikan dorongan, saran serta masukan dalam proses penyelesaian skripsi.
- Bapak Aunur Rohman, M.Pd., selaku sekretaris jurusan Matematika Fakultas UIN Walisongo Semarang.
- 4. Ibu Ariska Kurnia Rachmawati, M.Sc., selaku pembimbing II yang senantiasa memberikan dorongan, saran serta masukan dalam proses penyelesaian skripsi.
- 5. Ibu Eva Khoirun Nisa, M.Si., selaku wali dosen yang telah senantiasa memberikan arahan serta dorongan kepada penulis.
- Segenap dosen dan staf Fakultas Sains dan Teknologi UIN Walisongo Semarang yang telah mencurahkan segenap ilmunya kepada penulis.
- 7. Bapak Sumardi dan Ibu Sukarmi selaku orang tua penulis, yang telah memberikan segalanya baik do'a, semangat, cinta, kasih sayang, ilmu dan bimbingan, yang tidak dapat tergantikan dengan apapun.

 Teman-teman seperjuangan Prodi Matematika
 2017 yang menjadi teman belajar, memberikan kenangan terindah serta pelajaran berharga.

9. Amrina Rosyada, Gita Karulina dan Izzah selaku teman dekat penulis yang telah memberikan dorongan sehingga skripsi ini dapat terselesaikan.

10. Semua pihak yang tidak dapat penulis sebutkan satu persatu yang telah memberikan dorongan sehingga skripsi ini dapat terselesaikan.

Penulis menyadari bahwa skripsi ini masih banyak kekurangan dan jauh dari kesempurnaan. Kritik dan saran yang membangun sangat penulis harapkan untuk perbaikan dan kesempurnaan hasil yang telah didapat. Semoga skripsi ini dapat bermanfaat bagi ilmu pengetahuan, Amiin.

Semarang, 11 Juni 2023

Penulis

Eni Rofikhoh

NIM: 1708046010

DAFTAR ISI

SKRIPSI	0
PERNYATAAN KEASLIAN	ii
PENGESAHAN	iii
NOTA PEMBIMBING	iv
NOTA PEMBIMBING	v
ABSTRAK	vi
PEDOMAN TRANSLITERASI ARAB-LATIN	vii
KATA PENGANTAR	ix
DAFTAR ISI	xii
DAFTAR TABEL	xiv
DAFTAR GAMBAR	xvi
DAFTAR LAMPIRAN	xvii
BAB I	1
PENDAHULUAN	1
A. Latar Belakang Masalah	1
B. Rumusan Masalah	8
C. Tujuan Penelitian	9
D. Manfaat Penelitian	10
BAB II	11
LANDASAN PUSTAKA	11
A. Kajian Teori	11
B. Kajian Pustaka	46
BAB III	53
METODE PENELITIAN	53
A. Jenis Penelitian	53
B. Data Penelitian	53
C. Teknik Pengumpulan Data	53
D. Teknik Analisis Data	54

BAB IV	59
DESKRIPSI DAN ANALISIS DATA	59
A. Deskripsi Data	60
B. Analisis Data	63
BAB V	116
PENUTUP	116
A. Simpulan	125
B. Saran	117
DAFTAR PUSTAKA	118
LAMPIRAN - LAMPIRAN	132
DAFTAR RIWAYAT HIDUP	143

DAFTAR TABEL

Tabel 1. 1 Data Jumlah Wisatawan Di Jawa Tengah				
Tahun 2016-20226				
Tabel 2. 1 Kriteria Nilai MAPE43				
Tabel 4. 1 Data Jumlah Wisatawan di Jawa Tengah Tahun				
1992-202260				
Tabel 4. 2 Peramalan Metode DMA Parameter 2				
Periode69				
Tabel 4. 3 Peramalan Metode DMA Parameter 3				
Periode71				
Tabel 4. 4 Peramalan Metode DMA Parameter 4				
Periode73				
Tabel 4. 5 Peramalan Metode DMA Parameter 5				
Periode75				
Tabel 4. 6 Peramalan Metode DMA Parameter 6				
Periode77				
Tabel 4. 7 Peramalan Metode DMA Parameter 7				
Periode80				
Tabel 4. 8 Peramalan Metode DMA Parameter 8				
Periode83				
Tabel 4. 9 Peramalan Metode DMA Parameter 9				
Periode86				
Tabel 4. 10 Peramalan Metode DMA Parameter 10				
Periode89				
Tabel 4. 11 Hasil Perhitungan Jumlah Nilai Error Pada				
Metode DMA93				
Tabel 4. 12 Hasil Perhitungan MAPE Metode DMA94				

Tabel	4.	13	Hasil	Peramalan	Metode	DES	parameter
		α=	=0,1	•••••			100
Tabel	4.	14	Hasil	Peramalan	Metode	DES	parameter
		α=	=0,2				102
Tabel	4.	15	Hasil	Peramalan	Metode	DES	parameter
		α=	=0,3				104
Tabel	4.	16	Hasil	Peramalan	Metode	DES	parameter
		α=	=0,4				106
Tabel	4.	17	Hasil	Peramalan	Metode	DES	parameter
		α=	=0,5				107
Tabel	4.	18	Hasil	Peramalan	Metode	DES	parameter
		α=	-0,6				109
Tabel	4.	19	Hasil	Peramalan	Metode	DES	parameter
		α=	-0,7				111
Tabel	4.	20	Hasil	Peramalan	Metode	DES	parameter
		α=	-0,8				113
Tabel	4.	21	Hasil	Peramalan	Metode	DES	parameter
		α=	-0,9				115
Tabel	4.	22	Perhi	tungan Jun	ılah Nila	i Err	or Metode
		DI	ES	•••••			118
Tabel	4.	23	Hasi	l Perhitung	an Nilai	MA	PE Metode
		DI	ES				119

DAFTAR GAMBAR

Gambar 1. 1 Grafik Data Jumlah Wisatawan	di Jawa
Tengah Tahun 2016-2022	7
Gambar 2. 1 Pola Data Horizontal	16
Gambar 2. 2 Pola Data Musiman	17
Gambar 2. 3 Pola Data siklus	17
Gambar 2. 4 Pola Data Trend	18
Gambar 3. 1 Kerangka berfikir penelitian	56
Gambar 4. 1 Pola Data Jumlah Wisatawan	Di Jawa
Tengah Tahun 1992-2022	62
Gambar 4. 2 Perolehan Nilai MAPE DMA	95
Gambar 4. 3 Perolehan Nilai MAPE DES	120
Gambar 4. 4 Perbandingan Tingkat Kesalahan	Metode
DMA dan DES	122

DAFTAR LAMPIRAN

Lampiran 1 Data Jumlah Wisatawan di Jawa Tengah Tahun
1992-2022
Lampiran 2 Hasil Perhitungan Peramalan Metode Double
Moving Average 2 Periode134
Lampiran 3 Hasil Perhitungan Peramalan Double Moving
Average 3 Periode135
Lampiran 4 Hasil Perhitungan Peramalan Metod Double
Moving Average 4 Periode136
Lampiran 5 Hasil Perhitungan Peramalan Metode Double
Moving Average 5 Periode137
Lampiran 6 Hasil Perhitungan Peramalan Metod Double
Moving Average 6 Periode138
Lampiran 7 Hasil Perhitungan Peramalan Double Moving
Average 7 Periode 139
Lampiran 8 Hasil Perhitungan Peramalan Metode Double
Moving Average 8 Periode140
Lampiran 9 Hasil Perhitungan Peramalan Metode Double
Moving Average 9 Periode141
Lampiran 10 Hasil Perhitungan Peramalan Metode Double
Moving Average 10 Periode 142
Lampiran 11 Hasil Perhitungan Metode Double
Exponential Smoothing Parameter α =0,1 143
Lampiran 12 Hasil Perhitungan Metode Double
Exponential Smoothing Parameter α =0,2 144
Lampiran 13 Hasil Perhitungan Metode Double
Exponential Smoothing Parameter α =0,3 145

Lampiran 14 Hasil Perhitungan Metode Double
Exponential Smoothing Parameter α =0,4 146
Lampiran 15 Hasil Perhitungan Metode Double
Exponential Smoothing Parameter α =0,5 147
Lampiran 16 Hasil Perhitungan Metode Double
Exponential Smoothing Parameter α =0,6 148
Lampiran 17 Hasil Perhitungan Metode Double
Exponential Smoothing Parameter α =0,7 149
Lampiran 18 Hasil Perhitungan Metode Double
Exponential Smoothing Parameter α =0,8 150
Lampiran 19 Hasil Perhitungan Metode Double Expnential
Smoothing Parameter α =0,9151

BAB I

PENDAHULUAN

A. Latar Belakang Masalah

Peramalan adalah metode untuk memprediksi apa yang akan terjadi di masa depan. Teknik peramalan dapat dilakukan dengan berbagai cara yaitu secara manual atau dengan bantuan alat (Safira, 2017). Teknik peramalan memerlukan unsur kompleksitas dan ketidakpastian pembuat keputusan tentang masa depan perusahaan atau kegiatan yang dijalani. Peramalan yang baik adalah peramalan yang mendekati kenyataan. Hasil ramalan tidak selalu dapat dipastikan kebenarannya 100% secara mutlak, tetapi bukan berarti bahwa peramalan yang dilakukan tidak dapat digunakan. Sebaliknya, peramalan sudah banyak digunakan dan membantu dalam bisnis dan penjualan (Megasari, 2011). Saat ini, dalam proses peramalan dapat dibantu dengan penggunaan alat bantu seperti komputer. Sehingga muncul metode peramalan yang disebut metode pemulusan (smoothing). Metode pemulusan (smoothing) diklasifikasikan menjadi dua metode pemulusan rata-rata (average) dan metode pemulusan eksponensial (exponential smoothing).

Metode pemulusan rata-rata (average) adalah teknik pemulusan berdasarkan rata-rata data deret waktu. Sedangkan pemulusan eksponensial (exponential smoothing) adalah teknik peramalan vang menunjukkan pembobotan secara eksponensial dari nilai-nilai yang diamati lebih lama. Dalam metode pemulusan eksponensial ganda dari Brown, proses pemulusan dilakukan sebanyak dua kali. Metode pemulusan eksponensial ganda dari Brown dapat digunakan untuk memprediksi data yang memiliki pola data trend. Metode yang digunakan dalam peramalan bervariasi namun harus disesuaikan dengan model pola data yang digunakan (Reyham, 2016).

Data memiliki peran penting dalam proses peramalan. Salah satu contoh data yang digunakan untuk peramalan serta pengambilan keputusan yaitu jumlah wisatawan di suatu daerah. Baik wisatawan asing (mancanegara) maupun wisatawan domestik (nusantara). Munculnya pandemi Covid-19 yang merebak di Indonesia sejak awal tahun 2020 menyebabkan penurunan kunjungan ke destinasi wisata di Jawa Tengah. Setelah angka covid-19 mulai menurun yaitu di tahun 2022, pemerintah Jawa Tengah

giat melakukan promosi dan pengembangan sektor secara besar-besaran. Hasil pariwisata promosi tersebut menunjukkan bahwa jumlah wisatawan yang datang ke Jawa Tengah mengalami peningkatan yang sangat signifikan (Fiqi, 2017). Kegiatan promosi yang dilakukan pemerintah Jawa Tengah dan besarnya masvarakat terhadap minat pariwisata telah mempercepat peningkatan jumlah wisatawan yang datang ke Jawa Tengah pasca pandemi covid-2019, baik wisatawan mancanegara maupun wisatawan nusantara. Menurut data BPS, pada tahun 2020 jumlah wisatawan yang datang ke Jawa Tengah sebanyak 22.629.085 orang. Jumlah wisatawan yang berkunjung mengalami peningkatan sebesar 26% pada tahun 2022 yaitu sebanyak 28.571.406 orang.

Provinsi Jawa Tengah merupakan salah satu provinsi di Pulau Jawa yang banyak tempat objek wisatanya, baik wisata alam, wisata buatan, wisata budaya, dan lain sebagainya. Berdasarkan data pada BPS salah satu wisata yang paling banyak dikunjungi wisatawan mancanegara di tahun 2022 adalah wisata budaya yaitu Candi Borobudur yang terletak di Kabupaten Magelang, Jawa tengah dengan jumlah

wisatawan mancanegara sebesar 34.366 Sedangkan wisata yang paling banyak dikunjung wisatawan nusantara (domestik) adalah wisata budaya yaitu Kota Lama Semarang dengan jumlah wisatawan nusantara sebesar 1.275.081 orang. Pemerintah Jawa Tengah menyadari potensi wisata yang ada dan pentingnya industri pariwisata dalam meningkatkan perekonomian daerah. Sektor pariwisata merupakan industri yang berpotensi menjadi sumber pendapatan daerah dan mengentaskan kemiskinan. Program pengembangan dan pemanfaatan sumber daya dan potensi pariwisata daerah diharapkan dapat mendorong pembangunan ekonomi untuk meningkatkan pendapatan daerah (Figi. 2017). Peningkatan jumlah wisatawan yang datang ke Jawa Tengah tidak sesuai dengan kondisi tahun-tahun sebelumnya, termasuk aspek pendukung dan kemauan petugas terutama untuk bulan-bulan High Season. Kurangnya persiapan oleh pengelola pariwisata membuat banyak wisatawan tidak mendapatkan akomodasi, transportasi dan bantuan. Segala persiapan yang dilakukan oleh pengelola pariwisata di Jawa Tengah memerlukan dukungan semacam ramalan kedatangan wisatawan. Memprediksi kedatangan wisatawan dapat dilakukan melalui proses *forecasting* atau peramalan. Proses ini menjadi salah satu solusi untuk mempersiapkan berbagai fasilitas dalam menyambut kedatangan wisatawan mancanegara dan wisatawan nusantara di Jawa Tengah (Fiqi, 2017).

Data yang diperoleh dapat dipergunakan sebagai dasar penarikan garis trend yang dapat menunjukkan prediksi kedatangan wisatawan secara umum. Garis trend yang dihasilkan dapat digunakan untuk membuat peramalan yang pada akhirnya berguna untuk meningkatkan pemasaran, meningkatkan pendapatan daerah, dan meningkatkan perekonomian masyarakat. Peramalan ini diharapkan dapat menjadi dasar untuk mengembangkan strategi penentuan jumlah kunjungan wisatawan di masa mendatang. Peramalan ini dapat membantu pengelola wisata dalam membuat program atau promosi wisata ketika jumlah pengunjung penurunan. Peramalan juga dapat mengalami membantu saat jumlah wisatawan meningkat, oleh karena itu peramalan ini dapat digunakan sebagai dasar pengambilan keputusan mengenai penyediaan produk wisata seperti persewaan peralatan dan perlengkapan bagi wisatawan yang berkunjung (Jordi,2019).

Langkah penting dalam memilih suatu metode deret waktu (*time series*) yang tepat adalah dengan mempertimbangkan jenis model pola datanya untuk menguji metode yang paling sesuai dengan pola data tersebut. Berdasarkan tabel 1.1, data jumlah wisatawan di Jawa Tengah 7 tahun terakhir yaitu dari tahun 2016-2022 memiliki kecenderungan naik dengan penurunan di beberapa titik. Seperti halnya di tahun 2020-2021 mengalami penurunan karena adanya pandemi covid-19 yang melanda negara Indonesia, tetapi pada tahun 2022 sudah normal kembali dan mengalami kenaikan jumlah wisatawan yang berkunjung.

Tabel 1. 1 Data Jumlah Wisatawan Di Jawa Tengah Tahun 2016-2022

Tahun	Jumlah
	Wisatawan
2016	37478700
2017	40899577
2018	49620775
2019	58592562
2020	22707375
2021	21334202
2022	28571406

(Sumber: BPS 2022)

Salah satu pola data yang terjadi bilamana terdapat kenaikan atau penurunan sekuler jangka panjang dalam data disebut pola *trend* (Rahmawati, 2015). *Trend* adalah suatu garis halus atau kurva yang menunjukkan suatu kecenderungan umum dari suatu data berkala. Kecenderungan tersebut arahnya dapat bergerak naik atau turun (Zaenuddin, 2020). Karena data jumlah wisatawan bersifat *trend*, maka peramalan menggunakan metode yang cocok untuk data *trend* yaitu metode *Double Moving Average* dan *Double Exponential Smoothing*.

Gambar 1. 1 Grafik Data Jumlah Wisatawan di Jawa Tengah Tahun 2016-2022

Sehubungan dengan data *time series* yang akan diramalkan, bila data memiliki kecenderungan untuk naik atau turun terus menerus maka data tersebut

bersifat trend. Dilihat dari tabel 1.1 menunjukkan data jumlah wisatawan yang cenderung naik dengan penurunan di beberapa titik, maka peramalan penelitian ini menggunakan metode Double Moving Average dan metode Double Exponential Smoothing. Penelitian ini membandingkan kedua metode tersebut dengan melakukan pengujian beberapa parameter untuk mengetahui nilai parameter terbaik untuk metode Double Exponential Smoothina membandingkan hasil peramalan dengan rata-rata bergerak kedua pada metode *Double Moving Average*. Perbandingan kedua metode dilakukan melihat MAPE (Mean Absolute Percentage Error) yang dihasilkan dari masing- masing metode, sehingga dapat diketahui metode yang lebih baik digunakan untuk peramalan jumlah wisatawan di Jawa Tengah pada penelitian ini.

B. Rumusan Masalah

Berdasarkan latar belakang yang telah dijelaskan di atas, maka rumusan masalah dalam penelitian ini adalah sebagai berikut:

a. Bagaimana hasil dari peramalan jumlah wisatawan di Jawa Tengah dengan metode Double Moving Average?

- b. Bagaimana hasil dari peramalan jumlah wisatawan di Jawa Tengah dengan metode Double Exponential Smoothing?
- c. Bagaimana perbandingan nilai MAPE metode Double Moving Average dan Metode Double Exponential Smoothing dalam peramalan jumlah wisatawan di Jawa Tengah?

C. Tujuan Penelitian

Tujuan dari penelitian ini adalah:

- Untuk mengetahui persamaan metode Double Moving Average dalam meramalkan jumlah wisatawan di Jawa Tengah.
- 2. Untuk mengetahui persamaan metode *Double* Exponential Smoothing dalam meramalkan jumlah wisatawan di Jawa Tengah.
- Untuk mengetahui nilai MAPE dari metode Double Moving Average dan Double Exponential Smoothing dalam meramalkan jumlah wisatawan di Jawa Tengah.

D. Manfaat Penelitian

1. Bagi Penulis

Diharapkan penelitian ini dapat memberikan tambahan pengetahuan mengenai metode *Double Moving Average* dan Metode *Double Exponential Smoothing*.

2. Bagi Lembaga

Hasil penelitian ini dapat dijadikan sebagai sarana bahan pustaka bagi civitas akademika khususnya di jurusan Matematika.

3. Bagi Peneliti Selanjutnya

Penelitian ini diharapkan dapat menjadi suatu referensi untuk penelitian selanjutnya, khususnya yang berkaitan dengan metode *Double Moving Average* dan metode *Double Exponential Smoothing*.

BAB II

LANDASAN PUSTAKA

A. Kajian Teori

1. Jenis-Jenis Data

Data merupakan sekumpulan fakta dalam bentuk pernyataan atau nilai, baik berupa angka, karakter, gambar, suara, atau sifat yang diperoleh dari proses pengamatan atau suatu objek yang digunakan untuk diolah dan dianalisis untuk menjawab permasalahan penelitian (Triana, 2021). Berdasarkan jenisnya, data dapat diklasifikasikan menjadi dua jenis, yaitu (Sri, 2019):

- a. Data Kuantitatif adalah data yang menunjukkan besar kecilnya objek yang diamati. Karena berupa ukuran, maka jenis data ini disajikan dalam bentuk angka atau bilangan. Data kuantitatif sendiri terbagi menjadi dua jenis, yaitu:
 - Data diskrit yaitu data yang diperoleh dengan cara menghitung banyak objek yang diamati. Misalnya data jumlah siswa kelas 3 SMA yang tidak lulus UAN.

- 2) Data kontinu yaitu data yang diperoleh dengan cara mengukur objek yang diamati. Misalnya data tentang tinggi badan siswa SMA dari kelas XI IPS.
- b. Data Kualitatif adalah data yang menunjukkan kondisi fisik suatu objek yang diamati. Data kualitatif sendiri terbagi menjadi dua jenis yaitu:
 - Data nominal adalah data yang membutuhkan subbagian untuk melengkapi deskripsi data. Contoh: warna kulit (coklat, kuning langsat, dan hitam).
 - 2) Data ordinal adalah data yang membutuhkan pemeringkatan untuk mendeskripsikan data. Contoh: kecepatan siswa dalam mengolah soal (cepat, sedang, lambat).
 - Jenis-jenis data berdasarkan cara memperolehnya dibagi menjadi dua macam, yaitu:
 - a) Data primer yaitu data yang diambil langsung dari subjek/objek penelitian oleh peneliti individu maupun organisasi.
 Contoh: mewawancarai langsung

- penonton bioskop untuk meneliti preferensi konsumen bioskop.
- b) Data sekunder yaitu data yang diperoleh secara tidak langsung dari objek penelitian. Peneliti memperoleh data yang sudah jadi yang dikumpulkan oleh pihak lain dengan berbagai cara baik secara komersial maupun non komersial. Contoh: peneliti yang menggunakan data statistik hasil riset dari surat kabar atau majalah.

Berdasarkan waktu pengumpulannya jenisjenis data dibedakan menjadi tiga macam (Triana,2021), yaitu:

a. Data Time Series

Data time series (runtut waktu), adalah data pengamatan yang diambil pada waktu yang berbeda dan dikumpulkan secara berkala pada interval waktu tertentu. Data time series meliputi satu objek atau individu (mialkan harga sahan, kurs mata uang, atau tingkat inflasi) tetapi hanya meliputi beberapa periode, seperti harian, mingguan, bulanan, kuartalan, atau tahunan. Contoh: pergerakan nilai tukar rupiah dalam 1

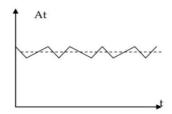
bulan (1-30 hari), produksi padi di Indonesia tahun 2011-2021, dan sebagainya.

b. Data Cross Section

Data cross section (data silang) adalah data yang dikumpulkan dengan mengamati banyak hal (seperti perorangan, perusahaan atau negara/wilayah) pada titik waktu yang sama, atau tanpa memperhatikan perbedaan waktu. Contoh: data penjualan perusahaab go public tahun 2020, data laporan keuangan seluruh perusahaan BEI tahun 2018, dan sebagainya.

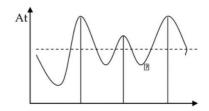
c. Data Panel

Data panel (pooling data), merupakan gabungan atau kombinasi dari data time series dan data cross section. Sehingga data panel ini memiliki sifat kedua data tersebut yaitu antar waktu dan antar individu. Contoh: data produktivitas perempuan di Indonesia tahun 2018-2020.

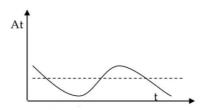

2. Peramalan

Menurut Kushartini dan Almahdy (2016), peramalan adalah proses untuk memperkirakan permintaan dimasa depan termasuk kebutuhan dalam ukuran kuantitas, kualitas, waktu dan tempat untuk memenuhi permintaan barang atau jasa. Peramalan adalah kegiatan memperkirakan atau memprediksikan kejadian yang akan datang tentunya dengan bantuan perencanaan terlebih dahulu, dimana perencanaan ini dibuat berdasarkan kapasitas dan permintaan/kapasitas produksi perusahaan (Sofyan, 2013).

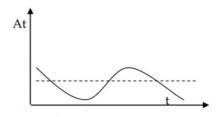
Beberapa ahli mengemukakan pendapat mereka tentang apa itu peramalan seperti vang dikemukakan oleh Heizer dan Render (Heizer & Render, 2014), peramalan (forecasting) adalah seni dan ilmu untuk memprediksi kejadian di masa depan. Berbagai definisi peramalan yang telah disebutkan, maka dapat disimpulkan bahwa peramalan adalah suatu teknik analisa perhitungan yang menggunakan pendekatan kualitatif dan kuantitatif untuk memperkirakan kejadian di masa depan dengan menggunakan referensi data-data di masa lalu yang dianalisis menggunakan berbagai model matematika. Tujuan peramalan adalah untuk memperkirakan prospek ekonomi dan kegiatan usaha serta pengaruh lingkungan terhadap prospek tersebut (Nataya, 2020).


Langkah penting yang harus dilakukan sebelum melakukan peramalan adalah menentukan pola data yang akan diramalkan, sehingga dapat ditemukan metode yang tepat sesuai dengan pola data. Berikut ini merupakan macam-macam pola data *time series* menurut Seto (2016):

a. *Horizontal (H) / Stasioner*, terjadi ketika nilai data berfluktuasi di sekitar nilai rata-rata yang tetap dan stabil atau disebut stasioner terhadap nilai rata-ratanya.


Gambar 2. 1 Pola Data Horizontal (Sumber: Jumadi, 2021)

b. *Seasonality (S)*, pola musiman terjadi ketika pola datanya berulang setelah periode waktu tertentu: harian, mingguan, bulanan, triwulan dan tahun.


Gambar 2. 2 Pola Data Musiman (Sumber: Jumadi, 2021)

c. *Cycles (C)*, siklus adalah pola data yang terjadi setiap beberapa tahun dan biasanya dipengaruhi oleh fluktuasi ekonomi jangka panjang yang berhubungan dengan siklus bisnis.

Gambar 2. 3 Pola Data siklus (Sumber: Jumadi, 2021)

d. *Trend (T)*, terjadi ketika ada data yang mengalami kenaikan atau penurunan secara bertahap karena pergerakan data selama periode waktu yang lama.

Gambar 2. 4 Pola Data Trend (Sumber: Jumadi, 2021)

3. Jenis-Jenis Peramalan

Dilihat dari jangka waktu ramalan yang disusun, maka peramalan dapat dibedakan menjadi dua macam yaitu: (Siti Robial, 2018)

- a. Peramalan jangka panjang, yaitu peramalan yang dilakukan untuk penyusunan hasil ramalan selama lebih dari satu setengah tahun atau tiga semester. Peramalan seperti ini diperlukan dalam penyusunan rencana pembangunan suatu negara atau daerah, corporate planning, rencana investasi atau rencana perluasan usaha.
- b. Peramalan jangka pendek, yaitu peramalan yang dilakukan untuk penyusunan hasil ramalan dengan jangka waktu kurang dari satu setengah tahun, peramalan semacam itu diperlukan saat

menyiapkan rencana tahunan, rencan kerja operasional, dan anggaran.

Selain itu, jenis peramalan juga ada berdasarkan tipe pola data yang digunakan. Berdasarkan jenis data yang digunakan, metode peramalan dapat dibagi dalam dua kategori:

- a. Metode kualitatif, yaitu metode yang digunakan tanpa model matematis biasanya dikarenakan oleh data yang ada tidak cukup representatif untuk meramalkan masa depan. Peramalan kualitatif menggunakan pendapat para ahli dibidangnya. Kelebihan dari metode ini adalah biaya yang dikeluarkan sangat murah (tanpa data) dan data diperoleh dengan cepat. Sementara kekurangannya yaitu bersifat subyektif sehingga sering dikatakan kurang ilmiah.
- b. Metode kuantitatif, yaitu metode yang didasari oleh ketersediaan data mentah dan disertai serangkaian aturan matematis untuk meramalkan hasil di masa mendatang. Ada beberapa model peramalan yang tergolong metode kuantitatif, yaitu:
 - 1) Model-Model Regresi.

Perluasan dari metode *linier regression*, yaitu prediksi suatu variabel yang berhubungan secara linier dengan variabel bebas yang diketahui atau dapat diandalkan.

2) Model Ekonometrik

Mode yang menggunakan serangkaian persamaan regresi, yaitu terdapat variabelvariabel tidak bebas yang menstimulasi segmen-segmen ekonomi seperti harga dan lain-lain.

3) Model *Time Series Analysis* (Deret Waktu)

Memasang suatu garis *trend* yang representatif dengan data masa lalu berdasarkan kecenderungan datanya dan memproyeksikan data tersebut ke masa mendatang.

4. Metode Peramalan Time Series

Penelitian ini menggunakan metode peramalan *time series*. Metode peramalan *time series* terdiri dari beberapa metode yaitu:

a. Metode Naif

Metode naif disebut sebagai metode peramalan berdasarkan permintaan periode terakhir, karena menggunakan data permintaan aktual tepat satu periode sebelumnya sebagai nilai peramalan. Sehingga metode ini tidak menggunakan perhitungan, dimana hasil peramalan tahun ini merupakan jumlah penjualan tahun lalu. Metode ini baik merespon pola *trend* dengan baik, namun tidak mengakomodasi karakteristik musiman (Eunike & dkk, 2018).

Kelebihan metode ini antara lain sangat sesuai jika variasi permintaan aktual sangat kecil antar periode, dan merespon pola *trend* dengan baik. Kelemahannya yaitu tidak mengakomodasi karakteristik musiman, dan sangat berpengaruh oleh keadaan acak (tidak dapat mendeteksi permintaan yang tidak umum/random) (Nataya, 2020). Metode Naif dapat dirumuskan sebagai berikut:

$$\hat{y}_{t+1} = y_t \tag{2.1}$$
 Dimana:

 \hat{y}_{t+1} = nilai ramalan periode mendatang

 y_t = nilai aktual periode ke t

b. Metode Rata-Rata Bergerak (Moving Average)

Metode *moving average* merupakan metode peramalan yang menetapkan bahwa ramalan pada periode yang akan datang merupakan hasil rataan dari nilai periode sebelumnya dengan jumlah konstan (Ajeng, 2011). Metode *moving average* diperoleh dengan merata-ratakan permintaan berdasarkan data masa lalu yang terbaru. Metode ini hanya baik digunakan untuk pola data stasioner yang cenderung tidak bergerak naik atau turun (Nataya, 2020). Secara sistematis rumus dari metode ini adalah:

$$\hat{y}_{t+1} = MA_{(n)t} = \frac{(y_t + y_{t-1} + y_{t-2} + y_{t-n+1})}{n}$$
(2.2)

Dimana:

 \hat{y}_{t+1} = nilai ramalan penjualan satu periode mendatang

 y_t = nilai aktual penjualan periode ke t

n = ordo dari rata-rata bergerak

c. Metode Pemuluan Eksponensial Tunggal (Single Exponential Smoothing)

Metode pemulusan eksponensial tunggal minimal membutuhkan dua buah data untuk meramalkan nilai yang akan terjadi pada masa yang akan datang. Metode ini baik digunakan pada serial data yang memiliki pola stasioner dan kemungkinan tidak efektif dalam menangani peramalan dengan kecenderungan data yang memiliki komponen pola data trend dan pola dataa musiman. Hal ini dikarenakan iika diterapkan pada serial data yang memiliki trend yang konsisten, ramalan yang dibuat akan selalu merasa dibelakang tren. Selain itu metode ini juga memberikan bobot yang relative lebih tinggi pada nilai pengamatan terbaru dibanding periode yang sebelumnya. Metode ini juga menggunakan nilai α, dimana hasil pengamatan tergantung pada besarnya niai α . Nilai α yang besar biasanya cocok digunakan untuk ramalan yang menghendaki respon yang cepat (Nataya, 2020). Secara matematis, rumus metode ini adalah:

$$S_{t+1} = \alpha y_t + (1-\alpha)S_t$$
 (2.3)

$$S_{t+1} = S_t + \alpha(y_t - S_t) \tag{2.4}$$

Dimana:

 S_{t+1} = nilai ramalan untuk satu periode kedepan

 y_t = nilai aktual periode ke t

 S_t = nilai ramalan periode t

 α = koefisien pemulusan (0 $\leq \alpha < 1$)

d. Metode Pemulusan Eksponensial Ganda (Double Exponential Smoothing)

Metode ini memiliki dasar pemikiran yang rata-rata bergerak linier. sama dengan Sehubungan dengan itu, penerapan metode pemulusan eksponensial ganda ini cukup baik untuk deret data yang mempunyai unsur trend. Metode ini memproses *time series* yaitu dengan mengekstrakpolasi data atas dasar *trend* terakhir yang terbentuk, sehingga ramalan yang akan terlihat nantinya cenderung ke satu arah yaitu sesuai dengan arah trend terakhir (Nataya, 2020). Metode eksponensial ganda dapat dirumuskan sebagai berikut:

$$A_{t} = \alpha y_{t} + (1 - \alpha)(A_{t-1} + T_{t-1})$$
 (2.5)

$$T_t = \beta (A_t - A_{t-1}) + (1-\beta)T_{t-1}$$
 (2.6)

Dimana:

 $\alpha\beta$ = koefisien pemulusan

 y_t = nilai periode ke t

 A_{T-1} = milai periode sebelumnya

T_{t-1} = nilai tren periode sebelumnya

e. Perhitungan Indeks Musiman

Metode perhitungan indeks musiman adalah peramalan dengan estimasi penjualan yang hanya memasukkan komponen *trend* dan musiman tanpa memperhatikan pengaruh silikal. Perhitungan infeks musiman dapat dihitung dengan mencari nilai rata-rata berbagai rasio penjualan kuartal nyata terhadap nilai garis *trend* untuk setiap periode. Metode ini berfungsi untuk mengetahui secara jelas apakah sebuah data *time series* itu mengandung unsur musiman atau tidak (Nataya,2020). Secara matematis rumus dari metode indeks musiman adalah:

$$Y = a + bX$$
 (2.7)

$$a = \frac{\sum Y}{n} \tag{2.8}$$

$$b = \frac{\sum XY}{\sum X^2}$$
 (2.9)

$$\dot{r} = \frac{Y_t}{y} \tag{2.10}$$

$$\dot{r}$$
 (rata-rata) = $\frac{\sum \dot{r}}{n}$ (2.11)

$$\hat{Y}_{t+1} = (Y)(\hat{r} \text{ rata-rata}) \qquad (2.12)$$

Dimana:

a,b = konstanta

n = banyaknya data

Y = penjualan actual

X = pengkodean dari titik tengah periode

r = rasio penjualan

Y_t = nilai garis *trend*

 Y_{t+1} = penjualan periode ke depan

f. Metode *Trend*

Trend adalah gerakan yang berjangka panjang seolah-olah alun ombak dan cenderung untuk menuju ke satu arah, menaik dan menurun. Peramalan dengan metode trend sudah sangat banyak digunakan dalam perusahaan bisnis, karena data ekonomi yang terbentuk umumnya banyak terdapat unsur trend meningkat dan menurun (Akhmat, 2011). Rumus dari metode trend adalah:

$$Y = a + bX$$
 (2.13)

$$\sum Y_i = n.a + b \sum X_i \tag{2.14}$$

$$\sum X_i Y_i = a \sum X_i + b \sum X_i^2$$
 (2.15)

Dimana:

Y : penjualan

X : waktu / periode (variabel independen)

a dan b : parameter model (variabel independen)

n : jumlah tahun

g. Metode Dekomposisi

Metode dekomposisi sering disebut sebagai metode time series. Saat ini banyak metode yang dapat digunakan untuk melakukan forecasting, salah satu metode yang dapat digunakan yaitu metode dekimposisi. Dekomposisi (pemecahan) suatu pola menjadi sub pola yang menunjukkan tiap-tiap komponen deret berkala secara Perpisahan tersebut berpisah. seringkali membantu meningkatkan ketepatan peramalan dan juga membantu pemahaman atas perilaku deret data secara lebih baik.

Metode dekomposisi digunakan untuk meramalkan data deret berkala yang menunjukkan adanya pola data *trend* dan pengaruh musiman. Metode dekomposisi merupakan suatu metode peramalan yang menggunakan empat komponen utama dalam meramalkan nilai masa yang akan datang.

Keempat komponen tersebut adalah *trend*, musiman, siklis dan *error*. Metode dekomposisi dilandasi oleh asumsi bahwa data yang ada merupakan gabungan dari beberapa komponen (Yuni,2015). Secara sederhana dapat digambarkan sebagai berikut:

Data = Pola + error

= f(trend, siklis, musiman) + error

Asumsi di atas artinya terdapat empat komponen yang mempengaruhi suatu deret waktu yaitu tiga komponen yang dapat diidentifikasi karena memiliki pola tertentu, yaitu trend, siklis dan musiman (Yuni, 2015). Persamaan matematis umum dari pendekatan dekomposisi yaitu:

$$Y_t = f(T_t, S_t, C_t, I_t) + \varepsilon_t \tag{2.16}$$

Dimana:

 Y_t = nilai deret berkala (data aktual) pada periode t

 T_t = komponen trend pada periode t

 S_t = komponen musiman pada periode t

 C_t = komponen siklis pada periode t

 I_t = komponen kesalahan tidak beraturan pada periode t

 ε_t = komponen error pada periode t

t = periode (time)

h. Metode Winter's

Metode winter's digunakan ketika data menunjukkan adanya pola musiman dan pola trend. Metode eksponensial dapat digunakan untuk hampir segala data stasioner maupun non stasioner, namun tidak mengandung faktor musiman. Sehingga apabila terdapat pola musiman, metode winter's dapat digunakan untuk mengatasi masalah tersebut dengan baik. Metode ini digunakan ketika metode moving average dan metode exponential smoothing tidak dapat mengatasi masalah data menggunakan pola komponen trend dan pola musiman (Nataya, 2020). Rumus dari metode ini adalah:

$$S_t = \alpha(X_t - I_t) + (1 - \alpha)(S_{t-1} + T_{t-1})$$
 (2.17)

$$T_{t} = \beta(S_{t} - S_{t-1}) + (1-\beta)T_{t-1}$$
 (2.18)

$$I_{t} = \gamma (X_{t} - S_{t-1}) + (1 - \gamma) I_{t-L}$$
 (2.19)

$$\hat{Y}_{t+p} = (S_t + p. T_t) I_{t-L-p}$$
 (2.20)

Dimana:

S_t : nilai pemulusan baru data aktual

X_t: nilai aktual pada periode t

 α : koefisien pemulusan (smoothing) (0< α <1)

T_t: nilai perkiraan *trend*

 β : koefisien pemulusan trend (0< β <1)

It: nilai perkiraan musiman

 γ : koefisien pemulusan untuk musiman (0< γ <1)

P : jumlah periode mendatang yang akan diramalkan

L : panjang variabel musiman

 \widehat{Y}_{t+p} : nilai ramalan untuk p periode mendatang

i. Metode ARIMA

Metode ARIMA (Autoregressive Intergrated Moving Average) merupakan salah satu metode peramalan dengan pendekatan deret waktu yang menggunakan teknik-teknik korelasi antar suatu deret waktu. Metode ini biasanya disebut dengan metode Box-Jenkins karena secara intensif dikembangkan oleh George Box dan Gwilym Jenkins pada tahun 1970. Dasar pemikiran dari model ARIMA adalah pengamatan sekarang (Zt)

tergantung pada satu atau beberapa pengamatan sebelumnya (Z_{t-k}) .

Model ARIMA terdiri dari 3 proses yaitu autoregressive, moving average dengan order (p,d,q) dinotasikan sebagai ARIMA (p,d,q). Order pdigunakan untuk menunjukkan adanya proses autorearessive pada model, order d untuk menunjukkan proses integrated yang harus dilakukan terlebih dahulu pada data, dan order q menunjukkan proses moving average. Apabila d=0dan *q=0*, maka model *autoregressive* dinotasikan sebagai AR(p) dan apabila d=0 dan p=0, maka model moving average dinotasikan sebagai MA(q), sedangkan bila dalam model tersebut ada ketiga model tersebut dinamakan proses maka autoregressiveintegrated moving average atau dinotasikan sebagai ARIMA (p,d,q). Untuk dapat membangun sebuah model ARIMA yang akurat yaitu apabila memiliki kesalahan error yang kecil.

Model Box-Jenkins (ARIMA) dibagi menjadi 3 kelompok, yaitu *model autoregressive (AR), moving average (MA)*, dan model campuran ARIMA (autoregressivemoving average) yang memilki

karakteristik dari dua model pertama. Model umum ARIMA (p,d,q) terpenuhi (Ronald, 2022).

5. Pengukuran Akurasi

Pada kenyataannya tidak ada suatu prediksi yang mempunyai tingakat akurasi 0%, karena setiap prediksi pasti mengandung kesalahan.oleh karena itu, untuk mengetahui suatu metode prediksi dengan tingkat akurasi tinggi, maka dibutuhkan menghitung tingkat kesalaahan dalam suatu prediksi. Semakin kecil tingkat kesalahan yang dihasilkan maka semakin baik prediksi tersebut. Akurasi suatu peramalan berbeda untuk setiap peramalan dan bergantung berbagai faktor. Dengan tingkat kesalahan kurang dari 5% artinya suatu peramalan tersebut sudah memiliki tingkat akurasi lebih dari 95% dan hasilnya ini dapat dikatakan sudah akurat (Hommy, 2018).

Dalam melakukan prediksi, baik atau tidaknya hasil ramalan suatu moel sangat menentukan keputusan apakah model tersebut dipakai atau tidak. Besar kecilnya kesalahan peramalan tersebut dapat dihitung melalui kesalahan peramalan, diantaranya sebagai berikut (Siti, 2018):

a. MAE (Mean Absolute Error)

MAE adalah metode untuk mengevaluasi metode peramalan menggunakan jumlh dari kesalahan-kesalahan absolut. *Mean Absolute Error* (MAE) mengkur ketepatan ramalan dengan merata-rata nilai absolut masing-masing kesalahan. MAE digunakan ketika mengukur kesalahan ramalan dalam unit yang sama sebagai deret asli. Nilai MAE dapat dihitung dengan menggunakan rumus (Sinaga, 2018):

$$MAE = \frac{\sum At - Ft}{n}$$
 (2.21)

Dimana:

At: nilai aktual pada periode t

Ft: peramalan permintaan pada periode t

n: jumlah periode peramalan yang terlibat

b. MAD (Mean Absolute Deviation)

MAD atau simpangan absolut rata-rata yaitu rata-rata error absolut pada masa periode tertentu dengan tidak menghiraukan bagaimana nilai suatu ramalan lebih kecil atau besar dibanding dari aktualnya. MAD dirumuskan

seacara sistematis (Rakhman & Puspitasari, 2017):

$$MAD = \frac{\sum |At - Ft|}{n}$$
 (2.22)

Dimana:

At: nilai aktual pada periode t

 $Ft: peramalan\ permintaan\ pada\ periode\ t$

n: jumlah periode peramalan yang terlibat

c. MSE (Mean Square Error)

MSE yaitu suatu model alternatif, pada sejumlah model peramalan, pendekatan ini diperlukan dikarenakan teknik model ini memperoleh error yang sangat besar. MSE diperoleh melalui menjumlahkan kuadrat semua error peramalan di setiap periode kemudian membaginya dengan total periode peramalan. MSE secara sistematis dituliskan sebagai berikut (Sungkawa & Megasari, 2011):

$$MSE = \frac{\sum |At - Ft|^2}{n}$$
 (2.23)

Dimana:

At: permintaan aktual di periode t

Ft: peramalan permintaan di periode t

n: jumlah periode peramalan yang terlibat

d. MAPE (Mean Absolute Percentage Error)

MAPE yaitu suatu tolak ukur kesalahan relatif dan menghasilkan persentase kesalahan hasil pada peramalan terhadap permintaan aktual di masa periode tertentu yang kemudian menghasilkan nilai perentase kesalahan rendah atau tinggi. MAPE dirumuskan sebagai berikut (Sungkawa & Megasari, 2011):

$$MAPE = \frac{100}{n} \frac{\sum |At - Ft|}{n}$$
 (2.24)

Dimana:

At: permintaan aktual pada periode t

Ft: peramalan permintaan pada periode t

 $n\ : jumlah\ periode\ peramalan\ yang\ terlibat$

d. RMSE (Root Square Mean Error)

RMSE adalah suatu model alternatif lain dengan menarik akar kuadrat dari MSE. RMSE ini menjadi alternatif yang lebih intuitif dibandingkan dengan MSE karena memiliki skala pengukuran yang sama dengan data yang sedang dievaluasi. Sebagai contoh, dua kali nilai RMSE

artinya memilki model error dua kali lebih besar dari sebelumnya. Sedangkan dua kali nilai MSE tidak berarti demikian. Jika MSE dapat dianalogikan sebagai varian, maka RMSE dapat dianalogikan sebagai standar deviasi. Rumus RMSE adalah (Sinaga, 2018):

$$RMSE = \sqrt{\frac{\sum At - Ft^2}{n}}$$
 (2.25)

Dimana:

At: permintaan aktual pada periode t

Ft: peramalan permintaan pada periode t

n: jumlah periode peramalan yang terlibat

6. Metode Double Moving Average

Moving Average (rata-rata bergerak) merupakan metode yang paling sering digunakan dan paling standar. Moving average adalah suatu metode peramalan umum dan mudah untuk menggunakan alat-alat yang tersedia untuk analisis teknis. Moving average menyediakan metode sederhana untuk pemulusan data masa lalu.

Moving Average diperoleh dengan merata-rata permintaan berdasarkan beberapa data masa lalu yang terbaru. Tujuan utama dari penggunaan teknik MA ini adalah untuk mengurangi atau menghilangkan variasi acak permintaan dalam hubungannya dengan waktu. Tujuan ini dicapai dengan merata-ratakan beberapa nilai data secara bersama-sama, dan menggunakan nilai rata-rata tersebut sebagai ramalan permintaan untuk periode yang akan datang. Disebut rata-rata bergerak karena begitu setiap data aktual permintaan baru deret waktu tersedia, maka data aktual permintaan yang paling terdahulu akan dikeluarkan dari perhitungan, kemudian suatu nilai rata-rata baru akan dihitung (Desi, dkk, 2019).

Double moving average merupakan salah satu metode dalam moving average yang menggunakan single moving average pada waktu tertentu dengan penyesuaian antara single moving average – double moving average serta penyesuaian trend (Cinthia, dkk, 2019). Prosedur moving average terjadi dua kali sehingga disebut double moving average. Adapun formulasi model persamaan peramalan untuk metode double moving average adalah $f_{t+m} = a_t + b_t m$. Dimana m merupakan jumlah periode yang akan diprediksi. Langkah-langkah untuk

mendapatkan nilai peramalan yang dilakukan antara lain dijelaskan pada persamaan 1-5 sebagai berikut:

1)
$$S' = \frac{X_t + X_{t-1} + X_{t-2} + \dots + X_{t-k-1}}{k}$$
 (2.26)

2) Menghitung *double moving average* (rata-rata bergerak kedua)

$$S'' = \frac{S_t + S_{t-1} + S_{t-2} + \dots + S_{t-k-1}}{k}$$
 (2.27)

3) Menentukan besarnya nilai konstanta.

$$a_t = 2S_t' - S_t'' (2.28)$$

4) Menentukan besarnya koefisien trend.

$$b_t = \frac{2}{k-1} (S_t' - S_t'') \tag{2.29}$$

5) Menentukan besar nilai peramalan.

$$f_{t+p} = a_t + b_t m (2.30)$$

Keterangan:

 x_t : nilai sebenarnya pada periode t

S': single moving average (rata-rata bergerak pertama)

S": double moving average (rata-rata bergerak kedua)

 a_t : konstanta

 b_t : koefisien trend

 f_{t+m} : peramalan

k : orde waktu

7. Metode Double Exponential Smoothing

Smoothing adalah mengambil rata-rata dari nilai pada beberapa periode untuk menaksir nilai pada suatu periode. Exponential Smoothing adalah sutu peramalan rata-rata bergerak yang melakukan pembobotan menurun secara exponential terhadap nilai-nilai observasi yang lebih tua. Metode Exponential Smoothing merupakan mengembangan dari metode Moving Average. Dalam metode ini peramalan dilakukan dengan mengulang perhitungan secara terus menerus dengan menggunakan data baru (Syafrial, 2020).

Peramalan *Exponential Smoothing* merupakan salah satu kategori metode *time series* yang menggunakan pembobotan data masa lalu secara eksponential. Dasar pemikiran dari metode *Exponential* adalah bahwa nilai pemulusan akan terdapat pada waktu sebelum data sebenarnya apabila pada data tersebut terdapat komponen *trend*. Oleh karena itu untuk nilai-nilai pemulusan

tunggal perlu ditambahkan nilai pemulusan tunggal ganda guna menyesuaikan *trend* (Pane, 2020).

Exponential Metode Double Smoothing merupakan metode peramalan yang dikenalkan oleh C. C. Holt pada sekitar tahun 1958 (Cinthia dkk, 2019). Dalam metode ini dilakukan proses peramalan terus menerus secara menurun dengan menggunakan data baru, dan diperlukan adanya penggunaan sebuah parameter α dengan rentang nilai 0 sampai 1. Metode ini melakukan perhitungan pemulusan (smoothing) sebanyak dua kali sehingga dinamakan double exponential smoothina (Muhammad, dkk, 2016).

Metode *Double Exponential Smoothing* digunakan ketika data menunjukkan adanya *trend*. *Exponential Smoothing* dengan adanya *trend* seperti pemulusan sederhana kecuali bahwa dua komponen harus diperbarui setiap periode level dan trendnya. Level adalah estimasi yang dimuluskan dari nilai data pada akhir masing-masing periode. *Trend* adalah estimasi yang dihaluskan dari pertumbuhan rata-rata pada akhir masing-masing periode (Pane, 2020).

Double Metode Exponential Smoothing dibedakan menjadi dua yaitu satu parameter (Brown's linear method) dan dua parameter (Holt's method). Pada penelitian ini akan digunakan satu parameter (Brown's linear method). Adapun formulasi model persamaan peramalan untuk metode double exponential smoothing adalah f_{t+p} = $a_t + b_t m$ dimana m merupakan jumlah periode yang akan diprediksi. Langkah-langkah yang harus dilakukan dalam peramalan metode double exponential smoothing satu parameter dari Brown adalah sebagai berikut:

- 1) Menghitung nilai single exponential smoothing $S'_{t} = \alpha X_{t} + (1 \alpha)S'_{t-1}$ (2.31)
- 2) Menghitung nilai double exponential smoothing $S_t'' = \alpha S_t' + (1 \alpha)S_{t-1}'' \qquad (2.32)$
- 3) Menentukan besarnya nilai konstanta $a_t = S'_t + (S'_t S''_t) = 2S'_t S''_t \quad (2.33)$
- 4) Menentukan besarnya koefisien trend. $b_t = \frac{\alpha}{1-\alpha} (S_t' S_t'')$ (2.34)
- 5) Menentukan besar nilai peramalan $f_{t+m} = a_t + b_{t+m}$ (2.35)

Keterangan:

 X_t : nilai sebenarnya pada periode t

 S'_t : nilai single exponential smoothing

 S_t'' : nilai double exponential smoothing

 a_t , b_t : konstanta pemulusan

 α : parameter pemulusan yang besarnya $0 < \alpha < 1$

 f_{t+m} : hasil peramalan ke-m

m: jumlah periode yang akan diramalkan

8. Mean Absolute Percentage Error (MAPE)

Mean Absolute Percentage Error (MAPE) merupakan suatu perhitungan evaluasi, MAPE digunakan untuk mengukur seberapa tepat atau akurat suatu prediksi yang sering digunakan (Kim and Kim, 2016). Dengan menggunakan MAPE, kita dapat mendapatkan nilai selisih antara nilai aktual dengan nilai prediksi. Berikut ini adalah rumus perhitungan MAPE:

$$MAPE = \left(\frac{1}{n}\right) \sum_{t=1}^{n} \left| \frac{X_t - f_t}{X_t} \right| \times 100$$
 (2.36)

Keterangan:

 X_t = nilai sebenarnya pada periode t

 f_t = nilai peramalan pada periode t

n = jumlah periode perhitungan

MAPE akan mengukur rata-rata dari *error* absolute sebagai persentase dari nilai rata-rata *error* rate absolute periode data aktual. Nilai MAPE memiliki kriteria yang menjelaskan bahwa semakin kecil nilai MAPE maka nilai akurasi semakin baik. Kriteria nilai MAPE ditunjukkan pada Tabel 2.1 (Cinthia, 2019).

Tabel 2. 1 Kriteria Nilai MAPE

Nilai MAPE	Kriteria
< 10	Sangat Baik
10-20	Baik
20-50	Cukup
>50	Buruk

(Sumber: Chintia,2019)

9. Wisatawan

Wisatawan adalah orang yang mengadakan perjalanan dari tempat kediamannya tanpa menetap di tempat yang didatanginya atau hanya untuk sementara waktu tinggal di tempat yang didatanginya. Organisasi Wisata Dunia (WTO), menyebut wisatawan sebagai pelancong yang melakukan perjalanan pendek. Menurut organisasi

ini, wisatawan adalah orang yang melakukan perjalanan ke sebuah daerah atau negara asing dan menginap minimal 24 jam atau maksimal enam bulan di tempat tersebut (Ratu, 2019).

Menurut Undang-undang no 10 tahun 2009 tentang kepariwisataan disebutkan wisatawan adalah orang yang melakukan wisata atau orang yang berkunjung ke sebuah objek wisata di suatu daerah tertentu. Menurut Ratu Maesaroh (2019) pengertian wisatawan dapat dibagi menjadi dua, yaitu:

a. Wisatawan Nusantara

Wisatawan nusantara adalah wisatawan dalam negeri atau wisatawan dosmestik.

b. Wisatawan Mancanegara

Wisatawan mancanegara adalah warga negara suatu negara yang mengadakan perjalanan wisata keluar lingkungan dari negaranya (memasuki negara lain).

Menurut IUOTO (International Union of Official Travel Organization), dalam Gamal Suwantoro menggunakan batasan mengenai wisatawan secara umum: pengunjung (visitor) yaitu setiap orang yang

datang ke suatu negara atau tempat tinggal lain dan biasanya dengan maksud apapun kecuali untuk melakukan pekerjaan yang menerima upah. Jadi ada dua kategori mengenai sebutan pengunjung, yaitu (Ratu, 2019):

- a) Wisatawan (tourist) adalah pengunjung yang tinggal sementara, sekurang-kurangnya 24 jam di suatu negara. Wisatawan dengan maksud perjalanan wisata dapat digolongkan menjadi dua yaitu:
 - Pesiar (leisure), untuk keperluan rekreasi, liburan, kesehatan, study, keagamaan, dan olahraga.
 - 2) Hubungan *(relationship)*, dagang, sanak saudara, kerabat, MICE, dsb.
- b) Pelancong *(ekscursionist)* adalah pengunjung sementara yang tinggal dalam suatu negara yang dikunjungi dalam waktu kurang dari 24 jam.

Adapun menurut Ratu Maesaroh (2019) jenisjenis wisatawan berdasarkan sifat perjalanan dan lokasi dimana perjalanan itu dilakukan, dapat diklasifikasikan sebagai berikut:

a. Foreign Tourist (Wisatawan Asing)

Orang asing yang melakukan perjalanan wisata, yang datang memasuki suatu negara lain yang bukan merupakan Negara dimana ia tinggal. Wisatawan asing disebut juga wisatawan mancanegara atau disingkat wisman.

b. *Domestic Foreign Tourist* (Wisatawan Asing Domestik)

Orang asing yang berdiam atau bertempat tinggal di suatu negara karena tugas, dan melakukan perjalanan wisata di wilayah negara dimana ia tinggal. Misalnya, staf kedutaan Belanda yang mendapat cuti tahunan, tetapi ia tidak pulamg ke Belanda, tetapi melakukan perjalanan wisata di Indonesia (tempat ia bertugas).

c. Domestic Tourist (Wisatawan Nusantara)

Semua warga negara suatu negara yang melakukan perjalanan wisata dalam batas wilayah negaranya sendiri tanpa melewati perbatasan negaranya. Misalnya warga negara Indonesia yang melaukan perjalanan ke Bali atau ke Danau Toba. Wisatawan nusantara ini disingkat wisnus.

d. Indigenous Foreign Tourist (Wisatawan Pribumi Asli)

Warga negara suatu negara tertentu, yang karena tugasnya atau jabatannya berada di luar negeri, pulang ke negara asalnya dan melakukan perjalanan wisata di wilayah negaranya sendiri. Misalnya, warga negara Perancis yang bertugas sebagai konsultan di perusahaan asing di Indonesia, ketika liburan ia kembali ke Perancis dan melakukan perjalanan wisata di sana. Jenis wisatawan ini merupakan kebalikan dari *Domestic Foreign Tourist*.

e. Transit Tourist (Wisatawan Transit)

Wisatawan yang sedang melakukan perjalanan ke suatu Negara tertentu yang terpaksa singgah pada suatu pelabuhan/airport/stasiun bukan atas kemauannya sendiri.

f. Business Tourist (Wisatawan Bisnis)

Orang yang melakukan perjalanan untuk tujuan bisnis bukan wisata tetapi perjalanan wisata akan dilakukannya setelah tujuannya yang utama selesai. Jadi perjalanan wisata merupakan tujuan sekunder, setelah tujuan primer yaitu bisnis selesai dilakukan.

B. Kajian Pustaka

Dalam penulisan penelitian ini, peneliti telah menelaah dan mengkaji jurnal-jurnal, skripsi terdahulu dan karya ilmiah lainnya untuk mendukung penelitian tugas akhir ini. Karya ilmiah yang ada sebelumnya akan memberikan gambaran umum tentang teori-teori serta objek yang digunakan penulis dalam penelitian ini. Tujuan dari pengkajian ini adalah untuk menghindari kesamaan dengan karya ilmiah sebelumnya. Beberapa contoh penelitian yang telah dilakukan sebelumnya adalah sebagai berikut:

a. Artikel jurnal Matematika dan Aplikasinya (IJMA) vol.2(2) yang ditulis oleh Rahmat Hidayat dan Besse Helmi Mustawinar (2022) yang berjudul "Peramalan Jumlah Wisatawan Asing Dengan Model ARIMA".
 Tujuan penelitian ini adalah untuk meningkatkan kegiatan pemasaran, maka diperlukan perencanaan yang sesuai berdasarkan infromasi kuantitatif dan kualitatif tentang wisatawan mancanegara pada masa-masa sebelumnya. Dengan adanya berbagai metode peramalan diharapkan akan terciptanya

suatu aplikasi dan implementasi yang lebih baik untuk terwujudnya diberbagai bidang kehidupan, salah satunya adalah bidang pariwisata. Hasil dari penelitian ini yaitu model yang memenuhi syarat signifikan parameter, residual white noise dan berdistribusi normal adalah ARIMA (1.1.0).Penilaian kriteria dari out-sample jumlah wisatawan adalah model ARIMA (1,1,0) dengan nilai MSE sebesar 27.627 yang menunjukkan kriteria penilaian model terbaik berdasarkan nilai RMSE paling kecil. Model ARIMA vang (1,1,0)menuniukkan bahwa hasil ramalan jumlah wisatawan tahun 2021 dengan menggunakan ARIMA (1,1,0), jumlah penumpang kereta api untuk bulan januari 2021 hingga desember 2021 berkisar 166.545 antara hingga 166.899 wisatawan. Perbedaan dari penelitian ini dengan penelitian penulis adalah metode yang digunakan. Penelitian ini menggunakan satu metode vaitu metode ARIMA, sedangkan penelitian penulis menggunakan dua metode yaitu membandingkan antara metode double moving average dan double exponential smoothing.

b. Artikel jurnal Pendidikan Matematika & Matematika vol.1(1) yang ditulis oleh Fiqi Randi Kustiawan, Hudori (2017) yang berjudul "Forecasting Jumlah Wisatawan Di Taman Wisata Alam Kawah Ijen Dengan Metode Exponential Smoothing Berbantu Zaitun Time Series". Tujuan penelitian ini adalah untuk menentukan metode exponential smoothing yang tepat sesuai dengan pola data jumlah mancanegara, meramalkan wisatawan iumlah wisatawan mancanegara dan wisatawan nusantara di TWA Kawah Ijen periode Mei 2016 – April 2017. Hasil dari penelitian ini adalah metode exponential smoothing yang paling tepat untuk forecasting jumlah wisatawan mancanegara dan wisatawan nusantara di TWA Kawah Ijen adalah metode *Triple* Exponential Smoothing Holt (winter's), jika kenaikan datanya stabil (range data tidak terlalu besar). Hasil forecasting jumlah wisatawan mancanegara TWA Kawah Ijen pada periode Mei 2016-Apil 2017 10.763 dengan nilai MAPE 53,41%. sebesar Sedangkan hasil forecasting jumlah wisatawan nusantara TWA Kawah Ijen pada periode Mei 2016-April 2017 sebesar 121.607 dengan nilai MAPE

- 46,63%. Perbedaan penelitian ini dengan penelitian penulis yaitu penelitian ini hanya menggunakan satu metode, sedangkan penelitian penulis terdapat dua metode untuk dibandingkan.
- Artikel jurnal Sains dan Manajemen vol.8(2) yang dtulis oleh Amin Nur Rais, Rousyati, Indra jiwana thira. Desiana Nur Kholifah. Nani Purwati, dan Yustina Meisella Kristania (2020) yang berjudul "metode Forecasting Pada Data Kunjungan Wisatawan Mancanegara ke Indonesia". Tujuan penelitian ini adalah untuk memprediksi kunjungan wisatawan mancanegara ke Indonesia dengan mengimplementasikan metode *simple* moving average dan metode single exponential smoothing pada data historis kunjungan wisatawan mancanegara ke Indonesia periode tahun 2010 sampai 2017 yang berasal dari BPS. Hasil dari penelitian ini vaitu setelah membandingkan penggunaan metode simple moving average dan single exponential smoothing untuk meramal data kunjungan wisatawan mancanegara ke Indonesia, penelitian ini telah menemukan bahwa penggunaan metode SMA menghasilkan nilai MAPE lebih unggul

dengan nilai 5,96% dari metode SES menghasilkan nilai MAPE 6,06%, sedangkan evaluasi yang dapat dilakukan pada penelitian yang akan datang dapat dilakukan dengan membandingkan metode yang sejenis dan optimasi untuk mendapatkan hasil yang lebih aktual. Perbedaan antara penelitian ini dengan penelitian penulis adalah perbandingan metodenya. Pada penelitian ini perbandingan antara metode simple moving average dan single exponential smoothing, sedangkan penelitian penulis perbandingan antara metode double moving average dan double exponential smoothing.

d. Artikel jurnal Altasia vol.1(1) yang ditulis oleh Jodi Rachmat Hakeem & Rahmat Priyant yang berjudul "Peramalan Jumlah Pengunjung Ciwangun Indah Camp Menggunakan Metode Moving Average dan Exponential Smoothing". Tujuan penelitian ini adalah untuk mengetahui peramalan pengunjung Ciwangun Indah Camp dengan metode moving average dan exponential smoothing dan metode peramalan mana yang tepat untuk diterapkan pada Ciwangun Indah Camp. Hasil dari penelitian ini adalah berdasarkan hasil perbandingan peramalan bahwa hasil

perhitungan dengan metode exponential smoothing menjadi metode peramalan yang lebih baik dan lebih cocok diterapkan di Ciwangun Indah Camp dibandingkan dengan metode moving average karena memiliki tingkat kesalahan lebih rendah. Adapun tingkat kesalahan peramalan MAD sebesar 997. MSE sebesar 2194496 dan MAPE sebesar 39% untuk tahun 2016 MAD sebesar 883, MSE sebesar 1026112 dan MAPE sebesar 36% untuk tahun 2017. Perbedaan penelitian ini dengan penelitian penulis adalah dari metode perbandingannya. Penelitian ini menggunakan metode *moving* average dan smoothing. sedangkan exponential penulis menggunakan metode double moving average dan metode double exponential smoothing.

Beberapa penelitian terdahulu yang menjadi kajian pustaka, yakni membahas tentang penerapan metode double moving average dan metode double exponential smoothing serta analisis jumlah wisatawan di Jawa Tengah. Perbedaan dalam penelitian ini adalah akan ditunjukkan perbandingan metode double moving average dan metode double exponential smoothing pada peramalan jumlah wisatawan di Jawa Tengah.

BAB III

METODE PENELITIAN

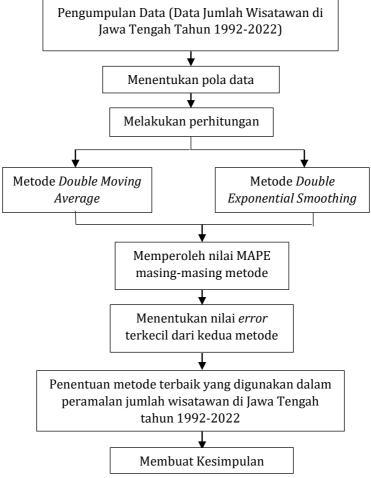
A. Jenis Penelitian

Jenis penelitian yang digunakan pada penelitian ini adalah penelitian kuantitatif pada pendekatan deskriptif. Pendekatan deskriptif kuantitatif adalah suatu pendekatan yang menggambarkan suatu data yang sudah ada dan disusun kembali untuk dijelaskan dan dianalisis. Penelitian ini juga menggunakan pendekatan studi literatur yaitu mengumpulkan berbagai referensi yang mendukung sebagai acuan dalam menyelesaikan penelitian (Priyono, 2008).

B. Data Penelitian

Data yang digunakan dalam penelitian ini adalah data tahunan jumlah wisatawan di Jawa Tengah selama kurun waktu tiga puluh satu tahun terakhir yaitu dari tahun 1992-2022. Data jumlah wisatawan diperoleh dari Badan Pusat Statistika (BPS) Kota Semarang.

C. Teknik Pengumpulan Data


Data yang digunakan dalam penelitian ini adalah data sekunder. Data sekunder merupakan data yang tersedia sebelumnya yang dikumpulkan dari sumbersumber tidak langsung atau tangan kedua misalnya dari sumber-sumber tertulis milik pemerintah atau perpustakaan. Pengambilan data dilakukan secara langsung pada instansi terkait yaitu Badan Pusat Statistika Kota Semarang.

Teknik pengumpulan data yang digunakan dalam penelitian adalah teknik dokumentasi. Menurut Arikunto (2010), metode dokumentasi adalah metode mencari data mengenai hal-hal yang berupa catatan, buku, transkip, notulen rapat, agenda, serta foto-foto kegiatan. Metode dokumentasi merupakan teknik pengumpulan data dengan mempelajari data-data yang telah didokumentasikan (Arikunto, 2010).

D. Teknik Analisis Data

Langkah awal analisis data dalam penelitian ini adalah melakukan identifikasi Pola data. Pola data merupakan suatu hal penting sebelum memilih metode peramalan karena ketepatan pemilihan metode peramalan sangat bergantung pada jenis pola data. Data yang telah diperoleh di plot dan dibuat dalam bentuk grafik *time series*. Data pada penelitian ini dianalisis menggunakan metode *double moving average* dan metode *double exponential smoothing*. Proses yang

akan dilakukan penelitian ini dapat diilustrasikan dengan diagram alir sebagai berikut:

Gambar 3. 1 Kerangka berfikir penelitian

Berdasarkan gambar 3.1 dapat dilakukan perhitungan kedua metode yaitu metode *Double Moving Average* dan *Double Exponential Smoothing* dengan langkah-langkah sebagai berikut:

- 1. Metode *double moving average* dapat dilakukan dengan langkah-langkah berikut ini :
 - a. Menentukan ordo yang akan digunakan
 - b. Menghitung nilai *single moving average* (ratarata bergerak tunggal) menggunakan persamaan (2.26)
 - c. Menghitung nilai *double moving average* (ratarata bergerak ganda) menggunakan persamaan (2.27)
 - d. Menentukan nilai konstanta a_t , menggunakan persamaan (2.28)
 - e. Menentukan nilai koefisien b_t , menggunakan persamaan (2.29)
 - f. Menghitung nilai hasil ramalan menggunakan persamaan (2.30)
 - g. Menghitung nilai MAPE menggunakan persamaan (2.36)

- 2. Analisis selanjutnya menggunakan metode *double exponential smothing* dengan langkah-langkah sebagai berikut:
 - a. Menentukan nilai parameter yang akan digunakan
 - b. Menghitung nilai single exponential smothing
 (pemulusan eksponensial tunggal)
 menggunakan persamaan (2.31)
 - c. Menghitung nilai double exponential smothing (pemulusan eksponensial ganda) menggunakan persamaan (2.32)
 - d. Menentukan nilai konstanta a_t , menggunakan persamaan (2.33)
 - e. Menentukan nilai koefisien b_t , menggunakan persamaan (2.34)
 - f. Menghitung nilai hasil ramalan menggunakan persamaan (2.35)
 - g. Menghitung nilai MAPE menggunakan persamaan (2.36)

Setelah dilakukan analisis menggunakan dua metode yakni metode double moving average dan metode double exponential smoothing akan ditentukan metode terbaik untuk peramalan jumlah wisatawan di Jawa Tengah.

BAB IV

DESKRIPSI DAN ANALISIS DATA

A. Deskripsi Data

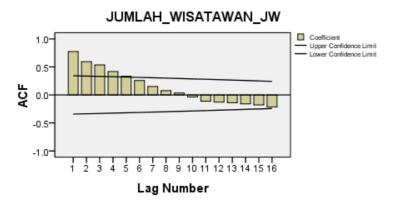
Data yang digunakan dalam penelitian ini adalah data jumlah wisatawan di Jawa Tengah tahun 1992 sampai 2022. Jawa Tengah termasuk provinsi yang banyak dikunjungi wisatawan karena memiliki daya tarik wisata alam, pegunungan, pantai hingga budaya. Wisatawan di Jawa Tengah dibagi menjadi 2 yaitu wisatawan nusantara (wisatawan dalam negeri atau wisatawan domestik) dan wisatawan mancanegara (wisatawan dari luar negeri). Berikut ini data mengenai jumlah wisatawan di Jawa Tengah (wisatawan nusantara dan mancanegara) yang akan disajikan dalam tabel dan grafik:

Tabel 4. 1 Data Jumlah Wisatawan di Jawa Tengah Tahun 1992-2022

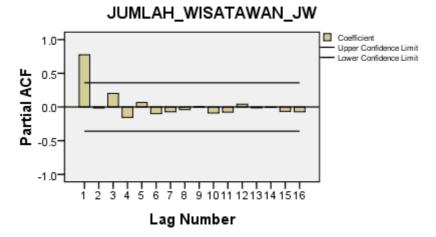
No	Tahun	Jumlah Wisatawan
1	1992	10.980.970
2	1993	12.034.538
3	1994	12.477.126
4	1995	14.381.614
5	1996	14.701.757
6	1997	14.266.188

No	Tahun	Jumlah Wisatawan
7	1998	11.673.927
8	1999	13.195.723
9	2000	14.744.000
10	2001	14.840.684
11	2002	16.001.262
12	2003	16.764.701
13	2004	17.457.776
14	2005	15.759.444
15	2006	15.314.118
16	2007	16.064.510
17	2008	16.556.084
18	2009	21.819.117
19	2010	22.592.951
20	2011	22.231.246
21	2012	25.612.484
22	2013	29.818.752
23	2014	30.271.679
24	2015	31.807.246
25	2016	37.478.700
26	2017	40.899.577
27	2018	49.620.775
28	2019	58.592.562
29	2020	22.707.375
30	2021	21.334.202
31	2022	28.571.406

Gambar 4.1 merupakan pola data jumlah wisatawan di Jawa Tengah pada tahun 1992-2022 yang diperoleh dari tabel 4.1. Hal terpenting sebelum memilih metode peramalan yang akan digunakan adalah menentukan jenis pola data terlebih dahulu, karena ketetapan pemilihan metode peramalan sangat bergantung pada jenis pola data (Safitri, 2022).


Gambar 4. 1 Pola Data Jumlah Wisatawan Di Jawa Tengah Tahun 1992-2022

Berdasarkan data jumlah wisatawan di Jawa Tengah tahun 1992-2022 menunjukkan bahwa pada tahun 2019 mengalami peningkatan jumlah wisatawan terbanyak yang berkunjung yaitu 58.592.562 pengunjung. Pada tahun 2019 jumlah wisatawan meningkat sebesar 0,18% dari yang semula tahun 2018


sebanyak 49.620.775 pengunjung menjadi 58.592.562 pengunjung. Sedangkan pada tahun 2020 jumlah wisatawan mengalami penurunan drastis sebesar -0,61% dengan jumlah wisatawan sebanyak 22.707.375 pengunjung. Hal ini terjadi karena adanya pandemi covid-19 yang melanda negara Indonesia, sehingga untuk mencegah terjadinya penyebaran covid-19 di Indonesia maka pemerintah membatasi aktivitas masyarakat di luar rumah. Karena kebijakan tersebut mengakibatkan tempat-tempat wisata di Jawa Tengah mengalami sepi pengunjung sehingga terjadi penurunan jumlah wisatawan yang berkunjung pada tahun 2020 hingga 2021. Setelah pandemi covid-19 mereda di tahun 2022 jumlah wisatawan di Jawa Tengah sudah normal kembali dan mengalami kenaikan hingga 0,33% dari 21.334.202 pengunjung 28.571.406 meniadi pengunjung di tahun 2022. Secara keseluruhan dari tahun 1992 sampai tahun 2022, rata-rata jumlah wisatawan di Jawa Tengah mencapai 22.276.532 juta pengunjung baik wisatawan nusantara maupun mancanegara dengan variansi sebesar 1,3276 x 10^{14} .

Berdasarkan pola data yang ditunjukkan gambar 4.1 dapat dilihat bahwa data bersifat *trend* karena data

memiliki kecenderungan naik dengan penurunan di beberapa titik. Pola data *trend* terjadi jika data pada grafik menunjukkan peningkatan atau penurunan jangka panjang (Safitri, 2022). Menentukan metode peramalan yang cocok untuk meramalkan jumlah wisatawan di Jawa Tengah yaitu dapat dilakukan dengan uji kestasioneran pada data jumlah wisatawan, baik dengan uji ACF/PACF. Berikut hasil uji kestasioneran data jumlah wisatawan di Jawa Tengah:

Gambar 4.2 Hasil Uji ACF Data Jumlah Wisatawan Di Jawa Tengah

Gambar 4.3 Hasil Uji PACF Data Jumlah Wisatawan Di Jawa Tengah

Berdasarkan hasil uji kestasioneran yang telah dilakukan dengan uji ACF/PACF pada gambar di atas, maka data jumlah wisatawan di Jawa Tengah dikatakan tidak stasioner karena data ACF menurun perlahan secara eksponensial. Selain itu, data jumlah wisatawan melebihi garis *upper* atau *lower confidence limits* pada plot PACF nya. Oleh karena itu, metode yang cocok digunakan dalam proses peramalan data pada tabel 4.1 adalah menggunakan metode *Double Moving average* dan metode *Double*

Exponential Smoothing, karena kedua metode tersebut tidak mengasumsikan kestasioneran data.

B. Analisis Data

1. Metode Double Moving Average

Metode *Double Moving Average* merupakan metode dari pengembangan metode *Moving Average*. Perbedaannya adalah dimana metode *Double Moving Average* lebih mempertimbangkan *trend*, dan menggunakan perhitungan dua kali metode *Single Moving Average* sehingga disebut *Double Moving Average*.

Metode *Double Moving Average* didasarkan pada pergerakan tiap kelompok yang kemudian dirata-rata. Pergerakan yang dimaksud adalah kelompok bergerak pertama dihitung, kemudian kelompok kedua dihitung rata-rata bergerak hasil pada kelompok pertama. Banyaknya data yang diikutsertakan pada pergerakan ramalan disebut ordo. Penentuan ordo yang akan berpengaruh terhadap ramalan yang dihasilkan. Ordo didapat dari hasil *trial* dan *error* pada data (Auli, 2015).

Langkah-langkah yang digunakan pada metode Double Moving Average untuk mendapatkan hasil peramalan, terdiri dari beberapa langkah yaitu dimulai dengan menghitung nilai single moving average terlebih dahulu dengan menggunakan persamaan (4.1). Pada langkah ini dilakukan perhitungn rata-rata data aktual dengan jumlah periode yang digunakan. Berikut contoh perhitungan double moving average dengan parameter 2 periode:

a. Menghitung nilai Single Moving Average

$$S' = \frac{x_t + x_{t-1} + x_{t-2} + \dots + x_{t-k-1}}{k}$$

$$S' = \frac{(10980970 + 12034538)}{2}$$

$$S' = 11507754$$
(4.1)

Langkah selanjutnya adalah menghitung ratarata bergerak kedua dari hasil peramalan yang dihasilkan dari rata-rata bergerak pertama yang ditunjukkan dengan variabel S, dengan menggunakan persamaan (4.2).

b. Menghitung nilai Double Moving Average

$$S'' = \frac{s_t + s_{t-1} + s_{t-2} + \dots + s_{t-k-1}}{k}$$

$$S'' = \frac{(11507754 + 12255832)}{2}$$

$$S'' = 11881793$$
(4.2)

Setelah mendapatkan nilai S" langkah selanjutnya adalah menentukan nilai konstanta

- (a_t) menggunakan persamaan (4.3) dan dilanjutkan dengan menentukan nilai koefisien $trend(b_t)$ menggunakan persamaan (4.4).
- c. Menghitung nilai a_t

$$a_t = 2S't - S''t$$
 (4.3)
 $a_t = 2(12255832) - 11881793$
 $a_t = 12629871$

d. Menghitung nilai b_t

$$b_t = \frac{2}{k-1} (S't - S''t)$$

$$b_t = \frac{2}{2-1} (12255832 - 11881793)$$

$$b_t = 748078$$
(4.4)

Langkah akhir yang harus dilakukan pada metode *Double Moving Average* adalah dengan menentukan besarnya nilai peramalan (f_t) menggunakan persamaan (4.5) dengan cara menjumlahkan hasil nilai konstanta (a_t) dan nilai koefisien $trend(b_t)$.

e. Menghitung nilai f_t

$$f_{t+p} = a_t + b_t m$$
 (4.5)
 $f_{t+1} = 12629871 + 748078$
 $f_{t+1} = 13377949$

Dimana variabel m merupakan periode peramalan mendatang yang diinginkan.

Tabel 4. 2 Peramalan Metode DMA Parameter 2 Periode

t	x_t	S't	S''t	a_t	b_t	f_t
1992	10980 970					
1993	12034 538	11507 754				
1994	12477 126	12255 832	11881 793	12629 871	74807 8	
1995	14381 614	13429 370	12842 601	14016 139	11735 38	13377 949
1996	14701 757	14541 685,5	13985 527,7 5	15097 843,2 5	11123 15,5	15189 677
1997	14266 188	14483 972,5	14512 829	14455 116	- 57713	16210 158,7 5
2020	22707 375	40649 968,5	47378 318,5	33921 618,5	- 13456 700	67376 407,2 5
t	x_t	S't	S''t	a_t	b_t	f_t
2021	21334 202	22020 788,5	31335 378,5	12706 198,5	- 18629 180	20464 918,5
2022	28571 406	24952 804	23486 796,2 5	26418 811,7 5	29320 15,5	- 59229 81,5

- Perhitungan double moving average dengan parameter3 periode:
 - a. Menghitung nilai Single Moving Average

Dengan menggunakan persamaan (4.1)

$$S' = \frac{(10980970 + 12034538 + 12477126)}{3}$$

$$S' = 11830878$$

b. Menghitung nilai *Double Moving Average*

Dengan menggunakan persamaan (4.2)

$$S'' = \frac{(11870878 + 12964426 + 13853499)}{3}$$

c. Menghitung nilai a_t

Dengan menggunakan persamaan (4.3)

$$a_t = 2(13853499) - 12882934,33$$

$$a_t = 14824063,67$$

d. Menghitung nilai b_t

Dengan menggunakan persamaan (4.4)

$$b_t = \frac{2}{3-1} (13853499 - 12882934,33)$$

$$b_t = 970564,6667$$

e. Menghitung nilai f_t

$$f_{t+1}$$
 = 14824063,67 + 970564,6667

$$f_{t+1} = 15794628,33$$

Tabel 4. 3 Peramalan Metode DMA Parameter 3 Periode

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1			MA Falali		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t	x_t	S't	S''t	a_t	b_t	f_t
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1002	10980					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1772	970					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1002	12034					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1993	538					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1004	12477	11830				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1994	126	878				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1005	14381	12964				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1993	614	426				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		14701	13853		14824	97056	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1996			2934,			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		/3/	499	33	003,07	4,0007	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		14266	1.1.1.1.0	1275	151/.2	60302	1579
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1997						4628,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		188	853	5926	780	/	33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11672	125/7	1395	12111	-	1502
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1998			0214,		40292	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		927	290,67	22	36/,11	3,5556	//0/
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12105	12045	1368	12400	-	1274
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1999			0807,		63552	1443,
2020 22707 43640 4533 41943 - 6304 6964, 22 510,44 26,889 33 2021 21334 34211 379.67 8640, 118.78 83072 6783,		723	2/9,33	67	/51	8,3333	56
2020 2707 43640 6964, 21974 16967 6805, 26,889 33 2021 21334 34211 8640, 25904 83072 6783, 26,889	t	x_t	S't	S''t	a_t	b_t	f_t
2020 375 237,33 6964, 22 510,44 16967 6805, 33 2021 21334 34211 8640, 25904 83072 6783, 26904 83072 6783,		22707	12610	4533	41042	-	6304
22 26,889 33 21334 34211 4251 25904 - 4024 2021 202 379.67 8640, 118.78 83072 6783,	2020			6964,		16967	6805,
2021 21334 34211 8640, 25904 83072 6783,		3/5	237,33	22	510,44	26,889	33
2021 202 379.67 8640, 118.78 83072 6783,		21224	2/211	4251	25004	-	4024
202 3/9,6/ 56 118,/8 60,889 56	2021			8640,		83072	6783,
		202	3/9,0/	56	118,/8	60,889	56

2022	28571 406	24204 327,67	3401 8648, 22	14390 007,11	98143 20,556	1759 6857, 89
------	--------------	-----------------	---------------------	-----------------	-----------------	---------------------

- Perhitungan double moving average dengan parameter4 periode:
 - a. Menghitung nilai *Single Moving Average*Dengan menggunakan persamaan (4.1)

$$S' = \frac{(10980970 + 12034538 + 12477126 + 14381614)}{4}$$

$$S' = 12468562$$

b. Menghitung nilai *Double Moving Average*Dengan menggunakan persamaan (4.2)

$$S'' = \frac{(12468562 + 13398758,75 + 13956671,25 + 13755871,5)}{4}$$

c. Menghitung nilai a_t

Dengan menggunakan persamaan (4.3)

$$a_t = 2(13755871,5) - 13394965,88$$

 $a_t = 14116777,13$

d. Menghitung nilai b_t

Dengan menggunakan persamaan (4.4)

$$b_t = \frac{2}{4-1} (13755871,5 - 13394965,88)$$

$$b_t = 240603,75$$

e. Menghitung nilai f_t

$$f_{t+1}$$
 = 14116777,13+ 240603,75

$$f_{t+1}$$
 = 14357380,88

Tabel 4. 4 Peramalan Metode DMA Parameter 4 Periode

		GI.	OII.		1	c
t	x_t	S't	S''t	a_t	b_t	f_t
1992	10980					
	970					
1993	12034 538					
1994	12477					
	126					
1995	14381	12468				
1995	614	562				
	14701	13398				
1996	757	758,75				
	737	730,73				
1997	14266	13956				
1997	188	671,25				
	44650	40555	1339	44446	0.40.60	
1998	11673	13755	4965.	14116	24060	
	927	871,5	88	777,13	3,75	
	12105	12450	1364	12276	-	1435
1999	13195	13459	2675,	13276	12218	7380,
	723	398,75	06	122,44	4,2083	88
	4.544	10466	1366	40050	-	1315
2000	14744	13469	0475.	13279	12701	3938,
	000	959,5	25	443,75	0,5	23
			1357			1315
2001	14840	13613	4703,	13652	25920,	2433,
2001	684	583,5	31	463,69	125	2433, 25
			31			43

t	x_t	S't	S''t	a_t	b_t	f_t
2020	22707 375	42955 072,25	4116 7212, 69	44742 931,81	11919 06,375	6020 3629, 02
2021	21334 202	38063 728,5	4190 4569, 69	34222 887,31	- 25605 60,792	4593 4838, 19
2022	28571 406	32801 386,25	4011 7022, 63	25485 749,88	- 48770 90,917	3166 2326, 52

- Perhitungan double moving average dengan parameter 5 periode:
 - a. Menghitung nilai *Single Moving Average*Dengan menggunakan persamaan (4.1)

$$S' = \frac{(10980970 + 12034538 + 12477126 + 14381614 + 14701757)}{5}$$

b. Menghitung nilai Double Moving Average

Dengan menggunakan persamaan (4.2)

$$S'' = \frac{(12915201 + 13572244,6 + 13500122,4 + 13643841,8 + 13716319)}{5}$$

$$S^{\prime\prime}$$
= 13469545,76

c. Menghitung nilai a_t

Dengan menggunakan persamaan (4.3)

$$a_t = 2(13716319) - 13469545,76$$

$$a_t = 13963092,24$$

d. Menghitung nilai b_t

Dengan menggunakan persamaan (4.4)

$$b_t = \frac{2}{5-1} (13716319 - 13469545,76)$$

$$b_t$$
= 123386,62

e. Menghitung nilai f_t

$$f_{t+1}$$
 = 13963092,24 + 123386,62

$$f_{t+1}$$
 = 14086478,86

Tabel 4. 5 Peramalan Metode DMA Parameter 5 Periode

t	Xt	S't	S''t	At	Bt	Ft
1992	10980 970					
1993	12034 538					
1994	12477 126					
1995	14381 614					
1996	14701 757	12915 201				
1997	14266 188	13572 244,6				
1998	11673 927	13500 122,4				
1999	13195 723	13643 841,8				
2000	14744 000	13716 319	1346 9545, 76	13963 092,24	12338 6,62	

t	x_t	S't	S''t	a_t	b_t	f_t
2001	14840 684	13744 104,4	1363 5326, 44	13852 882,36	54388, 98	1408 6478, 86
2002	16001 262	14091 119,2	1373 9101, 36	14443 137,04	17600 8,92	1390 7271, 34
2003	16764 701	15109 274	1406 0931, 68	16157 616,32	52417 1,16	1461 9145, 96
2020	22707 375	41859 797,8	3772 1625, 64	45997 969,96	20690 86,08	5679 0446, 46
2021	21334 202	38630 898,2	3924 8250, 84	38013 545,56	- 30867 6,32	4806 7056, 04
2022	28571 406	36165 264	3967 0265, 48	32660 262,52	- 17525 00,74	3770 4869, 24

- Perhitungan double moving average dengan parameter 6 periode:
 - a. Menghitung nilai *Single Moving Average*Dengan menggunakan persamaan (4.1)

$$S' = \frac{(10980970 + 12034538 + 12477126 + 14381614 + 14701757 + 14266188)}{6}$$

S' = 13140365,5

b. Menghitung nilai *Double Moving Average*Dengan menggunakan persamaan (4.2)

$$S'' = \frac{(13140365,5+13255858,33+13449389,17+13827201,5+13903713,17+14120297,33)}{6}$$

$$S'' = 13616137,5$$

c. Menghitung nilai a_t

Dengan menggunakan persamaan (4.3)

$$a_t = 2(14120297,33) - 13616137,5$$

$$a_t = 14624457,17$$

d. Menghitung nilai b_t

Dengan menggunakan persamaan (4.4)

$$b_t = \frac{2}{6-1} (14120297,33 - 13616137,5)$$

$$b_t$$
= 201663,9333

e. Menghitung nilai f_t

$$f_{t+1}$$
 = 14624457,17+ 201663,9333

$$f_{t+1}$$
 = 14826121,1

Tabel 4. 6 Peramalan Metode DMA Parameter 6 Periode

t	x_t	S't	S"t	a_t	b_t	f_t
1992	10980 970					
1993	12034 538					
1994	12477 126					
1995	14381 614					

t	x_t	S't	S''t	a_t	b_t	f_t
1996	14701 757					
1997	14266 188	13140 365,5				
1998	11673 927	13255 858,33				
1999	13195 723	13449 389,17				
2000	14744 000	13827 201,5				
2001	14840 684	13903 713,17				
2002	16001 262	14120 297,33	1361 6137, 5	14624 457,17	20166 3,9333	
2003	16764 701	14536 716,17	1384 8862, 61	15224 569,72	27514 1,4222	1482 6121, 1
2004	17457 776	15500 691	1422 3001, 39	16778 380,61	51107 5,8444	1549 9711, 14
2005	15759 444	15927 977,83	1463 6099, 5	17219 856,17	51675 1,3333	1728 9456, 46
2020	22707 375	40184 372,5	3458 6566, 83	45782 178,17	22391 22,267	5449 8800, 04
2021	21334 202	38438 865,17	3648 3756, 64	40393 973,69	78204 3,4111	4802 1300, 43
2022	28571 406	36954 316,17	3772 0028, 58	36188 603,75	- 30628 4,9667	4117 6017, 11

- Perhitungan double moving average dengan parameter 7 periode:
 - a. Menghitung nilai Single Moving Average

Dengan menggunakan persamaan (4.1)

$$S' = \frac{(10980970 + 12034538 + 12477126 + 14381614)}{7}$$

$$S' = \frac{+14701757 + 14266188 + 11673927)}{7}$$

$$S' = 12930874.29$$

b. Menghitung nilai Double Moving Average

Dengan menggunakan persamaan (4.2)

$$S'' = \frac{(12930874,29+13247267,57+13634333,57+13971984,71+13971984,71+13971984,71+13971984,71+13971986,12)}{7}$$

$$S'' = 13919986,12$$

c. Menghitung nilai a_t

Dengan menggunakan persamaan (4.3)

$$a_t = 2(14954010,43) - 13919986,12$$

 $a_t = 15988034,73$

d. Menghitung nilai b_t

Dengan menggunakan persamaan (4.4)

$$b_t = \frac{2}{7-1} (14954010,43-13919986,12)$$

$$b_t = 344674,7687$$

e. Menghitung nilai f_t

$$f_{t+1} = 15988034,73 + 344674,7687$$

f_{t+1} = 16332709,5

Tabel 4. 7 Peramalan Metode DMA Parameter 7 Periode

t	x_t	S't	S''t	a_t	b_t	f_t
1992	10980 970					
1993	12034 538					
1994	12477 126					
1995	14381 614					
1996	14701 757					
1997	14266 188					
1998	11673 927	12930 874,2 9				
1999	13195 723	13247 267,5 7				
2000	14744 000	13634 333,5 7				
2001	14840 684	13971 984,7 1				
2002	16001 262	14203 363				

t	x_t	S't	S''t	a_t	b_t	f_t
2003	16764 701	14498 069,2 9				
2004	17457 776	14954 010,4 3	13919 986,1 2	15988 034,7 3	34467 4,768 7	
2005	15759 444	15537 655,7 1	14292 383,4 7	16782 927,9 6	41509 0,748 3	16332 709,5
2006	15314 118	15840 283,5 7	14662 814,3 3	17017 752,8 2	39248 9,748 3	17198 018,7 1
2007	16064 510	16028 927,8 6	15004 899,2 2	17052 956,4 9	34134 2,877 6	17410 242,5 6
2020	22707 375	38768 273,4 3	31966 631,5 9	45569 915,2 7	22672 13,94 6	53382 629,5 7
2021	21334 202	37491 491	33875 572,9	41107 409,1	12053 06,03 4	47837 129,2 1
2022	28571 406	37029 228,1 4	35407 228,4 5	38651 227,8 4	54066 6,564 6	42312 715,1 4

- Perhitungan double moving average dengan parameter 8 periode:
 - a. Menghitung nilai *Single Moving Average*Dengan menggunakan persamaan (4.1)

$$S' = \frac{(10980970 + 12034538 + 12477126 + 14381614)}{8}$$

$$S' = \frac{+14701757 + 14266188 + 11673927 + 13195723)}{8}$$

$$S' = 12963980.38$$

b. Menghitung nilai Double Moving Average

Dengan menggunakan persamaan (4.2)

$$S'' = \frac{(12963980,38+13434359,13+13785127,38+14225644,38+5)''}{8}$$

$$S'' = \frac{14523530,25+14868032,63+15054689,63+15509713,5)}{8}$$

$$S'' = 14295634.66$$

c. Menghitung nilai a_t

Dengan menggunakan persamaan (4.3)

$$a_t = 2(15509713,5) - 14295634,66$$

 $a_t = 16723792,34$

d. Menghitung nilai b_t

Dengan menggunakan persamaan (4.4)

$$b_t = \frac{2}{8-1} (15509713,5 - 14295634,66)$$

 b_t = 346879,6696

e. Menghitung nilai f_t Dengan menggunakan persamaan (4.5)

$$f_{t+1} = 16723792,34 + 346879,6696$$

 $f_{t+1} = 17070672,01$

Tabel 4. 8 Peramalan Metode DMA Parameter 8 Periode

t	x_t	S't	S''t	a_t	b_t	f_t
1992	10980 970					
1993	12034 538					
1994	12477 126					
1995	14381 614					
1996	14701 757					
1997	14266 188					
1998	11673 927					
1999	13195 723	12963 980,3 8				
2000	14744 000	13434 359,1 3				
2001	14840 684	13785 127,3 8				
2002	16001 262	14225 644,3 8				
2003	16764 701	14523 530,2 5				

t	x_t	S't	S''t	a_t	b_t	f_t
2004	17457 776	14868 032,6 3				
2005	15759 444	15054 689,6 3				
2006	15314 118	15509 713,5	14295 634,6 6	16723 792,3 4	34687 9,669 6	
2007	16064 510	15868 311,8 8	14658 676,0 9	17077 947,6 6	34561 0,223 2	17070 672,0 1
2008	16556 084	16094 822,3 8	14991 234	17198 410,7 5	31531 0,964 3	17423 557,8 8
2009	21819 117	16967 126,5	15388 983,8 9	18545 269,1 1	45089 7,888 4	17513 721,7 1
2020	22707 375	37649 583,2 5	29547 958,6 6	45751 207,8 4	23147 49,88 4	51813 891,5 7
2021	21334 202	36589 014,5	31465 190,7 5	41712 838,2 5	14639 49,64 3	48065 957,7 3
2022	28571 406	36376 480,3 8	33122 144,1 9	39630 816,5 6	92981 0,339 3	43176 787,8 9

- Perhitungan double moving average dengan parameter9 periode:
 - a. Menghitung nilai *Single Moving Average*Dengan menggunakan persamaan (4.1)

$$S' = \frac{(10980970 + 12034538 + 12477126 + 14381614)}{9}$$

$$S' = \frac{+14701757 + 14266188 + 11673927 + 13195723 + 14744000)}{9}$$

$$S' = 13161760,33$$

b. Menghitung nilai Double Moving Average

Dengan menggunakan persamaan (4.2)

$$S'' = \frac{(13161760,33+13590617,44+14031364,56+14507761,78+14849557,56+14967078,33+15083515+15571357,56}{+15944731)}$$

S''=14634193,73

c. Menghitung nilai a_t Dengan menggunakan persamaan (4.3)

$$a_t = 2(15944731) - 14634193,73$$

$$a_t = 1725526827$$

d. Menghitung nilai b_t

Dengan menggunakan persamaan (4.4)

$$b_t = \frac{2}{9-1} (15944731 - 14634193,73)$$

$$b_t = 327634,3179$$

e. Menghitung nilai f_t

$$f_{t+1} = 1725526827 + 327634,3179$$

$$f_{t+1} = 17582902,59$$

Tabel 4. 9 Peramalan Metode DMA Parameter 9 Periode

t	x_t	S't	S''t	a_t	b_t	f_t
1992	10980 970					
1993	12034 538					
1994	12477 126					
1995	14381 614					
1996	14701 757					
1997	14266 188					
1998	11673 927					
1999	13195 723					
2000	14744 000	13161 760,3 3				
2001	14840 684	13590 617,4 4				
2002	16001 262	14031 364,5 6				
2003	16764 701	14507 761,7 8				
2004	17457 776	14849 557,5 6				
2005	15759 444	14967 078,3 3				

t	x_t	S't	S''t	a_t	b_t	f_t
2006	15314 118	15083 515				
2007	16064 510	15571 357,5 6				
2008	16556 084	15944 731	14634 193,7 3	17255 268,2 7	32763 4,317 9	
2009	21819 117	16730 855,1 1	15030 759,8 1	18430 950,4 1	42502 3,824 1	17582 902,5 9
2010	22592 951	17592 218,1 1	15475 382,1 1	19709 054,1 1	52920 9	18855 974,2 3
2011	22231 246	18284 438,5 6	15947 945,8 9	20620 931,2 2	58412 3,166 7	20238 263,1 1
2020	22707 375	36312 127,7 8	27412 679,4 8	45211 576,0 7	22248 62,07 4	49821 251,6 2
2021	21334 202	35836 763,1 1	29253 705,8 8	42419 820,3 5	16457 64,30 9	47436 438,1 5
2022	28571 406	35698 169,1 1	30926 728,3	40469 609,9 3	11928 60,20 4	44065 584,6 5

- Perhitungan double moving average dengan parameter 10 periode:
 - a. Menghitung nilai Single Moving AverageDengan menggunakan persamaan (4.1)

$$S' = \frac{(10980970 + 12034538 + 12477126 + 14381614 + 14701757 + 14266188 + 11673927 + 13195723 + 14744000}{10}$$

S' = 13329652,7

b. Menghitung nilai Double Moving Average

Dengan menggunakan persamaan (4.2)

$$S'' = \frac{(13329652,7+13831681,9+14304698,2+14802763,2\\ +14940546,2+1501782,3+15181614,5+15669830,2\\ +16532169,6+17317064,7)}{10}$$

S''= 15091180,35

c. Menghitung nilai a_t

Dengan menggunakan persamaan (4.3)

$$a_t = 2(17317064,7) - 15091180,35$$

 $a_t = 19542949,05$

d. Menghitung nilai b_t

Dengan menggunakan persamaan (4.4)

$$b_t = \frac{2}{10-1} (17317064, 7-15091180, 35)$$

$$b_t = 494640,9667$$

e. Menghitung nilai f_t

$$f_{t+1} = 19542949,05 + 494640,9667$$

$$f_{t+1} = 20037590,02$$

Tabel 4. 10 Peramalan Metode DMA Parameter 10 Periode

t	x_t	S't	S''t	a_t	b_t	f_t
1992	10980					
	970					
1002	12034					
1993	538					
1994	12477					
1994	126					
1995	14381					
1995	614					
1996	14701					
1990	757					
1997	14266					
1997	188					
1998	11673					
1770	927					
1999	13195					
1777	723					
2000	14744					
2000	000					
2001	14840	13329				
2001	684	652,7				
2002	16001	13831				
2002	262	681,9				
2003	16764	14304				
2003	701	698,2				
2004	17457	14802				
2001	776	763,2				
2005	15759	14940				
2003	444	546,2				
2006	15314	15001				
2000	118	782,3				

t	x_t	S't	S''t	a_t	b_t	f_t
2007	16064	15181				
2007	510	614,5				
2008	16556	15669				
2000	084	830,2				
2009	21819	16532				
2009	117	169,6				
	22592	17317	15091	19542	49464	
2010	951	064,7	180,3	949,0	0,966	
	931	004,7	5	5	7	
	22231	10056	15563	20548	55384	20037
2011	246	18056	827,1	414,6	3,051	590,0
	240	120,9	7	3	1	2
	25612	19017	16082	21952	65219	21102
2012	484		383,2	102,9	1,068	257,6
	404	243,1	9	1	9	8
	29818	20322	16684	23961	80854	22604
2013	752		178,2	118,1	8,868	293,9
	/32	648,2	9	1	9	8
	22707	34904	25655	44152	20552	48331
2020	375	039,6	481,9	597,2	35,03	923,8
	373	039,0	4	6	6	9
	21334	34814	27331	42297	16628	46207
2021	202	335,2	303,3	367,0	95,96	832,3
	202	333,4	7	3	2	034,3
	20571	3571 35110 36 227,4	28940	41279	13710	43960
2022	406		601,8	853	27,91	262,9
	700	44/,4		033	1	9

Setelah mendapatkan nilai f_t , berikut adalah tabel hasil perhitungan peramalan jumlah wisatawan di Jawa Tengah pada tahun 2023 berdasarkan metode *Double Moving Average* dengan parameter 2 periode sampai 10 periode.

Tabel 4.11 Hasil Peramalan Jumlah Wisatawan Tahun 2023 dengan Metode DMA

Parameter	Hasil Peramalan
2 periode	29.350.827
3 periode	24.204.328
4 periode	20.608.658
5 periode	30.907.761
6 periode	35.882.318
7 periode	39.191.894
8 periode	40.560.626
9 periode	41.662.470
10 periode	42.650.880

Berdasarkan tabel diatas, dapat dihasilkan perbandingan data aktual (data asli) dengan data hasil peramalan jumlah wisatawan di Jawa Tengah sebagai berikut:

Gambar 4.4 Perbandingan Data Aktual dan Data Hasil
Peramalan Metode DMA

Selanjutnya dilakukan perhitungan nilai *error* dengan menggunakan metode analisis kesalahan MAPE. Sebelum melakukan perhitungan MAPE, perlu dihitung nilai *error* terlebih dahulu yaitu dengan menghitung kesalahan peramalan absolut dibagi data aktual. Berikut contoh perhitungannya:

Nilai *error* tahun 2022 parameter 2 periode
$$\frac{|x_t - f_t|}{x_t} = \frac{|24952804 - (-5922981,5)|}{24952804} = 1,207304516$$

Untuk perhitungan nilai *error* pada periode lainnya dapat dilihat pada tabel berikut ini:

Tabel 4.12 Hasil Perhitungan Jumlah Nilai *Error*Pada Metode DMA

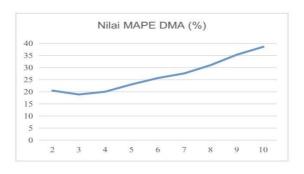
Periode	Nilai <i>Error</i>
2	5,735969245
3	4,911268398
4	4,808827305
5	5,07377683
6	5,13678992
7	4,968430647
8	4,961969263
9	4,946951255
10	4,631259334

Langkah selanjutnya yaitu menghitung tingkat kealahan dalam peramalan metode DMA menggunakan nilai MAPE. Berikut contoh perhitungannya:

Perhitungan MAPE DMA dengan parameter 2 periode

MAPE =
$$\left(\frac{100}{n}\right) \sum_{t=1}^{n} \frac{|x_t - f_t|}{x_t}$$

= $\left(\frac{100}{28}\right) * 5,735969245 = 20,5\%$


Untuk perhitungan MAPE metode DMA pada periode lainnya dapat dilihat pada tabel dibawah ini:

Tabel 4.13 Hasil Perhitungan MAPE Metode DMA

Periode	Nilai MAPE
2	20,5%
3	18,9%
4	20%
5	23,1%
6	25,7%
7	27,6%
8	31%
9	35,3%
10	38,6%

Seperti yang ditunjukkan pada tabel 4.12, hasil pengujian metode *Double Moving Average* yaitu menggunakan periode 2, 3, 4, 5, 6, 7, 8, 9, 10. Nilai MAPE yang dihasilkan pada setiap periode menunjukkan bahwa nilai MAPE terkecil diperoleh pada saat metode *Double Moving Average* menggunakan periode 3. Berdasarkan tabel 2.1 tentang kriteria nilai MAPE, nilai sekian termasuk dalam kriteria baik dengan nilai MAPE 18,9%.

Perolehan nilai MAPE setiap periode pada metode *Double Moving Average* dapat dilihat dalam bentuk grafik pada gambar 4.2

Gambar 4. 5 Perolehan Nilai MAPE DMA

Berdasarkan gambar 4.2 nilai MAPE cenderung semakin besar dengan seiring besarnya periode yang digunakan, sehingga dapat disimpulkan jika semakin besar periode yang digunakan maka akan semakin memperburuk nilai hasil prediksi, dan meningkatkan nilai error pada metode *Double Moving* Average. Dari hasil diatas terlihat bahwa perhitungan MAPE metode DMA pada periode 3 menunjukkan nilai MAPE lebih kecil dibanding periode lainnya, karena berdasarkan perhitungan *error* memiliki *error forecast* yang lebih baik. Selain dilihat dari nilai MAPE yang terkecil, cara menentukan model terbaik dalam metode *Double Moving Average* adalah dapat dilakukan dengan melihat nilai RMSE (*Root Mean*

Square Error). Berikut adalah hasil nilai RMSE dari metode *Double Moving Average*:

Tabel 4.14 Hasil Nilai RMSE dari Metode DMA

Periode	Nilai RMSE
2	10.955.143,33
3	9.335.671,22
4	9.692.236,23
5	10.102.530,48
6	10.513.034,22
7	11.118.192,36
8	11.898.511,41
9	12.673.398,34
10	13.527.749,83

Berdasarkan tabel diatas, dapat dilihat bahwa nilai RMSE terkecil terdapat pada saat parameter 3 periode. *Root Square Mean Error* (RMSE) merupakan besarnya tingkat kesalahan hasil prediksi, dimana semakin kecil (mendekati 0) nilai RMSE maka hasil prediksi akan semakin akurat. Jadi, hasil prediksi jumlah wisatawan di Jawa Tengah untuk tahun 2023 mendatang akan semakin akurat prediksinya ketika menggunakan metode *Double Moving Average* pada saat parameter 3 periode.

Oleh karena itu, peramalan jumlah wisatawan di Jawa Tengah untuk tahun yang akan datang yaitu tahun 2023 dapat dihitung menggunakan parameter periode 3 dengan nilai a_t = 14390007,11 dan b_t = 9814320,556 perhitungannya sebagai berikut:

Perhitungan peramalan untuk tahun 2023

$$f_{t+p} = a_t + b_t m$$

= 14390007,11 + (9814320,556) (1)
= 24204327,67

Jadi hasil peramalan pada metode *Double Moving Average* dengan parameter 3 periode meramalkan bahwa di tahun 2023 jumlah wisatawan di Jawa Tengah sebanyak 24.204.328 pengunjung.

2. Metode Double Exponential Smoothing

Metode Double Exponential Smoothing merupakan pengembangan dari metode Moving Avergae. Pada metode ini dilakukan perhitungan peramalan terus menerus secara menurun dengan menggunakan data baru, dan diperlukan adanya penggunaan sebuah parameter α dengan rentan nilai 0-1. Metode ini melakukan pemulusan sebanyak dua kali tingkatan. Metode double exponential smoothing

dibagi menjadi 2 yaitu satu parameter (*Brown's linier method*) dan dua parameter (*Holt's linier method*). Pada penelitian ini akan digunakan satu parameter (*Brown's Linier Method*).

Metode Double Exponential Smoothing Brown didasarkan pada pembobotan pemulusan nilai pada saat ini dan masa lalu dengan menggunakan data terbaru. Metode ini menggunakan rumus pemulusan berganda dengan satu parameter yaitu parameter α . memuluskan Metode ini nilai *trend* dengan parameter yang berbeda dari parameter pada deret asli. Penentuan konstanta parameter dapat dilakukan dengan cara trial dan error.

Langkah perhitungan untuk mendapatkan nilai peramalan dengan menggunakan metode double exponential smoothing satu parameter dimulai dari persamaan (4.6) yaitu menghitung nilai single exponential smoothing. Berikut ini langkah-langkah perhitungan Double Exponential Smoothing dengan α =0,1:

a. Menghitung nilai Single Exponential Smoothing

$$S'_{t} = \alpha X_{t} + (1 - \alpha)S'_{t-1}$$

$$S'_{t} = 0,1(12034538) + (1-0,1)10980970$$
(4.6)

$$S_t' = 11086326,8$$

Dimana x adalah data aktual. Selanjutnya dilakukan perhitungan pemulusan kedua yaitu menghitung nilai *Double Exponential Smoothing* dengan persamaan (4.7).

b. Menghitung nilai Double Exponential Smoothing

$$S_t'' = \alpha S_t' + (1 - \alpha)S_{t-1}''$$

$$S_t'' = 0.1(11086326.8) + (1-0.1)10980970$$
(4.7)

$$S_t^{\prime\prime}$$
 = 10991505,68

Setelah itu dilanjutkan dengan menghitung besarnya nilai konstanta (a_t) menggunakan persamaan (4.8) dan menghitung besarnya koefisien trend (b_t) menggunakan persamaan (4.9).

c. Menghitung nilai a_t

$$a_t = 2S'_t - S''_t$$
 (4.8)
 $a_t = 2(11086326,8) - 10991505,68$
 $a_t = 11181147,92$

d. Menghitung nilai b_t

$$b_t = \frac{\alpha}{1-\alpha} (S_t' - S_t'')$$

$$b_t = \frac{0.1}{1-0.1} (11086326.8 - 10991505.68)$$

$$b_t = 10535,68$$

Langkah akhir pada metode *Double Exponential Smoothing* adalah menentukan besarnya nilai peramalan sesuai dengan periode peramalan mendatang yang diinginkan dengan menggunakan persamaan (4.10).

e. Menghitung nilai f_t

$$f_{t+p} = a_t + b_{t+p}$$
 (4.10)
 $f_{t+p} = 11181147,92 + 10535,68$
 $f_{t+p} = 11191683,6$

Berikut ini adalah tabel hasil perhitungan metode Double exponential Smoothing dimulai dari parameter α =0,1 sampai dengan parameter α =0,9.

Tabel 4. 15 Hasil Peramalan Metode DES parameter α =0,1

t	x_t	S't	S''t	a_t	b_t	f_{t}
1992	10980 970	10980 970	10980 970	10980 970	14790 28	
1993	12034 538	11086 326,8	10991 505,6 8	11181 147,9 2	10535 ,68	12459 998
1994	12477 126	11225 406,7 2	11014 895,7 8	11435 917,6 6	23390 ,104	11191 683,6

1995	14381 614	11541 027,4 5	11067 508,9 5	12014 545,9 5	52613 ,1664	11459 307,7 6
2020	22707 375	29458 679,7 1	20401 087,5 5	38516 271,8 6	10063 99,12 8	42224 531,6 2
2021	21334 202	28646 231,9 4	21225 601,9 9	36066 861,8 8	82451 4,438 4	39522 670,9 9
2022	28571 406	28638 749,3 4	21966 916,7 3	35310 581,9 6	74131 4,735 2	36891 376,3 2

Untuk lebih detailnya dapat dilihat pada halaman lampiran.

\triangleright Perhitungan *Double Exponential Smoothing* dengan α =0,2

a. Menghitung nilai Single Exponential Smoothing

Dengan menggunakan persamaan (4.6)

$$S_t' = 0.2(12034538) + (1-0.2)10980970$$

$$S_t' = 11191683,6$$

b. Menghitung nilai Double Exponential Smoothing

Dengan menggunakan persamaan (4.7)

$$S_t^{\prime\prime} = 0.1(11191683.6) + (1-0.1)10980970$$

$$S_t^{\prime\prime}$$
 = 11023112,72

c. Menghitung nilai a_t

Dengan menggunakan persamaan (4.8)

$$a_t = 2(11191683,6) - 11023112,72$$

 $a_t = 11360254,48$

d. Menghitung nilai b_t

Dengan menggunakan persamaan (4.9)

$$b_t = \frac{0.2}{1 - 0.2} (11191683, 6-11023112, 72)$$

$$b_t = 42142,72$$

e. Menghitung nilai f_t

Dengan menggunakan persamaan (4.10)

$$f_{t+p}$$
 = 11360254,48+ 42142,72

$$f_{t+p}$$
 = 11402397,2

Tabel 4. 16 Hasil Peramalan Metode DES parameter α =0,2

t	x_t	S't	S''t	a_t	b_t	f_t
1992	10980 970	10980 970	10980 970	10980 970	14790 28	
1993	12034 538	11191 683,6	11023 112,7 2	11360 254,4 8	42142 ,72	12459 998
1994	12477 126	11448 772,0 8	11108 244,5 9	11789 299,5 7	85131 ,872	11402 397,2
1995	14381 614	12035 340,4 6	11293 663,7 7	12777 017,1 6	18541 9,174 4	11874 431,4 4
2020	22707 375	35840 386,7 4	29912 541,9 4	41768 231,5 5	14819 61,20 2	52489 963,3 6

2021	21334 202	32939 149,8	30517 863,5	35360 436,0	60532 1,571	43250 192,7
	202	149,0	1	8	5	5
	28571	32065	30827	33303	30954	35965
2022	406	601,0	411,0	791,0	7,505	757,6
	400	4	1	6	4	5

Untuk lebih detailnya dapat dilihat di halaman lampiran.

- \triangleright Perhitungan *Double Exponential Smoothing* dengan α =0,3
 - a. Menghitung nilai Single Exponential Smoothing

Dengan menggunakan persamaan (4.6)

$$S_t' = 0.3(12034538) + (1-0.3)10980970$$

$$S_t' = 11297040,4$$

b. Menghitung nilai Double Exponential Smoothing

Dengan menggunakan persamaan (4.7)

$$S_t^{\prime\prime} = 0.3(11297040.4) + (1-0.3)10980970$$

$$S_t^{\prime\prime}$$
 = 11075791,12

c. Menghitung nilai a_t

Dengan menggunakan persamaan (4.8)

$$a_t = 2(11297040,4) - 11075791,12$$

$$a_t = 11518289,68$$

d. Menghitung nilai b_t

Dengan menggunakan persamaan (4.9)

$$b_t = \frac{0.3}{1-0.3}(11297040,4-11075791,12)$$

$$b_t = 94821,12$$

e. Menghitung nilai f_t

Dengan menggunakan persamaan (4.10)

$$f_{t+p}$$
 = 11518289,68 + 94821,12

$$f_{t+p}$$
 = 11613110,8

Tabel 4. 17 Hasil Peramalan Metode DES parameter α =0,3

t	x_t	S't	S''t	a_t	b_t	f_t
1992	10980 970	10980 970	10980 970	10980 970	14790 28	
1993	12034 538	11297 040,4	11075 791,1 2	11518 289,6 8	94821 ,12	12459 998
1994	12477 126	11651 066,0 8	11248 373,6 1	12053 758,5 5	17258 2,488	11613 110,8
1995	14381 614	12470 230,4 6	11614 930,6 6	13325 530,2 5	36655 7,054 4	12226 341,0 4
2020	22707 375	37982 772,2 9	36104 806,6 1	39860 737,9 8	80484 2,435 1	57714 238,2 2
2021	21334 202	32988 201,2 1	35169 824,9 9	30806 577,4 2	- 93498 1,621 8	40665 580,4 1
2022	28571 406	31663 162,6 4	34117 826,2 9	29208 499	- 10519 8,704	29871 595,8

Untuk lebih detailnya dapat dilihat di halaman lampiran.

- \triangleright Perhitungan *Double Exponential Smoothing* dengan α =0,4
 - a. Menghitung nilai Single Exponential Smoothing

Dengan menggunakan persamaan (4.6)

$$S_t' = 0.4(12034538) + (1-0.4)10980970$$

$$S_t' = 11402397,2$$

b. Menghitung nilai Double Exponential Smoothing

Dengan menggunakan persamaan (4.7)

$$S_t^{\prime\prime}$$
 = 0,4(11402397,2) + (1-0,4)10980970

$$S_t^{\prime\prime}$$
 = 11149540,88

c. Menghitung nilai a_t

Dengan menggunakan persamaan (4.8)

$$a_t = 2(11402397,2) - 11149540,88$$

$$a_t = 11655253,52$$

d. Menghitung nilai b_t

Dengan menggunakan persamaan (4.9)

$$b_t = \frac{0.4}{1-0.4} (11402397,2 - 11149540,88)$$

$$b_t = 168570,88$$

e. Menghitung nilai f_t

Dengan menggunakan persamaan (4.10)

$$f_{t+p}$$
 = 11655253,52+168570,88

$$f_{t+n} = 11823824,4$$

Tabel 4. 18 Hasil Peramalan Metode DES parameter α =0,4

t	x_t	S't	S''t	a_t	b_t	f_t
1992	10980 970	10980 970	10980 970	10980 970	14790 28	
1993	12034 538	11402 397,2	11149 540,8 8	11655 253,5 2	16857 0,88	12459 998
1994	12477 126	11832 288,7 2	11422 640,0 2	12241 937,4 2	27309 9,136	11823 824,4
1995	14381 614	12852 018,8 3	11994 391,5 4	13709 646,1 2	57175 1,526 4	12515 036,5 6
2020	22707 375	38038 536,2 6	39595 866,6 5	36481 205,8 7	- 10382 20,26	60968 016,3
2021	21334 202	31356 802,5 6	36300 241,0 1	26413 364,1	- 32956 25,63 8	35442 985,6 1
2022	28571 406	30242 643,9 3	33877 202,1 8	26608 085,6 9	24230 38,83 2	23117 738,4 6

Untuk lebih detailnya dapat dilihat di halaman lampiran.

\triangleright Perhitungan *Double Exponential Smoothing* dengan α =0,5

a. Menghitung nilai $Single\ Exponential\ Smoothing$

Dengan menggunakan persamaan (4.6)

$$S_t' = 0.5(12034538) + (1-0.5)10980970$$

$$S_t' = 11507754$$

b. Menghitung nilai Double Exponential Smoothing

Dengan menggunakan persamaan (4.7)

$$S_t^{\prime\prime} = 0.5(115077542) + (1\text{-}0.5)10980970$$

$$S_t^{\prime\prime} = 11244362$$

c. Menghitung nilai a_t

Dengan menggunakan persamaan (4.8)

$$a_t = 2(115077542) - 11244362$$

$$a_t = 11771146$$

d. Menghitung nilai b_t

Dengan menggunakan persamaan (4.9)

$$b_t = \frac{0.5}{1-0.5}(115077542 - 11244362)$$

$$b_t = 263392$$

e. Menghitung nilai f_t

Dengan menggunakan persamaan (4.10)

$$f_{t+p} = 11771146 + 263392$$

$$f_{t+n} = 12034538$$

Tabel 4. 19 Hasil Peramalan Metode DES parameter α =0,5

t	x_t	S't	S''t	a_t	b_t	f_t
1992	10980 970	10980 970	10980 970	10980 970	14790 28	
1993	12034 538	11507 754	11244 362	11771 146	26339 2	12459 998

t	x_t	S't	S''t	a_t	b_t	f_t
1994	12477 126	11992 440	11618 401	12366 479	37403 9	12034 538
1995	14381 614	13187 027	12402 714	13971 340	78431 3	12740 518
2020	22707 375	36873 880,6 5	40907 984,2 5	32839 777,0 4	- 40341 03,60 5	63236 983,1 7
2021	21334 202	29104 041,3 2	35006 012,7 9	23202 069,8 6	59019 71,46 4	28805 673,4 4
2022	28571 406	28837 723,6 6	31921 868,2 3	25753 579,1	- 30841 44,56 3	17300 098,4

Untuk lebih detailnya dapat dilihat di halaman lampiran.

- ightharpoonup Perhitungan *Double Exponential Smoothing* dengan α =0,6
 - a. Menghitung nilai $Single\ Exponential\ Smoothing$

Dengan menggunakan persamaan (4.6)

$$S_t' = 0.6(12034538) + (1-0.6)10980970$$

$$S_t' = 11613110,8$$

b. Menghitung nilai Double Exponential Smoothing

Dengan menggunakan persamaan (4.7)

$$S_t^{\prime\prime} = 0.6(11613110.8) + (1-0.6)10980970$$

$$S_t^{\prime\prime}$$
 = 11360254,48

c. Menghitung nilai a_t

Dengan menggunakan persamaan (4.8)

$$a_t = 2(11613110,8) - 11360254,48$$

$$a_t = 11865967,12$$

d. Menghitung nilai b_t

Dengan menggunakan persamaan (4.9)

$$b_t = \frac{0.6}{1 - 0.6} (11613110.8 - 11360254.48)$$

$$b_t = 379284,48$$

e. Menghitung nilai f_t

Dengan menggunakan persamaan (4.10)

$$f_{t+p}$$
 = 11865967,12+379284,48

$$f_{t+p}$$
 = 12245251,6

Tabel 4. 20 Hasil Peramalan Metode DES parameter α =0,6

t	x_t	S't	S''t	a_t	b_t	f_t
1992	10980 970	10980 970	10980 970	10980 970	14790 28	
1993	12034 538	11613 110,8	11360 254,4 8	11865 967,1 2	37928 4,48	12459 998
1994	12477 126	12131 519,9 2	11823 013,7 4	12440 026,1	46275 9,264	12245 251,6
1995	14381 614	13481 576,3 7	12818 151,3 2	14145 001,4 2	99513 7,574 4	12902 785,3 6

t	x_t	S't	S''t	a_t	b_t	f_t
2020	22707 375	34911 395,1 7	40367 735,4 3	29455 054,9 1	- 81845 10,38 9	64880 374,4 6
2021	21334 202	26765 079,2 7	32206 141,7 3	21324 016,8	- 81615 93,69 8	21270 544,5 2
2022	28571 406	27848 875,3 1	29591 781,8 8	26105 968,7 4	- 26143 59,85 6	13162 423,1 1

Untuk lebih detailnya dapat dilihat di halaman lampiran.

\triangleright Perhitungan *Double Exponential Smoothing* dengan α =0,7

a. Menghitung nilai Single Exponential Smoothing

Dengan menggunakan persamaan (4.6)

$$S_t' = 0.7(12034538) + (1-0.7)10980970$$

$$S_t' = 11718467,6$$

b. Menghitung nilai Double Exponential Smoothing

Dengan menggunakan persamaan (4.7)

$$S_t^{\prime\prime} = 0.7(11718467.6) + (1-0.7)10980970$$

$$S_t^{\prime\prime}$$
 = 11497218,32

c. Menghitung nilai a_t

Dengan menggunakan persamaan (4.8)

$$a_t = 2(11718467,6) - 11497218,32$$

$$a_t = 11939716,88$$

d. Menghitung nilai b_t

Dengan menggunakan persamaan (4.9)

$$b_t = \frac{0.7}{1 - 0.7} (11718467, 6 - 11497218, 32)$$

$$b_t = 516248,32$$

e. Menghitung nilai f_t

Dengan menggunakan persamaan (4.10)

$$f_{t+p}$$
 = 11939716,88+516248,32

$$f_{t+p}$$
 = 12455965,2

Tabel 4. 21 Hasil Peramalan Metode DES parameter α =0,7

t	x_t	S't	S''t	a_t	b_t	f_t
1992	10980 970	10980 970	10980 970	10980 970	14790 28	
1993	12034 538	11718 467,6	11497 218,3 2	11939 716,8 8	51624 8,32	12459 998
1994	12477 126	12249 528,4 8	12023 835,4 3	12475 221,5 3	52661 7,112	12455 965,2
1995	14381 614	13741 988,3 4	13226 542,4 7	14257 434,2 2	12027 07,03 8	13001 838,6 4
2020	22707 375	32386 944,0 4	38164 903,2 8	26608 984,8	- 13481 904,8 9	66058 595,0 4

t	x_t	S't	S''t	a_t	b_t	f_t
2021	21334 202	24650 024,6 1	28704 488,2 1	20595 561,0 1	- 94604 15,07	13127 079,9 1
2022	28571 406	27394 991,5 8	27787 840,5 7	27002 142,5 9	91664 7,641 3	11135 145,9 4

Untuk lebih detailnya dapat dilihat di halaman lampiran.

- \triangleright Perhitungan *Double Exponential Smoothing* dengan α =0,8
 - a. Menghitung nilai Single Exponential Smoothing

Dengan menggunakan persamaan (4.6)

$$S_t' = 0.8(12034538) + (1-0.8)10980970$$

$$S_t' = 11823824,4$$

b. Menghitung nilai Double Exponential Smoothing

Dengan menggunakan persamaan (4.7)

$$S_t^{\prime\prime} = 0.8(11823824.4) + (1-0.8)10980970$$

$$S_t^{\prime\prime}$$
 = 11655253,52

c. Menghitung nilai a_t

Dengan menggunakan persamaan (4.8)

$$a_t = 2(11823824,4) - 11655253,52$$

$$a_t = 11992395,28$$

d. Menghitung nilai b_t

Dengan menggunakan persamaan (4.9)

$$b_t = \frac{0.8}{1-0.8} (11823824,4-11655253,52)$$

$$b_t = 674283,52$$

e. Menghitung nilai f_t

Dengan menggunakan persamaan (4.10)

$$f_{t+p}$$
 = 11992395,28+674283,52

$$f_{t+p}$$
 = 12666678,8

Tabel 4. 22 Hasil Peramalan Metode DES parameter α =0,8

t	x_t	S't	S''t	a_t	b_t	f_t
1992	10980 970	10980 970	10980 970	10980 970	14790 28	
1993	12034 538	11823 824,4	11655 253,5 2	11992 395,2 8	67428 3,52	12459 998
1994	12477 126	12346 465,6 8	12208 223,2 5	12484 708,1 1	55296 9,728	12666 678,8
1995	14381 614	13974 584,3 4	13621 312,1 2	14327 856,5 5	14130 88,87	13037 677,8 4
2020	22707 375	29448 366,4 9	34422 995,0 7	24473 737,9 2	- 19898 514,2 9	66866 448,0 5
2021	21334 202	22957 034,9	25250 226,9 3	20663 842,8 7	91727 68,13 3	45752 23,63 6
2022	28571 406	27448 531,7 8	27008 870,8 1	27888 192,7 5	17586 43,87 8	11491 074,7 3

Untuk lebih detailnya dapat dilihat di halaman lampiran.

- \triangleright Perhitungan *Double Exponential Smoothing* dengan α =0,9
 - a. Menghitung nilai Single Exponential Smoothing

Dengan menggunakan persamaan (4.6)

$$S_t' = 0.9(12034538) + (1-0.9)10980970$$

$$S_t' = 11929181,2$$

b. Menghitung nilai Double Exponential Smoothing

Dengan menggunakan persamaan (4.7)

$$S_t^{\prime\prime} = 0.9(11929181,2) + (1-0.9)10980970$$

$$S_t^{\prime\prime} = 1834360,08$$

c. Menghitung nilai a_t

Dengan menggunakan persamaan (4.8)

$$a_t = 2(11929181,2) - 1834360,08$$

$$a_t = 12024002,32$$

d. Menghitung nilai b_t

Dengan menggunakan persamaan (4.9)

$$b_t = \frac{0.9}{1-0.9} (11929181, 2-1834360, 08)$$

$$b_t = 853390,08$$

e. Menghitung nilai f_t

Dengan menggunakan persamaan (4.10)

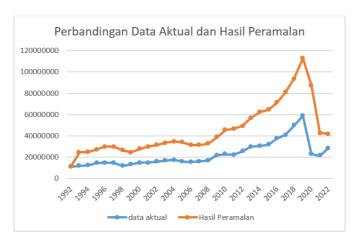
$$f_{t+p}$$
 = 12024002,32+853390,08

$$f_{t+p}$$
 = 12877392,4

Tabel 4.23 Hasil Peramalan Metode DES parameter α =0,9

t	x_t	S't	S''t	a_t	b_t	f_t
1992	10980 970	10980 970	10980 970	10980 970	14790 28	
1993	12034 538	11929 181,2	11834 360,0 8	12024 002,3 2	85339 0,08	12459 998
1994	12477 126	12422 331,5 2	12363 534,3 8	12481 128,6 6	52917 4,296	12877 392,4
1995	14381 614	14185 685,7 5	14003 470,6 1	14367 900,8 9	16399 36,23 8	13010 302,9 6
2020	22707 375	26197 054,2	29240 185,9 9	23153 922,4 1	- 27388 186,1 2	67362 116,2 7
2021	21334 202	21820 487,2 2	22562 457,1	21078 517,3 4	- 66777 28,89 7	- 42342 63,70 4
2022	28571 406	27896 314,1 2	27362 928,4 2	28429 699,8 2	48004 71,32 2	14400 788,4 5

Untuk lebih detailnya dapat dilihat di halaman lampiran.


Setelah nilai smoothing petama, smoothing kedua, nilai konstanta (a_t) , nilai koefisien trend (b_t) dan nilai peramalan (f_t) sudah dihitung, berikut adalah tabel hasil perhitungan peramalan jumlah wisatawan di Jawa Tengah pada tahun 2023

berdasarkan metode *Double Exponential Smoothing* dengan parameter α =0,1 sampai α =0,9.

Tabel 4.24 Hasil Peramalan Jumlah Wisatawan
Tahun 2023 dengan Metode DES

Parameter	Hasil
α	Peramalan
0,1	36.051.896
0,2	33.613.338
0,3	28.156.500
0,4	24.185.046
0,5	22.669.434
0,6	23.491.608
0,7	26.085.494
0,8	29.646.836
0,9	33,230.171

Berdasarkan tabel diatas, dapat dihasilkan perbandingan data aktual (data asli) dengan data hasil peramalan jumlah wisatawan di Jawa Tengah sebagai berikut:

Gambar 4.6 Perbandingan Data Aktual dan Hasil Peramalan dengan Metode DES

Langkah selanjutnya dilakukan perhitungan error dengan menggunakan metode analisis kesalahan MAPE. Sebelum menghitung MAPE, terlebih dahulu perlu menghitung nilai error yaitu kesalahan peramalan absolut dibagi dengan data aktual. Berikut contoh perhitungannya:

Tahun 1993 untuk parameter α =0,1

$$\frac{|x_t - f_t|}{x_t} = \frac{|12034538 - 12459998|}{12034538} = 0,035353247$$

Untuk hasil perhitungan parameter peramalan lainnya dapat dilihat pada tabel berikut ini:

Tabel 4. 25 Perhitungan Jumlah Nilai Error Metode DES

Parameter	Nilai error
0,1	6,303704421
0,2	4,577101591
0,3	4,862357609
0,4	4,70288929
0,5	4,637443121
0,6	4,515127577
0,7	5,062654487
0,8	5,57555211
0,9	6,004990099

Untuk mengetahui nilai α yang paling tepat pada metode ini adalah dengan cara membandingkan kesalahan peramalan MAPE dari masing-masing nilai α . Cara menghitung nilai MAPE adalah sebagai berikut:

Perhitungan MAPE dengan parameter α =0,1


MAPE =
$$\left(\frac{100}{n}\right) \sum_{t=1}^{n} \frac{|x_t - f_t|}{x_t}$$

= $\left(\frac{100}{30}\right) * 6,303704421 = 21\%$

Untuk perhitungan MAPE metode DES pada parameter lainnya dapat dilihat pada tabel dibawah ini:

Tabel 4. 26 Hasil Perhitungan Nilai MAPE Metode DES

Parameter α	Nilai MAPE
0,1	21%
0,2	18,6%
0,3	16,2%
0,4	15,7%
0,5	15,5%
0,6	15,1%
0,7	16,9%
0,8	18,6%
0,9	20%

Berdasarkan tabel 4.23 hasil analisis perhitungan MAPE metode DES menunjukkan bahwa tingkat kesalahan terkecil berada pada peramalan dengan parameter α 0,6 sebesar 15,1%. Hasil perolehan nilai MAPE metode Double Exponential Smoothing ditampilkan dalam grafik pada gambar 4.5

Gambar 4. 7 Perolehan Nilai MAPE DES

Dari hasil diatas terlihat bahwa perhitungan MAPE metode DES parameter pada menunjukkan nilai MAPE lebih kecil dibanding parameter lainnya, karena berdasarkan perhitungan error memiliki error forecast yang lebih baik. Selain dilihat dari nilai MAPE yang terkecil, cara menentukan model terbaik dalam metode Double Exponential Smoothing adalah dapat dilakukan dengan melihat nilai RMSE (Root Mean Square Error). Berikut adalah hasil nilai RMSE dari metode Double Exponential Smoothing:

Tabel 4.27 Hasil Nilai RMSE dari Metode DMA

Parameter α	Nilai RMSE
0,1	8.312.286,76
0,2	8.006.089,99
0,3	8.480.756,02
0,4	7.938.177,54
0,5	8.135.194,14
0,6	7.920.024,59
0,7	8.917.540,70
0,8	9.415.428,35
0,9	9.991.809,34

Berdasarkan tabel diatas, dapat dilihat bahwa nilai RMSE terkecil terdapat pada saat parameter α =0,6. Root Square Mean Error (RMSE) merupakan besarnya tingkat kesalahan hasil prediksi, dimana semakin kecil (mendekati 0) nilai RMSE maka hasil prediksi akan semakin akurat. Jadi, hasil prediksi jumlah wisatawan di Jawa Tengah untuk tahun 2023 mendatang akan semakin akurat prediksinya ketika menggunakan metode Double Exponential Smoothing pada saat parameter α =0,6.

Jadi, dapat disimpulkan bahwa peramalan jumlah wisatawan di Jawa Tengah untuk tahun yang

akan datang yaitu tahun 2023 dapat dihitung menggunakan parameter α =0,6 dengan nilai a_t = 26105968,74 dan b_t = -2614359,865 perhitungannya sebagai berikut:

Perhitungan peramalan untuk tahun 2023

$$f_{t+m} = a_t + b_t m$$

= 26105968,74 + (-2614359,865) (1)
= 23491608,88

Jadi hasil peramalan pada metode *Double Exponential Smoothing* dengan parameter α 0,6 meramalkan bahwa di tahun 2023 jumlah wisatawan di Jawa Tengah sebanyak 23.491.609 pengunjung.

Gambar 4. 8 Perbandingan Tingkat Kesalahan Metode DMA dan DES

Berdasarkan grafik tersebut menunjukkan bahwa nilai MAPE yang dihasilkan oleh metode DES lebih rendah atau lebih kecil dibandingkan dengan metode DMA, karena semakin kecil nilai MAPE yang diperoleh oleh metode DES, maka akan semakin kecil pula nilai error yang akan dihasilkan. Sehingga data jumlah wisatawan di Jawa Tengah akan diprediksi dengan menggunakan metode *Double Exponential Smoothing* sehingga hasilnya lebih akurat atau mendekati data aktualnya.

Hasil peramalan menggunakan metode *Double* Moving Average menghasilkan jumlah wisatawan pada tahun 2023 dengan tingkat kesalahan minimum sebesar 18.9% teriadi ketika menggunakan rataan waktu tiga periode sehingga formulasi model persamaan peramalan yang adalah $f_{t+m} = 14390007,11$ dihasilkan (9814320,556)(m) dengan m merupakan jumlah periode yang akan diprediksi. Sedangkan hasil peramalan dengan menggunakan metode Double Exponential Smoothing menghasilkan formulasi model persamaan peramalan f_{t+m} = 26105968,74 + (-2614359,865)(m) sehingga diperoleh tingkat kesalahan minimum sebesar 15,1% terjadi ketika menggunakan nilai parameter α dengan nilai MAPE terkecil yaitu α =0,6 sehingga prediksi jumlah wisatawan di Jawa Tengah tahun 2023 sebanyak 23.491.609 pengunjung.

BAB V

PENUTUP

A. Simpulan

Dari pembahasan diatas dapat disimpulkan bahwa:

- 1. Peramalan menggunakan metode *Double Moving Average* diperoleh dari periode rataan waktu 3 periode dengan nilai MAPE terkecil sebesar 18,9% sehingga persamaan model peramalan yaitu f_{t+m} = 14390007,11 + (-9814320,556)(m) dengan m merupakan jumlah periode yang akan diramalkan.
- 2. Peramalan menggunakan metode *Double Exponential Smoothing* diperoleh dari parameter α =0,6 dengan nilai MAPE terkecil sebesar 15,1% sehingga persamaan model peramalan yaitu f_{t+m} = 26105968,74 + (-2614359,865)(m) dengan m merupakan jumlah periode yang akan diramalkan.
- 3. Peramalan jumlah wisatawan di Jawa Tengah dengan menggunakan metode *Double Moving Average* dan *Double Exponential Smoothing* menghasilkan masingmasing nilai MAPE terkecil sebesar 18,9% dan 15,1%. Sehingga dapat disimpulkan bahwa metode terbaik dalam memprediksi jumlah wisatawan di Jawa Tengah adalah menggunakan metode *Double*

Exponential Smoothing. Hasil ramalan jumlah wisatawan tahun 2023 dengan metode terbaik adalah 23.491.609 pengunjung.

B. Saran

Setelah diperoleh kesimpulan, penulis mengajukan saran yaitu peramalan dengan menggunakan metode time series akan lebih akurat jika data yang digunakan lebih banyak karena nilai MAPE sangat bergantung pada banyaknya data yang akan digunakan dalam peramalan. Selain itu dalam mengidentifikasi pola data sebaiknya harus lebih teliti karena identifikasi pola data kan berpengaruh pada metode peramalan yang digunakan dan keakuratan hasil peramalan sangat dipengaruhi oleh metiode yang dipilih.

DAFTAR PUSTAKA

- Aulia, Triana. Z. (2021). *Metodologi Penelitian & Anaisis Data Comprehensive*. Cirebon: Insania.
- Arikunto, Suharsini. (2010). *Prosedur Penelitian Suatu Pendekatan Praktik. Edisi Revisi*. Jakarta: Rineka Cipta.
- Ajeng, S. (2013). Peramalan Penjualan untuk Perencanaan Pengadaan Persediaan Buah Durian di Rumah Durian Harum Bintaro, Jakarta: Fakultas Sains dan Teknologi, Universitas Negeri Syarif Hidayatullah. Jakarta: UIN Jakarta Press.
- Azizah, Auli. F. N. (2015). Peramalan Migrasi Masuk Kota Surabaya Tahun 2015 dengan Metode Double Movig Average dan Double Exponential Smoothing Brown. Jurnal Biometrika dan kependudukan, 4(2), 172-180.
- Badan Pusat Statistik Jawa Tengah. (1995-2014). *Provinsi Jawa Tengah Dalam Angka 1995-2014*. Jawa Tengah: Badan Pusat Statistik Prov. Jawa Tengah dan BAPPEDA Prov. Jawa Tengah.
- Badan Pusat Statistik Jawa Tengah. (2015-2022). *Provinsi Jawa Tengah Dalam Angka 2015-2022*. Jawa Tengah: Badan Pusat Statistik Provinsi Jawa Tengah.
- Dinas Kepemudaan, Olahraga, dan Pariwisata. (2022). Satatistik Pariwisata Jawa Tengah Dalam Angka 2022. Jawa Tengah: Dinas Kepemudaan, Olahraga dan Pariwisata Prov. Jawa Tengah.
- Djami, Ronald. J., & Nanlohy, Yonlib. W. A. (2022).

 Peramalan Indeks Harga Konsumen di Kota Ambon

 Menggunakan Autoregressive Integrated Moving

- Average (ARIMA) dan Double Exponential Smoothing. Journal of Satistics and Its Applications, 4(1), 1-14.
- Eunike, A. N., & dkk. (2018). *Perencanaan Produksi dan Pengendalian Persediaan*. Malang: UB Press.
- Gurianto, Reyham. N., Ika, P., Desi, Y. (2016). Peramalan Jumlah Penduduk Kota Samarinda Dengan Menggunakan Metode Pemulusan Eksponensial Ganda dan Tripel Dari Brown. Jurnal Eksponensial, 7(1).
- Hakeem, Jordi. R. & Rahmat, P. (2019). Peramalan Jumlah Pengunjung Ciwangun Indah Camp Menggunakan Metode Moving Average dan Ecponential Smoothing. Jurnal Altasia, 1(1).
- Heizer, J. & Render, B. (2014). Operations Management. Suntainability and Supply Chain Management. In Operations Management. Sustainability and Supply Chain Management (p. 255).
- Hidayat, Rahmat., Mustawinar, B. H. (2022). *Peramalan Jumlah Wisatawan Asing dengan Model ARIMA*. Jurnal Matematika dan Aplikasinya, 2(2), 104-115.
- Hudiyanti, C.H., Bachtiar, F. A., Setiawan, B. D. (2019).

 Perbandingan Double Moving average dan double
 Exponential Smoothing untuk Peramalan Jumlah
 Kedatangan Wisatawan Mancanegara di Bandara
 Ngurah Rai. Jurnal Pengembangan Teknologi
 Informasi dan Ilmu Komputer, 3(3), 2667-2672.
- Jumadi. (2021). *Manajemen Operasi*. Purwodadi: CV. Sarnu Untung.
- Kim, S. And Kim, H. (2016). *A new Metric of Absolute Percentage Error for Intermittent Demand Forecasts.* International Journal of Forecasting, 32(3), 669-679.

- Kushartini, D., & Almahdy, I. (2013). Sistem Persediaan Bahan Baku Produk Dispersant di Industri Kimia. Jurnal PASTI, 10(2), 217-234.
- Kusmindari, D., Ch., & dkk. (2019). *Production Planning and Inventory Control.* Terjemahan. Yogyakarta: CV Budi Utama.
- Kustiawan, Fiqi. R. (2017). Forecasting Jumlah Wisatawan Di Taman Wisata Alam Kawah Ijen Dengan Metode Exponential Smoothing Berbantu Zaitun Time Series. Jurnal Pendidikan Matematika & Matematika, 1(1).
- Lestari, Sri. I. P., Meri, A. (2019). *Peramalan Stok Spare Part Menggunakan Metode Least Square*. Aceh: Sefa Bumi Persada.
- Listiowarni, Indah., dkk. (2020). Perbandingan Metode Double Exponential Smoothing dan Double Moving Average Untuk Peramalan Harga Beras Eceran di Kabupaten Pamekasan. Jurnal Komputer Terapan, 6(2), 158-169.
- Maesaroh, Ratu. (2019). Dampak Citra Destinasi, Kualitas Pelayanan dan Harapan Wisatawan Wisata Ziarah Banten Lama Terhadap Kepuasan Wisatawan. Bogor: Guepedia.
- Megasari, R. T. (2011). Perbandingan Antara Metode Moving Average, Exponential Smoothing, Winters dalam Peramalan Volume Penjualan PT. Satriamandiri Citramulia Berbasiskan Komputer. Jakarta: Universitas Bina Nusantara.
- Nurdela, Safira. A. (2017). *Aplikasi Peramalan Jumlah Kelahiran Dengan Metode Jaringan Syaraf Tiruan*. The Indonesian of Public Health, 12(2), 213-223.

- Nurrohmah, Safitri., K. E., (2022). Penerapan Metode Double Exponential Smoothing Dari Brown Untuk Peramalan Jumlah Produksi Air. Jurnal Matematika, 21(1).
- Nurkahfi, M. B., dkk. (2016). Perbandingan Metode Double Exponential Smoothing dan Least Square untuk Sistem Prediksi Hasil Produksi Teh (Studi Kasus: PTPN XII Persero Kebun Bantaran Kabupaten Blitar).
- Pane, S. F., Rachmadani, E. V. (2020). *Big Data: Forecasting Menggunakan Python*. Bandung: Kreatif Industri Nusantara.
- Priyono. (2008). *Metode Penelitian Kuantitatif*. Sidoarjo: Zifatama.
- Rahmawati. (2015). Model Trend Untuk Peramalan Jumlah Penduduk (Studi Kasus Pada Pertumbuhan Penduduk Kabupaten Gowa). Journal Of Technology Research in Information System and Engineering, 2(2).
- Rakhman, A., & Puspitasari, N. B. (2017). Usulan Perbaikan Perencanaan Produksi pada Produk Engine Tipe CJ untuk Mobil Pick Up di PT. XYZ dengan Metode Timeseries. Industrial Engineering Online Journal, 6(1).
- Rais, N. A., dkk. (2020). Evaluasi Metode Forecasting pada Data Kunjungan Wisatawan Mancanegara di Indonesia. Jurnal Sains dan Manajemen, 8(2).
- Rizani, Nataya. C., & Fauziyyah, I. N. (2020). *Peramalan Permintaan Barang Jadi Menggunakan Metode Time Series pada Departemen Gudang di PT Z.* Jurnal Sains dan Teknologi TEKNIK UTAMA. Edisi Khusus (3).
- Robial, Siti. M. (2018). Perbandingan Model Statistik pada Analisis Metode Peramalan Time Series (Studi Kasus:

- PT. Telekomunikasi Indonesia, TBK Kandatel Sukabumi). Jurnal Ilmiah Santika, 8(2).
- Seto, S., Nita, Y., & Triana, L. (2016). *Manajemen Farmasi:* Lingkup Apotek, Farmasi Rumah Sakit, Industri Farmasi, Pedagang Besar Farmasi. Surabaya: Airlangga University Press.
- Sinaga, Hommy. D. E., Irawati, N. (2018). Perbandingan Double Moving Average dan Double Exponential Smoothing pada Peramalan Bahan Medis Habis Pakai. Jurnal Teknologi dan Sistem Informasi, 4(2), 197-204.
- Sofyan, D.K. (2013). *Perencanaan & Pengendalian Produksi.*Lhoksemawe NAD: Graha Ilmu.
- Sungkawa, I., & Megsari, R. T. (2011). Nilai Ramalan Data Deret Waktu dalam Seleksi Model Peramalan volume Penjualan PT Satriamandiri Citramulia Iwa Sungkawa; Ries Tri Megasari. ComTech, 2(2), 636-645.
- Tohir, Akhmat. (2011). *Analisis Peramalan Penjualan Crude Palm Oil (CPO) pada PT Kharisma Pemasaran Bersama Nusantara.* Skripsi.
- Yuni, S., Talakua, M. W., & Lesnussa. Y. A. (2015). Peramalan Jumlah Pengunjung Perpustakaan Universitas Pattimura Ambon Menggunakan Metode Dekomposisi. Jurnal Ilmu Matematika & Terapan, 5(1), 41-50.
- Zaenuddin, Muhammad (2020). *Statistik Terapan untuk Ekonomi dan Bisnis*. Yogyakarta: Deepublish.

LAMPIRAN - LAMPIRAN

Lampiran 1 Data Jumlah Wisatawan di Jawa Tengah Tahun 1992-2022

No	Tahun	Jumlah Wisatawan
1	1992	10.980.970
2	1993	12.034.538
3	1994	12.477.126
4	1995	14.381.614
5	1996	14.701.757
6	1997	14.266.188
7	1998	11.673.927
8	1999	13.195.723
9	2000	14.744.000
10	2001	14.840.684
11	2002	16.001.262
12	2003	16.764.701
13	2004	17.457.776
14	2005	15.759.444
15	2006	15.314.118
16	2007	16.064.510
17	2008	16.556.084
18	2009	21.819.117
19	2010	22.592.951
20	2011	22.231.246
21	2012	25.612.484
22	2013	29.818.752
23	2014	30.271.679
24	2015	31.807.246

No	Tahun	Jumlah Wisatawan
25	2016	37.478.700
26	2017	40.899.577
27	2018	49.620.775
28	2019	58.592.562
29	2020	22.707.375
30	2021	21.334.202
31	2022	28.571.406

Lampiran 2 Hasil Perhitungan Peramalan Metode Double Moving Average 2 Periode

d	Α	В	C	D	E	F	G	H	1	J	K	L
	t	Xt	S't	S"t	At	Bt	Ft	Xt-Ft	Xt-Ft	(Xt-Ft)^2	error	
	1992	10980970										
	1993	12034538	11507754									
	1994	12477126	12255832	11881793	12629871	748078						
	1995	14381614	13429370	12842601	14016139	1173538	13377949	1003665	1003665	1,00734E+12	0,069788064	
	1996	14701757	14541685,5	13985527,75	15097843,25	1112315,5	15189677	-487920	487920	2,38066E+11	0,03318787	
	1997	14266188	14483972,5	14512829	14455116	-57713	16210158,75	-1943970,75	1943970,75	3,77902E+12	0,136264204	
	1998	11673927	12970057,5	13727015	12213100	-1513915	14397403	-2723476	2723476	7,41732E+12	0,233295617	
	1999	13195723	12434825	12702441,25	12167208,75	-535232,5	10699185	2496538	2496538	6,2327E+12	0,189192968	
	2000	14744000	13969861,5	13202343,25	14737379,75	1535036,5	11631976,25	3112023,75	3112023,75	9,68469E+12	0,21107052	
	2001	14840684	14792342	14381101,75	15203582,25	822480,5	16272416,25	-1431732,25	1431732,25	2,04986E+12	0,096473468	
	2002	16001262	15420973	15106657,5	15735288,5	628631	16026062,75	-24800,75	24800,75	615077200,6	0,001549925	
	2003	16764701	16382981,5	15901977,25	16863985,75	962008,5	16363919,5	400781,5	400781,5	1,60626E+11	0,023906272	
	2004	17457776	17111238,5	16747110	17475367	728257	17825994,25	-368218,25	368218,25	1,35585E+11	0,021091933	
	2005	15759444	16608610	16859924,25	16357295,75	-502628,5	18203624	-2444180	2444180	5,97402E+12	0,155093035	
	2006	15314118	15536781	16072695,5	15000866,5	-1071829	15854667,25	-540549,25	540549,25	2,92193E+11	0,035297446	
	2007	16064510	15689314	15613047,5	15765580,5	152533	13929037,5	2135472,5	2135472,5	4,56024E+12	0,13293107	
	2008	16556084	16310297	15999805,5	16620788,5	620983	15918113,5	637970,5	637970,5	4,07006E+11	0,038533901	
	2009	21819117	19187600,5	17748948,75	20626252,25	2877303,5	17241771,5	4577345,5	4577345,5	2,09521E+13	0,20978601	
	2010	22592951	22206034	20696817,25	23715250,75	3018433,5	23503555,75	-910604,75	910604,75	8,29201E+11	0,040304817	
	2011	22231246	22412098,5	22309066,25	22515130,75	206064,5	26733684,25	-4502438,25	4502438,25	2,0272E+13	0,202527481	
	2012	25612484	23921865	23166981,75	24676748,25	1509766,5	22721195,25	2891288,75	2891288,75	8,35955E+12	0,112885917	
	2013	29818752	27715618	25818741,5	29612494,5	3793753	26186514,75	3632237,25	3632237,25	1,31931E+13	0,121810505	
	2014	30271679	30045215,5	28880416,75	31210014,25	2329597,5	33406247,5	-3134568,5	3134568,5	9,82552E+12	0,10354789	
	2015	31807246	31039462,5	30542339	31536586	994247	33539611,75	-1732365,75	1732365,75	3,00109E+12	0,0544645	
	2016	37478700	34642973	32841217,75	36444728,25	3603510,5	32530833	4947867	4947867	2,44814E+13	0,132018106	
	2017	40899577	39189138,5	36916055,75	41462221,25	4546165,5	40048238,75	851338,25	851338,25	7,24777E+11	0,020815331	
	2018	49620775	45260176	42224657,25	48295694,75	6071037,5	46008386,75	3612388,25	3612388,25	1,30493E+13	0,072799916	
	2019	58592562	54106668,5	49683422,25	58529914,75	8846492,5	54366732,25	4225829,75	4225829,75	1,78576E+13	0,07212229	
	2020	22707375	40649968,5	47378318,5	33921618,5	-13456700	67376407,25	-44669032,25	44669032,25	1,99532E+15	1,967159667	
	2021	21334202	22020788,5	31335378,5	12706198,5	-18629180	20464918,5	869283,5	869283,5	7,55654E+11	0,040746005	
	2022	28571406	24952804	23486796,25	26418811,75	2932015,5	-5922981,5	34494387,5	34494387,5	1,18986E+15	1,207304516	
							29350827,25					
							TOTAL	4974560,25	134802273,8	3,36043E+15	5,735969245	
							AVERAGE	177662,8661	4814366,92	1,20015E+14	0,204856044	20,4856044
								BLAS	MAD	MSE	MAPE	MAPE =20,5

Lampiran 3 Hasil Perhitungan Peramalan Double Moving Average 3 Periode

- 4	Α	В	C	D	E	F	G	H	1	J	K	L
1	t	Xt	S't	S"t	At	Bt	Ft	Xt-Ft	Xt-Ft	(Xt-Ft)^2	ERROR	
2	1992	10980970										
3	1993	12034538										
4	1994	12477126	11830878									
5	1995	14381614	12964426									
6	1996	14701757	13853499	12882934,33	14824063,67	970564,6667						
7	1997	14266188	14449853	13755926	15143780	693927	15794628,33	-1528440,333	1528440,333	2,33613E+12	0,107137263	
8	1998	11673927	13547290,67	13950214,22	13144367,11	-402923,5556	15837707	-4163780	4163780	1,73371E+13	0,356673466	
9	1999	13195723	13045279,33	13680807,67	12409751	-635528,3333	12741443,56	454279,4444	454279,4444	2,0637E+11	0,034426264	
10	2000	14744000	13204550	13265706,67	13143393,33	-61156,66667	11774222,67	2969777,333	2969777,333	8,81958E+12	0,201422771	
11	2001	14840684	14260135,67	13503321,67	15016949,67	756814	13082236,67	1758447,333	1758447,333	3,09214E+12	0,118488294	
12	2002	15314118	14966267,33	14143651	15788883,67	822616,3333	15773763,67	-459645,6667	459645,6667	2,11274E+11	0,030014505	
13	2003	15759444	15304748,67	14843717,22	15765780,11	461031,4444	16611500	-852056	852056	7,25999E+11	0,054066374	
14	2004	16001262	15691608	15320874,67	16062341,33	370733,3333	16226811,56	-225549,5556	225549,5556	50872602011	0,014095735	
15	2005	16064510	15941738,67	15646031,78	16237445,56	295706,8889	16433074,67	-368564,6667	368564,6667	1,3584E+11	0,022942789	
16	2006	16556084	16207285,33	15946877,33	16467693,33	260408	16533152,44	22931,55556	22931,55556	525856240,2	0,001385083	
17	2007	16764701	16461765	16203596,33	16719933,67	258168,6667	16728101,33	36599,66667	36599,66667	1339535600	0,002183139	
18	2008	17457776	16926187	16531745,78	17320628,22	394441,2222	16978102,33	479673,6667	479673,6667	2,30087E+11	0,027476218	
19	2009	21819117	18680531,33	17356161,11	20004901,56	1324370,222	17715069,44	4104047,556	4104047,556	1,68432E+13	0,188094117	
20	2010	22592951	20623281,33	18743333,22	22503229,44	1879948,111	21329271,78	1263679,222	1263679,222	1,59689E+12	0,055932455	
21	2011	22231246	22214438	20506083,56	23922792,44	1708354,444	24383177,56	-2151931,556	2151931,556	4,63081E+12	0,096797613	
22	2012	25612484	23478893,67	22105537,67	24852249,67	1373356	25631146,89	-18662,88889	18662,88889	348303421,7	0,000728664	
23	2013	29818752	25887494	23860275,22	27914712,78	2027218,778	26225605,67	3593146,333	3593146,333	1,29107E+13	0,120499555	
24	2014	30271679	28567638,33	25978008,67	31157268	2589629,667	29941931,56	329747,4444	329747,4444	1,08733E+11	0,010892935	
25	2015	31807246	30632559	28362563,78	32902554,22	2269995,222	33746897,67	-1939651,667	1939651,667	3,76225E+12	0,06098144	
26	2016	37478700	33185875	30795357,44	35576392,56	2390517,556	35172549,44	2306150,556	2306150,556	5,31833E+12	0,061532298	
27	2017	40899577	36728507,67	33515647,22	39941368,11	3212860,444	37966910,11	2932666,889	2932666,889	8,60054E+12	0,071704089	
28	2018	49620775	42666350,67	37526911,11	47805790,22	5139439,556	43154228,56	6466546,444	6466546,444	4,18162E+13	0,130319336	
29	2019	58592562	49704304,67	43033054,33	56375555	6671250,333	52945229,78	5647332,222	5647332,222	3,18924E+13	0,096383091	
30	2020	22707375	43640237,33	45336964,22	41943510,44	-1696726,889	63046805,33	-40339430,33	40339430,33	1,62727E+15	1,776490252	
31	2021	21334202	34211379,67	42518640,56	25904118,78	-8307260,889	40246783,56	-18912581,56	18912581,56	3,57686E+14	0,886491164	
32	2022	28571406	24204327,67	34018648,22	14390007,11	-9814320,556	17596857,89	10974548,11	10974548,11	1,20441E+14	0,384109487	
33							4575686,556					
34												
35							TOTAL	-27620720,44	114299868	2,26602E+15	4,911268398	
36							AVERAGE	-1062335,402	4396148,769	8,71548E+13	0,188894938	18,889494
37								BLAS	MAD	MSE	MAPE	MAPE = 18,9%

Lampiran 4 Hasil Perhitungan Peramalan Metod Double Moving Average 4 Periode

$_{d}$	Α	В	C	D	E	F	G	Н	1	J	K	L
1	t	Xt	S't	S"t	At	Bt	Ft	Xt-Ft	Xt-Ft	(Xt-Ft)^2	ERROR	
2	1992	10980970										
3	1993	12034538										
	1994	12477126										
	1995	14381614	12468562									
	1996	14701757	13398758,75									
	1997	14266188	13956671,25									
	1998	11673927	13755871,5	13394965,88	14116777,13	240603,75						
	1999	13195723	13459398,75	13642675,06	13276122,44	-122184,2083	14357380,88	-1161657,875	1161657,875	1,34945E+12	0,088032908	
5	2000	14744000	13469959,5	13660475,25	13279443,75	-127010,5	13153938,23	1590061,771	1590061,771	2,5283E+12	0,107844667	
	2001	14840684	13613583,5	13574703,31	13652463,69	25920,125	13152433,25	1688250,75	1688250,75	2,85019E+12	0,113758284	
	2002	16001262	14695417,25	13809589,75	15581244,75	590551,6667	13678383,81	2322878,188	2322878,188	5,39576E+12	0,145168437	
3	2003	16764701	15587661,75	14341655,5	16833668	830670,8333	16171796,42	592904,5833	592904,5833	3,51536E+11	0,035366249	
	2004	17457776	16266105,75	15040692,06	17491519,44	816942,4583	17664338,83	-206562,8333	206562,8333	42668204115	0,011832139	
5	2005	15759444	16495795,75	15761245,13	17230346,38	489700,4167	18308461,9	-2549017,896	2549017,896	6,49749E+12	0,16174542	
	2006	15314118	16324009,75	16168393,25	16479626,25	103744,3333	17720046,79	-2405928,792	2405928,792	5,78849E+12	0,15710528	
	2007	16064510	16148962	16308718,31	15989205.69	-106504,2083	16583370,58	-518860,5833	518860,5833	2,69216E+11	0,032298563	
	2008	16556084	15923539	16223076,63	15624001,38	-199691,75	15882701,48	673382,5208	673382,5208	4,53444E+11	0.040672814	
	2009	21819117	17438457,25	16458742	18418172.5	653143.5	15424309,63	6394807,375	6394807,375	4,08936E+13	0,293082776	
	2010	22592951	19258165.5	17192280.94	21324050.06	1377256,375	19071316	3521635	3521635	1,24019E+13	0.155873175	
	2011	22231246	20799849,5	18355002.81	23244696,19	1629897,792	22701306,44	-470060,4375	470060,4375	2,20957E+11	0.021144134	
	2012	25612484	23063949,5	20140105.44	25987793.56	1949229,375	24874593,98	737890,0208	737890,0208	5,44482E+11	0.02880978	
	2013	29818752	25063858.25	22046455,69	28081260,81	2011601,708	27937022.94	1881729,063	1881729,063	3,5409E+12	0.063105561	
1	2014	30271679	26983540.25	23977799,38	29989281,13	2003827,25	30092862,52	178816,4792	178816,4792	31975333222	0.005907055	
1	2015	31807246	29377540.25	26122222,06	32632858,44	2170212,125	31993108,38	-185862,375	185862,375	34544822441	0.005843397	
	2016	37478700	32344094.25	28442258.25	36245930.25	2601224	34803070.56	2675629,438	2675629,438	7.15899E+12	0.071390668	
	2017	40899577	35114300,5	30954868,81	39273732,19	2772954,458	38847154,25	2052422,75	2052422,75	4,21244E+12	0.050182004	
	2018	49620775	39951574.5	34196877,38	45706271,63	3836464,75	42046686,65	7574088,354	7574088,354	5,73668E+13	0.152639461	
,	2019	58592562	46647903.5	38514468,19	54781338,81	5422290.208	49542736,38	9049825.625	9049825.625	8,18993E+13	0.154453489	
,	2020	22707375	42955072,25	41167212,69	44742931,81	1191906,375	60203629,02	-37496254,02	37496254,02	1,40597E+15	1,651280873	
	2021	21334202	38063728.5	41904569,69	34222887,31	-2560560,792	45934838,19	-24600636,19	24600636,19	6,05191E+14	1,153107868	
	2022	28571406	32801386.25	40117022,63	25485749,88	-4877090,917	31662326,52	-3090920.521	3090920,521	9,55379E+12	0,108182304	
	2022	20371400	32001300,23	4011/022,03	23403/43,00	-4077030,317	20608658.96	-3030320,321	3030320,321	3,333/30712	0,100102304	
							2,00000030,30					
;							TOTAL	-31751439,6	113620083,4	2,25455E+15	4,808827305	
5							AVERAGE	-1322976.65	4734170.143	9,39394E+13	0.200367804	20.03678044
,								BLAS	MAD	MSE	MAPE	MAPE = 20%
									- Inne	111.25	THE STATE OF THE S	APRIL - 2076

Lampiran 5 Hasil Perhitungan Peramalan Metode Double Moving Average 5 Periode

d	Α	В	C	D	E	F	G	H	1	J	K	L
1	t	Xt	S't	S"t	At	Bt	Ft	Xt-Ft	Xt-Ft	(Xt-Ft)^2	ERROR	
2	1992	10980970										
3	1993	12034538										
4	1994	12477126										
5	1995	14381614										
6	1996	14701757	12915201									
7	1997	14266188	13572244,6									
8	1998	11673927	13500122,4									
9	1999	13195723	13643841,8									
10	2000	14744000	13716319	13469545,76	13963092,24	123386,62						
11	2001	14840684	13744104,4	13635326,44	13852882,36	54388,98	14086478,86	754205,14	754205,14	5,68825E+11	0,050820106	
12	2002	16001262	14091119,2	13739101,36	14443137,04	176008,92	13907271,34	2093990,66	2093990,66	4,3848E+12	0,130864094	
13	2003	16764701	15109274	14060931,68	16157616,32	524171,16	14619145,96	2145555,04	2145555,04	4,60341E+12	0,127980513	
14	2004	17457776	15961684,6	14524500,24	17398868,96	718592,18	16681787,48	775988,52	775988,52	6,02158E+11	0,044449449	
15	2005	15759444	16164773,4	15014191,12	17315355,68	575291,14	18117461,14	-2358017,14	2358017,14	5,56024E+12	0,149625656	
16	2006	15314118	16259460,2	15517262,28	17001658,12	371098,96	17890646,82	-2576528,82	2576528,82	6,6385E+12	0,168245329	
17	2007	16064510	16272109,8	15953460,4	16590759,2	159324,7	17372757,08	-1308247,08	1308247,08	1,71151E+12	0,081437098	
18	2008	16556084	16230386,4	16177682,88	16283089,92	26351,76	16750083,9	-193999,9	193999,9	37635961200	0,011717741	
19	2009	21819117	17102654,6	16405876,88	17799432,32	348388,86	16309441,68	5509675,32	5509675,32	3,03565E+13	0,252515962	
20	2010	22592951	18469356	16866793,4	20071918,6	801281,3	18147821,18	4445129,82	4445129,82	1,97592E+13	0,196748527	
21	2011	22231246	19852781,6	17585457,68	22120105,52	1133661,96	20873199,9	1358046,1	1358046,1	1,84429E+12	0,061087269	
22	2012	25612484	21762376,4	18683511	24841241,8	1539432,7	23253767,48	2358716,52	2358716,52	5,56354E+12	0,092092455	
23	2013	29818752	24414910	20320415,72	28509404,28	2047247,14	26380674,5	3438077,5	3438077,5	1,18204E+13	0,115299175	
24	2014	30271679	26105422,4	22120969,28	30089875,52	1992226,56	30556651,42	-284972,42	284972,42	81209280161	0,009413829	
25	2015	31807246	27948281,4	24016754,36	31879808,44	1965763,52	32082102,08	-274856,08	274856,08	75545864713	0,008641304	
26	2016	37478700	30997772,2	26245752,48	35749791,92	2376009,86	33845571,96	3633128,04	3633128,04	1,31996E+13	0,096938475	
27	2017	40899577	34055190,8	28704315,36	39406066,24	2675437,72	38125801,78	2773775,22	2773775,22	7,69383E+12	0,067819166	
28	2018	49620775	38015595,4	31424452,44	44606738,36	3295571,48	42081503,96	7539271,04	7539271,04	5,68406E+13	0,151937793	
29	2019	58592562	43679772	34939322,36	52420221,64	4370224,82	47902309,84	10690252,16	10690252,16	1,14281E+14	0,182450669	
30	2020	22707375	41859797,8	37721625,64	45997969,96	2069086,08	56790446,46	-34083071,46	34083071,46	1,16166E+15	1,500969243	
31	2021	21334202	38630898,2	39248250,84	38013545,56	-308676,32	48067056,04	-26732854,04	26732854,04	7,14645E+14	1,25305151	
32	2022	28571406	36165264	39670265,48	32660262,52	-1752500,74	37704869,24	-9133463,24	9133463,24	8,34202E+13	0,319671466	
33							30907761,78					
34												
35							TOTAL	-29430199,1	124461821,3	2,24534E+15	5,07377683	
36							AVERAGE	-1337736,323	5657355,512	1,02061E+14	0,23062622	23,06262195
37								BLAS	MAD	MSE	MAPE	MAPE = 23,1%
38												

Lampiran 6 Hasil Perhitungan Peramalan Metod Double Moving Average 6 Periode

	t 1992 1993 1994 1995 1996	Xt 10980970 12034538	S't	S"t								
	1993 1994 1995	12034538			At	Bt	Ft	Xt-Ft	Xt-Ft	(Xt-Ft)^2	ERROR	
	1994 1995											
	1995											
		12477126										
	1996	14381614										
		14701757										
	1997	14266188	13140365,5									
I	1998	11673927	13255858,33									
	1999	13195723	13449389,17									
)	2000	14744000	13827201,5									
	2001	14840684	13903713,17									
2	2002	16001262	14120297,33	13616137,5	14624457,17	201663,9333						
3	2003	16764701	14536716,17	13848862,61	15224569,72	275141,4222	14826121,1	1938579,9	1938579,9	3,75809E+12	0,115634624	
	2004	17457776	15500691	14223001,39	16778380,61	511075,8444	15499711,14	1958064,856	1958064,856	3,83402E+12	0,11216004	
	2005	15759444	15927977,83	14636099,5	17219856,17	516751,3333	17289456,46	-1530012,456	1530012,456	2,34094E+12	0,097085434	
	2006	15314118	16022997,5	15002065,5	17043929,5	408372,8	17736607,5	-2422489,5	2422489,5	5,86846E+12	0,158186681	
	2007	16064510	16226968,5	15389274,72	17064662,28	335077,5111	17452302,3	-1387792,3	1387792,3	1,92597E+12	0,08638871	
	2008	16556084	16319438,83	15755798,31	16883079,36	225456,2111	17399739,79	-843655,7889	843655,7889	7,11755E+11	0,050957448	
	2009	21819117	17161841,5	16193319,19	18130363,81	387408,9222	17108535,57	4710581,428	4710581,428	2,21896E+13	0,215892395	
	2010	22592951	18017704	16612821,36	19422586,64	561953,0556	18517772,73	4075178,272	4075178,272	1,66071E+13	0,180373882	
	2011	22231246	19096337,67	17140881,33	21051794	782182,5333	19984539,69	2246706,306	2246706,306	5,04769E+12	0,101060746	
	2012	25612484	20812732	17939170,42	23686293,58	1149424,633	21833976,53	3778507,467	3778507,467	1,42771E+13	0,147526006	
	2013	29818752	23105105,67	19085526,61	27124684,72	1607831,622	24835718,22	4983033,783	4983033,783	2,48306E+13	0,167110742	
	2014	30271679	25391038,17	20597459,83	30184616,5	1917431,333	28732516,34	1539162,656	1539162,656	2,36902E+12	0,050844971	
	2015	31807246	27055726,33	22246440,64	31865012,03	1923714,278	32102047,83	-294801,8333	294801,8333	86908120937	0,009268386	
	2016	37478700	29536684,5	24166270,72	34907098,28	2148165,511	33788726,31	3689973,694	3689973,694	1,36159E+13	0,098455221	
	2017	40899577	32648073	26424893,28	38871252,72	2489271,889	37055263,79	3844313,211	3844313,211	1,47787E+13	0,09399396	
	2018	49620775	36649454,83	29064347,08	44234562,58	3034043,1	41360524,61	8260250,389	8260250,389	6,82317E+13	0,166467581	
	2019	58592562	41445089,83	32121011,11	50769168,56	3729631,489	47268605,68	11323956,32	11323956,32	1,28232E+14	0,193266106	
	2020	22707375	40184372,5	34586566,83	45782178,17	2239122,267	54498800,04	-31791425,04	31791425,04	1,01069E+15	1,400048444	
	2021	21334202	38438865,17	36483756,64	40393973,69	782043,4111	48021300,43	-26687098,43	26687098,43	7,12201E+14	1,250906804	
	2022	28571406	36954316,17	37720028,58	36188603,75	-306284,9667	41176017,11	-12604611,11	12604611,11	1,58876E+14	0,441161737	
							35882318,78					
							TOTAL	-25213578,18	129910194,7	2,21048E+15	5,13678992	
							AVERAGE	-1260678,909	6495509,737	1,10524E+14	0,256839496	25,6839496
,								BLAS	MAD	MSE	MAPE	MAPE = 25,75

Lampiran 7 Hasil Perhitungan Peramalan Double Moving Average 7 Periode

	Α	В	C	D	E	F	G	н	1	J	K	L
1	t	Xt	S't	S"t	At	Bt	Ft	Xt-Ft	Xt-Ft	(Xt-Ft)^2	ERROR	
2	1992	10980970								` ′		
3	1993	12034538										
4	1994	12477126										
5	1995	14381614										
6	1996	14701757										
7	1997	14266188										
8	1998	11673927	12930874,29									
9	1999	13195723	13247267,57									
10	2000	14744000	13634333,57									
11	2001	14840684	13971984,71									
12	2002	16001262	14203363									
13	2003	16764701	14498069,29									
14	2004	17457776	14954010,43	13919986,12	15988034,73	344674,7687						
15	2005	15759444	15537655,71	14292383,47	16782927,96	415090,7483	16332709,5	-573265,5034	573265,5034	3,28633E+11	0,036375998	
16	2006	15314118	15840283,57	14662814,33	17017752,82	392489,7483	17198018,71	-1883900,707	1883900,707	3,54908E+12	0,123017252	
17	2007	16064510	16028927,86	15004899,22	17052956,49	341342,8776	17410242,56	-1345732,565	1345732,565	1,811E+12	0,083770533	
18	2008	16556084	16273985	15333756,41	17214213,59	313409,5306	17394299,37	-838215,3673	838215,3673	7,02605E+11	0,050628842	
19	2009	21819117	17105107,14	15748291,29	18461923	452271,9524	17527623,12	4291493,878	4291493,878	1,84169E+13	0,196685039	
20	2010	22592951	17937714,29	16239669,14	19635759,43	566015,0476	18914194,95	3678756,048	3678756,048	1,35332E+13	0,162827603	
21	2011	22231246	18619638,57	16763330,31	20475946,84	618769,4218	20201774,48	2029471,524	2029471,524	4,11875E+12	0,091289149	
22	2012	25612484	20027215,71	17404696,02	22649735,41	874173,2313	21094716,26	4517767,741	4517767,741	2,04102E+13	0,176389285	
23	2013	29818752	22099306,29	18298842,12	25899770,45	1266821,388	23523908,64	6294843,361	6294843,361	3,96251E+13	0,211103515	
24	2014	30271679	24128901,86	19455981,27	28801822,45	1557640,197	27166591,84	3105087,163	3105087,163	9,64157E+12	0,102573999	
25	2015	31807246	26307639,29	20889360,45	31725918,12	1806092,946	30359462,65	1447783,354	1447783,354	2,09608E+12	0,045517407	
26	2016	37478700	28544722,57	22523591,22	34565853,92	2007043,782	33532011,07	3946688,932	3946688,932	1,55764E+13	0,105304851	
27	2017	40899577	31159954,86	24412482,73	37907426,98	2249157,374	36572897,7	4326679,299	4326679,299	1,87202E+13	0,105787874	
28	2018	49620775	35072744,71	26762926,47	43382562,96	2769939,415	40156584,35	9464190,646	9464190,646	8,95709E+13	0,190730408	
29	2019	58592562	39784184,43	29585350,57	49983018,29	3399611,286	46152502,37	12440059,63	12440059,63	1,54755E+14	0,212314656	
30	2020	22707375	38768273,43	31966631,59	45569915,27	2267213,946	53382629,57	-30675254,57	30675254,57	9,40971E+14	1,350893909	
31	2021	21334202	37491491	33875572,9	41107409,1	1205306,034	47837129,21	-26502927,21	26502927,21	7,02405E+14	1,242274129	
32	2022	28571406	37029228,14	35407228,45	38651227,84	540666,5646	42312715,14	-13741309,14	13741309,14	1,88824E+14	0,4809462	
33							39191894,4					
34							TOTAL	20017792 40	121102426.5	2 225065147	4.050420543	
36							TOTAL AVERAGE	-20017783,49 -1112099,083	131103426,6	2,22506E+15	4,968430647	27 60220240
37							AVERAGE	-1112099,083 BLAS	7283523,702	1,23614E+14 MSE	0,276023925 MAPE	27,60239248
3/								BLAS	MAD	MSE	MAPE	MAPE = 27,6%

Lampiran 8 Hasil Perhitungan Peramalan Metode Double Moving Average 8 Periode

	A	В	С	D	E	F	G	Н	1	J	K	L
1	t	Xt	S't	S"t	At	Bt	Ft	Xt-Ft	Xt-Ft	(Xt-Ft)^2	ERROR	
2	1992	10980970										
3	1993	12034538										
4	1994	12477126										
5	1995	14381614										
6	1996	14701757										
7	1997	14266188										
8	1998	11673927										
9	1999	13195723	12963980,38									
10	2000	14744000	13434359,13									
11	2001	14840684	13785127,38									
12	2002	16001262	14225644,38									
13	2003	16764701	14523530,25									
14	2004	17457776	14868032,63									
15	2005	15759444	15054689,63									
16	2006	15314118	15509713,5	14295634,66	16723792,34	346879,6696						
17	2007	16064510	15868311,88	14658676,09	17077947,66	345610,2232	17070672,01	-1006162,013	1006162,013	1,01236E+12	0,062632599	
18	2008	16556084	16094822,38	14991234	17198410,75	315310,9643	17423557,88	-867473,8795	867473,8795	7,52511E+11	0,052396079	
19	2009	21819117	16967126,5	15388983,89	18545269,11	450897,8884	17513721,71	4305395,286	4305395,286	1,85364E+13	0,19732216	
20	2010	22592951	17791087,63	15834664,3	19747510,95	558978,0938	18996167	3596784,002	3596784,002	1,29369E+13	0,159199389	
21	2011	22231246	18474405,75	16328523,73	20620287,77	613109,1473	20306489,05	1924756,953	1924756,953	3,70469E+12	0,086578906	
22	2012	25612484	19493744,25	16906737,69	22080750,81	739144,7321	21233396,91	4379087,087	4379087,087	1,91764E+13	0,170974712	
23	2013	29818752	21251157,75	17681296,2	24821019,3	1019960,442	22819895,54	6998856,455	6998856,455	4,8984E+13	0,234713259	
24	2014	30271679	23120852,88	18632688,63	27609017,13	1282332,643	25840979,74	4430699,261	4430699,261	1,96311E+13	0,146364503	
25	2015	31807246	25088694,88	19785236,5	30392153,25	1515273,821	28891349,77	2915896,232	2915896,232	8,50245E+12	0,091673961	
26	2016	37478700	27704021,88	21236386,44	34171657,31	1847895,839	31907427,07	5571272,929	5571272,929	3,10391E+13	0,148651712	
27	2017	40899577	30089079,38	22876630,55	37301528,2	2060699,665	36019553,15	4880023,848	4880023,848	2,38146E+13	0,119317221	
28	2018	49620775	33467557,38	24836189,27	42098925,48	2466105,174	39362227,87	10258547,13	10258547,13	1,05238E+14	0,206738954	
29	2019	58592562	38012721,88	27278478,78	48746964,97	3066926,598	44565030,66	14027531,34	14027531,34	1,96772E+14	0,239408056	
30	2020	22707375	37649583,25	29547958,66	45751207,84	2314749,884	51813891,57	-29106516,57	29106516,57	8,47189E+14	1,281808953	
31	2021	21334202	36589014,5	31465190,75	41712838,25	1463949,643	48065957,73	-26731755,73	26731755,73	7,14587E+14	1,253000029	
32	2022	28571406	36376480,38	33122144,19	39630816,56	929810,3393	43176787,89	-14605381,89	14605381,89	2,13317E+14	0,51118877	
33							40560626,9					
34												
35							TOTAL	-9028439,554	135606140,6	2,26519E+15	4,961969263	
36							AVERAGE	-564277,4721	8475383,788	1,41575E+14	0,310123079	31,0123079
37								BLAS	MAD	MSE	MAPE	MAPE = 31%
38												

Lampiran 9 Hasil Perhitungan Peramalan Metode Double Moving Average 9 Periode

al	Α	В	C	D	E	F	G	H	1	J	K	L
	t	Xt	S't	S"t	At	Bt	Ft	Xt-Ft	Xt-Ft	(Xt-Ft)^2	ERROR	
I	1992	10980970										
I	1993	12034538										
I	1994	12477126										
Ι	1995	14381614										
Ι	1996	14701757										
I	1997	14266188										
I	1998	11673927										
I	1999	13195723										
Ι	2000	14744000	13161760,33									
I	2001	14840684	13590617,44									
I	2002	16001262	14031364,56									
I	2003	16764701	14507761,78									
I	2004	17457776	14849557,56									
I	2005	15759444	14967078,33									
Ι	2006	15314118	15083515									
	2007	16064510	15571357,56									
Ι	2008	16556084	15944731	14634193,73	17255268,27	327634,3179						
Ι	2009	21819117	16730855,11	15030759,81	18430950,41	425023,8241	17582902,59	4236214,41	4236214,41	1,79455E+13	0,194151505	
I	2010	22592951	17592218,11	15475382,11	19709054,11	529209	18855974,23	3736976,769	3736976,769	1,3965E+13	0,165404544	
Ι	2011	22231246	18284438,56	15947945,89	20620931,22	584123,1667	20238263,11	1992982,889	1992982,889	3,97198E+12	0,089647827	
I	2012	25612484	19267525,56	16476808,53	22058242,58	697679,2562	21205054,39	4407429,611	4407429,611	1,94254E+13	0,172081303	
	2013	29818752	20640967,33	17120298,51	24161636,16	880167,2068	22755921,84	7062830,164	7062830,164	4,98836E+13	0,236858678	
	2014	30271679	22253437,89	17929894,01	26576981,77	1080885,969	25041803,37	5229875,633	5229875,633	2,73516E+13	0,172764637	
	2015	31807246	24086007,67	18930170,98	29241844,36	1288959,173	27657867,73	4149378,265	4149378,265	1,72173E+13	0,130453868	
I	2016	37478700	26465362,11	20140615,93	32790108,3	1581186,546	30530803,53	6947896,469	6947896,469	4,82733E+13	0,185382536	
I	2017	40899577	29170194,67	21610111,89	36730277,44	1890020,694	34371294,84	6528282,157	6528282,157	4,26185E+13	0,159617351	
	2018	49620775	32259267,78	23335491,07	41183044,48	2230944,176	38620298,14	11000476,86	11000476,86	1,2101E+14	0,221690952	
I	2019	58592562	36259224,56	25409602,9	47108846,21	2712405,414	43413988,66	15178573,34	15178573,34	2,30389E+14	0,259052904	
I	2020	22707375	36312127,78	27412679,48	45211576,07	2224862,074	49821251,62	-27113876,62	27113876,62	7,35162E+14	1,194055967	
I	2021	21334202	35836763,11	29253705,88	42419820,35	1645764,309	47436438,15	-26102236,15	26102236,15	6,81327E+14	1,2234925	
I	2022	28571406	35698169,11	30926728,3	40469609,93	1192860,204	44065584,65	-15494178,65	15494178,65	2,4007E+14	0,542296681	
							41662470,13					
I												
I							TOTAL	1760625,145	139181208	2,24861E+15	4,946951255	
							AVERAGE	125758,9389	9941514,857	1,60615E+14	0,353353661	35,3353661
								BLAS	MAD	MSE	MAPE	MAPE = 35,39

Lampiran 10 Hasil Perhitungan Peramalan Metode Double Moving Average 10 Periode

	Α	В	C	D	E	F	G	H	1	J	K	L
1	t	Xt	S't	S"t	At	Bt	Ft	Xt-Ft	Xt-Ft	(Xt-Ft)^2	ERROR	
2	1992	10980970										
3	1993	12034538										
4	1994	12477126										
5	1995	14381614										
6	1996	14701757										
7	1997	14266188										
8	1998	11673927										
9	1999	13195723										
10	2000	14744000										
11	2001	14840684	13329652,7									
12	2002	16001262	13831681,9									
13	2003	16764701	14304698,2									
14	2004	17457776	14802763,2									
15	2005	15759444	14940546,2									
16	2006	15314118	15001782,3									
17	2007	16064510	15181614,5									
18	2008	16556084	15669830,2									
19	2009	21819117	16532169,6									
20	2010	22592951	17317064,7	15091180,35	19542949,05	494640,9667						
21	2011	22231246	18056120,9	15563827,17	20548414,63	553843,0511	20037590,02	2193655,983	2193655,983	4,81213E+12	0,098674451	
22	2012	25612484	19017243,1	16082383,29	21952102,91	652191,0689	21102257,68	4510226,319	4510226,319	2,03421E+13	0,176094842	
23	2013	29818752	20322648,2	16684178,29	23961118,11	808548,8689	22604293,98	7214458,021	7214458,021	5,20484E+13	0,241943661	
24	2014	30271679	21604038,5	17364305,82	25843771,18	942162,8178	24769666,98	5502012,021	5502012,021	3,02721E+13	0,181754439	
25	2015	31807246	23208818,7	18191133,07	28226504,33	1115041,251	26785934	5021312,002	5021312,002	2,52136E+13	0,157866921	
26	2016	37478700	25425276,9	19233482,53	31617071,27	1375954,304	29341545,58	8137154,419	8137154,419	6,62133E+13	0,217114105	
27	2017	40899577	27908783,6	20506199,44	35311367,76	1645018,702	32993025,57	7906551,426	7906551,426	6,25136E+13	0,193316215	
28	2018	49620775	31215252,7	22060741,69	40369763,71	2034335,78	36956386,46	12664388,54	12664388,54	1,60387E+14	0,255223513	
29	2019	58592562	34892597,2	23896784,45	45888409,95	2443513,944	42404099,49	16188462,51	16188462,51	2,62066E+14	0,276288695	
30	2020	22707375	34904039,6	25655481,94	44152597,26	2055235,036	48331923,89	-25624548,89	25624548,89	6,56618E+14	1,128468125	
31	2021	21334202	34814335,2	27331303,37	42297367,03	1662895,962	46207832,3	-24873630,3	24873630,3	6,18697E+14	1,165903946	
32	2022	28571406	35110227,4	28940601,8	41279853	1371027,911	43960262,99	-15388856,99	15388856,99	2,36817E+14	0,53861042	
33							42650880,91					
34												
35							TOTAL	3451185,057	135225257,4	2,196E+15	4,631259334	
36							AVERAGE	287598,7547	11268771,45	1,83E+14	0,385938278	38,59382778
37								BLAS	MAD	MSE	MAPE	MAPE = 38,6%

Lampiran 11 Hasil Perhitungan Metode Double Exponential Smoothing Parameter α =0,1

4	Α	В	C	D	E	F	G	H	1	J	K	L
1	t	Xt	S't	S"t	At	Bt	Ft	Xt-Ft	Xt-Ft	(Xt-Ft)^2	%ERROR	
2	1992	10980970	10980970	10980970	10980970	1479028						
3	1993	12034538	11086326,8	10991505,68	11181147,92	10535,68	12459998	-425460	425460	1,81016E+11	0,035353247	1
4	1994	12477126	11225406,72	11014895,78	11435917,66	23390,104	11191683,6	1285442,4	1285442,4	1,65236E+12	0,103023918	1
5	1995	14381614	11541027,45	11067508,95	12014545,95	52613,1664	11459307,76	2922306,24	2922306,24	8,53987E+12	0,203197377	1
6	1996	14701757	11857100,4	11146468,1	12567732,71	78959,14528	12067159,11	2634597,888	2634597,888	6,94111E+12	0,179202927	1
7	1997	14266188	12098009,16	11241622.2	12954396,12	95154,10672	12646691.86	1619496,144	1619496,144	2,62277E+12	0.113519894	
8	1998	11673927	12055600,95	11323020,08	12788181.82	81397,87442	13049550.23	-1375623,23	1375623,23	1.89234E+12	0.117837231	1
9	1999	13195723	12169613.15	11407679.38	12931546.92	84659,30751	12869579.69	326143,3092	326143,3092	1.06369E+11	0.024715835	1
0	2000	14744000	12427051.84	11509616.63	13344487,04	101937,2452	13016206.23	1727793,773	1727793,773	2.98527E+12	0,11718623	1
1	2001	14840684	12668415,05	11625496,47	13711333,63	115879,8423	13446424.29	1394259,711	1394259,711	1,94396E+12	0.09394848	1
2	2002	16001262	13001699.75	11763116.8	14240282.7	137620,3276	13827213,48	2174048,523	2174048,523	4.72649E+12	0.135867316	1
3	2003	16764701	13377999,87	11924605,11	14831394,64	161488,3073	14377903,02	2386797,976	2386797,976	5,6968E+12	0.142370447	1
4	2004	17457776	13785977.49	12110742.34	15461212.63	186137,2379	14992882.95	2464893,054	2464893.054	6.0757E+12	0.141191699	1
5	2005	15759444	13983324,14	12298000,52	15668647,75	187258,1792	15647349,86	112094,1355	112094,1355	12565095210	0,007112823	1
6	2006	15314118	14116403.52	12479840.82	15752966,22	181840,2999	15855905,93	-541787,9295	541787,9295	2,93534E+11	0.035378331	1
7	2007	16064510	14311214,17	12662978,16	15959450,18	183137,3347	15934806,52	129703,4772	129703,4772	16822991989	0,008073914	1
8	2008	16556084	14535701,15	12850250,46	16221151,85	187272,2995	16142587,52	413496,4818	413496,4818	1,70979E+11	0,0249755	1
9	2009	21819117	15264042,74	13091629,69	17436455,79	241379,228	16408424,15	5410692,851	5410692,851	2,92756E+13	0.24797946	1
0	2010	22592951	15996933,56	13382160,07	18611707,06	290530,3879	17677835,02	4915115,981	4915115,981	2,41584E+13	0,217550863	+
21	2011	22231246	16620364,81	13705980,55	19534749,07	323820,4734	18902237,44	3329008,557	3329008,557	1,10823E+13	0,149744578	+
22	2011	25612484	17519576,73	14087340,17	20951813,29	381359,618	19858569,54	5753914,458	5753914,458	3,31075E+13	0,22465273	+
23	2012	29818752	18749494,25	14553555,57	22945432,93	466215,4089	21333172,91	8485579,093	8485579,093	7,20051E+13	0,284571906	+
24	2013	30271679	19901712,73	15088371,29	24715054,17	534815,7155	23411648,34		6860030,656	4,706E+13	0,284571906	-
25	2014		21092266,06	15688760,77	26495771,35	600389,4766	25249869,88	6860030,656	6557376,116		0,226615466	-
		31807246						6557376,116		4,29992E+13		-
6	2016	37478700	22730909,45	16392975,63	29068843,27	704214,8684	27096160,82	10382539,18	10382539,18	1,07797E+14	0,277025062	-
27	2017	40899577	24547776,21	17208455,69	31887096,72	815480,0571	29773058,13	11126518,87	11126518,87	1,23799E+14	0,27204484	-
8	2018	49620775	27055076,09	18193117,73	35917034,44	984662,0393	32702576,78	16918198,22	16918198,22	2,86225E+14	0,340949899	-
9	2019	58592562	30208824,68	19394688,43	41022960,93	1201570,695	36901696,48	21690865,52	21690865,52	4,70494E+14	0,370198277	-
0	2020	22707375	29458679,71	20401087,55	38516271,86	1006399,128	42224531,62	-19517156,62	19517156,62	3,80919E+14	0,85950739	-
11	2021	21334202	28646231,94	21225601,99	36066861,88	824514,4384	39522670,99	-18188468,99	18188468,99	3,3082E+14	0,852549769	-
12	2022	28571406	28638749,34	21966916,73	35310581,96	741314,7352	36891376,32	-8319970,322	8319970,322	6,92219E+13	0,291199191	1
3							36051896,7					
14												
5							TOTAL	72652445,52	169389379,7	2,07282E+15	6,303704421	
6							AVERAGE	2421748,184	5646312,657	6,90941E+13	0,210123481	21,0123480
7								BLAS	MAD	MSE	MAPE	MAPE = 21%

Lampiran 12 Hasil Perhitungan Metode Double Exponential Smoothing Parameter α =0,2

	Α	В	С	D	E	F	G	н	1	j.	К	L
1	t	Xt	S't	S"t	At	Bt	Ft	Xt-Ft	[Xt-Ft]	(Xt-Ft)^2	ERROR	
2	1992	10980970	10980970	10980970	10980970	1479028						
3	1993	12034538	11191683,6	11023112,72	11360254,48	42142,72	12459998	-425460	425460	1,81016E+11	0.035353247	
4	1994	12477126	11448772,08	11108244,59	11789299,57	85131,872	11402397,2	1074728,8	1074728,8	1,15504E+12	0,086135926	
5	1995	14381614	12035340,46	11293663,77	12777017,16	185419,1744	11874431,44	2507182,56	2507182,56	6,28596E+12	0,174332489	
6	1996	14701757	12568623,77	11548655,77	13588591,78	254992,001	12962436,34	1739320,664	1739320,664	3,02524E+12	0,118306993	
7	1997	14266188	12908136,62	11820551,94	13995721,3	271896,1699	13843583,78	422604,224	422604,224	1,78594E+11	0,029622785	
8	1998	11673927	12661294,69	11988700,49	13333888,9	168148,5513	14267617,47	-2593690,467	2593690,467	6,72723E+12	0,222178061	
9	1999	13195723	12768180,35	12144596,46	13391764,25	155895,9733	13502037,45	-306314,4499	306314,4499	93828542191	0,023213162	
10	2000	14744000	13163344,28	12348346,03	13978342,54	203749,5644	13547660,22	1196339,779	1196339,779	1,43123E+12	0,081140788	
11	2001	14840684	13498812,23	12578439,27	14419185,19	230093,2402	14182092,11	658591,894	658591,894	4,33743E+11	0,044377462	
12	2002	16001262	13999302,18	12862611,85	15135992,51	284172,5831	14649278,43	1351983,572	1351983,572	1,82786E+12	0,084492309	
13	2003	16764701	14552381,95	13200565,87	15904198,02	337954,0192	15420165,1	1344535,903	1344535,903	1,80778E+12	0,080200411	
14	2004	17457776	15133460,76	13587144,85	16679776,67	386578,9775	16242152,04	1215623,959	1215623,959	1,47774E+12	0,069632235	
15	2005	15759444	15258657,41	13921447,36	16595867,45	334302,5118	17066355,64	-1306911,644	1306911,644	1,70802E+12	0,082928791	
16	2006	15314118	15269749,52	14191107,79	16348391,26	269660,4332	16930169,96	-1616051,964	1616051,964	2,61162E+12	0,105526937	
17	2007	16064510	15428701,62	14438626,56	16418776,68	247518,7656	16618051,69	-553541,6901	553541,6901	3,06408E+11	0,034457428	
18	2008	16556084	15654178,1	14681736,86	16626619,33	243110,3077	16666295,45	-110211,4473	110211,4473	12146563111	0,006656855	
19	2009	21819117	16887165,88	15122822,67	18651509,09	441085,8024	16869729,63	4949387,366	4949387,366	2,44964E+13	0,226837198	
20	2010	22592951	18028322,9	15703922,71	20352723,09	581100,0468	19092594,89	3500356,112	3500356,112	1,22525E+13	0,154931337	
21	2011	22231246	18868907,52	16336919,68	21400895,37	632996,9614	20933823,14	1297422,865	1297422,865	1,68331E+12	0,058360331	
22	2012	25612484	20217622,82	17113060,3	23322185,33	776140,6283	22033892,33	3578591,672	3578591,672	1,28063E+13	0,139720602	
23	2013	29818752	22137848,65	18118017,97	26157679,33	1004957,67	24098325,96	5720426,042	5720426,042	3,27233E+13	0,191839888	
24	2014	30271679	23764614,72	19247337,32	28281892,12	1129319,35	27162637	3109041,997	3109041,997	9,66614E+12	0,102704643	
25	2015	31807246	25373140,98	20472498,05	30273783,9	1225160,731	29411211,47	2396034,528	2396034,528	5,74098E+12	0,075329833	
26	2016	37478700	27794252,78	21936849	33651656,57	1464350,946	31498944,63	5979755,367	5979755,367	3,57575E+13	0,159550768	
27	2017	40899577	30415317,63	23632542,73	37198092,53	1695693,725	35116007,51	5783569,489	5783569,489	3,34497E+13	0,141409029	
28	2018	49620775	34256409,1	25757316	42755502,2	2124773,275	38893786,25	10726988,75	10726988,75	1,15068E+14	0,216179388	
29	2019	58592562	39123639,68	28430580,74	49816698,62	2673264,736	44880275,48	13712286,52	13712286,52	1,88027E+14	0,234027768	
30	2020	22707375	35840386,74	29912541,94	41768231,55	1481961,202	52489963,36	-29782588,36	29782588,36	8,87003E+14	1,311582178	
31	2021	21334202	32939149,8	30517863,51	35360436,08	605321,5715	43250192,75	-21915990,75	21915990,75	4,80311E+14	1,027270237	
32	2022	28571406	32065601,04	30827411,01	33303791,06	309547,5054	35965757,65	-7394351,653	7394351,653	5,46764E+13	0,258802512	
33							33613338,56					
34												
35							TOTAL	6259659,635	138269884,5	1,92292E+15	5,577101591	
36							AVERAGE	208655,3212	4608996,15	6,40975E+13	0,185903386	18,59033864
37								BLAS	MAD	MSE	MAPE	MAPE = 18,6%
20												

Lampiran 13 Hasil Perhitungan Metode Double Exponential Smoothing Parameter α =0,3

4	A	В	C	D	E	F	G	H	l l	J	K	L
	t	Xt	S't	S"t	At	Bt	Ft	Xt-Ft	Xt-Ft	(Xt-Ft)^2	ERROR	
2	1992	10980970	10980970	10980970	10980970	1479028						
3	1993	12034538	11297040,4	11075791,12	11518289,68	94821,12	12459998	-425460	425460	1,81016E+11	0,035353247	7
4	1994	12477126	11651066,08	11248373,61	12053758,55	172582,488	11613110,8	864015,2	864015,2	7,46522E+11	0,069247934	
5	1995	14381614	12470230,46	11614930,66	13325530,25	366557,0544	12226341,04	2155272,96	2155272,96	4,6452E+12	0,149863079	
5	1996	14701757	13139688,42	12072357,99	14207018,85	457427,327	13692087,3	1009669,696	1009669,696	1,01943E+12	0,068676805	1
7	1997	14266188	13477638,29	12493942,08	14461334,51	421584,0912	14664446,18	-398258,176	398258,176	1,5861E+11	0,027916229	
3	1998	11673927	12936524,91	12626716,93	13246332,88	132774,8474	14882918,6	-3208991,597	3208991,597	1,02976E+13	0,274885358	
)	1999	13195723	13014284,33	12742987,15	13285581,52	116270,2217	13379107,73	-183384,7302	183384,7302	33629959262	0,013897286	1
0	2000	14744000	13533199,03	12980050,71	14086347,35	237063,5652	13401851,74	1342148,26	1342148,26	1,80136E+12	0,091030132	1
1	2001	14840684	13925444,52	13263668,86	14587220,19	283618,1426	14323410,92	517273,0825	517273,0825	2,67571E+11	0,03485507	
2	2002	16001262	14548189,77	13649025,13	15447354,4	385356,2727	14870838,33	1130423,668	1130423,668	1,27786E+12	0,070645907	1
3	2003	16764701	15213143,14	14118260,53	16308025,74	469235,4019	15832710,68	931990,3246	931990,3246	8,68606E+11	0,055592422	
4	2004	17457776	15886533	14648742,27	17124323,72	530481,739	16777261,14	680514,8571	680514,8571	4,631E+11	0,038980616	1
5	2005	15759444	15848406,3	15008641,48	16688171,11	359899,2077	17654805,46	-1895361,459	1895361,459	3,5924E+12	0,120268295	
5	2006	15314118	15688119,81	15212484,98	16163754,64	203843,4987	17048070,32	-1733952,323	1733952,323	3,00659E+12	0,113225739	
7	2007	16064510	15801036,87	15389050,54	16213023,19	176565,5664	16367598,14	-303088,1368	303088,1368	91862418662	0,018866939	
В	2008	16556084	16027551,01	15580600,68	16474501,33	191550,1386	16389588,75	166495,2466	166495,2466	27720667140	0,010056439	
9	2009	21819117	17765020,8	16235926,72	19294114,89	655326,0365	16666051,47	5153065,532	5153065,532	2,65541E+13	0,236172047	
0	2010	22592951	19213399,86	17129168,66	21297631,06	893241,9432	19949440,93	2643510,074	2643510,074	6,98815E+12	0,117005967	1
1	2011	22231246	20118753,7	18026044,17	22211463,23	896875,5126	22190873,01	40372,99326	40372,99326	1629978585	0,001816047	
2	2012	25612484	21766872,79	19148292,76	24385452,83	1122248,585	23108338,75	2504145,254	2504145,254	6,27074E+12	0,097770496	
3	2013	29818752	24182436,55	20658535,9	27706337,21	1510243,138	25507701,41	4311050,589	4311050,589	1,85852E+13	0,144575152	1
4	2014	30271679	26009209,29	22263737,92	29754680,66	1605202,017	29216580,35	1055098,65	1055098,65	1,11323E+12	0,034854315	
5	2015	31807246	27748620,3	23909202,63	31588037,97	1645464,716	31359882,68	447363,3216	447363,3216	2,00134E+11	0,014064824	1
6	2016	37478700	30667644,21	25936735,11	35398553,32	2027532,474	33233502,69	4245197,312	4245197,312	1,80217E+13	0,113269599	1
7	2017	40899577	33737224,05	28276881,79	39197566,31	2340146,683	37426085,79	3473491,209	3473491,209	1,20651E+13	0,084927314	
В	2018	49620775	38502289,33	31344504,05	45660074,62	3067622,264	41537712,99	8083062,01	8083062,01	6,53359E+13	0,16289673	1
9	2019	58592562	44529371,13	35299964,18	53758778,09	3955460,125	48727696,88	9864865,121	9864865,121	9,73156E+13	0,168363778	1
0	2020	22707375	37982772,29	36104806,61	39860737,98	804842,4351	57714238,22	-35006863,22	35006863,22	1,22548E+15	1,541651698	
1	2021	21334202	32988201,21	35169824,99	30806577,42	-934981,6218	40665580,41	-19331378,41	19331378,41	3,73702E+14	0,906121467	1
2	2022	28571406	31663162,64	34117826,29	29208499	-1051998,704	29871595,8	-1300189,799	1300189,799	1,69049E+12	0,045506679	1
3							28156500,3					
4												
5							TOTAL	-13167902,49	114405953,2	1,8818E+15	4,862357609	
5							AVERAGE	-438930,0829	3813531,774	6,27268E+13	0,162078587	16,20785
7								BLAS	MAD	MSE	MAPE	MAPE = 16.3

Lampiran 14 Hasil Perhitungan Metode Double Exponential Smoothing Parameter α =0,4

	Α	В	C	D	E	F	G	н	1.0	J	K	L
1	t	Xt	S't	S"t	At	Bt	Ft	Xt-Ft	Xt-Ft	(Xt-Ft)^2	ERROR	
2	1992	10980970	10980970	10980970	10980970	1479028						
3	1993	12034538	11402397,2	11149540,88	11655253,52	168570,88	12459998	-425460	425460	1,81016E+11	0,035353247	
4	1994	12477126	11832288,72	11422640,02	12241937,42	273099,136	11823824,4	653301,6	653301,6	4,26803E+11	0,052359943	
5	1995	14381614	12852018,83	11994391,54	13709646,12	571751,5264	12515036,56	1866577,44	1866577,44	3,48411E+12	0,129789149	
6	1996	14701757	13591914,1	12633400,57	14550427,63	639009,0227	14281397,65	420359,352	420359,352	1,76702E+11	0,028592457	
7	1997	14266188	13861623,66	13124689,8	14598557,52	491289,2378	15189436,66	-923248,656	923248,656	8,52388E+11	0,064715862	
8	1998	11673927	12986545	13069431,88	12903658,11	-55257,92287	15089846,75	-3415919,754	3415919,754	1,16685E+13	0,292611026	
9	1999	13195723	13070216,2	13069745,61	13070686,79	313,7269658	12848400,19	347322,8115	347322,8115	1,20633E+11	0,026320863	
10	2000	14744000	13739729,72	13337739,25	14141720,19	267993,6446	13071000,51	1672999,485	1672999,485	2,79893E+12	0,113469851	
11	2001	14840684	14180111,43	13674688,12	14685534,74	336948,8718	14409713,83	430970,1701	430970,1701	1,85735E+11	0,029039778	
12	2002	16001262	14908571,66	14168241,54	15648901,78	493553,4141	15022483,61	978778,3894	978778,3894	9,58007E+11	0,061168825	
13	2003	16764701	15651023,4	14761354,28	16540692,51	593112,7431	16142455,19	622245,8061	622245,8061	3,8719E+11	0,037116427	
14	2004	17457776	16373724,44	15406302,34	17341146,53	644948,0626	17133805,25	323970,7471	323970,7471	1,04957E+11	0,018557389	
15	2005	15759444	16128012,26	15694986,31	16561038,21	288683,9676	17986094,59	-2226650,594	2226650,594	4,95797E+12	0,141289921	
16	2006	15314118	15802454,56	15737973,61	15866935,51	42987,29862	16849722,18	-1535604,181	1535604,181	2,35808E+12	0,100273759	
17	2007	16064510	15907276,73	15805694,86	16008858,61	67721,24999	15909922,8	154587,1961	154587,1961	23897201197	0,009622901	
18	2008	16556084	16166799,64	15950136,77	16383462,51	144441,9125	16076579,86	479504,1406	479504,1406	2,29924E+11	0,028962413	
19	2009	21819117	18427726,58	16941172,7	19914280,47	991035,925	16527904,42	5291212,578	5291212,578	2,79969E+13	0,242503516	
20	2010	22592951	20093816,35	18202230,16	21985402,54	1261057,461	20905316,4	1687634,603	1687634,603	2,84811E+12	0,074697396	
21	2011	22231246	20948788,21	19300853,38	22596723,04	1098623,221	23246460	-1015214,004	1015214,004	1,03066E+12	0,045666087	
22	2012	25612484	22814266,53	20706218,64	24922314,41	1405365,259	23695346,26	1917137,738	1917137,738	3,67542E+12	0,074851691	
23	2013	29818752	25616060,72	22670155,47	28561965,96	1963936,831	26327679,67	3491072,327	3491072,327	1,21876E+13	0,117076406	
24	2014	30271679	27478308,03	24593416,49	30363199,57	1923261,024	30525902,79	-254223,7935	254223,7935	64629737165	0,008398074	
25	2015	31807246	29209883,22	26440003,18	31979763,25	1846586,69	32286460,59	-479214,5898	479214,5898	2,29647E+11	0,015066208	
26	2016	37478700	32517409,93	28870965,88	36163853,98	2430962,699	33826349,94	3652350,058	3652350,058	1,33397E+13	0,097451354	
27	2017	40899577	35870276,76	31670690,23	40069863,28	2799724,351	38594816,68	2304760,322	2304760,322	5,31192E+12	0,056351691	
28	2018	49620775	41370476,06	35550604,56	47190347,55	3879914,329	42869587,63	6751187,365	6751187,365	4,55785E+13	0,136055661	
29	2019	58592562	48259310,43	40634086,91	55884533,96	5083482,349	51070261,88	7522300,123	7522300,123	5,6585E+13	0,128383192	
30	2020	22707375	38038536,26	39595866,65	36481205,87	-1038220,26	60968016,3	-38260641,3	38260641,3	1,46388E+15	1,684943385	
31	2021	21334202	31356802,56	36300241,01	26413364,1	-3295625,638	35442985,61	-14108783,61	14108783,61	1,99058E+14	0,661322303	
32	2022	28571406	30242643,93	33877202,18	26608085,69	-2423038,832	23117738,46	5453667,538	5453667,538	2,97425E+13	0,190878515	
33							24185046,85					
34												
35							TOTAL	-16623020,7	108666900,3	1,89044E+15	4,70288929	
36							AVERAGE	-554100,6899	3622230,009	6,30147E+13	0,156762976	15,67629763
37								BLAS	MAD	MSE	MAPE	MAPE = 15,7%

Lampiran 15 Hasil Perhitungan Metode Double Exponential Smoothing Parameter α =0,5

al	Α	В	C	D	E	F	G	H	1	J	K	L
1	t	Xt	S't	S"t	At	Bt	Ft	Xt-Ft	Xt-Ft	(Xt-Ft)^2	ERROR	
2	1992	10980970	10980970	10980970	10980970	1479028						
3	1993	12034538	11507754	11244362	11771146	263392	12459998	-425460	425460	1,81016E+11	0,035353247	
4	1994	12477126	11992440	11618401	12366479	374039	12034538	442588	442588	1,95884E+11	0,035471951	
5	1995	14381614	13187027	12402714	13971340	784313	12740518	1641096	1641096	2,6932E+12	0,114110697	
6	1996	14701757	13944392	13173553	14715231	770839	14755653	-53896	53896	2904778816	0,003665956	
7	1997	14266188	14105290	13639421,5	14571158,5	465868,5	15486070	-1219882	1219882	1,48811E+12	0,085508617	
8	1998	11673927	12889608,5	13264515	12514702	-374906,5	15037027	-3363100	3363100	1,13104E+13	0,288086434	
9	1999	13195723	13042665,75	13153590,38	12931741,13	-110924,625	12139795,5	1055927,5	1055927,5	1,11498E+12	0,080020435	
10	2000	14744000	13893332,88	13523461,63	14263204,13	369871,25	12820816,5	1923183,5	1923183,5	3,69863E+12	0,130438382	
11	2001	14840684	14367008,44	13945235,03	14788781,84	421773,4063	14633075,38	207608,625	207608,625	43101341174	0,013989155	
12	2002	16001262	15184135,22	14564685,13	15803585,31	619450,0938	15210555,25	790706,75	790706,75	6,25217E+11	0,049415274	
13	2003	16764701	15974418,11	15269551,62	16679284,6	704866,4922	16423035,41	341665,5938	341665,5938	1,16735E+11	0,020380059	
14	2004	17457776	16716097,05	15992824,34	17439369,77	723272,7188	17384151,09	73624,90625	73624,90625	5420626820	0,004217313	
15	2005	15759444	16237770,53	16115297,43	16360243,62	122473,0957	18162642,49	-2403198,492	2403198,492	5,77536E+12	0,152492594	
16	2006	15314118	15775944,26	15945620,85	15606267,68	-169676,584	16482716,72	-1168598,719	1168598,719	1,36562E+12	0,076308588	
17	2007	16064510	15920227,13	15932923,99	15907530,27	-12696,85791	15436591,1	627918,9043	627918,9043	3,94282E+11	0,039087336	
18	2008	16556084	16238155,57	16085539,78	16390771,35	152615,7881	15894833,42	661250,584	661250,584	4,37252E+11	0,039940036	
19	2009	21819117	19028636,28	17557088,03	20500184,54	1471548,253	16543387,14	5275729,858	5275729,858	2,78333E+13	0,241793921	
20	2010	22592951	20810793,64	19183940,84	22437646,45	1626852,806	21971732,79	621218,2119	621218,2119	3,85912E+11	0,027496108	
21	2011	22231246	21521019,82	20352480,33	22689559,31	1168539,492	24064499,25	-1833253,253	1833253,253	3,36082E+12	0,082462911	
22	2012	25612484	23566751,91	21959616,12	25173887,7	1607135,791	23858098,81	1754385,194	1754385,194	3,07787E+12	0,068497269	
23	2013	29818752	26692751,96	24326184,04	29059319,87	2366567,918	26781023,49	3037728,508	3037728,508	9,22779E+12	0,101873093	
24	2014	30271679	28482215,48	26404199,76	30560231,2	2078015,72	31425887,79	-1154208,791	1154208,791	1,3322E+12	0,038128337	
25	2015	31807246	30144730,74	28274465,25	32014996,23	1870265,491	32638246,92	-831000,9179	831000,9179	6,90563E+11	0,026126151	
26	2016	37478700	33811715,37	31043090,31	36580340,43	2768625,061	33885261,72	3593438,28	3593438,28	1,29128E+13	0,09587948	
27	2017	40899577	37355646,18	34199368,25	40511924,12	3156277,938	39348965,49	1550611,509	1550611,509	2,4044E+12	0,037912654	
28	2018	49620775	43488210,59	38843789,42	48132631,77	4644421,173	43668202,06	5952572,939	5952572,939	3,54331E+13	0,119961305	
29	2019	58592562	51040386,3	44942087,86	57138684,73	6098298,438	52777052,94	5815509,062	5815509,062	3,38201E+13	0,099253367	
30	2020	22707375	36873880,65	40907984,25	32839777,04	-4034103,605	63236983,17	-40529608,17	40529608,17	1,64265E+15	1,784865409	
31	2021	21334202	29104041,32	35006012,79	23202069,86	-5901971,464	28805673,44	-7471471,438	7471471,438	5,58229E+13	0,350210964	
32	2022	28571406	28837723,66	31921868,23	25753579,1	-3084144,563	17300098,4	11271307,6	11271307,6	1,27042E+14	0,394496078	
33							22669434,54					
34												
35							TOTAL	-13815606,25	107091749,3	1,98544E+15	4,637443121	
36							AVERAGE	-460520,2084	3569724,977	6,61814E+13	0,154581437	15,45814374
37								BLAS	MAD	MSE	MAPE	MAPE = 15,5%
38												

Lampiran 16 Hasil Perhitungan Metode Double Exponential Smoothing Parameter α =0,6

- 4	Α	В	C	D	E	F	G	н	1	J	K	L
1	t	Xt	S't	S"t	At	Bt	Ft	Xt-Ft	Xt-Ft	(Xt-Ft)^2	ERROR	
2	1992	10980970	10980970	10980970	10980970	1479028						
3	1993	12034538	11613110,8	11360254,48	11865967,12	379284,48	12459998	-425460	425460	1,81016E+11	0,035353247	1
4	1994	12477126	12131519,92	11823013,74	12440026,1	462759,264	12245251,6	231874,4	231874,4	53765737375	0,018583959	
5	1995	14381614	13481576,37	12818151,32	14145001,42	995137,5744	12902785,36	1478828,64	1478828,64	2,18693E+12	0,102827724	1
6	1996	14701757	14213684,75	13655471,38	14771898,12	837320,0573	15140138,99	-438381,992	438381,992	1,92179E+11	0,02981834	
7	1997	14266188	14245186,7	14009300,57	14481072,83	353829,1939	15609218,18	-1343030,176	1343030,176	1,80373E+12	0,094140788	
8	1998	11673927	12702430,88	13225178,76	12179683	-784121,814	14834902,02	-3160975,022	3160975,022	9,99176E+12	0,270772211	1
9	1999	13195723	12998406,15	13089115,19	12907697,11	-136063,5623	11395561,19	1800161,81	1800161,81	3,24058E+12	0,136420097	
10	2000	14744000	14045762,46	13663103,55	14428421,37	573988,3604	12771633,55	1972366,452	1972366,452	3,89023E+12	0,133774176	
11	2001	14840684	14522715,38	14178870,65	14866560,12	515767,0983	15002409,73	-161725,7281	161725,7281	26155211141	0,010897458	1
12	2002	16001262	15409843,35	14917454,27	15902232,43	738583,621	15382327,21	618934,7852	618934,7852	3,8308E+11	0,038680373	
13	2003	16764701	16222757,94	15700636,47	16744879,41	783182,2011	16640816,06	123884,9446	123884,9446	15347479510	0,00738963	
14	2004	17457776	16963768,78	16458515,86	17469021,7	757879,3815	17528061,61	-70285,60991	70285,60991	4940066961	0,004026035	1
15	2005	15759444	16241173,91	16328110,69	16154237,13	-130405,167	18226901,08	-2467457,079	2467457,079	6,08834E+12	0,156570059	
16	2006	15314118	15684940,36	15942208,49	15427672,23	-385902,1946	16023831,97	-709713,9657	709713,9657	5,03694E+11	0,04634377	
17	2007	16064510	15912682,15	15924492,69	15900871,61	-17715,80898	15041770,04	1022739,96	1022739,96	1,046E+12	0,06366456	1
18	2008	16556084	16298723,26	16149031,03	16448415,49	224538,344	15883155,8	672928,2026	672928,2026	4,52832E+11	0,040645373	
19	2009	21819117	19610959,5	18226188,11	20995730,89	2077157,085	16672953,83	5146163,168	5146163,168	2,6483E+13	0,235855703	
20	2010	22592951	21400154,4	20130567,89	22669740,92	1904379,773	23072887,98	-479936,9776	479936,9776	2,3034E+11	0,021242775	
21	2011	22231246	21898809,36	21191512,77	22606105,95	1060944,885	24574120,69	-2342874,689	2342874,689	5,48906E+12	0,105386567	
22	2012	25612484	24127014,14	22952813,59	25301214,69	1761300,824	23667050,83	1945433,165	1945433,165	3,78471E+12	0,075956442	
23	2013	29818752	27542056,86	25706359,55	29377754,16	2753545,958	27062515,52	2756236,482	2756236,482	7,59684E+12	0,092432993	
24	2014	30271679	29179830,14	27790441,91	30569218,38	2084082,354	32131300,12	-1859621,121	1859621,121	3,45819E+12	0,061431053	
25	2015	31807246	30756279,66	29569944,56	31942614,76	1779502,65	32653300,73	-846054,7336	846054,7336	7,15809E+11	0,026599434	
96	2016	37478700	34789731,86	32701816,94	36877646,79	3131872,383	33722117,41	3756582,592	3756582,592	1,41119E+13	0,100232468	
27	2017	40899577	38455638,95	36154110,14	40757167,75	3452293,203	40009519,17	890057,8313	890057,8313	7,92203E+11	0,02176203	
28	2018	49620775	45154720,58	41554476,4	48754964,75	5400366,261	44209460,95	5411314,05	5411314,05	2,92823E+13	0,109053396	
29	2019	58592562	53217425,43	48552245,82	57882605,04	6997769,416	54155331,01	4437230,987	4437230,987	1,9689E+13	0,075730278	
30	2020	22707375	34911395,17	40367735,43	29455054,91	-8184510,389	64880374,46	-42172999,46	42172999,46	1,77856E+15	1,857237988	
31	2021	21334202	26765079,27	32206141,73	21324016,8	-8161593,698	21270544,52	63657,47542	63657,47542	4052274177	0,002983823	
32	2022	28571406	27848875,31	29591781,88	26105968,74	-2614359,856	13162423,11	15408982,89	15408982,89	2,37437E+14	0,539314827	
33							23491608,88					
34												
35							TOTAL	-8741138,711	104215894,4	2,1577E+15	4,515127577	
36							AVERAGE	-291371,2904	3473863,146	7,19232E+13	0,150504253	15,0504253
37								BLAS	MAD	MSE	MAPE	MAPE = 15,1%

Lampiran 17 Hasil Perhitungan Metode Double Exponential Smoothing Parameter α =0,7

d	Α	В	С	D	E	F	G	н	1	J	K	L
	t	Xt	S't	S"t	At	Bt	Ft	Xt-Ft	Xt-Ft	(Xt-Ft)^2	ERROR	
	1992	10980970	10980970	10980970	10980970	1479028						
	1993	12034538	11718467,6	11497218,32	11939716,88	516248,32	12459998	-425460	425460	1,81016E+11	0,035353247	
	1994	12477126	12249528,48	12023835,43	12475221,53	526617,112	12455965,2	21160,8	21160,8	447779456,6	0,001695967	
	1995	14381614	13741988,34	13226542,47	14257434,22	1202707,038	13001838,64	1379775,36	1379775,36	1,90378E+12	0,09594023	
	1996	14701757	14413826,4	14057641,22	14770011,58	831098,753	15460141,26	-758384,256	758384,256	5,75147E+11	0,0515846	
Т	1997	14266188	14310479,52	14234628,03	14386331,01	176986,8083	15601110,34	-1334922,336	1334922,336	1,78202E+12	0,093572462	
Т	1998	11673927	12464892,76	12995813,34	11933972,17	-1238814,693	14563317,82	-2889390,819	2889390,819	8,34858E+12	0,247508042	
Т	1999	13195723	12976473,93	12982275,75	12970672,1	-13537,58841	10695157,48	2500565,519	2500565,519	6,25283E+12	0,189498182	
	2000	14744000	14213742,18	13844302,25	14583182,11	862026,4993	12957134,51	1786865,485	1786865,485	3,19289E+12	0,121192721	
Т	2001	14840684	14652601,45	14410111,69	14895091,21	565809,4425	15445208,61	-604524,6056	604524,6056	3,6545E+11	0,040734282	
Т	2002	16001262	15596663,84	15240698,19	15952629,48	830586,5006	15460900,66	540361,343	540361,343	2,9199E+11	0,03376992	
Т	2003	16764701	16414289,85	16062212,35	16766367,35	821514,1605	16783215,98	-18514,97972	18514,97972	342804474	0,001104403	
T	2004	17457776	17144730,16	16819974,81	17469485,5	757762,4613	17587881,51	-130105,5087	130105,5087	16927443394	0,007452582	
Т	2005	15759444	16175029,85	16368513,34	15981546,36	-451461,4777	18227247,96	-2467803,957	2467803,957	6,09006E+12	0,15659207	
Т	2006	15314118	15572391,55	15811228,09	15333555,02	-557285,2481	15530084,88	-215966,8784	215966,8784	46641692585	0,014102469	
Ι	2007	16064510	15916874,47	15885180,55	15948568,38	73952,46412	14776269,77	1288240,229	1288240,229	1,65956E+12	0,080191691	
T	2008	16556084	16364321,14	16220578,96	16508063,32	335398,4108	16022520,84	533563,1565	533563,1565	2,8469E+11	0,032227618	
T	2009	21819117	20182678,24	18994048,46	21371308,03	2773469,495	16843461,73	4975655,273	4975655,273	2,47571E+13	0,228041092	
Τ	2010	22592951	21869869,17	21007122,96	22732615,39	2013074,5	24144777,52	-1551826,52	1551826,52	2,40817E+12	0,068686314	
Ι	2011	22231246	22122832,95	21788119,95	22457545,95	780996,9954	24745689,89	-2514443,887	2514443,887	6,32243E+12	0,113104047	
Ι	2012	25612484	24565588,69	23732348,07	25398829,31	1944228,112	23238542,95	2373941,055	2373941,055	5,6356E+12	0,092686873	
Ι	2013	29818752	28242803,01	26889666,52	29595939,49	3157318,458	27343057,42	2475694,583	2475694,583	6,12906E+12	0,083024755	
Τ	2014	30271679	29663016,2	28831011,3	30495021,11	1941344,775	32753257,95	-2481578,945	2481578,945	6,15823E+12	0,081976918	
Ι	2015	31807246	31163977,06	30464087,33	31863866,79	1633076,034	32436365,88	-629119,8796	629119,8796	3,95792E+11	0,019779137	
Ι	2016	37478700	35584283,12	34048224,38	37120341,85	3584137,05	33496942,82	3981757,177	3981757,177	1,58544E+13	0,106240536	
I	2017	40899577	39304988,84	37727959,5	40882018,17	3679735,117	40704478,9	195098,0955	195098,0955	38063266886	0,004770174	
	2018	49620775	46526039,15	43886615,26	49165463,05	6158655,756	44561753,29	5059021,711	5059021,711	2,55937E+13	0,101953702	
	2019	58592562	54972605,15	51646808,18	58298402,11	7760192,923	55324118,8	3268443,198	3268443,198	1,06827E+13	0,055782562	
	2020	22707375	32386944,04	38164903,28	26608984,8	-13481904,89	66058595,04	-43351220,04	43351220,04	1,87933E+15	1,909125121	
	2021	21334202	24650024,61	28704488,21	20595561,01	-9460415,07	13127079,91	8207122,091	8207122,091	6,73569E+13	0,384693184	
I	2022	28571406	27394991,58	27787840,57	27002142,59	-916647,6413	11135145,94	17436260,06	17436260,06	3,04023E+14	0,610269584	
							26085494,95					
							TOTAL	-3349737,472	115396787,7	2,38568E+15	5,062654487	
							AVERAGE	-111657,9157	3846559,591	7,95225E+13	0,16875515	16,87551496
								BLAS	MAD	MSE	MAPE	MAPE = 16,9%

Lampiran 18 Hasil Perhitungan Metode Double Exponential Smoothing Parameter α =0,8

	A	В	С	D	E	F	G	н	1	J	K	L
1	t	Xt	S't	S"t	At	Bt	Ft	Xt-Ft	Xt-Ft	(Xt-Ft)^2	ERROR	
2	1992	10980970	10980970	10980970	10980970	1479028						
3	1993	12034538	11823824,4	11655253,52	11992395,28	674283,52	12459998	-425460	425460	1,81016E+11	0,035353247	
4	1994	12477126	12346465,68	12208223,25	12484708,11	552969,728	12666678,8	-189552,8	189552,8	35930263988	0,015192024	
5	1995	14381614	13974584,34	13621312,12	14327856,55	1413088,87	13037677,84	1343936,16	1343936,16	1,80616E+12	0,093448215	
6	1996	14701757	14556322,47	14369320,4	14743324,54	748008,279	15740945,42	-1039188,424	1039188,424	1,07991E+12	0,070684642	
7	1997	14266188	14324214,89	14333235,99	14315193,79	-36084,4032	15491332,82	-1225144,816	1225144,816	1,50098E+12	0,085877518	
8	1998	11673927	12203984,58	12629834,86	11778134,3	-1703401,132	14279109,39	-2605182,389	2605182,389	6,78698E+12	0,22316247	
9	1999	13195723	12997375,32	12923867,22	13070883,41	294032,3632	10074733,16	3120989,837	3120989,837	9,74058E+12	0,236515259	
10	2000	14744000	14394675,06	14100513,5	14688836,63	1176646,271	13364915,77	1379084,23	1379084,23	1,90187E+12	0,093535284	
11	2001	14840684	14751482,21	14621288,47	14881675,96	520774,9737	15865482,9	-1024798,901	1024798,901	1,05021E+12	0,069053347	
12	2002	16001262	15751306,04	15525302,53	15977309,56	904014,0587	15402450,93	598811,0702	598811,0702	3,58575E+11	0,03742274	
13	2003	16764701	16562022,01	16354678,11	16769365,9	829375,5845	16881323,62	-116622,6158	116622,6158	13600834527	0,006956439	
14	2004	17457776	17278625,2	17093835,78	17463414,62	739157,6715	17598741,49	-140965,4891	140965,4891	19871269131	0,008074653	
15	2005	15759444	16063280,24	16269391,35	15857169,13	-824444,4348	18202572,29	-2443128,291	2443128,291	5,96888E+12	0,1550263	
16	2006	15314118	15463950,45	15625038,63	15302862,27	-644352,7208	15032724,7	281393,3032	281393,3032	79182191061	0,018374764	
17	2007	16064510	15944398,09	15880526,2	16008269,98	255487,5691	14658509,55	1406000,453	1406000,453	1,97684E+12	0,08752215	
18	2008	16556084	16433746,82	16323102,69	16544390,94	442576,4965	16263757,55	292326,449	292326,449	85454752805	0,017656739	
19	2009	21819117	20742042,96	19858254,91	21625831,02	3535152,216	16986967,44	4832149,561	4832149,561	2,33497E+13	0,221464029	
20	2010	22592951	22222769,39	21749866,5	22695672,29	1891611,586	25160983,23	-2568032,233	2568032,233	6,59479E+12	0,113665197	
21	2011	22231246	22229550,68	22133613,84	22325487,52	383747,346	24587283,88	-2356037,876	2356037,876	5,55091E+12	0,10597867	
22	2012	25612484	24935897,34	24375440,64	25496354,03	2241826,795	22709234,86	2903249,139	2903249,139	8,42886E+12	0,113352892	
23	2013	29818752	28842181,07	27948832,98	29735529,15	3573392,344	27738180,83	2080571,171	2080571,171	4,32878E+12	0,069773918	
24	2014	30271679	29985779,41	29578390,13	30393168,7	1629557,146	33308921,5	-3037242,497	3037242,497	9,22484E+12	0,100332806	
25	2015	31807246	31442952,68	31070040,17	31815865,19	1491650,045	32022725,85	-215479,8457	215479,8457	46431563923	0,006774552	
26	2016	37478700	36271550,54	35231248,46	37311852,61	4161208,292	33307515,24	4171184,762	4171184,762	1,73988E+13	0,111294809	
27	2017	40899577	39973971,71	39025427,06	40922516,36	3794178,595	41473060,9	-573483,9015	573483,9015	3,28884E+11	0,014021756	
28	2018	49620775	47691414,34	45958216,88	49424611,8	6932789,826	44716694,95	4904080,049	4904080,049	2,405E+13	0,098831186	
29	2019	58592562	56412332,47	54321509,35	58503155,58	8363292,467	56357401,62	2235160,376	2235160,376	4,99594E+12	0,038147511	
30	2020	22707375	29448366,49	34422995,07	24473737,92	-19898514,29	66866448,05	-44159073,05	44159073,05	1,95002E+15	1,944701801	
31	2021	21334202	22957034,9	25250226,93	20663842,87	-9172768,133	4575223,636	16758978,36	16758978,36	2,80863E+14	0,785545124	
32	2022	28571406	27448531,78	27008870,81	27888192,75	1758643,878	11491074,73	17080331,27	17080331,27	2,91738E+14	0,597812067	
33							29646836,63					
34												
35							TOTAL	1268853,06	125507639,3	2,65951E+15	5,57555211	
36							AVERAGE	42295,10199	4183587,977	8,86503E+13	0,185851737	18,5851737
37								BLAS	MAD	MSE	MAPE	MAPE = 18,6%

Lampiran 19 Hasil Perhitungan Metode Double Expnential Smoothing Parameter α =0,9

	_			_			-		_			
	Α	В	C	D	E	F	G	H	1	J	K	L
1	t	Xt	S't	S"t	At	Bt	Ft	Xt-Ft	Xt-Ft	(Xt-Ft)^2	ERROR	
2	1992	10980970	10980970	10980970	10980970	1479028						
3	1993	12034538	11929181,2	11834360,08	12024002,32	853390,08	12459998	-425460	425460	1,81016E+11	0,035353247	
4	1994	12477126	12422331,52	12363534,38	12481128,66	529174,296	12877392,4	-400266,4	400266,4	1,60213E+11	0,032080016	
5	1995	14381614	14185685,75	14003470,61	14367900,89	1639936,238	13010302,96	1371311,04	1371311,04	1,88049E+12	0,095351679	
6	1996	14701757	14650149,88	14585481,95	14714817,8	582011,3347	16007837,13	-1306080,128	1306080,128	1,70585E+12	0,08883837	
7	1997	14266188	14304584,19	14332673,96	14276494,41	-252807,9854	15296829,14	-1030641,136	1030641,136	1,06222E+12	0,072243625	
8	1998	11673927	11936992,72	12176560,84	11697424,59	-2156113,12	14023686,43	-2349759,426	2349759,426	5,52137E+12	0,20128269	
9	1999	13195723	13069849,97	12980521,06	13159178,88	803960,2158	9541311,474	3654411,526	3654411,526	1,33547E+13	0,276939091	
10	2000	14744000	14576585	14416978,6	14736191,39	1436457,544	13963139,1	780860,8995	780860,8995	6,09744E+11	0,052961266	
11	2001	14840684	14814274,1	14774544,55	14854003,65	357565,9467	16172648,94	-1331964,935	1331964,935	1,77413E+12	0,089750913	
12	2002	16001262	15882563,21	15771761,34	15993365,08	997216,7939	15211569,6	789692,4039	789692,4039	6,23614E+11	0,049351883	
13	2003	16764701	16676487,22	16586014,63	16766959,81	814253,2893	16990581,87	-225880,8699	225880,8699	51022167369	0,0134736	
14	2004	17457776	17379647,12	17300283,87	17459010,37	714269,2399	17581213,1	-123437,098	123437,098	15236717165	0,007070608	
15	2005	15759444	15921464,31	16059346,27	15783582,36	-1240937,605	18173279,61	-2413835,611	2413835,611	5,8266E+12	0,153167562	
16	2006	15314118	15374852,63	15443301,99	15306403,27	-616044,2734	14542644,75	771473,2488	771473,2488	5,95171E+11	0,050376603	
17	2007	16064510	15995544,26	15940320,04	16050768,49	497018,0414	14690358,99	1374151,006	1374151,006	1,88829E+12	0,085539553	
18	2008	16556084	16500030,03	16444059,03	16556001,03	503738,991	16547786,53	8297,468686	8297,468686	68847986,59	0,000501173	
19	2009	21819117	21287208,3	20802893,38	21771523,23	4358834,348	17059740,02	4759376,984	4759376,984	2,26517E+13	0,218128762	
20	2010	22592951	22462376,73	22296428,39	22628325,07	1493535,02	26130357,58	-3537406,578	3537406,578	1,25132E+13	0,15657125	
21	2011	22231246	22254359,07	22258566,01	22250152,14	-37862,38955	24121860,09	-1890614,085	1890614,085	3,57442E+12	0,0850431	
22	2012	25612484	25276671,51	24974860,96	25578482,06	2716294,952	22212289,75	3400194,249	3400194,249	1,15613E+13	0,132755349	
23	2013	29818752	29364543,95	28925575,65	29803512,25	3950714,694	28294777,01	1523974,991	1523974,991	2,3225E+12	0,05110794	
24	2014	30271679	30180965,5	30055426,51	30306504,48	1129850,859	33754226,94	-3482547,944	3482547,944	1,21281E+13	0,115043105	
25	2015	31807246	31644617,95	31485698,81	31803537,09	1430272,295	31436355,34	370890,6612	370890,6612	1,3756E+11	0,011660571	
26	2016	37478700	36895291,79	36354332,5	37436251,09	4868633,69	33233809,39	4244890,612	4244890,612	1,80191E+13	0,113261415	
27	2017	40899577	40499148,48	40084666,88	40913630,08	3730334,385	42304884,78	-1405307,784	1405307,784	1,97489E+12	0,034359959	
28	2018	49620775	48708612,35	47846217,8	49571006,89	7761550,92	44643964,46	4976810,537	4976810,537	2,47686E+13	0,100296913	
29	2019	58592562	57604167,03	56628372,11	58579961,96	8782154,31	57332557,81	1260004,185	1260004,185	1,58761E+12	0,021504507	
30	2020	22707375	26197054,2	29240185,99	23153922,41	-27388186,12	67362116,27	-44654741,27	44654741,27	1,99405E+15	1,966530313	
31	2021	21334202	21820487,22	22562457,1	21078517,34	-6677728,897	-4234263,704	25568465,7	25568465,7	6,53746E+14	1,19847303	
32	2022	28571406	27896314,12	27362928,42	28429699,82	4800471,322	14400788,45	14170617,55	14170617,55	2,00806E+14	0,495972006	
33							33230171,15					
34												
35							TOTAL	4447479,805	133603366,3	2,99509E+15	6,004990099	
36							AVERAGE	148249,3268	4453445,544	9,98363E+13	0,200166337	20,0166337
37								BLAS	MAD	MSE	MAPE	MAPE = 20%
30												

DAFTAR RIWAYAT HIDUP

A. Identitas Diri

1. Nama : Eni Rofikhoh

2. Tempat, Tanggal lahir : Pati, 15 Mei 1999

3. Alamat Rumah : Desa Tlogoharum RT 06

RW 01, Kec. Wedarijaksa

Kab. Pati

4. No. Telp/Hp : 082324192455

5. Email : enirofikhoh@gmail.com

B. Riwayat Pendidikan

1. Pendidikan Formal

a. TK Pertiwi Tlogoharum Wedarijaksa Pati

b. SDN Tlogoharum 02 Wedarijaksa Pati

c. Madrasah Diniyah Hikmatul Ulum Tlogoharum

d. MTS Raudlatul Ulum Guyangan Trangkil Pati

e. MA Raudlatul Ulum Guyangan Trangkil Pati

Semarang, 11 Juni 2023

Eni Rofikhoh

NIM: 1708046010