PEFORMANSI ALIRAN FLUIDA NANO TIO2 YANG MELEWATI BOLA BERPORI DENGAN PENGARUH KONVEKSI PAKSA

SKRIPSI

Diajukan untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana matematika dalam Ilmu Matematika

Oleh : HANIFAH MIGUNANI NIM : 1908046019

PROGRAM STUDI MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI WALISONGO SEMARANG **2023**

PERNYATAAN KEASLIAN

Yang bertanda tangan di bawah ini :

Nama	:	Hanifah Migunani
NIM	:	1908046019
Program Studi	:	Matematika

menyatakan bahwa skripsi yang berjudul :

PEFORMANSI ALIRAN FLUIDA NANO TIO₂ YANG MELEWATI BOLA BERPORI DENGAN PENGARUH KONVEKSI PAKSA

secara keseluruhan adalah hasil penelitian/karya saya sendiri, kecuali bagian tertentu yang dirujuk sumbernya.

> Semarang, 5 Juni 2023 Pembuat pernyataan,

D884CAKX504592788

Hanifah Migunani NIM : 1908046019

KEMENTERIAN AGAMA R.I. UNIVERSITAS ISLAM NEGERI WALISONGO FAKULTAS SAINS DAN TEKNOLOGI Jl. Prof. Dr. Hamka (Kampus II) Ngaliyan Semarang Telp. 024-7601295 Fax. 7615387

PENGESAHAN

Naskah skripsi berikut ini :

Judul : Peformansi Aliran Fluida Nano TiO₂ yang Melewati Bola Berpori dengan Pengaruh Konveksi Paksa

- Penulis : Hanifah Migunani
- NIM : 1908046019

Jurusan : Matematika

Telah diujikan dalam sidang *tugas akhir* oleh Dewan Penguji Fakultas Sains dan Teknologi UIN Walisongo dan dapat diterima sebagai salah satu syarat memperoleh gelar sarjana dalam Ilmu Matematika.

Semarang, 22 Juni 2023

DEWAN PENGUJI

NOTA DINAS

Semarang, 5 Juni 2023

Yth. Ketua Program Studi Matematika Fakultas Sains dan Teknologi UIN Walisongo Semarang

Assalamu'alaikum warahmatullahi wabarakatuh

Dengan ini diberitahukan bahwa saya telah melakukan bimbingan, arahan dan koreksi naskah skripsi dengan:

Judul	:	Peformansi Aliran Fluida Nano TiO ₂ yang Melewati
		Bola Berpori dengan Pengaruh Konveksi Paksa
Nama	:	Hanifah Migunani
NIM	:	1908046019
Jurusan	:	Matematika

Saya memandang bahwa naskah skripsi tersebut sudah dapat diajukan kepada Fakultas Sains dan Teknologi UIN Walisongo untuk diujikan dalam Sidang Munaqasyah.

Wassalamu'alaikum warahmatullahi wabarakatuh

Pembimbing I,

Yolanda Norasia, M.Si NIP /199409232019032000

NOTA DINAS

Semarang, 5 Juni 2023

Yth. Ketua Program Studi Matematika Fakultas Sains dan Teknologi UIN Walisongo Semarang

Assalamu'alaikum warahmatullahi wabarakatuh

Dengan ini diberitahukan bahwa saya telah melakukan bimbingan, arahan dan koreksi naskah skripsi dengan:

Judul	:	Peformansi Aliran Fluida Nano TiO ₂ yang Melewati
		Bola Berpori dengan Pengaruh Konveksi Paksa
Nama	:	Hanifah Migunani
NIM	:	1908046019
Jurusan	:	Matematika

Saya memandang bahwa naskah skripsi tersebut sudah dapat diajukan kepada Fakultas Sains dan Teknologi UIN Walisongo untuk diujikan dalam Sidang Munaqasyah.

Wassalamu'alaikum warahmatullahi wabarakatuh

Pembin ng II.

Mohamad Tafrikan, M.Si NIP : 198904172019031010

ΜΟΤΤΟ

خير الناس أحسنهم خلقا وأنفعهم للناس Sebaik-baiknya manusia adalah yang memiliki budi pekerti " baik dan bermanfaat untuk manusia lain"

ABSTRAK

Ilmu dan aplikasi pemodelan matematika semakin berkembang seiring berkembangya ilmu pengetahuan dan teknologi. Salah satunya adalah dalam teknologi perpindahan Perpindahan panas merupakan proses perpindahan panas. energi dari suatu tempat ke tempat lain karena adanya perbedaan temperatur. Konveksi paksa merupakan salah satu cara perpindahan panas yang efisien yang digunakan dalam sistem bersuhu tinggi. Untuk memepercepat peningkatkan konduktivitas panas dibutuhkan elemen yang melemiliki konduktivitas panas tinggi, salah satunya fluida nano. Penelitian ini membahas mengenai kinerja fluida nano TiO_2 yang mengalir melewati bola berpori dengan pengaruh konveki paksa terhadap profil kecepatan dan temperatur fluida dengan variasi parameter magnetik (M) dan porositas(ϕ). Persamaan pembangun berupa persamaan kontinuitas, momentum, dan energi. Persamaan pembangun dimensional ditransformasikan menjadi persamaan non dimensional kemuidian dirubah menjadi persamaan similaritas. Kemudian penyelesaian numerik dilakukan dengan menggunakan metode Keller-Box. simulasi menunjukkan bahwa Hasil ketika parameter magnetik (M) dan parameter porositas (ϕ) ditingkatkan, maka kecepatan dan temperatur aliran fluida nano TiO_2 -Air(30°) dan TiO_2 -Air(90°) semakin mengecil atau mengalami penurunan. Ketika dibandingkan antara fluida TiO_2 -Air(30°) dan Tio_2 -Air(90°), diperoleh hasil bahwa kecepatan aliran fluida nano $f'_{TiO_2-Air(90^o)} > f'_{TiO_2-Air(30^o)}$, sedangkan untuk profil temperatur $s_{TiO_2 - Air(90^\circ)} < s_{TiO_2 - Air(30^\circ)}$

Kata kunci : Fluidanano, Konveksi paksa, Bola berpori, Keller-box

KATA PENGANTAR

Puji syukur penulis haturkan kehadirat Allah SWT. atas segala rahmat, kasih, dan karunia-Nya sehingga penulis diberikan kesehatan dan kesempatan untuk dapat menyelesaikan skripsi dengan judul "**Peformansi Aliran Fluida Nano** TiO_2 " **yang Melewati bola Berpori dengan pengaruh Konveksi Paksa** dengan baik. Shalawat dan salam senantiasa tercurah limpahkan kepada jujunjungan kita Nabi Agung Muhammad saw. beserta keluarga dan para sahabatnya hingga akhir zaman, amin.

Penyusunan skripsi ini dimaksudkan guna memenuhi persyaratan dalam rangka menyelesaikan studi Strata 1 (S1) di UIN Walisongo Semarang. Dalam menyelesaikan skripsi ini tentu banyak kendala yang dihadapi peneliti dan dapat diselesaikan atas bimbingan dan dorongan dari berbagai pihak yang akhirnya penulisan skripsi ini dapat terselesaikan. Oleh karena itu, pada kesempatan kali ini penulis mengucapkan terima kasih kepada:

- 1. Bapak Dr. H. Ismail, M.Ag, selaku Dekan Fakultas Sains dan Teknologi UIN Walisongo Semarang.
- 2. Ibu Emy Siswanah, M.Sc, selaku Ketua Jurusan Matematika UIN Walisongo Semarang.
- 3. Ibu Yolanda Norasia, M.Si, selaku dosen pembimbing pertama yang selalu sabar dan telaten dalam memberikan arahan serta masukan kepada penulis selama proses penyelesaian skripsi.

viii

- 4. Bapak Mohamad Tafrikan, M.Si, selaku dosen pembimbing kedua yang telah memberikan motifasi kepada penulis bahwa "Belajar itu susah, makanya harus sabar" dan senantiasa memberikan arahan dalam proses penyelesaian skripsi.
- 5. Ibu Seftina Diyah Miasary, M.Sc, selaku Dosen Wali yang selalu memberikan nasehat dan motivasi kepada penulis dari awal perkuliahan hingga terselesaikannya skripsi ini.
- 6. Bapak/Ibu dosen dan staf di lingkungan Fakultas Sains dan Teknologi UIN Walisongo Semarang, khususnya Program Studi Matematika yang telah banyak membantu dan memberikan ilmunya kepada penulis selama kuliah.
- 7. Teristimewa kepada orang tua penulis Bapak Rahmat dan Ibu Marni yang senantiasa memberikan dukungan baik secara materi maupun non-materi serta do'a yang tak henti-hentinya untuk kesehatan, keselamatan, dan tentunya kesuksesan penulis.
- Pengasuh PPTQ Al-Hikmah, Bapak K.H Amnan Muqodam dan Ibu Hj Rofiqotul Makiyah serta seluruh keluarga ndalem.
- 9. Teman-teman penghuni lorong kamar al-adzkiya Mba Intan, Khoirunisa, Mba Sani, dan teman-teman Pondok Al-Hikmah Tugurejo yang senantiasa bersedia mendengarkan segala keluh kesah penulis selama proses penulisan skripsi.
- 10. Teman-teman seperjuangan Lu'lu', Ahfa, Ayu, Putri, Riski dan teman-teman mahasiswa matematika angkatan 2019

yang telah menemani dan selalu memberikan bantuan kepada penulis.

- Teman-teman KKN MIT Ke-15 Posko 1 Kelurahan Banyumanik tahun 2023 yang telah memberikan pengalaman berharga bagi penulis.
- 12. Semua pihak yang telah membantu proses penyelesaian skripsi.

Demikian ucapan terimakasih dari penulis. Semoga rahmat dan pertolongan Allah SWT senantiasa mengiringi mereka dan semoga kebaikan-kebaikan mereka dilipat gandakan oleh Allah SWT dan termasuk amal jariah yang tidak akan putus hingga hari kiamat, Amin.

Penulis menyadari bahwa skripsi ini jauh dari kesempurnaan. Oleh karena itu, penulis mengharapkan saran dan kritik dari pembaca. Akhir kata, penulis berharap semoga skripsi ini dapat memberikan manfaat bagi pembaca.

> Semarang, 5 Juni 2023 Penulis,

Hanifah Migunani NIM : 1908046019

DAFTAR ISI

HALAN	IAN J	UDUL.		i
PERNY	ATAA	N KEAS	LIAN	ii
PENGE	SAHA	N		iii
NOTA F	PEMB	IMBING	i I	iv
NOTA F	РЕМВ	IMBING	G II	v
HALAN	IAN N	10ТТО		vi
ABSTR	AK			vii
KATA P	ENG	ANTAR		х
DAFTA	R ISI			xi
DAFTA	R GAI	MBAR .		xiv
DAFTA	R TAE	BEL		xvi
DAFTA	R LAN	MPIRAN	Ι	vii
DAFTA	R SIM	BOL		xix
BAB I	PEN	DAHUL	UAN	1
	A.	Latar B	elakang Masalah	1
	B.	Rumus	an Masalah	6
	C.	Batasa	n-Batasan dalam Penelitian	6
	D.	Tujuan	Penelitian	7
	E.	Manfaa	t Penelitan	7
BAB II	LAN	DASAN	PUSTAKA	9
	Α.	Kajian	Teori	9
		1.	Fluida	9
		2.	Fluida Nano	10
		3.	Fluida Berdasarkan Perubahan Waktu	14
		4.	Teori Lapisan Batas	14
		5.	Porositas dan Permeabilitas Benda	
			Berpori	15
		6.	Konveksi	16
		7.	Bilangan Tak Dimensional	17
		8.	Magnetohidrodinamik(MHD)	20
		9.	Diskretisasi Numerik	20

1	10. Skema <i>Keller Box</i>	21
B. Kaji	ian Pustaka	24
BAB III METODO	DLOGI PENELITIAN	30
A. Lan	ıgkah Penelitian	30
BAB IV Hasil da	n Pembahasan	35
A. Moo	del Matematika	35
1	1. Persamaan Pembangun Dimensional	35
2	2. Persamaan Pembangun	
	Tak-Dimensional	36
3	3. Teori Pendekatan Lapisan Batas	45
4	4. Fungsi Alir	47
5	5. Persamaan Similaritas	52
B. Pen	yelesaian Numerik Model Matematika	
Mer	nggunakan Metode Keller Box	54
1	1. Penyelarasan Notasi	54
2	2. Diskretisasi Model	55
3	3. Linearisasi Model	58
4	4. Teknik Eliminasi Blok	61
C. Has	sil Simulasi Numerik	68
1	1. Simulasi Pengaruh Parameter	
	Magnetik (M) pada Fluida Nano	
	TiO_2 dengan Fluida Dasar Air	
	dengan kondisi suhu 30^oC	69
2	2. Simulasi Pengaruh Parameter	
	Magnetik (M) pada Fluida Nano	
	TiO_2 dengan Fluida Dasar Air pada	
	Suhu $90^{o}C$	71
	3. Simulasi Pengaruh Parameter	
	Porositas (ϕ) pada Fluida Nano	
	TiO_2 dengan Fluida Dasar Air pada	
	Suhu $30^{o}C$	73
4	4. Pengaruh Parameter Porositas (ϕ)	
	pada Fluida Nano TiO_2 dengan	
	Fluida Dasar Air pada Suhu 90^oC	75

5. Simulasi Perbandingan Pengaruh	
Parameter Magnetik pada Fluida	
Nano TiO_2 - Air (30^o) dan Fluida	
Nano TiO_2 - Air (90^o) 7	7
6. Perbandingan Pengaruh Parameter	
Porositas pada Fluida Nano TiO_2	
- Air (30^o) dan Fluida Nano TiO_2 -	
$\operatorname{Air}(90^{\circ})$	'9
BAB V SIMPULAN DAN SARAN	1
A. Simpulan 8	31
B. Saran 8	52
OAFTAR PUSTAKA 8	3
ampiran-lampiran 8	57

DAFTAR GAMBAR

Gambar	Judul Hala	man
Gambar 1.1	Model Fisik Aliran Fluida yang Melewati Bola Berpori (Rahma, 2017)	F
	2017)	5
Gambar 2.1	Stansil skema Keller Box	22
Gambar 3.1	Diagram Tahapan Penelitian	34
Gambar 4.1	Skema Beda Hingga	55
Gambar 4.2	Grafik Kecepatan Akibat Perbedaan	
	Nilai Parameter Magnetik	69
Gambar 4.3	Grafik Temperatur Akibat Perbedaan	
	Parameter Magnetik	70
Gambar 4.4	Grafik Kecepatan Akibat Perbedaan	
	Parameter Magnetik	71
Gambar 4.5	Grafik Temperatur Akibat Perbedaan	
	Nilai Parameter Magnetik	72
Gambar 4.6	Grafik Kecepatan Akibat Perbedaan	
	Nilai Parameter Porositas	73
Gambar 4.7	Grafik Temperatur Akibat Perbedaan	
	Nilai Parameter Porositas	74
Gambar 4.8	Grafik Kecepatan Akibat Perbedaan	
	nilai Parameter Porositas	75
Gambar 4.9	Grafik Temperatur Akibat Perbedaan	
	nilai Porositas	76

Gambar 4.10	Grafik	Perbandingan	Pengaruh	
	Paramete	r Magnetik pada	Kecepatan	
	Aliran Flu	iida Nano		77
Gambar 4.11	Grafik	Perbandingan	Pengaruh	
	Paramete	r Magnetik pada T	emperatur	
	Aliran Flu	iida Nano		78
Gambar 4.12	Grafik	Perbandingan	Pengaruh	
	Paramete	r Magnetik pada T	emperatur	
	Aliran Flu	iida Nano		79
Gambar 4.13	Grafik	Perbandingan	Pengaruh	
	Paramete	r Magnetik pada T	emperatur	
	Aliran Flu	uda Nano		80

DAFTAR TABEL

Tabel	Judul Hala	man
Tabel 2.1	Sifat Termofisika (Neves et.al,2022)	13
Tabel 2.2	Bilangan Prandl beberapa jenis fluida	
	(Haryanto, 2015)	20
Tabel 2.3	Persamaan dan perbedaan dengan	
	penelitian sebelumnya	26

DAFTAR LAMPIRAN

Halaman

Lampiran	1	Transf	ormasi	Kondis	si Batas D	lime	nsional	
		ke Noi	n Dimen	sional				87
Lampiran	2	Tranfo	ormasi P	ersama	aan Simila	aritas	5	88
Lampiran	3	Scrip I	Matlab					95
Lampiran	4	Tabel	Iterasi N	lilai Ke	cepatan I	Fluid	a Nano	
		Ti02-A	Air(30) d	lengan	Paramete	er Ma	agnetik	106
Lampiran	5	Tabel	Iterasi N	lilai Ke	cepatan I	Fluid	a Nano	
		Ti02-A	Air(90) d	lengan	Paramete	er Ma	agnetik	108
Lampiran	6	Tabel	Iterasi	Nilai	Tempera	tur	Fluida	
		Nano	Ti02-A	ir(30)	dengan	Par	ameter	
		Magne	etik					110
Lampiran	7	Tabel	Iterasi	Nilai	Tempera	tur	Fluida	
		Nano	Ti02-A	ir(90)	dengan	Par	ameter	
		Magne	etik					112
Lampiran	8	Tabel	Iterasi	Nilai	Tempera	tur	Fluida	
		Nano	Ti02-A	ir(30)	dengan	Par	ameter	
		Porosi	tas					114
Lampiran	9	Tabel	Iterasi	Nilai	Tempera	tur	Fluida	
		Nano	Ti02-A	ir(90)	dengan	Par	ameter	
		Porosi	tas					116
Lampiran	10	Tabel	Iterasi N	lilai Ke	cepatan I	Fluid	a Nano	
		Ti02-A	Air(90) d	lengan	Paramete	er Po	rositas	118
Lampiran	11	Tabel	Iterasi N	lilai Ke	cepatan I	Fluid	a Nano	
		Ti02-A	Air(30) d	lengan	Paramete	er Po	rositas	120

DAFTAR SIMBOL

u	= Kecepatan terhadap arah sumbu x
v	= Kecepatan terhadap arah sumbu y
a	=Jari-jari bola
В	= Gaya Magnet
b	= Induksi medan magnet
M	= Parameter magnetik
λ	= Parameter konveksi
ϕ	= Parameter porositas
$ u_{fn}$	= Viskositas kinematik fluida nano
$ u_f$	= Viskositas kinematik fluida
μ_{fn}	= Viskositas dinamik fluida nano
μ_f	= Viskositas dinamik fluida
φ	= volume fuction fluida
U_{∞}	= Kecepatan fluida pada aliran bebas
α_{fn}	= Difusivitas panas fluida nano
α_f	= Divusivitas panas Fluida
$ ho_{fn}$	= Densitas fluida nano
$ ho_f$	= Densitas fluida
g	= Gravitasi
t	= waktu
k_{fn}	= Kodiktifitas panas fluida nano
Re	= Bilangan Reynolds
Gr	= Bilangan Grashof
Pr	= Bilangan Prandtl
ψ	= Fungsi alir
Т	= Temperatur
T_m	= Temperatur permukaan benda
T_{∞}	= Temperatur lingkungan

BAB I

PENDAHULUAN

A. Latar Belakang Masalah

Matematika merupakan ilmu yang penting dalam kehidupan manusia. Perkembangan ilmu pengetahuan di berbagai bidang juga dipengaruhi oleh ilmu matematika. Hal ini dikarenakan sifat-sifat matematika yang dapat diterapkan pada bidang ilmu yang lain seperti fisika, kimia, ekonomi, dan sebagainya. Matematika fisika merupakan penerapan matematika dalam menyelesaikan persoalan-persoalan fisika baik secara teori maupun komputasi. Salah satu penerapan matematika dalam bidang fisika yaitu perpindahan panas.

Perpindahan panas merupakan proses perpindahan energi dari suatu tempat ke tempat lain karena adanya perbedaan suhu dari temperatur fluida yang tinggi ke fluida lain yang temperaturnya lebih rendah (Dewantoro et.al., 2018). Teknologi perpindahan panas sering digunakan dalam bidang teknik dan industri, hal itu dikarenakan teknologi perpindahan panas terbukti mampu meningkatkan produktifitas dan efisiensi (Neves et.al,2022).

Salah satu proses perpindahan panas adalah konveksi. Konsep perpindahan panas secara konveksi telah tertuang dalam Al-Qur'an surah Al-Baqarah ayat 164 yaitu:

اِنَّ فِيْ خَلْقِ السَّمُوٰتِ وَالْأَرْضِ وَاخْتِلَافِ الَّيْلِ وَالَّهَارِ وَالْفُلْكِ الَّتِيْ تَحْرِيْ فِي الْبُحْرِ بِمَا يَنْفَحُ النَّاسَ وَمَآ أَنْزَلَ اللَّهُ مِنَ السَّمَاءِ مِنْ مَّاءٍ فَاَحْيَا بِهِ الْأَرْضَ بَعْدَ مَوْتِهَا وَبَثَّ فِيْهَا مِنْ كُلِّ دَابَّةٍ وَّتَصْرِيْفِ الرِّيْحِ وَالسَّحَابِ الْمُسَخَّرِ بَيْنَ السَّمَاءِ وَالْأَرْضِ لَأَيْتٍ لِقَوْمٍ يَّعْقِلُوْنَ Artinya: "Sesungguhnya pada penciptaan langit dan bumi, pergantian malam dan siang, bahtera yang berlayar di laut dengan (muatan) yang bermanfaat bagi manusia, apa yang Allah turunkan dari langit berupa air, lalu dengannya Dia menghidupkan bumi setelah mati (kering), dan Dia menebarkan di dalamnya semua jenis hewan, dan pengisaran angin dan awan yang dikendalikan antara langit dan bumi, (semua itu) sungguh merupakan tanda-tanda (kebesaran Allah) bagi kaum yang mengerti"

Konsep perpindahan panas konveksi tertuang pada kalimat yang memiliki arti *Bahtera yang berlayar di laut membawa apa yang berguna bagi manusia dan apa yang Allah turunkan dari langit berupa air*. Pada penggalan ayat tersebut, pemanasan air laut disebabkan oleh sinar matahari yang memancarkan energi panas dan sinar infra merah. Pemanasan yang berbeda karena posisi awan di atas laut yang menghalangi energi panas dari matahari, menghasilkan penguapan yang berbeda setiap tempat dan menyebabkan intensitas hujan yang berbeda di masing-masing tempat (Satriani, 2020).

Konveksi adalah perpindahan energi antara permukaan dan fluida karena adanya perbedaan suhu dan adanya transfer energi baik secara alami ataupun secara paksa (aliran eksternal, internal) (Tafrikan, 2015). Perpindahan panas secara konveksi paksa umumnya menggunakan *fan, blower*, atau pompa untuk mengalirkan fluida dengan kecepatan tinggi baik berupa gas maupun cair. Konveksi paksa merupakan salah satu cara perpindahan panas yang efisien. Proses ini umumnya digunakan dalam sistem yang memiliki suhu tinggi, seperti di sistem penukar panas pada pembangkit listrik tenaga nuklir, petrokimia, sistem pendingin udara, sistem pendingin otomotif pendinginan sel surya dll (Haque et.al., 2021).

Menurut Haque et.al., (2021) tujuan utama dari karakteristik perpindahan panas adalah untuk meningkatkan konduktivtas panas. Agar tujuan tersebut dapat tercapai, dibutuhkan suatu elemen atau partikel yang memiliki konduktivitas panas tinggi, salah satunya adalah fluida nano. Fluida nano memiliki konduktivitas panas lebih besar dibandingkan dengan fluida konvensional. Kecenderungan ini membuat fluida nano menjadi alternatif baru yang menjanjikan untuk meningkatkan efisiensi energi sistem yang melibatkan cairan sebagai alat transportasi panas (Neves et.al,2022).

Kata "nanofluid" diciptakan pada tahun 1995 oleh Stephen US Choi. Fluida nano adalah campuran koloid di mana nanopartikel dan fluida mempengaruhi sifat perpindahan panas dari fluida nano (Haque et.al., 2021). Campuran koloid ini diproduksi dengan menggabungkan nanopartikel berdiameter 1-100nm ke dalam fluida dasar konvensional, seperti etilen glikol, parafin, air, air mineral, metanol, dan sebagainya. Nanopartikel bisa berupa logam dan oksidasi logam. Nanopartikel yang berjenis logam seperti Ag, Zn, Cu, Au dan yang berjenis oksida logam seperti Zn0 Al_2O_3 , TiO_2 , SiC (Norasia, 2018).

Penelitian ini menggunakan fluida dasar berupa air yang berada pada dua kondisi, yaitu pada kondisi suhu ruangan yaitu suhu $30^{\circ}C$ dan pada kondisi suhu setelah mengalami pemanasan yaitu suhu $90^{\circ}C$. Kondisi panas suatu benda atau fluida mempengaruhi nilai-nilai termofisika benda tersebut

(Neves et.al,2022). Kemudian partikel nano yang digunakan adalah TiO_2 (Titanium Dioksida). Titania atau Titanium Dioksida merupakan bentuk oksida dari titanium. Senyawa ini memiliki banyak kelebihan yaitu mempunyai konduktivitas termal lebih tinggi bila dibandingkan dengan logam jenis ferro lainya. Titanium dioksida memiliki konduktivitas termal 8,9 W/m^oC , dimana lebih besar dibandingkan dengan nanofluida lainnya seperti grapheneoxide dengan konduktivitas termal sebesar 0,607 W/m^oC . Selain konduktifitas termal yang tinggi, titanium dioksida mudah ditemukan, aman bagi manusia dan hewan, dan memiliki kestabilan yang tinggi. Karena karakeristik tersebut, Titania sering digunakan dalam bidang teknik industri dan mesin (Syukri dan Suyitno, 2022).

Beberapa penelitian telah dilakukan mengenai pemodelan fluida dengan pengaruh konveksi, diantaranya Rahma,dkk (2017) melakukan penelitian mengenai pengaruh konveksi paksa dan medan magnet terhadap magnetohidrodinamika fluida tunak yang melewati bola berpori. Selanjutnya Widodo et.al (2019) meneliti tentang Aliran fluida nano yang tidak stabil melalui bola berpori magnetik di bawah pengaruh konveksi campuran.

Kemudian di tahun yang sama Norasia dan Zulaikha melakukan penelitian mengenai pengaruh partikel nano Zn dan ZnO terhadap aliran MHD fluida nano pada lapisan batas bola bermagnet. Pada tahun 2020, Safitri et.al meneliti tentang analisis model matematika aliran fluida nano MHD yang melewati bola bermagnet berpori teriris dengan pengaruh konveksi campuran. Kemudian (Tafrikan dan Ghani, 2020) melakukan penelitian mengenai profil kecepatan dan temperatur pada aliran konveksi campuran yang melalui bola berpori dengan pengaruh hidrodinamika magnet.

Berdasarkan pemaparan latar belakang diatas, peneliti tertarik untuk mempelajari lebih dalam mengenai pengaruh konveksi paksa pada aliran fluida nano yang mengalir melewati bola berpori. Penelitian ini membahas mengenai "Perfomasi Aliran Fluida Nano TiO₂ yang Melewati Bola Berpori dengan Pengaruh Konveksi Paksa" dengan mengamati pengaruh konveksi paksa terhadap perfomasi atau kinerja temperatur dan kecepatan aliran fluida nano TiO₂ secara teoritis dengan membuat model matematika. Selanjutnya model matematis yang telah diperoleh akan diselesaikan dengan cara numerik. Solusi numeriknya diselesaikan menggunakan metode beda hingga skema *Keller-Box* dan kemudian disimulasikan dengan menggunakan *sofware* Matlab. Bentuk fisik aliran fluida yang mengalir melewati bola ditunjukan oleh gambar 1.1

Gambar 1.1. Model Fisik Aliran Fluida yang Melewati Bola Berpori (Rahma, 2017)

B. Rumusan Masalah

Dari pemaparan latar belakang diatas, maka diperoleh beberapa rumusan masalah berikut.

- 1. Bagaimana penyelesaian model matematika dari aliran fluida yang melewati bola berpori dengan pengaruh konveksi paksa menggunkana metode beda hingga skema *Keller Box*?
- 2. Bagaimana pengaruh variasi parameter magnetik dan parameter porositas terhadap profil kecepatan dan profil temperatur pada aliran fluida nano TiO_2 -Air $(30^\circ C)$ dan TiO_2 -Air $(90^\circ C)$ yang melewati bola berpori dengan pengaruh konveksi paksa?

C. Batasan-Batasan dalam Penelitian

Penelitian ini memiliki beberapa batasan masalah, sebagai berikut.

- 1. Fluida yang digunakan merupakan Fluida Nano dengan menggunakan fluida dasar berupa air dalam kondisi Air- 30^0C dan Air- 90^0C dan partikel nano TiO_2 .
- 2. Aliran fluida yang digunakan merupakan aliran yang melalui bola berpori bermagnet.
- 3. Bola berpori terinduksi medan magnet sebesar $\frac{1}{4}$.
- 4. Bagian yang diteliti yaitu daerah lapisan batas dengan titik stagnasi terdekat ($x \approx 0$).

- 5. Diselesaikan secara numerik menggunakan metode beda hingga skema Keller-Box.
- 6. Simulasi penelitian menggunakan software MATLAB.

D. Tujuan Penelitian

Tujuan yang diharapkan tercapai dalam penelitian ini adalah sebagai berikut.

- 1. Menyelesaikan secara numerik model matematika dari aliran fluida yang melewati bola berpori dengan pengaruh konveksi paksa.
- 2. Menganalisis pengaruh parameter magnetik dan parameter porositas terhadap profil kecepatan dan temperatur pada aliran fluida nano TiO_2 TiO_2 - $\text{Air}(30^\circ C)$ dan TiO_2 - $\text{Air}(90^\circ C)$ yang melewati bola perpori dengan pengaruh konveksi paksa.

E. Manfaat Penelitan

Manfaat yang diinginkan dari adanya penelitian ini adalah

- Bagi penulis diharapkan dapat menambah wawasan keilmuan dan pengetahuan tentang penelitian yang berkaitan dengan matematika terapan khususnya pada pemodelan aliran fluida nano.
- Bagi lembaga diharapkan dapat dijadikan sebagai tambahan referensi dan pembelajaran perkuliahan khususnya tentang materi fluida nano.

3. Bagi pembaca diharapkan dapat menjadi rujukan untuk dikembangkan pada penelitian yang akan datang.

BAB II

LANDASAN PUSTAKA

Bab ini berisi tentang kajian pustaka dan dasar teori yang berkaitan dengan topik penelitian skripsi

A. Kajian Teori

Subbab ini berisis pembahasan menenai teori-teori dan pengertian-pengertian tentang apa saja yang dibahas dalam penelitian

1. Fluida

Zat atau materi secara umum dibedakan menjadi tiga wujud, yaitu wujud padat, cair, dan gas. Perbedaan signifikan antara ketiga fase zat tersebut antara lain, zat padat bentuk dan volumenya cenderung tetap, sedangkan zat cair mudah berubah bentuk dan volumenya tetap. Berbeda dengan zat padat dan zat cair, zat gas bentuk dan volumenya mudah berubah bergantung pada bentuk dan tempat gas itu berada. Karena pada fase cair dan fase gas bentuk dan ukuran zat dapat berubah-rubah, maka kedua fase tersebut memiliki kemampuan untuk mengalir. Zat yang memiliki kemampuan untuk mengalir disebut dengan fluida (Juliyanto, 2018).

Fluida adalah suatu zat yang jika ada gaya/tegangan geser mempengaruhinya, zat tersebut terus menerus mengalami perubahan bentuk, walaupun sekecil apapun gaya yang bekerja (Tafrikan, 2015). Tegangan geser merupakan perbandigan antara luas suatu permukaan dengan besarnya gaya geser yang terjadi (Juliyanto, 2018).

Sifat fisik fluida ada dua yaitu viskositas dan densitas. Viskositas adalah ukuran ketahanan dari suatu fluida terhadap tegangan geser. Sedangkan densitas atau kerapatan adalah pengukuran massa per satuan volume.Salah satu parameter yang dapat mempengaruhi besar kecilnya viskositas suatu fluida adalah suhu.Fluida cair memiliki viskositas yang tinggi dan menurun dengan adanya peningkatan suhu,sedangkan untuk fluida gas memiliki viskositas rendah dan naik seiring dengan peningkatan suhu (Agus, 2016).

Fluida dibagi menjadi dua berdasarkan tegangan geser dan laju gesernya yakni fluida newtonian dan fluida non-newtonian. Fluida yang tak kental atau dalam kata lain tidak dapat mengalami perubahan kekentalan apabila diberikan suatu gaya pada fluida disebut fluida newtonian. Contohnya air, minyak, dan oli. Sebaliknya, fluida non-newtonian adalah fluida yang dapat mengalami merubah kekentalan ketika diberikan suatu gaya pada fluida tersebut. Contohnya sirup dan susu kental manis.

Pada fluida Newtonian, laju renggangan geser dan tegangan geser harus berbanding lurus dengan gradien viskositas. Vikositas dalam fluida Newtonian sangat dipengaruhi oleh adanya temperatur suhu dan tekanan pada fluida.

2. Fluida Nano

Salah satu jenis fluida yang sering digunakan dalam bidang teknik, industri dan mesin adalah nanofluid. Istilah nanofluid atau fluida nano dipakai pertama kali digunakan oleh Stephen US Choi pada tahun 1995. Fluida nano dapat didefinisikan sebagai campuran koloid nanopartikel dengan fluida dasar untuk meningkatkan karakteristik perpindahan panas (Haque et.al., 2021). Fluida nano diproduksi dengan mendifusikan nanopartikel (NP) berdiameter 1-100nm ke dalam cairan dasar konvensional, seperti etilen, glikol, parafin, air, air mineral, metanol, dan sebagainya.Pada umumnya nanopartikel bisa berupa logam dan oksidasi logam. Nanopartikel yang berbentuk logam contohnya Ag (Perak), Cu (Tembaga), Au (Emas). Sedangkan nanopartikel yang berupa logam oksida contohnya Al_2O_3 (Alumina), TiO₂ (Titania), SiC (Silikon Karbida) (Norasia, 2018).

Nanopartikel yang digunakan pada penelitian ini adalah Titanium Dioksida atau Titania (TiO_2) . Titanium Dioksida merupakan bentuk oksida dari titanium. Senyawa ini memiliki banyak kelebihan yaitu mempunyai konduktivitas termal yang tinggi, mudah ditemukan, aman bagi manusia dan hewan, dan memiliki kestabilan yang tinggi (Nahumury, 2009).

Penambahan nanopartikel mengubah karakteristik termofisika fluida nano, yang pada akhirnya mempengaruhi penurunan tekanan dan perpindahan panas. Karakteristik termofisika dari fluida nano dijelaskan sebagai berikut:

a. Viskositas

Salah satu sifat termofisika nanofluid yang paling penting adalah viskositas, karena memiliki konsekuensi langsung pada penurunan tekanan konveksi paksa. Viskositas atau kekentalan merupakan sifat yang menentukan ketahanan suatu fluida terhadap suatu tekanan atau renggangan. Persamaan viskositas dinamis dengan konsentrasi maksimum oleh (Sedki, 2022) sebagai berikut:

$$\mu_{nf} = \frac{\mu_f}{(1 - \varphi)^{2.5}} \tag{2.1}$$

dengan:

- μ_{nf} : kekentalan dinamis dari fluida nano
- μ_f : kekentalan dinamis dari fluida dasar

arphi : fraksi volume partikel nano

b. Densitas

Densitas atau kerapatan suatu fluida nano diperoleh dari persamaan berikut :

$$\rho_{nf} = (1 - \varphi)\rho_{bf} + \varphi\rho_s \tag{2.2}$$

1. ...

dengan:

$ ho_{nf}$: kerapatan fluida nano $rac{\kappa g}{m^3}$
φ	: fraksi volume partikel nano
$ ho_{bf}$: kerapatan fluida dasar $rac{kg}{m^3}$
ρ_s	: kerapatan partikel nano $rac{kg}{m^3}$

c. Kapasistas Panas Khusus Fluida Nano

Panas khusus fluida nano adalah besaran energi yang diperlukan agar masa suatu zat bertambah pada suatu suhu derajat celsius. Pada saat tekanan konstan panas spesifik fluida nano dapat dirumuskan berdasarkan hubungan antara fluida dasar dengan fluida nano berikut.

$$(\rho C_p)_{nf} = (1 - \varphi)(\rho C_p)_f + \varphi(\rho C_p)_s$$
(2.3)

dengan:

C_{pnf}	: spesifik panas fluida nano
C_{pf}	: spesifik panas fluida dasar
C_{ps}	: panas panas partikel/benda

d. Konduktifitas Termal Fluida Nano

Nusselt dan bilangan Prandlt adalah dua parameter penting untuk mengukur koefisien perpindahan panas fluida di bawah kondisi aliran turbulen dan laminar. Kedua angka ini terkait erat dengan konduktifitas termal cairan. Oleh karena itu, untuk menyelidiki koefisien perpindahan panas nanofluida secara efektif, konduktifitas termal paling dibutuhkan. Persamaan konduktifitas termal Fluida Nano menurut (Sedki, 2022) sebagai berikut:

$$k_{nf} = \left[\frac{(k_s + 2k_f) + 2\varphi(k_s - k_f)}{(k_s + 2k_f) - \varphi(k_s - k_f)}\right]k_f$$
(2.4)

dengan:

 k_{nf} : konduktifitas termal dari fluida nano

 k_f : konduktifitas termal dari fluida dasar

 $k_s \quad :$ konduktifitas termal dari benda

Sifat-sifat termofisika dari air, dan partikel TiO_2 ditunjukan oleh tabel 2.1 berikut ini:

Tabel 2.1. Sifat Termofisika (Neves et.al, 2022)

Sifat Termofisika	Air($30^{\circ}C$)	Air($90^{\circ}C$)	TiO_2
Densitas (ρ)	995.349	964.947	4175
Kapasitas panas (Cp)	4176.642	4204.934	692
Konduktifitas termal (K)	0.615	0.669	8.4

3. Fluida Berdasarkan Perubahan Waktu

Berdasarkan perubahan waktu, fluida diklasifikasikan menjadi 2 macam, yaitu fluida tunak dan fluida tak tunak (Norasia, 2018). Fluida tunak *(Steady State)* adalah aliran fluida yang laju kecepatannya bernilai nol atau tidak adanya pengaruh perubahan waktu terhadap laju kecepatan pada aliran fluida, dalam kata lain aliran fluida dalam keadaan konstan. Pada fluida tunak berlaku persamaan,

$$\frac{\partial v}{\partial t} = 0 \tag{2.5}$$

Sedangkan fluida tak tunak *(Unsteady State)* adalah aliran fluida yang laju kecepatannya tidak sama dengan nol karena adanya pengaruh perubahan waktu terhadap laju aliran fluida atau aliran fluida dalam keadaan tidak konstan. Pada fluida tak tunak berlaku persamaan,

$$\frac{\partial v}{\partial t} \neq 0 \tag{2.6}$$

4. Teori Lapisan Batas

Prandtl merupakan ilmuan dari Jerman yang pertama kali mengemukakan pendapatnya mengenai konsep lapisan batas pada tahun 1940. Lapisan batas merupakan suatu lapisan tipis yang berada diantara benda dan fluida. Terbentuknya lapisan batas disebabkan karena adanya aliran dari suatu fluida yang mengenai permukaan padat. Pada lapisan ini, daerah aliran disekitar benda dibagi menjadi dua bagian, yang pertama yaitu daerah yang meliputi seluruh permukaan benda berupa lapisan tipis dimana pengaruh gaya viskositas dan gradien kecepatan pada daerah ini besar, dan yang kedua yaitu daerah di luar lapisan batas dimana efek viskositas tidak berpengaruh atau dapat diabaikan dan nilai kecepatan hampir sama dengan nilai aliran bebas (*free-stream*) (Norasia, 2018).

Pada lapisan batas terdapat tiga macam aliran fluida, yaitu aliran laminar, aliran turbulen, dan aliran transisi (Norasia, 2018). Aliran laminar adalah aliran yang terjadi ketika partikel-partikel cairan bergerak secara teratur di sepanjang lintasan yang sejajar satu sama lain. Aliran turbulen adalah aliran yang terjadi ketika partikel-partikel cairan bergerak secara tidak beraturan. Aliran transisi atau peralihan adalah aliran yang terjadi antara aliran laminar dan aliran turbulen.

Pada setiap permukaan padat (benda) diam yang berada di dalam fluida atau zat cair yang mengalir terdapat titik stagnasi. Titik stagnasi adalah suatu titik pada benda dimana kecepatan aliran fluida yang sama dengan nol. Atau bisa dikatakan bahwa titik stagnasi adalah titik pertemuan pertama antara benda diam dengan fluida. Titik stagnasi pada benda simetris (seperti bola) terdapat di ujung depan dari benda.

5. Porositas dan Permeabilitas Benda Berpori

Benda berpori merupakan suatu benda yang memiliki rongga-rongga atau pori-pori didalamnya. Kepasitas penyerapan dan penahanan fluida didalam suatu benda atau media berpori disebut sebagai porositas. Permeabilitas dan porositas suatu benda berkaitan erat. Dalam mekanika fluida permeabilitas adalah suatu ukuran dari porositas dimana ukuran tersebut yang menunjukkan kekuatan benda atau media berpori (seperti batu, tanah, atau bahan yang tidak terkonsolidasi) dalam menahan fluida agar tidak memungkinkan aliran fluida melewatinya (Rahma, 2017).

Persamaan momentum pada mekanika fluida benda berpori dikenal sebagai hukum Darcy. Darcy adalah orang pertama yang melakukan pengamatan ini. Dia menemukan bahwa gradien tekanan yang terbentuk di sepanjang kolom material berpori sebanding dengan luas rata-rata kecepatan fluida. Hasil percobaan selanjutnya menunjukkan bahwa kecepatan rata-rata luas dari cairan yang melewati bahan berpori berbanding terbalik dengan viskositas μ . Dengan mengacu pada pengamatan Darcy diperoleh persamaan sebagai berikut (Abu, 2018):

$$u = \frac{K^*}{\mu} \left(-\frac{dP}{dx}\right) \tag{2.7}$$

dan

$$\phi = \frac{\alpha \mu}{\rho U_{\infty} K^*} \tag{2.8}$$

dimana K^* adalah perme
abilitas dan ϕ adalah parameter porositas

6. Konveksi

Konveksi adalah suatu proses berpindahnya kalor dari suatu partikel ke partikel lain karena adanya temperatur suhu yang berbeda dan zat alir digunakan sebagai penghantarnya (Dewantoro et.al., 2018). Kecepatan perpindahan kalor secara perantara antara fluida dengan permukaan benda padat diperoleh dengan persamaan berikut:

$$Q = hA\Delta T \tag{2.9}$$

dengan:

- $Q \quad :$ laju perpindahan panas secara konveksi (W)
- A_s : daerah perpindahan panas (m^2)
- ΔT : $(\Delta T = T_s T_\infty)$ beda temperatur antara suhu fluida dengan suhu permukaan benda (K)
 - h : koefisien perpindahan panas konveksi rata-rata $(\frac{W}{m^2 K})$

Konveksi dibedakan menjadi dua jenis berdasarkan cara menggerakan aliran fluida, yaitu konveksi alami atau bebas dan konveksi paksa. Akan tetapi, seiring berkembannya zaman dikenal juga adanya konveksi campuran. Konveksi bebas merupakan perpindahan panas yang yang terjadi akibat adanya perbedaan suhu dan densitas tanpa adanya tenaga dari luar yang mendorongnya. Konveksi paksa adalah perpindahan panas dari aliran gas atau cairan yang disebabkan oleh adanya tenaga dari luar. Konveksi campuran merupakan campuran atau kombinasi antara konveksi alami dan konveksi paksa (Tafrikan, 2015).

7. Bilangan Tak Dimensional

Bilangan tak-dimensi adalah parameter yang tidak terdapat satuan didalamnya. Bilangan tak berdimensi dapat digunakan sebagai parameter dalam penghitungan aliran fluida dan mengetahui kondisi fluida tersebut (Norasia, 2018). Bilangan tak-dimensi yang digunakan dalam penelitian ini antara lain,

a. Bilangan Reynolds (Re)

Bilangan Reynolds merupakan perbandingan antara gaya viskositas dengan gaya inersia. Bilangan Reynolds merupakan suatu besaran yang relatif dari beberapa
fluida yang mengalir, sepertihalnya aliran yang bertransisi, lapisan batas , dan berada disekitaran benda yang tergenang air. Bilangan Reynolds dirumuskan sebagai berikut (Haryanto, 2015):

$$R_e = \frac{gayainersia}{gayaviskos} = \frac{U_\infty \delta}{\nu}$$
(2.10)

dengan

- U_{∞} : kecepatan arus bebas (m/s)
 - δ : panjang karakteristik dari geometri permukaan (m)
 - u: viskositas kinematik dari fluida (m^2/s)

Viskositas kinematik memiliki satuan m^2/s , yang hampir mirip dengan satuan pada difusivitas termal, sehingga viskositas kinematik sering disebut juga sebagai difusivitas viskos. Panjang karakteristik dari geometri permukaan bola atau silender merupakan panjang diameter bendan tersebut.

b. Bilangan Grashoft (Gr)

Bilangan tak-dimensi Grashoft (Gr) merupakan perbandingan antara gaya viskos dan gaya apung dalam suatu aliran konveksi alami suatu fluida yang peranannya hampir mirip dengan bilangan Reynolds yang ada pada aliran konveksi paksa. Bilangan tak dimensional Grashof dapat rumuskan sebagai berikut (Norasia, 2018):

$$Gr = \frac{g_b \beta (T_u - T_\infty) l^3}{v^2}$$
(2.11)

dengan,

g_b	: kecepatan	gravitasi	bumi
-------	-------------	-----------	------

- β : koefisien pemuaian kalor
- l : panjang permukaan benda yang dilalui fluida
- v : viskositas kinematik aliran fluida
- T_u : suhu bagian luar fluida
- T_∞ : suhu fluida secara keseluruhan
- c. Bilangan Prandtl (Pr)

Bilangan Prandtl (Pr) merupakan perbandingan dari difusivitas panas fluida dengan

$$Pr = \frac{\nu}{\alpha} \tag{2.12}$$

dimana viskositas kinematis:

$$\nu = \frac{\mu}{\rho} \tag{2.13}$$

dan difusivitas termal

$$\alpha = \frac{k}{\rho C_p} \tag{2.14}$$

dengan,

- $v \quad :$ viskositas kinematis aliran fluida
- α : difusivitas panas
- μ ~~ : viskositas dinamis aliran fluida
- c : konduktivitas kalor fluida

 c_p : konstanta kalor pada tekanan konstan

Bilangan prandtl memiliki nilai-nilai khusus untuk beberapa fluida. Berikut tabel nilai bilangan prandtl pada

beberapa jenis fluida.

Tabel 2.2. Bilangan Prandl beberapa jenis fluida (Haryanto, 2015)

Fluida	Nilai Bilangan Prandtl	
Logam-logam cair	0,004 - 0,030	
Gas	0,7- 1,0	
Air	1,7 - 13,7	
Minyak	50 - 100.000	
Oli mesin	100 - 40.000	
Gliserin	2000-100.000	

8. Magnetohidrodinamik(MHD)

Magnetohidrodinamik terdiri dari tiga kata yaitu "magneto" yang artinya medan magnet, "hidro" yang artinya cairan atau fluida, dan "dinamika" yang artinya pergerakan. Dalam kata lain, Magnetohidrodinamika adalah pergerakan fluida akibat adanya pengaruh medan magnet (Norasia dan Zulaikha, 2019). Magnetohidrodinamik dapat menghantarkan listrik dengan pengaruh adanya medan magnet. MHD terdiri dari beberapa persamaan yang ideal pada fluida yakni persamaan momentum, persamaan konversi masa, dan persamaan energi. Pemanfaatan magnetohidrodinamik antara lain pada pendingin reaktor nuklir, pembangkit listrik, dan generator (Mayagrafinda dan Widodo, 2022).

9. Diskretisasi Numerik

Diskretisasi numrik merupakan prosedur transformasi suatu fungsi diferensial kontinu orde satu kedalam bentuk diferensial numerik. Diskritisasi model dapat dilakukan dengan menggunakan metode beda hingga. Metode beda hingga merupakan pendekatan solusi secara numerik untuk menyelesaiakn suatu persamaan diferensial. Secara umum, terdapat tiga pendekatan di metode beda hingga yaitu beda maju, beda mundur, dan beda terpusat. Ketiga pendekatan tersebut dapat dituliskan dalam persamaan berikut (Yulistiyanto, 2017).

$$y'(x_i) = \frac{y_{i+1} - y_i}{\Delta x}$$
 (2.15)

$$y'(x_i) = \frac{y_i - y_{i-1}}{\Delta x}$$
(2.16)

$$y'(x_i) = \frac{y_{i+1} - y_{i-1}}{2\Delta x}$$
(2.17)

Dengan persamaan (2.15) merupakan pendekatan beda maju, (2.16) pendekatan beda mundur, dan (2.17) pendekatan beda terpusat.

10. Skema Keller Box

Salah satu metode numerik yang dapat meencari solusi persamaan parabolik pada persamaan lapisan batas adalah metode numerik skema *Keller Box*. Metode ini besifat implisit atau tersirat dengan akurasi orde kedua, baik terhadap ruang maupun waktu dimana *step size* untuk ruang dan waktu boleh berbeda. langkah-langkah menyelesaian permasalahan persamaan lapisan batas dengan menggunakan metode Keller-Box sebagai berikut (Abu, 2018),

a. Mengubah persamaan diferensial berorde tinggi menjadi persamaan diferensial berorde pertama. Contoh

perubahan persamaan diferensial berorde tinggi menjadi orde satu adalah sebagai berikut:

$$\frac{\partial g}{\partial t} = \alpha \frac{\partial^2 g}{\partial x^2} \tag{2.18}$$

didefinisikan bahwa

$$h = \frac{\partial g}{\partial x}$$

sehingga bentuk dari persamaan (2.18) dapat dinyatakan sebagai berikut

$$\frac{\partial g}{\partial t} = \alpha \frac{\partial}{\partial x} (\frac{\partial g}{\partial x})$$
$$\frac{\partial g}{\partial t} = \alpha \frac{\partial h}{\partial x}$$

selanjutnya dapat ditulis dalam dua persamaan sebagai berikut:

$$\frac{\partial g}{\partial x} = h \tag{2.19}$$

$$\frac{\partial g}{\partial t} = \alpha \frac{\partial h}{\partial x} \tag{2.20}$$

b. Tahapan selanjutnya yaitu diskretisasi model matematika menggunakan metode beda hingga terpusat.

Gambar 2.1. Stansil skema Keller Box

Penyelesaian persamaan orde pertama menggunkan metode beda hingga pusat dapat diselesaikan

berdasarkan bentuk skema *Keller Box* pada gambar 2.1. Contoh penyelesaian diskretisasi model adalah sebagai berikut:

Berdasarkan gambar 2.1, maka persamaan (2.19) dan (2.20) berubah menjadi persamaan berikut:

$$\frac{g_i^n - g_{i-1}^n}{\Delta x_i} = h_{i-\frac{1}{2}n}$$
(2.21)

$$2\frac{g_{i-\frac{1}{2}}^{n-g_{i-\frac{1}{2}}^{n-1}}}{\Delta t_{n}} = \frac{\alpha(h_{i}^{n} - h_{i-1}^{n})}{\Delta x_{i}} + \frac{\alpha(h_{i}^{n-1} - h_{i-1}^{n-1})}{\Delta x_{i}}$$
(2.22)

dengan menggunkan titik-titik pada step size setengah sehingga berlaku

$$g_{i-\frac{1}{2}}^{n} = \frac{g_{i-1}^{n} - g_{i-1}^{n}}{2}$$
$$h_{i-\frac{1}{2}}^{n} = \frac{h_{i}^{n} - h_{i-1}^{n}}{2}$$

persamaan diatas disubstitusikan ke Persamaan (2.21) dan (2.22) diperoleh

$$\frac{g_i^n - g_{i-1}^n}{\Delta x_i} = \frac{h_i^n - h_{i-1}^n}{2}$$
(2.23)

$$2\frac{g_i^n - g_{i-1}^n}{\Delta t_n} = \alpha \frac{(h_i^n - h_{i-1}^n)}{\Delta x_i} + \alpha \frac{(h_i^{n-1} - h_{i-1}^{n-1})}{\Delta x_i} + 2\frac{g_i^{n-1} - g_{i-1}^{n-1}}{\Delta t_n}$$
(2.24)

- c. Kemudian persamaan numerik hasil deskritisasi model dilinearisasikan memakai metode Newton untuk selanjutnya diubah menjadi matriks vektor.
- d. Linierisasi model yang telah dihasilkan selanjtnya diselesaikan dengan menggunakan teknik eliminasi matriks blok tridiagonal.

B. Kajian Pustaka

Penelitian terdahulu yang relevan dengan penelitian ini adalah sebagai berikut

- 1. "Forced convection of unsteady magnetohydro- dynamics fluid past a porous sphere" (Rahma et.al., 2017). Hasil yang diperoleh, terdapat pengaruh parameter porositas, parameter konveksi, bilangan Prandtl, parameter magnetik, dan parameter permeabilitas terhadap profil kecepatan dan profil temperatur.
- "Unsteady nano fluid flow through magnetic poroussphere under the influence of mixed convection" (Widodo et.al., 2019). Ketika parameter magnetik meningkat suhu dan kecepatan menurun dan ketika parameter konveksi meningkat suhu dan kecepatan ikut meningkat.
- 3. "Pengaruh Partikel Nano Zn dan ZnO terhadap Aliran MHD FLuida Nano pada lapisan Batas Bola Bermagnet" (Norasia dan Zulaikha, 2019). diperoleh hasil Kecepatan dan temperatur aliran fluida nano Zn-Air dan ZnO-Air menurun seiring dengan bertambanya parameter magnetik. Sedangkan untuk profil temperatur, fluida nano ZnO-Air lebih cepat mengalami penurunan temperatur dibandingkan dengan fluidanano Zn-Air.
- "Unsteady magnetohydro- dynamics mixedconvection flow pass sliced magnetic spherein nano fluid" (Safitri et.al, 2020). Diperoleh hasil, Ketika parameter medan magnet meningkat, maka kecepatan fluida nano menurun dan suhu nano fluid meningkat, ketika sudut irisan meningkat,

maka kecepatan nano fluid meningkat dan temperatur nano fluid menurun, ketika fraksi volume nano fluid meningkat, maka kecepatan nano fluid menurun dan temperatur nano fluid meningkat.

- 5. " Profil Kecepatan dan Temperatur Pada Aliran Konveksi Campuran Yang Melalui Bola Berpori Dengan Pengaruh Hidrodinamika Magnet" (Tafrikan dan Ghani, 2020). Ketika parameter hidrodinamika magnet semakin meningkat maka semakin besar kecepatan aliran fluida di setiap titik tertentu, hal ini dikarenakan pengaruh densitas dari fluida viskoelastik yang semakin menurun. Kemudian, semakin meningkat parameter hidrodinamika magnet, maka temperatur semakin kecil di setiap titik tertentu, hal ini dikarenakan suatu korelasi antara parameter hidrodinamikamagnet berbanding terbalik dengan kecepatan fluida.
- 6. "Pergerakan Aliran MHD Ag-AIR Melewati Bola Pejal" (Norasia et.al., 2021). Diperoleh hasil Peningkatan parameter magnetik mengakibatkan pergerakan Ag-Air melambat dan temperatur Ag-Air meningkat. Sedangkan meningkatknya parameter konveksi mengakibatkan pergerakan Ag-Air lebih cepat dan temperatur Ag-Air mengalami penurunan.
- 7. "Analisis Kecepatan dan Temperatur di Sekitar Titik Stagnasi Terendah Fluida Nano Li_2O – Air yang Melalui Silinder Vertikal Berpori" (Mayagrafinda dan Widodo, 2022). Dan diperoleh hasil semakin besar parameter magnetik dan porositas, maka kecepatan

meningkat sedangkan temperatur menurun. Semakin besar parameter volume fraction, maka kecepatan menurun dan temperature meningkat. Sedangkan saat bilangan Prandtl semakin besar, maka kecepatan dan temperature menurun

Dalam beberapa penelitian terdahulu terdapat beberapa persamaan dan perbedaan yang relevan dengan penelitian yang dilakukan, Seperti ditunjukan pada tabel 2.3 berikut.

Tabel 2.3. Persamaan dan perbedaan dengan penelitian sebelumnya

No	Penelitian Terdahulu	Persamaan	Perbedaan
1	Forced convection	Bola berpori,	Peneliti terdahulu
	of unsteady	konveksi	menggunakan
	magnetohydro-	paksa, metode	fluida tak tunak
	dynamics fluid	Keller-Box,	sedangkan peneliti
	past a porous	pengaruh medan	menggunakan
	sphere	magnet	fluida nano
2	Unsteady nano	Fluida nano, bola	Peneliti terdahulu
	fluid flow	berpori, metode	menggunakan
	through magnetic	Keller-Box	konveksi
	poroussphere		campuran,
	under the		partikel nano
	influence of mixed		Cu, fluida dasar
	convection		air .Sedangkan
			peneliti
			menggunkan
			konveksi paksa,
			partikel nano
			TiO_2 , fluida dasar
			air $(30^{o}C)$ dan
			air(90°C)

No	Penelitian Terdahulu	Persamaan		Perbedaan
3	Pengaruh Partikel	fluida	nano,	Peneliti terdahulu
	Nano Zn dan ZnO	parameter		menggunakan
	terhadap Aliran	magnetik		bola bermagnet,
	MHD FLuida Nano			konveksi
	pada lapisan Batas			campuran, partikel
	Bola Bermagnet			nano Zn dan ZnO,
				fluida dasar air,
				dan menggunakan
				metode Euler
				Implisit.
				Sedangkan peneliti
				menggunakan bola
				berpori, konveksi
				paksa, partikel
				nano TiO_2 , fluida
				dasar $air(30^{\circ}C)$
				dan air $(90^{o}C)$,
				dan menggunakan
				metode Keller-Box

Tabel 2.3 –

No	Penelitian Terdahulu	Persamaan	Perbedaan
4	Unsteady	Fluida nano,	Penelitian
	magnetohydro-	metode Keller-box	terdahulu
	dynamics		mengunakan
	mixedconvection		media Irisan bola
	flow pass sliced		berpori, konveksi
	magnetic spherein		campuran, partikel
	nano fluid		nano Fe_3O_4 , dan
			fluida dasar air.
			Sedangakan
			peneliti
			menggunakan
			media bola
			berpori, konveksi
			paksa, partikel
			nano TiO_2 , fluida
			dasar air $(30^{\circ}C)$
			dan air $(90^{\circ}C)$
5	Profil Kecepatan	Bola berpori,	Penelitian
	dan Temperatur	Metode Keller Box	terdahulu
	Pada Aliran		menggunakan
	Konveksi		Fluida
	Campuran		non-newtonian,
	Yang Melalui		konveksi
	Bola Berpori		campuran,
	Dengan Pengaruh		pengaruh
	Hidrodinamika		hidrodinamika
	Magnet		magnet.
			Sedangkan peneliti
			menggunakan
			fluida nano,
			konveksi paksa,
			dan pengaruh
			medan magnet

Tabel 2.3 –

No	Penelitian Terdahulu	Persamaan	Perbedaan
6	Pergerakan Aliran	Fluida nano	peneliti terdahulu
	MHD Ag-AIR		menggunakan
	Melewati Bola		Bola pejal, partikel
	Pejal		nano Ag, fluida
			dasar air, konveksi
			campuran, metode
			Euler Implisit.
			Sedangkan peneliti
			menggunakan bola
			berpori, konveksi
			paksa, partikel
			nano TiO_2 , fluida
			dasar air $(30^{\circ}C)$
			dan air $(90^{\circ}C)$,
			dan menggunakan
			metode Keller-Box
7	Analisis Kecepatan	Fluida nano, fluida	Peneliti terdahulu
	dan Temperatur	dasar air, metode	menggunakan
	di Sekitar Titik	Keller-box	partikel nano
	Stagnasi Terendah		Li_2O , fluida
	Fluida Nano		dasar air, dan
	$Li_2O - Air$ yang		media silinder
	Melalui Silinder		vertikal berpori.
	Vertikal Berpori		Sedangkan peneliti
			menggunakan
			partikel nano
			TiO_2 , fluida
			dasar air $(30^{\circ}C)$
			dan air $(90^{\circ}C)$,
			dan media bola
			berpori

Tabel 2.3 –

BAB III

METODOLOGI PENELITIAN

A. Langkah Penelitian

Dalam penelitian ini terdapat beberapa tahapan atau langkah-langkah penelitian sebagai berikut:

1. Tahap Studi Pustaka

Pada tahap studi pustaka beberapa sumber yang mendukung penilitian dikumpulkan dan dikaji, baik yang bersumber dari buku maupun dari jurnal-jurnal Kemudian mempelajari model matematika ilmiah. aliran fluida nano pada penelitian sebelumnya. Setiap model memiliki karakteristik yang berbeda-beda. Untuk mengembangkan model, pertama-tama harus dikaji dan dipelajari terlebih dahulu model-model matematika dari penelitian sebelumnya guna mendapatkan model matematis baru mengenai aliran fluida melalui bola berpori yang dipengaruhi oleh konveksi paksa. Model matematika yang dipelajari adalah persamaan dimensi dari aliran fluida nano yang mengalir melewati bola berpori di bawah pengaruh konveksi campuran sebagai berikut (Abu, 2018).

Persamaan dimensional kontinuitas

$$\frac{\partial \bar{r}\bar{u}}{\partial \bar{x}} + \frac{\partial \bar{r}\bar{v}}{\partial \bar{y}} = 0 \tag{3.1}$$

• Persamaan dimensional momentum sumbu x

$$\rho_{nf}\left(\frac{\partial \bar{u}}{\partial \bar{t}} + \bar{u}\frac{\partial \bar{u}}{\partial \bar{x}} + \bar{v}\frac{\partial \bar{u}}{\partial \bar{y}}\right) = -\frac{\partial \bar{p}}{\partial \bar{x}} + \mu_{nf}\left(\frac{\partial^2 \bar{u}}{\partial x^2} + \frac{\partial^2 \bar{u}}{\partial y^2}\right) \\ + \sigma(b + B_0^2)\bar{u} + \frac{\mu_{nf}}{K*}\bar{u} - \rho\beta(\bar{T} - T_\infty)g_{\bar{x}}$$
(3.2)

• Persamaan dimensional momentum sumbu y

$$\rho_{nf}\left(\frac{\partial \bar{v}}{\partial \bar{t}} + \bar{u}\frac{\partial \bar{v}}{\partial \bar{x}} + \bar{v}\frac{\partial \bar{v}}{\partial \bar{y}}\right) = -\frac{\partial \bar{p}}{\partial \bar{y}} + \mu_{nf}\left(\frac{\partial^2 \bar{v}}{\partial x^2} + \frac{\partial^2 \bar{v}}{\partial y^2}\right) \\ + \sigma(b + B_0^2)\bar{v} + \frac{\mu_{nf}}{K*}\bar{v} - \rho_{nf}\beta(\bar{T} - T_\infty)g_{\bar{y}}$$
(3.3)

• Persamaan dimesional energi

$$\left(\frac{\partial \bar{T}}{\partial \bar{t}} + \bar{u}\frac{\partial \bar{T}}{\partial \bar{x}} + \bar{v}\frac{\partial \bar{T}}{\partial \bar{y}}\right) = \alpha_{nf}\left(\frac{\partial^2 \bar{T}}{\partial \bar{x}^2} + \frac{\partial^2 \bar{T}}{\partial \bar{y}^2}\right)$$
(3.4)

2. Tahap Transformasi Persamaan Dimensional

Beberapa tahapan transformasi persamaan dimensional adalah sebagai berikut sebagai berikut :

- a. Membentuk persamaan pembangun dimensional dengan merujuk pada penelitian terdahulu yang telah dikaji pada tahap studi literatur yaitu persamaan (3.1)-(3.4)
- b. Persamaan yang telah terbentuk selanjtnya diubah menjadi persamaan pembangun tak dimensional dengan cara mensubstitusikan variabel dan parameter tak dimensional ke persamaan pembangun dimensional.
- c. Menyederhanakan persamaan tak dimensional melalui pendekatan lapisan batas.
- d. Persamaan tak dimensional yang telah disederhanakan pada langkah sebelumnya,

kemudian disederhanakan lagi dengan mensubstitusikan fungsi alir sehingga menjadi persamaan similaritas

3. Tahap finalisasi model

Proses finalisasi model dilakukan dengan menggunakan metode numerik beda hingga skema *Keller-Box*. Pada tahapan ini model matematika similaritas yang telah terbentuk didiskretisasikan menjadi bentuk numerik agar bisa disimulasikan ke dalam algoritma pemrograman.

4. Tahap Simulasi

Menyusun algoritma pemprograman dari hasil pada tahap sebelumya yang diskritisasi meliputi algoritma untuk memperoleh profil kecepatan dan profil temperatur aliran fluida nano TiO_2 . Dengan masing-masing algoritma dipengaruhi oleh beberapa parameter antara lain pengaruh parameter magnetik M, parameter porositas ϕ , dan parameter konveksi Kemudian mengimplementasikan λ. algoritma pemprograman yang telah terbentuk menggunakan sofware Matlab. Tahap selanjutnya yaitu melakukan simulasi dengan memasukan semua parameter dan variabel untuk menghasilkan data berupa grafik profil kecepatan dan temperatur fluida.

5. Analisis Hasil dan Pembahasan

Menganalisis grafik hasil simulasi yang telah dilakukan secara numerik menggunakan *sofware* Matlab untuk mengetahui pengaruh masing-masing parameter yang digunakan terhadap profil kecepatan dan temperatur aliran fluida nano TiO_2 yang melewati bola berpori dengan pengaruh konveksi paksa. Kemudian menyimpulkan hasil penelitian yang telah dilakukan.

Gambar 3.1. Diagram Tahapan Penelitian

BAB IV

Hasil dan Pembahasan

A. Model Matematika

Model matematika fluida pada penelitian ini merupakan model dari aliran fluida nano yang melewati bola berpori dalam bentuk persamaan dimensional dari penelitian sebelumnya yaitu penelitian dari Abu (2018) kemudian ditransformasikan ke dalam bentuk model matematika tak dimensional dengan memasukkan - parameter tak dimensional dan selanjutnya dibentuk model similaritas.

1. Persamaan Pembangun Dimensional

Model persamaan dimensional yang digunakan dalam penelitian ini merujuk pada penelitian sebelumnya yaitu penelitian dari (Abu, 2018). Terdiri dari tiga persamaan yaitu persamaan kontnuitas, persamaan momentum yang meliputi : persamaan kontinuitas, persamaan momentum di sumbu x, persamaan momentum di sumbu y, dan persamaan energi. Persamaan-persamaan tersebut didefinisikan sebagai berikut

• Persamaan Kontinuitas :

$$\frac{\partial \bar{r}\bar{u}}{\partial \bar{x}} + \frac{\partial \bar{r}\bar{v}}{\partial \bar{y}} = 0 \tag{4.1}$$

• Persamaan Momentum Sumbu x :

$$\rho_{fn}\left(\frac{\partial \bar{u}}{\partial \bar{t}} + \bar{u}\frac{\partial \bar{u}}{\partial \bar{x}} + \bar{v}\frac{\partial \bar{u}}{\partial \bar{y}}\right) = -\frac{\partial \bar{p}}{\partial \bar{x}} + \mu_{fn}\left(\frac{\partial^2 \bar{u}}{\partial x^2} + \frac{\partial^2 \bar{u}}{\partial y^2}\right) + \sigma(b + B_0)^2 \bar{u} + \frac{\mu_{fn}}{K^*} \bar{u} - \rho_{fn}\beta(\bar{T} - T_\infty)g_{\bar{x}}$$
(4.2)

• Persamaan Momentum Sumbu y :

$$\rho_{fn}\left(\frac{\partial \bar{v}}{\partial \bar{t}} + \bar{u}\frac{\partial \bar{v}}{\partial \bar{x}} + \bar{v}\frac{\partial \bar{v}}{\partial \bar{y}}\right) = -\frac{\partial \bar{p}}{\partial \bar{y}} + \mu_{fn}\left(\frac{\partial^2 \bar{v}}{\partial x^2} + \frac{\partial^2 \bar{v}}{\partial y^2}\right) + \sigma(b + B_0)^2 \bar{v} + \frac{\mu_{fn}}{K^*} \bar{v} - \rho_{fn}\beta(\bar{T} - T_\infty)g_{\bar{y}}$$
(4.3)

• Persamaan Energi :

$$\left(\frac{\partial \bar{T}}{\partial \bar{t}} + \bar{u}\frac{\partial \bar{T}}{\partial \bar{x}} + \bar{v}\frac{\partial \bar{T}}{\partial \bar{y}}\right) = \alpha_f n \left(\frac{\partial^2 \bar{T}}{\partial \bar{x}^2} + \frac{\partial^2 \bar{T}}{\partial \bar{y}^2}\right)$$
(4.4)

Kondisi batas yang digunakan dalam penelitian ini yaitu: $\bar{t} = 0: \bar{u} = \bar{v} = 0, \bar{T} = T_{\infty}$ untuk setiap \bar{x}, \bar{y} $\bar{t} > 0: \bar{u} = \bar{u_e}, \bar{u} = \bar{v} = 0, \bar{T} = T_{\infty}$ saat $\bar{y} \to \infty$

2. Persamaan Pembangun Tak-Dimensional

Persamaan tak dimensional dibentuk dari transformasi persamaan dimensional (4.1)-(4.4) dengan substitusi parameter dan variabel tak dimensional. Adapun variabel - variabel tak dimensional didefinisikan sebagai berikut (Norasia et.al., 2021):

$$\bar{x} = ax$$

$$\bar{y} = ayRe^{-\frac{1}{2}}$$

$$\bar{u} = uU_{\infty}$$

$$\bar{v} = vU_{\infty}Re^{-\frac{1}{2}}r(\bar{x}) = r(x)l$$

$$\bar{t} = \frac{at}{U_{\infty}}$$

$$\bar{p} = p\rho_{fn}U_{\infty}^{2}$$

$$\bar{T} - T_{\infty} = T(T_m - T_{\infty})$$

$$(4.5)$$

dan parameter tak dimensional sebagai berikut (Widodo et.al., 2019) : agB^2

$$M = \frac{a\sigma B_0}{\rho U_{\infty}}$$

$$v = \frac{\mu}{\rho}$$

$$Gr = \frac{g\beta(T_m - T_{\infty})a^3}{v_{fn}^2}$$

$$\lambda = \frac{Gr}{Re^2}$$

$$\phi = \frac{a\mu_{fn}}{\rho_{fn}U_{\infty}K^*}$$

$$Pr = \frac{v_{fn}}{\alpha_{fn}}$$

$$Re = \frac{U_{\infty}a}{v}$$

$$(4.6)$$

Variabel-variabel tak dimensional dan parameter tak dimensional yang telah diketahui disubstitusikan ke dalam persamaan pembangun dimensional berikut.

a. Transformasi Persamaan Kontinuitas

Proses substitusi variabel tak dimensional (4.5) kedalam persamaan kontinuitas dimensional (4.1) sebagai berikut:

$$\frac{\partial \bar{r}\bar{u}}{\partial \bar{x}} + \frac{\partial \bar{r}\bar{v}}{\partial \bar{y}} = 0$$

$$\frac{\partial (ar)(uU_{\infty})}{\partial (ax)} + \frac{\partial (ar)(vU_{\infty}Re^{-\frac{1}{2}})}{\partial (ayRe^{-\frac{1}{2}})} = 0$$

$$\frac{aU_{\infty}\partial(ru)}{a\partial(x)} + \frac{aU_{\infty}Re^{-\frac{1}{2}}\partial(rv)}{aRe^{-\frac{1}{2}}\partial(y)} = 0$$

$$\frac{\partial (ru)}{\partial x}U_{\infty} + \frac{\partial (rv)}{\partial y}U_{\infty} = 0$$

$$\frac{\partial (ru)}{\partial x} + \frac{\partial (rv)}{\partial y} = 0$$

Sehingga didapatkan persamaan akhir tak dimensional

kontinuitas:

$$\frac{\partial(ru)}{\partial x} + \frac{\partial(rv)}{\partial y} = 0 \tag{4.7}$$

b. Transformasi Persamaan Momentum

 Persamaan Momentum Sumbu x Diketahui persamaan momentum dimensional pada sumbu x (4.2) adalah sebagai berikut:

$$\rho_{fn}\left(\frac{\partial \bar{u}}{\partial \bar{t}} + \bar{u}\frac{\partial \bar{u}}{\partial \bar{x}} + \bar{v}\frac{\partial \bar{u}}{\partial \bar{y}}\right) = -\frac{\partial \bar{p}}{\partial \bar{x}} + \mu_{fn}\left(\frac{\partial^2 \bar{u}}{\partial x^2} + \frac{\partial^2 \bar{u}}{\partial y^2}\right) \\ + \sigma(b + B_0)^2 \bar{u} + \frac{\mu_{fn}}{K^*} \bar{u} - \rho_{fn}\beta(\bar{T} - T_\infty)g_{\bar{x}}$$

dengan substitusi variabel tak dimensional (4.5) kedalam persamaan (4.2), maka ruas kiri dari persamaan momentum di sumbu x berubah menjadi:

$$\begin{split} \rho_{fn} &(\frac{\partial \bar{u}}{\partial \bar{t}} + \bar{u} \frac{\partial \bar{u}}{\partial \bar{x}} + \bar{v} \frac{\partial \bar{u}}{\partial \bar{y}}) \\ &= \rho_{fn} (\frac{\partial (uU_{\infty})}{\partial (atU_{\infty}^{-1})} + uU_{\infty} \frac{\partial (uU_{\infty})}{\partial (xa)} + vU_{\infty}Re^{-\frac{1}{2}} \frac{\partial (uU_{\infty})}{\partial (yaRe^{-\frac{1}{2}})}) \\ &= \rho_{fn} (\frac{\partial u}{\partial t} \frac{U_{\infty}^2}{a} + u \frac{\partial u}{\partial x} \frac{U_{\infty}^2}{a} + v \frac{\partial u}{\partial y} \frac{U_{\infty}^2}{a}) \\ &= \rho_{fn} \frac{U_{\infty}^2}{a} (\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}) \end{split}$$

dan ruas kananya:

$$\begin{aligned} &-\frac{\partial \bar{p}}{\partial \bar{x}} + \mu_{fn} \left(\frac{\partial^2 \bar{u}}{\partial x^2} + \frac{\partial^2 \bar{u}}{\partial y^2}\right) + \sigma (b + B_0)^2 \bar{u} + \frac{\mu_{fn}}{K^*} \bar{u} - \rho_{fn} \beta (\bar{T} - T_\infty) g_{\bar{x}} \\ &= -\frac{\partial (p\rho_{fn} U_\infty^2)}{\partial (xa)} + \mu_{fn} \left(\frac{\partial^2 (uU_\infty)}{\partial (xa)^2} + \frac{\partial^2 (uU_\infty)}{\partial (yaRe^{-\frac{1}{2}})^2}\right) + \sigma (b + B_0)^2 \\ &\quad uU_\infty + \frac{\mu_{fn}}{K^*} uU_\infty + \rho_{fn} \beta T (T_m - T_\infty) gsinx \end{aligned}$$

$$= -\rho_{fn} \frac{U_{\infty}^2}{a} \frac{\partial p}{\partial x} + \mu_{fn} \left(\frac{U_{\infty}}{a^2} \frac{\partial^2 u}{\partial x^2} + \frac{U_{\infty}}{a^2 R e^{-1}} \frac{\partial^2 u}{\partial y^2} \right) + \sigma (b + B_0)^2$$
$$uU_{\infty} + \frac{\mu_{fn}}{K^*} uU_{\infty} + \rho_{fn} \beta T (T_m - T_{\infty}) gsinx$$

Dengan menggabungkan kedua ruas yaitu ruas kiri=ruas kanan, diperoleh persamaan momentum sumbu x

$$\rho_{fn} \frac{U_{\infty}^2}{a} \left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}\right) = -\rho_{fn} \frac{U_{\infty}^2}{a} \frac{\partial p}{\partial x} + \mu_{fn} \frac{U_{\infty}}{a^2}$$
$$\left(\frac{\partial^2 u}{\partial x^2} + \frac{1}{Re^{-1}} \frac{\partial^2 u}{\partial y^2}\right) + \sigma (b + B_0)^2 u U_{\infty} + \frac{\mu_{fn}}{K^*} u U_{\infty} + \rho_{fn} \beta T$$
$$(T_m - T_{\infty})gsinx \qquad (4.8)$$

Untuk menyederhanakan persamaan (4.8) masing-masing ruas dapat dikali dengan $\frac{a}{\rho_{fn}U_{\infty}^2}$ sehingga didapatkan:

$$\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{\partial p}{\partial x} + \frac{\mu_{fn}}{\rho_{fn}U_{\infty}a}(\frac{\partial^2 u}{\partial x^2} + \frac{1}{Re^{-1}}\frac{\partial^2 u}{\partial y^2}) + \frac{\sigma a}{\rho_{fn}U_{\infty}}(b+B_0)^2u + \frac{a\mu_{fn}}{\rho_{fn}K^*U_{\infty}}u - \frac{a}{U_{\infty}^2}\beta T(T_m - T_{\infty})gsinx$$
(4.9)

Dalam penelitian ini, diberikan asumsi bahwa fluida yang mengalir melewati bola terinduksi oleh medan magnet sebesar $\frac{1}{4}$ dari besarnya medan magnet benda yang dilewati yaitu bola berpori bermagnet $(b = \frac{1}{4}B_0)$ (Rahma et.al., 2017), maka nilai dari

$$(b + B_0)^2 = \left(\frac{1}{4}B_0 + B_0\right)^2$$
$$(b + B_0)^2 = \left(\frac{1}{4}B_0 + \frac{4}{4}B_0\right)^2$$
$$(b + B_0)^2 = \left(\frac{5}{4}B_0\right)^2 = \frac{25}{16}B_0^2$$

sehingga dapat ditulis persamaan momentum

sumbu x sebagai berikut:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{\partial p}{\partial x} + \frac{\mu_{fn}}{\rho_{fn}U_{\infty}a} \left(\frac{\partial^2 u}{\partial x^2} + \frac{1}{Re^{-1}}\frac{\partial^2 u}{\partial y^2}\right) + \frac{\sigma a}{\rho_{fn}U_{\infty}} \left(\frac{25}{16}B_0^2\right)u + \frac{a\mu_{fn}}{\rho_{fn}K^*U_{\infty}}u + \frac{a}{U_{\infty}^2}\beta T(T_m - T_{\infty})gsinx$$
(4.10)

Dengan mensubtitusikan parameter-parameter tak dimensional (4.6) ke dalam persamaan (4.10) sebagai berikut:

$$\begin{split} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} &= -\frac{\partial p}{\partial x} + \frac{\nu_{fn}}{U_{\infty}a} \frac{\partial^2 u}{\partial x^2} + \frac{\nu_{fn}}{U_{\infty}aRe^{-1}} \frac{\partial^2 u}{\partial y^2} + \\ \frac{25}{16} (\frac{\sigma a}{\rho_{fn}U_{\infty}} B_0^2) u + \frac{a\mu_{fn}}{\rho_{fn}K^*U_{\infty}} u + \frac{a}{U_{\infty}^2} \beta T(T_m - T_{\infty}) gsinx \\ \Leftrightarrow \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} &= -\frac{\partial p}{\partial x} + \frac{\nu_{fn}}{\nu_f} \frac{1}{Re} \frac{\partial^2 u}{\partial x^2} + \frac{\nu_{fn}}{\nu_f} \frac{\partial^2 u}{\partial y^2} \\ &+ \frac{25}{16} Mu + \phi u + \lambda sinx \end{split}$$

Sehingga diperoleh persamaan tak dimensional momentum sumbu x

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{\partial p}{\partial x} + \frac{\nu_{fn}}{\nu_f} R e^{-1} \frac{\partial^2 u}{\partial x^2} + \frac{\nu_{fn}}{\nu_f} \frac{\partial^2 u}{\partial y^2} + \frac{25}{16} M u + \phi u + \lambda sinx$$
(4.11)

• Persamaan Momentum Sumbu Y

Diketahui persamaan momentum dimensional pada sumbu y (4.3) adalah sebagai berikut:

$$\rho_{fn}\left(\frac{\partial \bar{v}}{\partial \bar{t}} + \bar{u}\frac{\partial \bar{v}}{\partial \bar{x}} + \bar{v}\frac{\partial \bar{u}}{\partial \bar{y}}\right) = -\frac{\partial \bar{p}}{\partial \bar{y}} + \mu_{fn}\left(\frac{\partial^2 \bar{v}}{\partial x^2} + \frac{\partial^2 \bar{v}}{\partial y^2}\right) \\ + \sigma(b + B_0)^2 \bar{v} + \frac{\mu_{fn}}{K^*} \bar{v} - \rho_{fn}\beta(\bar{T} - T_\infty)g_{\bar{v}}$$

dengan substitusi variabel tak dimensional 4.5 kedalam persamaan (4.3), maka ruas kiri dari

persamaan momentum sumbu y berubah menjadi:

$$\begin{split} \rho_{fn} &(\frac{\partial \bar{v}}{\partial \bar{t}} + \bar{u} \frac{\partial \bar{v}}{\partial \bar{x}} + \bar{v} \frac{\partial \bar{u}}{\partial \bar{y}}) \\ &= \rho_{fn} (\frac{\partial (vU_{\infty}Re^{-\frac{1}{2}})}{\partial (taU_{\infty}^{-1})} + uU_{\infty} \frac{\partial (vU_{\infty}Re^{-\frac{1}{2}})}{\partial (xa)} + vU_{\infty}Re^{-\frac{1}{2}} \\ &\frac{\partial (vU_{\infty}Re^{-\frac{1}{2}})}{\partial (yaRe^{-\frac{1}{2}})}) \\ &= \rho_{fn} (Re^{-\frac{1}{2}} \frac{U_{\infty}^2}{a} \frac{\partial v}{\partial t} + Re^{-\frac{1}{2}} \frac{U_{\infty}^2}{a} u \frac{\partial v}{\partial x} + Re^{-\frac{1}{2}} \frac{U_{\infty}^2}{a} v \frac{\partial v}{\partial y}) \\ &= \rho_{fn} Re^{-\frac{1}{2}} \frac{U_{\infty}^2}{a} (\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y}) \end{split}$$

dan ruas kananya:

$$\begin{split} &-\frac{\partial\bar{p}}{\partial\bar{y}} + \mu_{fn} (\frac{\partial^2\bar{v}}{\partial x^2} + \frac{\partial^2\bar{v}}{\partial y^2}) + \sigma(b+B_0)^2\bar{v} + \frac{\mu_{fn}}{K^*}\bar{v} - \rho_{fn}\beta(\bar{T}-T_\infty)g_{\bar{y}} \\ &= -\frac{\partial(p\rho_{fn}U_\infty^2)}{\partial(ayRe^{-\frac{1}{2}})} + \mu_{fn} (\frac{\partial^2(vU_\infty Re^{-\frac{1}{2}})}{\partial(xa)^2} + \frac{\partial^2(vU_\infty Re^{-\frac{1}{2}})}{\partial(yaRe^{-\frac{1}{2}})^2}) + \sigma(b+B_0)^2vU_\infty Re^{-\frac{1}{2}} + \frac{\mu_{fn}}{K^*}vU_\infty Re^{-\frac{1}{2}} - \rho_{fn}\beta T(T_m - T_\infty)gcosx \\ &= -\rho_{fn}Re^{-\frac{1}{2}}\frac{U_\infty^2}{a}\frac{\partial p}{\partial y} + \mu_{fn} (\frac{U_\infty Re^{-\frac{1}{2}}}{a^2}\frac{\partial^2 v}{\partial x^2} + \frac{U_\infty Re^{\frac{1}{2}}}{a^2}\frac{\partial^2 v}{\partial y^2}) \\ &\sigma(b+B_0)^2uRe^{-\frac{1}{2}}U_\infty + \frac{\mu_{fn}}{K^*}VU_\infty - \rho_{fn}\beta T(T_m - T_\infty)gcosx \end{split}$$

Dengan menggabungkan kedua ruas yaitu ruas kiri=ruas kanan, diperoleh persamaan momentum sumbu Y

$$\rho_{fn}Re^{-\frac{1}{2}}\frac{U_{\infty}^{2}}{a}\left(\frac{\partial v}{\partial t}+u\frac{\partial v}{\partial x}+v\frac{\partial v}{\partial y}\right) = -\rho_{fn}Re^{-\frac{1}{2}}\frac{U_{\infty}^{2}}{a}\frac{\partial p}{\partial y}$$
$$+\mu_{fn}\left(\frac{U_{\infty}Re^{-\frac{1}{2}}}{a^{2}}\frac{\partial^{2}v}{\partial x^{2}}+\frac{U_{\infty}Re^{\frac{1}{2}}}{a^{2}}\frac{\partial^{2}v}{\partial y^{2}}\right)+\sigma(b+B_{0})^{2}uRe^{-\frac{1}{2}}U_{\infty}$$
$$+\frac{\mu_{fn}}{K^{*}}VU_{\infty}-\rho_{fn}\beta T(T_{m}-T_{\infty})gcosx \qquad (4.12)$$

Untuk menyederhanakan persamaan (4.12) masing-masing ruas dapat dikali dengan $\frac{a}{U_{\infty}^2 Re^{\frac{1}{2}} \rho_{fn}}$ sehingga persamaan (4.12) dapat ditulis menjadi:

$$Re^{-1}\left(\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y}\right) = -\frac{\partial p}{\partial x} + \frac{\mu_{fn}}{\rho_{fn}U_{\infty}aRe^{\frac{1}{2}}}\left(\frac{1}{Re^{\frac{1}{2}}}\frac{\partial^{2}v}{\partial x^{2}} + \frac{Re^{\frac{1}{2}}}{\partial y^{2}}\right) + \frac{\sigma a}{\rho_{fn}U_{\infty}Re}(b+B_{0})^{2}v + \frac{a\mu_{fn}}{Re\rho_{fn}K^{*}}v - \frac{\rho_{fn}a}{Re^{\frac{1}{2}}U_{\infty}^{2}\rho_{fn}}$$
$$\beta T(T_{m} - T_{\infty})gcosx \qquad (4.13)$$

Diketahui bawa nilai $(b + B_0)^2 = \frac{25}{16}B_0^2$ sehingga persamaan momentum sumbu y dapat ditulis menjadi:

$$Re^{-1}\left(\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y}\right) = -\frac{\partial p}{\partial x} + \frac{\mu_{fn}}{\rho_{fn}U_{\infty}aRe^{\frac{1}{2}}}\left(\frac{1}{Re^{\frac{1}{2}}}\frac{\partial^{2}v}{\partial x^{2}} + Re^{\frac{1}{2}}\frac{\partial^{2}v}{\partial y^{2}}\right) + \frac{\sigma a}{\rho_{fn}U_{\infty}Re}\frac{25}{16}B_{0}^{2}v + \frac{a\mu_{fn}}{Re\rho_{fn}K^{*}}v - \frac{\rho_{fn}a}{Re^{\frac{1}{2}}U_{\infty}^{2}\rho_{fn}}$$
$$\beta T(T_{m} - T_{\infty})gcosx \qquad (4.14)$$

Untuk menyederhanakan persamaan (4.14) dilakukan substitusi parameter non dimensi (4.6) ke dalam persamaan (4.14), sehingga hasil akhir persamaan tak-dimensioanl momentum sumbu y adalah sebagai berikut:

$$Re^{-1}\left(\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y}\right) = -\frac{\partial p}{\partial y} + \frac{\nu_{fn}}{\nu_f}Re^{-2}\frac{\partial^2 v}{\partial x^2} + \frac{\nu_{fn}}{\nu_f}Re^{-1}\frac{\partial^2 v}{\partial y^2}$$
$$Re^{-1}\frac{\partial^2 v}{\partial y^2} + \frac{25}{16}Re^{-1}Mv + Re^{-1}\phi u - Re^{-\frac{1}{2}}\lambda cosx \quad (4.15)$$

c. Persamaan Energi

Diketahui persamaan dimensional Energi (4.4) adalah sebagai berikut:

$$\left(\frac{\partial \bar{T}}{\partial \bar{t}} + \bar{u}\frac{\partial \bar{T}}{\partial \bar{x}} + \bar{v}\frac{\partial \bar{T}}{\partial \bar{y}}\right) = \alpha_f n \left(\frac{\partial^2 \bar{T}}{\partial \bar{x}^2} + \frac{\partial^2 \bar{T}}{\partial \bar{y}^2}\right)$$

dengan substitusi variabel non dimensional (4.5) kedalam persamaan dimensional energi, maka diperoleh ruas kiri:

$$\begin{split} &(\frac{\partial \bar{T}}{\partial \bar{t}} + \bar{u}\frac{\partial \bar{T}}{\partial \bar{x}} + \bar{v}\frac{\partial \bar{T}}{\partial \bar{y}}) \\ = &\frac{\partial((T_m - T_\infty)T + T_\infty)}{\partial(atU_\infty^{-1})} + uU_\infty \frac{\partial((T_m - T_\infty)T + T_\infty)}{\partial(ax)} \\ &+ vU_\infty Re^{-\frac{1}{2}}\frac{\partial((T_m - T_\infty)T + T_\infty)}{\partial(ayRe^{-\frac{1}{2}})} \\ = &\frac{U_\infty}{a}(\frac{\partial((T_m - T_\infty)T)}{\partial t} + \frac{\partial T_\infty}{\partial t}) + \frac{U_\infty}{a}u(\frac{\partial((T_m - T_\infty)T)}{\partial x}) \\ &+ \frac{\partial T_\infty}{\partial x}) + \frac{U_\infty}{a}v(\frac{\partial((T_m - T_\infty)T)}{\partial y} + \frac{\partial T_\infty}{\partial y}) \\ = &\frac{U_\infty}{a}((\frac{\partial((T_m - T_\infty)T)}{\partial t}) + u(\frac{\partial((T_m - T_\infty)T)}{\partial x}) \\ &+ v(\frac{\partial((T_m - T_\infty)T)}{\partial y})) \end{split}$$

ruas kanan

$$\begin{split} &\alpha_f n (\frac{\partial^2 \bar{T}}{\partial \bar{x}^2} + \frac{\partial^2 \bar{T}}{\partial \bar{y}^2}) \\ = &\alpha_f n (\frac{\partial^2 ((T_m - T_\infty)T + T_\infty)}{\partial (xa)^2} + \frac{\partial^2 ((T_m - T_\infty)T + T_\infty)}{\partial (ayRe^{-\frac{1}{2}})^2}) \\ = &\frac{\alpha_f n}{a^2} ((\frac{\partial^2 ((T_m - T_\infty)T)}{\partial x^2} + \frac{\partial^2 T_\infty}{\partial x^2}) \\ &+ Re(\frac{\partial^2 ((T_m - T_\infty)T)}{\partial y^2} + \frac{\partial^2 T_\infty}{\partial y^2})) \\ = &\frac{\alpha_f n}{a^2} (\frac{\partial^2 ((T_m - T_\infty)T)}{\partial x^2} + Re\frac{\partial^2 ((T_m - T_\infty)T)}{\partial y^2}) \end{split}$$

dengan menggabungkan kedua ruas, ruas kiri=ruas kanan diperoleh:

$$\frac{U_{\infty}}{a}\left(\left(\frac{\partial((T_m - T_{\infty})T)}{\partial t}\right) + u\left(\frac{\partial((T_m - T_{\infty})T)}{\partial x}\right) + v\left(\frac{\partial((T_m - T_{\infty})T)}{\partial y}\right)\right)$$

$$=\frac{\alpha_f n}{a^2} \left(\frac{\partial^2((T_m - T_\infty)T)}{\partial x^2} + Re\frac{\partial^2((T_m - T_\infty)T)}{\partial y^2}\right)$$

atau dapat ditulis:

$$U_{\infty}\left(\left(\frac{\partial((T_m - T_{\infty})T)}{\partial t}\right) + u\left(\frac{\partial((T_m - T_{\infty})T)}{\partial x}\right) + v\left(\frac{\partial((T_m - T_{\infty})T)}{\partial y}\right)\right)$$
$$= \frac{\alpha_f n}{a}\left(\frac{\partial^2((T_m - T_{\infty})T)}{\partial x^2} + Re\frac{\partial^2((T_m - T_{\infty})T)}{\partial y^2}\right)$$

Kemudian masing-masing ruas dikali dengan $\frac{1}{(T_m - T_\infty)U_\infty}$, sehingga didapat:

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{\alpha_{fn}}{aU_{\infty}} (\frac{\partial^2 T}{\partial x^2} + Re \frac{\partial^2 T}{\partial y^2})$$

dengan substitusi parameter $Re = \frac{U_{\infty}a}{\nu_f}$ kedalam persamaan diatas maka diperoleh:

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{\alpha_{fn}}{\nu_f Re} \left(\frac{\partial^2 T}{\partial x^2} + Re \frac{\partial^2 T}{\partial y^2} \right)$$
$$\Leftrightarrow \frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{\alpha_{fn}}{\nu_f Re} \frac{\partial^2 T}{\partial x^2} + \frac{\alpha_{fn}}{\nu_f} \frac{\partial^2 T}{\partial y^2}$$

Selanjutnya dengan substitusi $Pr = rac{
u_f}{\alpha_f}$ diperoleh:

$$\frac{\partial T}{\partial t} + u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} = Re^{-1}Pr^{-1}\frac{\alpha_{fn}}{\alpha_f}\frac{\partial^2 T}{\partial x^2} + Pr^{-1}\frac{\alpha_{fn}}{\alpha_f}\frac{\partial^2 T}{\partial y^2}$$
(4.16)

Dari penyelesaian substitusi variabel dan parameter tak dimensional ke dalam persamaan-persamaan dimensional diatas didapatkan persamaan pembangun tak-dimensional sebagai berikut.

• Persamaan Tak-Dimensional Kontinuitas:

$$\frac{\partial ru}{\partial x} + \frac{\partial rv}{\partial y} = 0 \tag{4.17}$$

• Persamaan Tak-Dimensional Momentum Sumbu x:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{\partial p}{\partial x} + \frac{\nu_{fn}}{\nu_f} \frac{1}{Re} \frac{\partial^2 u}{\partial x^2} + \frac{\nu_{fn}}{\nu_f} \frac{\partial^2 u}{\partial y^2} + \frac{25}{16} Mu + \phi u + \lambda T sinx$$
(4.18)

• Persamaan Tak-Dimensional Momentum Sumbu y:

$$Re^{-1}\left(\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y}\right) = -\frac{\partial p}{\partial y} + \frac{\nu_{fn}}{\nu_f}Re^{-2}\frac{\partial^2 v}{\partial x^2} + \frac{v_{fn}}{v_f}Re^{-1}\frac{\partial^2 v}{\partial y^2} + \frac{25}{16}Re^{-1}Mv + Re^{-1}\phi v - Re^{-\frac{1}{2}}\lambda Tcosx$$
(4.19)

• Persamaan Tak-Dimensional Energi:

$$\frac{\partial T}{\partial t} + u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} = Re^{-1}Pr^{-1}\frac{\alpha_{fn}}{\alpha_f}\frac{\partial^2 T}{\partial x^2} + Pr^{-1}\frac{\alpha_{fn}}{\alpha_f}\frac{\partial^2 T}{\partial y^2}$$
(4.20)

dengan kondisi batas tak dimensioanal

t=0: u=v=0, T=0untuk setiapx,y

 $t > 0: u = u_e, T = 0$ saat $y \to \infty$

3. Teori Pendekatan Lapisan Batas

Penyederhanaan persamaan tak-dimensional dapat dilakukan dengan pendekatan lapisan batas. Lapisan batas yaitu lapisan yang terbentuk akibat adanya aliran fluida nano yang mengenai permukaan bola padat yang disebabkan oleh kekentalan fluida. Berdasarkan persamaan pembangun tak-dimensi (4.17)-(4.20), dapat diperoleh persamaan pembangun baru dengan menggunakan pendekatan lapisan batas. Diketahui bahwa lapisan batas itu sangat tipis, maka limit dari $\frac{1}{Be}$ mendekati nol, sehingga Re $\rightarrow\infty$ (Abu, 2018), diperoleh

• Persamaan Kontinuitas :

$$\frac{\partial ru}{\partial x} + \frac{\partial rv}{\partial y} = 0 \tag{4.21}$$

• Persamaan Momentum Sumbu x:

$$\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{\partial p}{\partial x} + \frac{\nu_{fn}}{\nu_f}\frac{\partial^2 u}{\partial y^2} + \frac{25}{16}Mu + \phi u + \lambda Tsinx \quad (4.22)$$

• Persamaan Momentum Sumbu y:

$$-\frac{\partial p}{\partial y} = 0 \tag{4.23}$$

• Persamaan Energi:

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = P r^{-1} \frac{\alpha_{fn}}{\alpha_f} \frac{\partial^2 T}{\partial y^2}$$
(4.24)

Karena persamaan momentum pada sumbu y sama dengan nol dan tekanan fluida tidak bergantung pada variabel y, maka hanya persamaan momentum disumbu x saja yang digunakan.

Persamaan momentum sumbu x diluar lapisan batas adalah sebagai berikut:

$$\frac{\partial u_e}{\partial t} + u_e \frac{\partial u_e}{\partial x} + v \frac{\partial u_e}{\partial y} = -\frac{\partial p}{\partial x} + \frac{\nu_{fn}}{\nu_f} \frac{\partial^2 u_e}{\partial y^2} + (\frac{25}{16}M)u_e + \phi u_e + \lambda Tsinx$$
(4.25)

diasumsikan kecepatan aliran bebas $u_e=\frac{3}{2}sinx$, sehingga

$$\frac{\partial u_e}{\partial t} = 0; \frac{\partial u_e}{\partial y} = 0; \frac{\partial^2 u_e}{\partial y^2} = 0$$
(4.26)

kemudian persamaan (4.26) disubtitusikan ke persamaan (4.25) maka diperoleh

$$u_e(\frac{\partial u_e}{\partial x}) = -\frac{\partial p}{\partial x} + (\frac{25}{16}M + \phi)u_e - \lambda Tsinx$$
(4.27)

pada saat nilai T=0, persamaan (4.27) berubah menjadi

$$-\frac{\partial p}{\partial x} = u_e(\frac{\partial u_e}{\partial x}) + (\frac{25}{16}M + \phi)u_e$$
(4.28)

Kemudian persamaan (4.28) yang telah diperoleh disubsitusikan ke dalam persamaan (4.22), sehingga diperoleh persamaan momentum sumbu x,

$$\begin{aligned} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} &= -\frac{\partial p}{\partial x} + \frac{\nu_{fn}}{\nu_f} \frac{\partial^2 u}{\partial y^2} + \frac{25}{16} Mu + \phi u + \lambda T sinx \\ \Leftrightarrow \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} &= \left(u_e \left(\frac{\partial u_e}{\partial x}\right) + \left(\frac{25}{16}M + \phi\right)u_e\right) + \frac{\nu_{fn}}{\nu_f} \frac{\partial^2 u}{\partial y^2} \\ &+ \frac{25}{16} Mu + \phi u + \lambda T sinx \\ \Leftrightarrow \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} &= u_e \frac{\partial u_e}{\partial x} + \frac{\nu_{fn}}{\nu_f} \frac{\partial^2 u}{\partial y^2} + \left(\frac{25}{16}M + \phi\right)(u - u_e) + \lambda T sinx \end{aligned}$$
(4.29)

Sehingga persamaan akhir dari lapisan batas sebagai berikut;

• Persamaan Kontinuitas :

$$\frac{\partial ru}{\partial x} + \frac{\partial rv}{\partial y} = 0 \tag{4.30}$$

• Persamaan Momentum:

$$\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = u_e\frac{\partial u_e}{\partial x} + \frac{\nu_{fn}}{\nu_f}\frac{\partial^2 u}{\partial y^2} + (\frac{25}{16}M + \phi)(u - u_e) + \lambda Tsinx$$
(4.31)

• Persamaan Energi:

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = Pr^{-1} \frac{\alpha_{fn}}{\alpha_f} \frac{\partial^2 T}{\partial y^2}$$
(4.32)

4. Fungsi Alir

Fungsi yang dapat menghubungkan dua fungsi kecepatan pada aliran di sumbu x dan sumbu y disebut fungsi alir.

Alirannya pada arah sumbu x disimbolakan u, dan pada arah sumbu y yang disimbolkan v. Fungsi alir dapat menyederhanakan banyak persamaan pada fluida yang melewati bola dan dapat dibuat dalam satu variabel secara komputasi. Fungsi Alir disimbolkan dengan ψ , fungsi alir pada arah sumbu x dan y yang melewati bola dapat dinyatakan sebagai berikut (Norasia et.al., 2021).

$$u = r^{-1} \frac{\partial \psi}{\partial y}, v = -r^{-1} \frac{\partial \psi}{\partial x}$$
(4.33)

Dengan mensubtitusi fungsi alir (4.33) ke dalam persamaan (4.30)-(4.32) diperoleh,

• Persamaan Kontinuitas:

$$\frac{\partial ru}{\partial x} + \frac{\partial rv}{\partial y} = 0$$
$$\frac{\partial r(r^{-1}\frac{\partial \psi}{\partial y})}{\partial x} + \frac{\partial r(-r^{-1}\frac{\partial \psi}{\partial x})}{\partial y} = 0$$
$$\frac{\partial(\partial \psi)}{\partial x \partial y} - \frac{\partial(\partial \psi)}{\partial y \partial x} = 0$$
$$\frac{\partial(\partial \psi)}{\partial x \partial y} = \frac{\partial(\partial \psi)}{\partial x \partial y}$$

• Persamaan Momentum:

$$\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = u_e\frac{\partial u_e}{\partial x} + \frac{\nu_{fn}}{\nu_f}\frac{\partial^2 u}{\partial y^2} + (\frac{25}{16}M + \phi)(u - u_e) +\lambda Tsinx$$

Ruas kiri

$$\begin{split} &\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \\ = &\frac{\partial (r^{-1} \frac{\partial \psi}{\partial y})}{\partial t} + (r^{-1} \frac{\partial \psi}{\partial y}) \frac{\partial (r^{-1} \frac{\partial \psi}{\partial y})}{\partial x} + (-r^{-1} \frac{\partial \psi}{\partial x}) \frac{\partial (r^{-1} \frac{\partial \psi}{\partial y})}{\partial y} \\ = &r^{-1} \frac{\partial^2 \psi}{\partial t \partial y} + (r^{-1} \frac{\partial \psi}{\partial y}) \frac{\partial}{\partial x} (r^{-1} \frac{\partial \psi}{\partial y}) - r^{-1} \frac{\partial \psi}{\partial x} \frac{\partial}{\partial y} (r^{-1} \frac{\partial \psi}{\partial y}) \\ = &\frac{\partial}{\partial t} r^{-1} \frac{\partial \psi}{\partial y} + (r^{-1} \frac{\partial \psi}{\partial y}) \frac{\partial}{\partial x} (r^{-1} \frac{\partial \psi}{\partial y}) - r^{-1} \frac{\partial \psi}{\partial x} \frac{\partial}{\partial y} (r^{-1} \frac{\partial \psi}{\partial y}) \end{split}$$

ruas kanan

$$\begin{split} u_e \frac{\partial u_e}{\partial x} &+ \frac{\nu_{fn}}{\nu_f} \frac{\partial^2 u}{\partial y^2} + (\frac{25}{16}M + \phi)(u - u_e) + \lambda T sinx \\ = & u_e \frac{\partial u_e}{\partial x} + \frac{\nu_{fn}}{\nu_f} \frac{\partial^2 (r^{-1} \frac{\partial \psi}{\partial y})}{\partial y^2} + (\frac{25}{16}M + \phi)((r^{-1} \frac{\partial \psi}{\partial y}) - u_e) \\ &+ \lambda T sinx \\ = & u_e \frac{\partial u_e}{\partial x} + \frac{\nu_{fn}}{\nu_f} \frac{\partial^2}{\partial y^2} (r^{-1} \frac{\partial \psi}{\partial y}) + (\frac{25}{16}M + \phi)((r^{-1} \frac{\partial \psi}{\partial y}) - u_e) \\ &+ \lambda T sinx \end{split}$$

ruas kiri=ruas kanan

$$\frac{\partial}{\partial t}r^{-1}\frac{\partial\psi}{\partial y} + (r^{-1}\frac{\partial\psi}{\partial y})\frac{\partial}{\partial x}(r^{-1}\frac{\partial\psi}{\partial y}) - r^{-1}\frac{\partial\psi}{\partial x}\frac{\partial}{\partial y}(r^{-1}\frac{\partial\psi}{\partial y}) = u_e\frac{\partial u_e}{\partial x} + \frac{\nu_{fn}}{\nu_f}\frac{\partial^2}{\partial y^2}(r^{-1}\frac{\partial\psi}{\partial y}) + (\frac{25}{16}M + \phi)((r^{-1}\frac{\partial\psi}{\partial y}) - u_e) + \lambda Tsinx$$

dengan adanya sifat turunan

$$\frac{\partial(uv)}{\partial x} = \frac{\partial u}{\partial x}v + u\frac{\partial v}{\partial x}$$

dengan nilai

$$u = r^{-1} \frac{\partial \psi}{\partial y}, v = -r^{-1} \frac{\partial \psi}{\partial x}$$

maka diperoleh

$$\begin{split} \frac{\partial}{\partial t}r^{-1}\frac{\partial\psi}{\partial y} + (r^{-1}\frac{\partial\psi}{\partial y})(-r^{-2}\frac{\partial\psi}{\partial y} + r^{-1}\frac{\partial^{2}\psi}{\partial x\partial y}) - r^{-1}\frac{\partial\psi}{\partial x}\frac{\partial}{\partial y} \\ (r^{-1}\frac{\partial\psi}{\partial y}) = u_{e}\frac{\partial u_{e}}{\partial x} + \frac{\nu_{fn}}{\nu_{f}}\frac{\partial^{2}}{\partial y^{2}}(r^{-1}\frac{\partial\psi}{\partial y}) + (\frac{25}{16}M + \phi) \\ ((r^{-1}\frac{\partial\psi}{\partial y}) - u_{e}) + \lambda Tsinx \end{split}$$

dengan melakukan oprasi perkalian kedalam persamaan diatas diperoleh

$$r^{-1}\left(\frac{\partial^{2}\psi}{\partial t\partial y}\right) - r^{-3}\frac{\partial r}{\partial x}\left(\frac{\partial \psi}{\partial y}\right)^{2} + r^{-2}\frac{\partial \psi}{\partial y}\frac{\partial^{2}\psi}{\partial x\partial y} - r^{-2}\frac{\partial \psi}{\partial x}\frac{\partial^{2}\psi}{\partial y^{2}} = u_{e}\frac{\partial u_{e}}{\partial x}$$
$$+ \frac{\nu_{fn}}{\nu_{f}}r^{-1}\frac{\partial^{3}\psi}{\partial y^{3}} + \left(\frac{25}{16}M\right)\left(r^{-1}\frac{\partial \psi}{\partial y} - u_{e}\right) + \phi\left(r^{-1}\frac{\partial \psi}{\partial y} - u_{e}\right) + \lambda Tsinx$$
(4.34)

• Persamaan Energi

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{1}{Pr} \frac{\alpha_{fn}}{\alpha_f} \frac{\partial^2 T}{\partial y^2}$$
$$\Leftrightarrow \frac{\partial T}{\partial t} + (r^{-1} \frac{\partial \psi}{\partial y}) \frac{\partial T}{\partial x} + (-r^{-1} \frac{\partial \psi}{\partial x}) \frac{\partial T}{\partial y} = \frac{1}{Pr} \frac{\alpha_{fn}}{\alpha_f} \frac{\partial^2 T}{\partial y^2}$$

Hasil penyelesaian dari substitusi fungsi alir didapatkan persamaan yang lebih sederhana. Terdapat dua persamaan yang dapat digunakan yaitu persamaan momentum dan persamaan energi sedangkan untuk persamaan kontinuitas dapat dihilangkan. Persamaan yang digunakan sebagai berikut:

$$r^{-1}\left(\frac{\partial^{2}\psi}{\partial t\partial y}\right) - r^{-3}\frac{\partial r}{\partial x}\left(\frac{\partial \psi}{\partial y}\right)^{2} + r^{-2}\frac{\partial \psi}{\partial y}\frac{\partial^{2}\psi}{\partial x\partial y} - r^{-2}\frac{\partial \psi}{\partial x}\frac{\partial^{2}\psi}{\partial y^{2}} = u_{e}\frac{\partial u_{e}}{\partial x}$$
$$+ \frac{\nu_{fn}}{\nu_{f}}r^{-1}\frac{\partial^{3}\psi}{\partial y^{3}} + \left(\frac{25}{16}M\right)\left(r^{-1}\frac{\partial \psi}{\partial y} - u_{e}\right) + \phi\left(r^{-1}\frac{\partial \psi}{\partial y} - u_{e}\right) + \lambda Tsinx \quad (4.35)$$
$$\frac{\partial T}{\partial t} + r^{-1}\frac{\partial \psi}{\partial y}\frac{\partial T}{\partial x} - r^{-1}\frac{\partial \psi}{\partial x}\frac{\partial T}{\partial y} = \frac{1}{Pr}\frac{\alpha_{fn}}{\alpha_{f}}\frac{\partial^{2}T}{\partial y^{2}} \qquad (4.36)$$

dengan kondisi batas:

$$\begin{split} t &= 0: \psi = \frac{\partial \psi}{\partial y}T = 0 \text{ untuk setiap } x, y \\ t &> 0: \psi = \frac{\partial \psi}{\partial y} = u_e, T = 0 \text{ saat } y \to \infty \end{split}$$

Berdasarkan (Mayagrafinda dan Widodo, 2022) didefinisikan bahwa hubungan fluida dasar dengan fluida nano adalah sebagai berikut

Densitas fluida nano (ρ_{fn}):

$$\rho_{fn} = (1 - \varphi)\rho_{bf} + \varphi\rho_s$$

Viskositas fluida nano (μ_{fn}):

$$\mu_{fn} = \frac{\mu_f}{(1-\varphi)^{2.5}}$$

Panas spesifik fluida nano ($(\rho C_p)_{fn}$) :

$$(\rho C_p)_{fn} = (1 - \varphi)(\rho C_p)_{bf} + \varphi(\rho C_p)_p$$

Konduktifitas panas fluida nano (k_{nf}) :

$$k_{nf} = \frac{(k_p + 2k_{bf} - 2\varphi(k_g - k_p))}{(k_p + 2k_{bf} + \varphi(k_{bf} - k_p))} k_{bf}$$

Sehingga, diperoleh rasio viskositas fluida nano (ν_{fn}), dengan viskositas fluida (ν_f) dan difusivitas fluida nano (α_{fn}) dengan difusivitas fluida (α_f), dapat ditulis

$$\frac{\nu_{fn}}{\nu_f} = \left((1 - \varphi)^{2.5} ((1 - \varphi) + \varphi(\frac{\rho_s}{\rho_f})) \right)^{-1} = V$$
(4.37)

$$\frac{\alpha_{fn}}{\alpha_f} = \frac{(k_p + 2k_{bf} - 2\varphi(k_g - k_p))}{(k_p + 2k_{bf} + \varphi(k_{bf} - k_p))} \frac{1}{(1 - \varphi)(\rho C_p)_{bf} + \varphi(\rho C_p)_p} = D$$
(4.38)

Dengan substitusi persamaan (4.37) dan (4.38) kedalam

persamaan (4.35) dan (4.36) maka diperoleh:

• Persamaan Momentum:

$$r^{-1}\left(\frac{\partial^{2}\psi}{\partial t\partial y}\right) - r^{-3}\frac{\partial r}{\partial x}\left(\frac{\partial \psi}{\partial y}\right)^{2} + r^{-2}\frac{\partial \psi}{\partial y}\frac{\partial^{2}\psi}{\partial x\partial y} - r^{-2}\frac{\partial \psi}{\partial x}\frac{\partial^{2}\psi}{\partial y^{2}} = u_{e}\frac{\partial u_{e}}{\partial x}$$
$$+ Vr^{-1}\frac{\partial^{3}\psi}{\partial y^{3}} + \left(\frac{25}{16}M\right)\left(r^{-1}\frac{\partial \psi}{\partial y} - u_{e}\right) + \phi\left(r^{-1}\frac{\partial \psi}{\partial y} - u_{e}\right) + \lambda Tsinx$$
$$(4.39)$$

• Persamaan Energi:

$$\frac{\partial T}{\partial t} + r^{-1} \frac{\partial \psi}{\partial y} \frac{\partial T}{\partial x} - r^{-1} \frac{\partial \psi}{\partial x} \frac{\partial T}{\partial y} = D \frac{1}{Pr} \frac{\partial^2 T}{\partial y^2}$$
(4.40)

5. Persamaan Similaritas

Tahapan selanjutnya setelah diperoleh persamaan pembangun tak-dimensional adalah mentransformasikan persamaan tersebut ke dalam variabel similaritas berikut,

$$\psi = t^{\frac{1}{2}} U_e(x) f(x,\eta,t); \eta = \frac{y}{t^{\frac{1}{2}}}; T = s(x,\eta,t)$$
(4.41)

dengan mensubstitusikan variabel similaritas (4.41) kedalam persamaan momentum (4.39) dan persamaan energi (4.40) maka didapatkan persamaan baru sebagai berikut:

• Persamaan Momentum:

$$V\frac{\partial^{3}f}{\partial\eta^{3}} + \frac{\eta}{2}\frac{\partial^{2}f}{\partial\eta^{2}} + t\frac{\partial u_{e}}{\partial x}(1 - (\frac{\partial f}{\partial\eta})^{2} + f\frac{\partial^{2}f}{\partial\eta^{2}}) = t\frac{\partial^{2}f}{\partial t\partial\eta}$$
$$+ tu_{e}(\frac{\partial f}{\partial\eta}\frac{\partial^{2}f}{\partial x\partial\eta} - r^{-1}\frac{\partial r}{\partial x}\frac{\partial^{2}f}{\partial\eta^{2}}) - t(\frac{25}{16}M + \phi)(\frac{\partial f}{\partial\eta} - 1) - \frac{\lambda Tt}{u_{e}}sinx$$
(4.42)

• Persamaan Energi

$$D\frac{\partial^2 s}{\partial \eta^2} + Pr\frac{\eta}{2}\frac{\partial s}{\partial \eta} + Prt\frac{\partial u_e}{\partial x}f\frac{\partial s}{\partial \eta} = Prt(\frac{\partial s}{\partial t} + u_e(\frac{\partial f}{\partial \eta}\frac{\partial s}{\partial x} - \frac{\partial f}{\partial x}\frac{\partial s}{\partial \eta} - r^{-1}\frac{\partial r}{\partial y}f\frac{\partial s}{\partial \eta}))$$
(4.43)

dengan kondisi batas:

 $t=0; f=\frac{\partial f}{\partial\eta}=s=0$ untuk semu
a $x{,}\eta$ $t>0; f=\frac{\partial f}{\partial\eta}=1$, s=0 pada sa
at $\eta\to\infty$

Adapun langkah-langkah pengerjaan persamaan similaritas diatas terdapat pada *Lampiran 2*. Penelitian ini diteliti pada titik stagnasi yaitu ($\mathbf{x} \approx 0$), oleh sebab itu maka nilai $u_e(x) = 0$ dan $\frac{\partial u_e(x)}{\partial x} = \frac{3}{2}$ sehingga persamaan (4.42) dan (4.43) berubah menjadi

$$V\frac{\partial^3 f}{\partial \eta^3} + \frac{\eta}{2}\frac{\partial^2 f}{\partial \eta^2} + \frac{3}{2}t(1 - (\frac{\partial f}{\partial \eta})^2 + f\frac{\partial^2 f}{\partial \eta^2}) = t\frac{\partial^2 f}{\partial t\partial \eta} - t(\frac{25}{16}M + \phi)$$
$$(\frac{\partial f}{\partial \eta} - 1) - \frac{2}{3}\lambda tT$$
(4.44)

$$D\frac{\partial^2 s}{\partial \eta^2} + Pr\frac{\eta}{2}\frac{\partial s}{\partial \eta} + \frac{3}{2}Prtf\frac{\partial s}{\partial \eta} = Prt\frac{\partial s}{\partial t}$$
(4.45)

Penelitian ini dipengaruhi oleh konveksi paksa, sehingga nilai parameter konveksi sama dengan nol $\lambda=0$, dengan mensubtitusikan nilai parameter konveksi tersebut pada persamaan (4.44) dan pesamaan (4.45) maka dihasilkan persamaan momentum dan energi sebagai berikut.

$$V\frac{\partial^{3}f}{\partial\eta^{3}} + \frac{\eta}{2}\frac{\partial^{2}f}{\partial\eta^{2}} + \frac{3}{2}t(1 - (\frac{\partial f}{\partial\eta})^{2} + f\frac{\partial^{2}f}{\partial\eta^{2}}) + t(\frac{25}{16}M + \phi)(\frac{\partial f}{\partial\eta} - 1) = t\frac{\partial^{2}f}{\partial t\partial\eta}$$
(4.46)
$$D\frac{\partial^{2}s}{\partial\eta^{2}} + Pr\frac{\eta}{2}\frac{\partial s}{\partial\eta} + \frac{3}{2}Prtf\frac{\partial s}{\partial\eta} = Prt\frac{\partial s}{\partial t}$$
(4.47)

dengan kondisi batas sebagai berikut

$$t=0; f=rac{\partial f}{\partial \eta}=s=0$$
 untuk semua x,η
 $t>0; f=rac{\partial f}{\partial \eta}=1$, $s=0$ pada saat $\eta o\infty$

Diasumsikan bahwa turunan parsial dari $\frac{\partial f}{\partial \eta}$ adalah f' dan turunan parsial dari $\frac{\partial s}{\partial \eta}$ adalah s'. Dengan mensubtitusikan persamaan $\frac{\partial f}{\partial \eta} = f'$ dan $\frac{\partial s}{\partial \eta} = s'$, kedalam persamaan (4.38) dan persamaan (4.39) maka diperoleh persamaan momentum
dan energi sebagai berikut

$$Vf''' + \frac{\eta}{2}f'' + \frac{3}{2}t(1 - (f')^2 + ff'') + t(\frac{25}{16}M + \phi)(f' - 1) = t\frac{\partial f'}{\partial t} \quad (4.48)$$

$$Ds'' + Pr\frac{\eta}{2}s' + \frac{3}{2}Prtfs' = Prt\frac{\partial s}{\partial t}$$
(4.49)

dengan kondisi batas

$$t=0; f'=s=0$$
untuk semua x,η
 $t>0; f'=1$, $s=0$ pada saat $\eta
ightarrow \infty$

B. Penyelesaian Numerik Model Matematika Menggunakan Metode Keller Box

1. Penyelarasan Notasi

Penyelesaian numerik metode *Keller Box* hanya bisa dilakukan pada persamaan dalam bentuk orde pertama, sehingga dilakukan pemisalan terlebih dahulu untuk merubah persamaan (4.48) dan persamaan (4.49) yang merupakan persamaan orde tinggi menjadi persamaan orde pertama. Misalkan;

$$f' = g \tag{4.50}$$

$$g' = h \tag{4.51}$$

$$s' = u \tag{4.52}$$

Dengan mensubstitusikan persamaan (4.50)-(4.52) ke persamaan (4.48) dan (4.49), diperoleh

• Persamaan Momentum:

$$Vh' + \frac{\eta}{2}h + \frac{3}{2}t(1 - (g)^2 + fh) + t(\frac{25}{16}M + \phi)(g - 1) = t\frac{\partial g}{\partial t} \quad (4.53)$$

· Persamaan Energi:

$$Du' + Pr\frac{\eta}{2}u + \frac{3}{2}Prtfu = Prt\frac{\partial s}{\partial t}$$
(4.54)

2. Diskretisasi Model

Tehapan selanjutnya setelah dilakukan penyederhanaan persamaan menjadi persamaan orde satu adalah mendeskritisasikan persamaan yang telah diperoleh menjadi persamaan numerik menggunakan metode numerik beda hingga terpusat.

Pada Persamaan linear (4.50)-(4.52) titik pusat yang digunakan adalah $\eta_{j-\frac{1}{2}}, t^n$ dan terdapat pada ruas P_1, P_2 dengan menggunakan beda hingga pusat, sedangkan untuk persamaan yang bentuknya tak linier pada persamaan (4.53)-(4.54) menggunakan titik tengah $\eta_{j-\frac{1}{2}}, t^{n-1}$ pada segiempat $P_1P_2P_3P_4$ yang terdapat pada Gambar 4.1

Gambar 4.1. Skema Beda Hingga

Sehingga diperoleh persamaan sebagai berikut:

$$\frac{(f_j^n - f_{j-1}^n)}{l_j} = g_{j-\frac{1}{2}}^n \tag{4.55}$$

$$\frac{(g_j^n - g_{j-1}^n)}{l_j} = h_{j-\frac{1}{2}}^n$$
(4.56)

$$\frac{(s_j^n - s_{j-1}^n)}{l_j} = u_{j-\frac{1}{2}}^n$$
(4.57)

Diskretisasi untuk persamaan (4.53) adalah sebagai berikut:

$$\frac{1}{2}\left[\left(L_{1}\right)_{j-\frac{1}{2}}^{n}+\left(L_{1}\right)_{j-\frac{1}{2}}^{n-1}\right]=t^{n-\frac{1}{2}}\left[\frac{u_{j-\frac{1}{2}}^{n}-u_{j-\frac{1}{2}}^{n-1}}{k^{n}}\right]$$

dengan

$$\begin{split} (L_1)_{j-\frac{1}{2}}^n &= \left[Vh' + \frac{\eta}{2}h + \frac{3}{2}t(1-g^2+fh) + t(\frac{25}{16}M+\phi)(g-1) \right]_{j-\frac{1}{2}}^n \\ (L_1)_{j-\frac{1}{2}}^n &= V\frac{(h_j^n - h_{j-1}^n)}{l_j} + \frac{\eta_{j-\frac{1}{2}}}{2}h_{j-\frac{1}{2}}^n + \frac{3}{2}t^n[1-(g_{j-\frac{1}{2}}^n)^2 + f_{j-\frac{1}{2}}^n \\ h_{j-\frac{1}{2}}^n] &+ t^n(\frac{25}{16}M+\phi)(g_{j-\frac{1}{2}}^n-1) \\ (L_1)_{j-\frac{1}{2}}^{n-1} &= \left[Vh' + \frac{\eta}{2}h + \frac{3}{2}t(1-g^2+fh) + t(\frac{25}{16}M+\phi)(g-1) \right]_{j-\frac{1}{2}}^{n-1} \\ (L_1)_{j-\frac{1}{2}}^{n-1} &= V\frac{(h_j^{n-1} - h_{j-1}^{n-1})}{l_j} + \frac{\eta_{j-\frac{1}{2}}}{2}h_{j-\frac{1}{2}}^{n-1} + \frac{3}{2}t^{n-1}[1-(g_{j-\frac{1}{2}}^{n-1})^2 \\ &+ f_{j-\frac{1}{2}}^{n-1}h_{j-\frac{1}{2}}^{n-1}] + t^{n-1}(\frac{25}{16}M+\phi)(g_{j-\frac{1}{2}}^{n-1}-1) \end{split}$$

Sehingga didapatkan persamaan berikut

$$\begin{split} &V\frac{(h_{j}^{n}-h_{j-1}^{n})}{l_{j}}+\frac{\eta_{j-\frac{1}{2}}}{2}h_{j-\frac{1}{2}}^{n}+\frac{3}{2}t^{n}\left[1-(g_{j-\frac{1}{2}}^{n})^{2}+f_{j-\frac{1}{2}}^{n}h_{j-\frac{1}{2}}^{n}\right]\\ &+t^{n}(\frac{25}{16}M+\phi)(g_{j-\frac{1}{2}}^{n}-1)+V\frac{(h_{j}^{n-1}-h_{j-1}^{n-1})}{l_{j}}+\frac{\eta_{j-\frac{1}{2}}}{2}h_{j-\frac{1}{2}}^{n-1}\\ &+\frac{3}{2}t^{n-1}\left[1-(g_{j-\frac{1}{2}}^{g-1})^{2}+f_{j-\frac{1}{2}}^{n-1}h_{j-\frac{1}{2}}^{n-1}\right]+t^{n-1}(\frac{25}{16}M+\phi)(g_{j-\frac{1}{2}}^{n-1}-1)\\ &=2\frac{t^{n-\frac{1}{2}}}{k^{n}}g_{j-\frac{1}{2}}^{n}-2\frac{t^{n-\frac{1}{2}}}{k^{n}}g_{j-\frac{1}{2}}^{n-1} \end{split}$$

atau bisa ditulis

$$\begin{split} &V\frac{(h_{j}^{n}-h_{j-1}^{n})}{l_{j}}+\frac{\eta_{j-\frac{1}{2}}}{2}h_{j-\frac{1}{2}}^{n}+\frac{3}{2}t^{n}\left[1-(g_{j-\frac{1}{2}}^{n})^{2}+f_{j-\frac{1}{2}}^{n}h_{j-\frac{1}{2}}^{n}\right]\\ &+t^{n}(\frac{25}{16}M+\phi)(g_{j-\frac{1}{2}}^{n}-1)-2\frac{t^{n-\frac{1}{2}}}{k^{n}}g_{j-\frac{1}{2}}^{n}=-V\frac{(h_{j}^{n-1}-h_{j-1}^{n-1})}{l_{j}}\\ &-\frac{\eta_{j-\frac{1}{2}}}{2}h_{j-\frac{1}{2}}^{n-1}-\frac{3}{2}t^{n-1}\left[1-(g_{j-\frac{1}{2}}^{n-1})^{2}+f_{j-\frac{1}{2}}^{n-1}h_{j-\frac{1}{2}}^{n-1}\right]-t^{n-1}(\frac{25}{16}M+\phi)\\ &(g_{j-\frac{1}{2}}^{n-1}-1)-2\frac{t^{n-\frac{1}{2}}}{k^{n}}g_{j-\frac{1}{2}}^{n-1} \end{split}$$

Diskretisasi untuk persamaan (4.54) adalah sebagai berikut:

$$\frac{1}{2}\left[(L_2)_{j-\frac{1}{2}}^n + (L_2)_{j-\frac{1}{2}}^{n-1} \right] = Prt^{n-\frac{1}{2}} \left[\frac{s_{j-\frac{1}{2}}^n - s_{j-\frac{1}{2}}^{n-1}}{k^n} \right]$$

dengan

$$\begin{split} (L_2)_{j-\frac{1}{2}}^n &= \left[Du' + \Pr\frac{\eta}{2}u + \frac{3}{2}\Pr tfu \right]_{j-\frac{1}{2}}^n \\ (L_2)_{j-\frac{1}{2}}^n &= D(\frac{(u_j^n - u_{j-1}^n)}{l_j}) + \Pr\frac{\eta_{j-\frac{1}{2}}}{2}u_{j-\frac{1}{2}}^n + \frac{3}{2}\Pr tf_{j-\frac{1}{2}}^n u_{j-\frac{1}{2}}^n \\ (L_2)_{j-\frac{1}{2}}^{n-1} &= \left[Du' + \Pr\frac{\eta}{2}u + \frac{3}{2}\Pr tfu \right]_{j-\frac{1}{2}}^{n-1} \\ (L_2)_{j-\frac{1}{2}}^{n-1} &= D(\frac{(u_j^{n-1} - u_{j-1}^{n-1})}{l_j}) + \Pr\frac{\eta_{j-\frac{1}{2}}}{2}u_{j-\frac{1}{2}}^{n-1} + \frac{3}{2}\Pr tf_{j-\frac{1}{2}}^{n-1}u_{j-\frac{1}{2}}^{n-1} \end{split}$$

Sehingga diperoleh persamaan berikut

$$\begin{split} D(\frac{(u_{j}^{n}-u_{j-1}^{n})}{l_{j}}) + Pr\frac{\eta_{j-\frac{1}{2}}}{2}u_{j-\frac{1}{2}}^{n} + \frac{3}{2}Prtf_{j-\frac{1}{2}}^{n}u_{j-\frac{1}{2}}^{n} + D(\frac{(u_{j}^{n-1}-u_{j-1}^{n-1})}{l_{j}}) \\ + Pr\frac{\eta_{j-\frac{1}{2}}}{2}u_{j-\frac{1}{2}}^{n-1} + \frac{3}{2}Prtf_{j-\frac{1}{2}}^{n-1}u_{j-\frac{1}{2}}^{n-1} = 2\frac{Prt^{n-\frac{1}{2}}}{k^{n}}s_{j-\frac{1}{2}}^{n} - 2\frac{Prt^{n-\frac{1}{2}}}{k^{n}}s_{j-\frac{1}{2}}^{n-1} \end{split}$$
atau bisa ditulis

 (a^n, a^n) n = 1

$$D(\frac{(u_{j}^{n}-u_{j-1}^{n})}{l_{j}}) + Pr\frac{\eta_{j-\frac{1}{2}}}{2}u_{j-\frac{1}{2}}^{n} + \frac{3}{2}Prtf_{j-\frac{1}{2}}^{n}u_{j-\frac{1}{2}}^{n} - 2\frac{Prt^{n-\frac{1}{2}}}{k^{n}}s_{j-\frac{1}{2}}^{n} = -D$$

$$(\frac{(u_{j}^{n-1}-u_{j-1}^{n-1})}{l_{j}}) - Pr\frac{\eta_{j-\frac{1}{2}}}{2}u_{j-\frac{1}{2}}^{n-1} - \frac{3}{2}Prtf_{j-\frac{1}{2}}^{n-1}u_{j-\frac{1}{2}}^{n-1} - 2\frac{Prt^{n-\frac{1}{2}}}{k^{n}}s_{j-\frac{1}{2}}^{n-1}$$

$$(4.58)$$

3. Linearisasi Model

Pada tahap ini, hasil diskretisasi model dilinearisasikan dengan menggunakan metode Newton berikut (Singh et.al, 2021):

$$\begin{aligned} f_{j}^{i+1} &= f_{j}^{i} + \delta f_{j}^{i} \\ g_{j}^{i+1} &= g_{j}^{i} + \delta g_{j}^{i} \\ h_{j}^{i+1} &= h_{j}^{i} + \delta h_{j}^{i} \\ s_{j}^{i+1} &= s_{j}^{i} + \delta s_{j}^{i} \\ u_{j}^{i+1} &= u_{j}^{i} + \delta u_{j}^{i} \end{aligned}$$
(4.59)

Dengan mensubstitusikan bentuk iterasi (4.59) kedalam persamaan (4.55)-(4.58) maka didapatkan

$$(\delta f_j - \delta f_{j-1}) - \frac{l_j}{2} (\delta g_j - \delta g_{j-1}) = -(f_j^n - f_{j-1}^n) + \frac{l_j}{2} (g_j^n + g_{j-1}^n)$$
(4.60)

$$(\delta g_j - \delta g_{j-1}) - \frac{l_j}{2} (\delta h_j - \delta h_{j-1}) = -(g_j^n - g_{j-1}^n) + \frac{l_j}{2} (h_j^n + h_{j-1}^n)$$
(4.61)

$$(\delta s_j - \delta s_{j-1}) - \frac{l_j}{2} (\delta u_j - \delta u_{j-1}) = -(s_j^n - s_{j-1}^n) + \frac{l_j}{2} (u_j^n + u_{j-1}^n)$$
(4.62)

$$\begin{split} V(\frac{h_{j}^{n}-h_{j-1}^{n}}{l_{j}}+\frac{\delta h_{j}-\delta h_{j-1}}{l_{j}})+\frac{\eta_{j-\frac{1}{2}}}{2}(h_{j-\frac{1}{2}}^{n}+\frac{\delta h_{j}+\delta h_{j-1}}{2})+\frac{3}{2}t^{n}[1-\\ -(g_{j-\frac{1}{2}}^{n}+\frac{\delta g_{j}+\delta g_{j-1}}{2})^{2}+(f_{j-\frac{1}{2}}^{n}+\frac{\delta f_{j}+\delta f_{j-1}}{2})(h_{j-\frac{1}{2}}^{n}+\frac{\delta h_{j}+\delta h_{j-1}}{2})]\\ +t^{n}(\frac{25}{16}M+\phi)((g_{j-\frac{1}{2}}^{n}+\frac{\delta g_{j}+\delta g_{j-1}}{2})-1)-2\frac{t^{n-\frac{1}{2}}}{k^{n}}(g_{j-\frac{1}{2}}^{n}+\frac{\delta g_{j}+\delta g_{j-1}}{2})\\ =R_{1} \end{split}$$

dapat ditulis persamaan momentum

$$\begin{split} V(\frac{\delta h_{j}-\delta h_{j-1}}{l_{j}}) &- \frac{3}{2}t^{n}2g_{j-\frac{1}{2}}^{n}(\frac{\delta g_{j}+\delta g_{j-1}}{2}) - \frac{3}{2}t^{n}(\frac{\delta g_{j}+\delta g_{j-1}}{2})^{2} + \frac{\eta_{j-\frac{1}{2}}}{2} \\ (\frac{\delta h_{j}+\delta h_{j-1}}{2}) &+ \frac{3}{2}t^{n}f_{j-\frac{1}{2}}^{n}(\frac{\delta h_{j}+\delta h_{j-1}}{2}) + \frac{3}{2}t^{n}h_{j-\frac{1}{2}}^{n}(\frac{\delta f_{j}+\delta f_{j-1}}{2}) \\ (\frac{\delta h_{j}+\delta h_{j-1}}{2}) &+ \frac{3}{2}t^{n}h_{j-\frac{1}{2}}^{n}(\frac{\delta f_{j}+\delta f_{j-1}}{2}) + \frac{3}{2}t^{n}(\frac{\delta f_{j}+\delta f_{j-1}}{2})(\frac{\delta h_{j}+\delta h_{j-1}}{2}) \\ &+ t^{n}(\frac{25}{16}M+\phi)((\frac{\delta g_{j}+\delta g_{j-1}}{2}) - 2\frac{t^{n-\frac{1}{2}}}{k^{n}}(\frac{\delta g_{j}+\delta g_{j-1}}{2})) = V\frac{(h_{j}^{n}-h_{j-1}^{n})}{l_{j}} \\ &- \frac{\eta_{j-\frac{1}{2}}}{2}h_{j-\frac{1}{2}}^{n} - \frac{3}{2}t^{n}f_{j-\frac{1}{2}}^{n}h_{j-\frac{1}{2}}^{n} - t^{n}(\frac{25}{16}M+\phi)(g_{j-\frac{1}{2}}^{n}-1) + \frac{3}{2}t^{n}(g_{j-\frac{1}{2}}^{n})^{2} \\ &+ 2\frac{t^{n-\frac{1}{2}}}{k^{n}}g_{j-\frac{1}{2}}^{n} + R_{1} \end{split}$$

$$(4.63)$$

$$D(\frac{u_{j}^{n}-u_{j-1}^{n}}{l_{j}}+\frac{\delta u_{j}-\delta u_{j-1}}{l_{j}})+Pr\frac{\eta_{j-\frac{1}{2}}}{2}(u_{j-\frac{1}{2}}^{n}+\frac{\delta u_{j}+\delta u_{j-1}}{2})+\frac{3}{2}Prt^{n}(f_{j-\frac{1}{2}}^{n}+\frac{\delta f_{j}+\delta f_{j-1}}{2})(u_{j-\frac{1}{2}}^{n}+\frac{\delta u_{j}+\delta u_{j-1}}{2})-2\frac{Prt^{n-\frac{1}{2}}}{k^{n}}(s_{j-\frac{1}{2}}^{n}+\frac{\delta s_{j}+\delta s_{j-1}}{2})=R_{2}$$
dapat ditulis persamaan energi

$$D(\frac{\delta u_{j} - \delta u_{j-1}}{l_{j}}) + Pr\frac{\eta_{j-\frac{1}{2}}}{2}(\frac{\delta u_{j} + \delta u_{j-1}}{2}) + \frac{3}{2}Prt^{n}f_{j-\frac{1}{2}}^{n}(\frac{\delta u_{j} + \delta u_{j-1}}{2})$$

$$+ \frac{3}{2}Prt^{n}u_{j-\frac{1}{2}}^{n}(\frac{\delta f_{j} + \delta f_{j-1}}{2}) + \frac{3}{2}Prt^{n}(\frac{\delta f_{j} + \delta f_{j-1}}{2})(\frac{\delta u_{j} + \delta u_{j-1}}{2})$$

$$- 2\frac{Prt^{n-\frac{1}{2}}}{k^{n}}(\frac{\delta s_{j} + \delta s_{j-1}}{2})^{n} = -D(\frac{(u_{j}^{n} - u_{j-1}^{n})}{l_{j}}) - Pr\frac{\eta_{j-\frac{1}{2}}}{2}u_{j-\frac{1}{2}}^{n}$$

$$- \frac{3}{2}Prtf_{j-\frac{1}{2}}^{n}u_{j-\frac{1}{2}}^{n} + 2\frac{Prt^{n-\frac{1}{2}}}{k^{n}}s_{j-\frac{1}{2}}^{n} + R_{2}$$

$$(4.64)$$

Selanjutnya sederhanakan persamaan (4.60)-(4.64) dengan cara menghilangkan orde tinggi yang terdapat pada δf^i_j , δg^i_j , δh^i_j , δs^i_j dan δu^i_j , sehingga diperoleh

$$(\delta f_j - \delta f_{j-1}) - \frac{l_j}{2} (\delta g_j + \delta g_{j-1}) = (r_1)_j$$
(4.65)

$$(\delta g_j - \delta g_{j-1}) - \frac{l_j}{2} (\delta h_j + \delta h_{j-1}) = (r_2)_j$$
(4.66)

$$(\delta s_j - \delta s_{j-1}) - \frac{l_j}{2} (\delta u_j + \delta u_{j-1}) = (r_3)_j$$
(4.67)

$$(a_1)_j \delta f_j + (a_2)_j \delta f_{j-1} + (a_3)_j \delta g_j + (a_4)_j \delta g_{j-1} + (a_5)_j \delta h_j + (a_6)_j \delta h_{j-1} = (r_4)_j$$

$$(4.68)$$

 $(b_1)_j \delta u_j + (b_2)_j \delta u_{j-1} + (b_3)_j \delta f_j + (b_4)_j \delta f_{j-1} + (b_5)_j \delta s_j + (b_6)_j \delta s_{j-1} = (r_5)_j$ (4.69)

dengan

$$\begin{split} &(r_{1})_{j} = -\left(f_{j}^{n} - f_{j-1}^{n}\right) + \frac{l_{j}}{2}(g_{j}^{n} + g_{j-1}^{n}) \\ &(r_{2})_{j} = -\left(g_{j}^{n} - g_{j-1}^{n}\right) + \frac{l_{j}}{2}(h_{j}^{n} + h_{j-1}^{n}) \\ &(r_{3})_{j} = -\left(s_{j}^{n} - s_{j-1}^{n}\right) + \frac{l_{j}}{2}(u_{j}^{n} + u_{j-1}^{n}) \\ &(r_{4})_{j} = -V\frac{(h_{j}^{n} - h_{j-1}^{n})}{l_{j}} - \frac{\eta_{j-\frac{1}{2}}}{2}h_{j-\frac{1}{2}}^{n} - \frac{3}{2}t^{n}\left[f_{j-\frac{1}{2}}^{n}h_{j-\frac{1}{2}}^{n} - \left(g_{j-\frac{1}{2}}^{n}\right)^{2}\right] \\ &- t^{n}\left(\frac{25}{16}M + \phi\right)\left(g_{j-\frac{1}{2}}^{n} - 1\right) + 2\frac{t^{n-\frac{1}{2}}}{k^{n}}g_{j-\frac{1}{2}}^{n} - V\frac{(h_{j}^{n-1} - h_{j-1}^{n-1})}{l_{j}} \\ &- \frac{\eta_{j-\frac{1}{2}}}{2}h_{j-\frac{1}{2}}^{n-1} - \frac{3}{2}t^{n-1}\left[1 - \left(g_{j-\frac{1}{2}}^{n-1}\right)^{2} + f_{j-\frac{1}{2}}^{n-1}h_{j-\frac{1}{2}}^{n-1}\right] - t^{n-1}\left(\frac{25}{16}M \\ &+ \phi\right)\left(g_{j-\frac{1}{2}}^{n} - 1\right) - 2\frac{t^{n-\frac{1}{2}}}{k^{n}}g_{j-\frac{1}{2}}^{n-1} \\ &(r_{5})_{j} = -D\left(\frac{\left(u_{j}^{n} - u_{j-1}^{n}\right)}{l_{j}}\right) - Pr\frac{\eta_{j-\frac{1}{2}}}{2}u_{j-\frac{1}{2}}^{n} - \frac{3}{2}Prtf_{j-\frac{1}{2}}^{n}u_{j-\frac{1}{2}}^{n} + 2\frac{Prt^{n-\frac{1}{2}}}{k^{n}} \\ &s_{j-\frac{1}{2}}^{n} - D\left(\frac{\left(u_{j}^{n-1} - u_{j-1}^{n-1}\right)}{l_{j}}\right) - Pr\frac{\eta_{j-\frac{1}{2}}}{2}u_{j-\frac{1}{2}}^{n-1} - \frac{3}{2}Prtf_{j-\frac{1}{2}}^{n-1}u_{j-\frac{1}{2}}^{n-1} \\ &- 2\frac{Prt^{n-\frac{1}{2}}}{k^{n}}s_{j-\frac{1}{2}}^{n-1} \end{aligned}$$

$$\begin{split} &(a_1)_j = \frac{3}{4}t^n h_{j-\frac{1}{2}}^n \\ &(a_2)_j = \frac{3}{4}t^n h_{j-\frac{1}{2}}^n \\ &(a_3)_j = -\frac{3}{2}t^n h_{j-\frac{1}{2}}^n + \frac{1}{2}(\frac{25}{16}M + \phi)t^n - \frac{t^{n-1}}{k^n} \\ &(a_4)_j = -\frac{3}{2}t^n h_{j-\frac{1}{2}}^n + \frac{1}{2}(\frac{25}{16}M + \phi)t^n - \frac{t^{n-1}}{k^n} \\ &(a_5)_j = V\frac{1}{l_j} - \frac{\eta_{j-\frac{1}{2}}}{4} + \frac{3}{4}t^n f_{j-\frac{1}{2}}^n \\ &(a_6)_j = -V\frac{1}{l_j} - \frac{\eta_{j-\frac{1}{2}}}{4} + \frac{3}{4}t^n f_{j-\frac{1}{2}}^n \\ &(b_1)_j = D\frac{1}{l_j} + \frac{Pr}{4}\eta_{j-\frac{1}{2}} + \frac{3}{4}Prt^n f_{j-\frac{1}{2}}^n \\ &(b_2)_j = -D\frac{1}{l_j} + \frac{Pr}{4}\eta_{j-\frac{1}{2}} + \frac{3}{4}Prt^n f_{j-\frac{1}{2}}^n \\ &(b_3)_j = \frac{3}{4}Prt^n u_{j-\frac{1}{2}}^n \\ &(b_4)_j = \frac{3}{4}Prt^n u_{j-\frac{1}{2}}^n \\ &(b_5)_j = -\frac{Prt^{n-\frac{1}{2}}}{k^n} \\ &(b_6)_j = -\frac{Prt^{n-\frac{1}{2}}}{k^n} \end{split}$$

Berdasarkan kondisi batas yang ada, maka dapat dinyatakan bahwa $\delta f_0=0, \delta g_0=0, \delta s_0=0, \delta g_J=0, \delta s_J=0$

4. Teknik Eliminasi Blok

Persamaan (4.65)-(4.69) merupakan sistem persamaan linear yang dapat diselesaikan dengan menggunakan teknik eliminasi blok, dimana elemen-elemen dari tridiagonal blok yang biasanya terbentuk dari elemen-elemen variabel atau konstanta, pada metode Keller Box ini berupa matriks blok. Sehingga dibutuhkan terlebih dahulu penetuan elemen-elemen matriks blok tridiagonal. Untuk menentukan elemen-elemen matriks blok tridiagonal dapat dibentuk dalam beberapa kondisi yaitu pada saat j=1, j=J-1 dan j=J

• Kondisi 1 Pada saat j=1, maka persamaan (4.65)-(4.69) menjadi

$$(\delta f_1 - \delta f_0) - \frac{l_1}{2} (\delta g_1 + \delta g_0) = (r_1)_1$$
(4.70)

$$(\delta g_1 - \delta g_0) - \frac{l_1}{2} (\delta h_1 + \delta h_0) = (r_2)_1$$
(4.71)

$$(\delta s_1 - \delta s_0) - \frac{l_1}{2} (\delta u_1 + \delta u_0) = (r_3)_1$$
(4.72)

$$(a_1)_1 \delta f_1 + (a_2)_1 \delta f_0 + (a_3)_1 \delta g_1 + (a_4)_1 \delta g_0 + (a_5)_1 \delta h_1 + (a_6)_1 \delta h_0 = (r_4)_1$$

$$(4.73)$$

$$(b_1)_1 \delta u_1 + (b_2)_1 \delta u_0 + (b_3)_1 \delta f_1 + (b_4)_1 \delta f_0 + (b_5)_1 \delta s_1 + (b_6)_1 \delta s_0 = (r_5)_1$$
(4.74)

Berdasarkan kondisi batas $\delta f_0 = 0$, $\delta g_0 = 0$, $\delta s_0 = 0$, maka persamaan (4.70-4.74) tersebut dapat ditulis

$$(\delta f_1) - \frac{l_1}{2}(\delta g_1) = (r_1)_1$$
 (4.75)

$$(\delta g_1) - \frac{l_1}{2}(\delta h_1 + \delta h_0) = (r_2)_1 \qquad (4.76)$$

$$(\delta s_1) - \frac{l_1}{2}(\delta u_1 + \delta u_0) = (r_3)_1 \qquad (4.77)$$

$$(a_1)_1\delta f_1 + (a_3)_1\delta g_1 + (a_5)_1\delta h_1 + (a_6)_1\delta h_0 = (r_4)_1$$
(4.78)

$$(b_1)_1\delta u_1 + (b_2)_1\delta u_0 + (b_3)_1\delta f_1 + (b_5)_1\delta s_1 = (r_5)_1$$
(4.79)

maka sistem diatas dapat dibentuk dalam bentuk matriks

$$\begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ -\frac{l_1}{2} & 0 & 0 & -\frac{l_1}{2} & 0 \\ 0 & -\frac{l_1}{2} & 0 & 0 & -\frac{l_1}{2} \\ (a_6)_1 & 0 & (a_1)_1 & (a_5)_1 & 0 \\ 0 & (b_2)_1 & (b_3)_1 & 0 & (b_1)_1 \end{pmatrix} \begin{pmatrix} \delta h_0 \\ \delta u_0 \\ \delta f_1 \\ \delta h_1 \\ \delta u_1 \end{pmatrix} +$$

$$\begin{pmatrix} -\frac{l_1}{2} & 0 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ (a_3)_1 & 0 & 0 & 0 & 0\\ 0 & (b_5)_1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \delta g_1\\ \delta s_1\\ \delta f_2\\ \delta h_2\\ \delta u_2 \end{pmatrix} = \begin{pmatrix} (r_1)_1\\ (r_2)_1\\ (r_3)_1\\ (r_4)_1\\ (r_5)_1 \end{pmatrix}$$

selanjutnya matriks dapat dituliskan sebagai berikut

$$[P_1][\delta_1] + [R_1][\delta_2] = [r_1]$$

• Kondisi 2 Pada saat j=J-1

$$(\delta f_{J-1} - \delta f_{J-2}) - \frac{l_1}{2} (\delta g_{J-1} + \delta g_{J-2}) = (r_1)_{J-1}$$
(4.80)

$$(\delta g_{J-1} - \delta g_{J-2}) - \frac{l_1}{2} (\delta h_{J-1} + \delta h_{J-2}) = (r_2)_{J-1}$$
(4.81)

$$(\delta s_{J-1} - \delta s_{J-2}) - \frac{l_1}{2} (\delta u_{J-1} + \delta u_{J-2}) = (r_3)_{J-1}$$

$$(a_1)_{J-1} \delta f_{J-1} + (a_2)_{J-1} \delta f_{J-2} + (a_3)_{J-1} \delta g_{J-1} + (a_4)_{J-1}$$

$$(4.82)$$

$$\delta g_{J-2} + (a_5)_{J-1} \delta h_{J-1} + (a_6)_{J-1} \delta h_{J-2} = (r_4)_{J-1}$$
(4.83)

$$(b_1)_{J-1}\delta u_{J-1} + (b_2)_{J-1}\delta u_{J-2} + (b_3)_{J-1}\delta f_{J-1} + (b_4)_{J-1}$$

$$\delta f_{J-2} + (b_5)_{J-1}\delta s_{J-1} + (b_6)_{J-1}\delta s_{J-2} = (r_5)_{J-1}$$
(4.84)

sistem diatas dapat dibentuk kedalam matriks berikut:

$$\begin{pmatrix} 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -\frac{l_{J-1}}{2} & 0 \\ 0 & 0 & 0 & & -\frac{l_{J-1}}{2} \\ 0 & 0 & (a_2)_{J-1} & (a_6)_{J-1} & 0 \\ 0 & 0 & (b_4)_{J-1} & 0 & (b_2)_{J-1} \end{pmatrix} \begin{pmatrix} \delta h_{J-3} \\ \delta u_{J-3} \\ \delta f_{J-2} \\ \delta h_{J-2} \\ \delta h_{J-2} \\ \delta u_{J-2} \end{pmatrix} + \begin{pmatrix} -\frac{l_{J-1}}{2} & 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \delta g_{J-2} \\ \delta g_{J-2} \end{pmatrix}$$

$$\begin{pmatrix} -\frac{-2}{2} & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & -\frac{l_{J-1}}{2} & 0 \\ 0 & -1 & 0 & 0 & -\frac{l_{J-1}}{2} \\ (a_4)_{J-1} & 0 & (a_1)_{J-1} & (a_5)_{J-1} & 0 \\ 0 & (b_6)_{J-1} & (b_3)_{J-1} & 0 & (b_1)_{J-1} \end{pmatrix} \begin{pmatrix} \delta g_{J-2} \\ \delta s_{J-2} \\ \delta f_{J-1} \\ \delta h_{J-1} \\ \delta u_{J-1} \end{pmatrix} +$$

$$\begin{pmatrix} -\frac{l_{J-1}}{2} & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ (a_3)_{J-1} & 0 & 0 & 0 & 0 \\ 0 & (b_5)_{J-1} & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \delta g_{J-1} \\ \delta s_{J-1} \\ \delta f_J \\ \delta h_J \\ \delta u_J \end{pmatrix} = \begin{pmatrix} (r_1)_{J-1} \\ (r_2)_{J-1} \\ (r_3)_{J-1} \\ (r_4)_{J-1} \\ (r_5)_{J-1} \end{pmatrix}$$

secara sederhana bentuk matriks dapat ditulis

$$[Q_{j-1}][\delta_{j-2}] + [P_{j-1}][\delta_{j-1}] + [R_{j-1}][\delta_j] = [r_j]; j = 2, 3, ..., J - 1$$

• Kondisi 3 Pada saat j=J

$$(\delta f_J - \delta f_{J-1}) - \frac{l_J}{2} (\delta g_J + \delta g_{J-1}) = (r_1)_J$$
(4.85)

$$(\delta g_J - \delta g_{J-1}) - \frac{l_J}{2} (\delta h_J + \delta h_{J-1}) = (r_2)_J$$
(4.86)

$$(\delta s_J - \delta s_{J-1}) - \frac{l_J}{2} (\delta u_J + \delta u_{J-1}) = (r_3)_J$$
(4.87)

$$(a_1)_J \delta f_J + (a_2)_J \delta f_{J-1} + (a_3)_J \delta g_N + (a_4)_J \delta g_{J-1} + (a_5)_J \delta h_J + (a_6)_J \delta h_{J-1} = (r_4)_J$$
(4.88)

$$(b_1)_J \delta u_J + (b_2)_J \delta u_{J-1} + (b_3)_J \delta f_J + (b_4)_J \delta f_{J-1} + (b_5)_J \delta s_J + (b_6)_J \delta s_{J-1} = (r_5)_J$$
(4.89)

dengan kondisi batas $\delta g_J=0, \delta s_J=0$ maka persamaan (4.66-4.70) menjadi

$$(\delta f_J - \delta f_{J-1}) - \frac{l_J}{2} (\delta g_{J-1}) = (r_1)_J$$
(4.90)

$$(\delta g_{J-1}) - \frac{l_J}{2} (\delta h_J + \delta h_{J-1}) = (r_2)_J$$
(4.91)

$$(\delta s_{J-1}) - \frac{l_J}{2} (\delta h_J + \delta h_{J-1}) = (r_3)_J$$
(4.92)

$$(a_1)_J \delta f_J + (a_2)_J \delta f_{J-1} + (a_4)_J \delta g_{J-1} + (a_5)_J \delta h_J + (a_6)_J \delta h_{J-1} = (r_4)_J \delta f_J + (a_5)_J \delta h_J + (a_6)_J \delta h_J +$$

$$(b_1)_J \delta a_J + (b_2)_J \delta a_{J-1} + (b_3)_J \delta f_J + (b_4)_J \delta f_{J-1} + (b_6)_J \delta s_{J-1} = (r_5)_J$$
(4.94)

sistem diatas dapat diubah kedalam matriks berikut:

$$\begin{pmatrix} 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -\frac{l_J}{2} & 0 \\ 0 & 0 & 0 & 0 & -\frac{l_J}{2} \\ 0 & 0 & (a_2)_J & (a_6)_J & 0 \\ 0 & 0 & (b_4)_J & 0 & (b_2)_J \end{pmatrix} \begin{pmatrix} \delta h_{J-1} \\ \delta u_{J-1} \\ \delta f_J \\ \delta h_J \\ \delta u_J \end{pmatrix} + \begin{pmatrix} -\frac{l_J}{2} & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & -\frac{l_J}{2} & 0 \\ 0 & -1 & 0 & 0 & -\frac{l_J}{2} \\ (a_4)_J & 0 & (a_1)_J & (a_5)_J & 0 \\ 0 & (b_6)_J & (b_3)_J & 0 & 0 \end{pmatrix} \begin{pmatrix} \delta g_{J-1} \\ \delta f_J \\ \delta h_J \\ \delta h_J \\ \delta u_J \end{pmatrix} = \begin{pmatrix} (r_1)_J \\ (r_2)_J \\ (r_3)_J \\ (r_4)_J \\ (r_5)_J \end{pmatrix}$$

selanjutnya matriks dapat dituliskan sebagai berikut

$$[Q_j] [\delta_{j-1}] + [P_j] [\delta_j] = [r_j]; j = J$$

Secara sederhana bentuk matriks pada kondisi j=1,2,3,...J dapat ditulis sebagai berikut

$$\begin{split} j =& 1; & [P_1] \left[\delta_1 \right] + \left[R_1 \right] \left[\delta_2 \right] = \left[r_1 \right] \\ j =& 2; & [Q_2] \left[\delta_1 \right] + \left[P_2 \right] \left[\delta_2 \right] + \left[R_2 \right] \left[\delta_4 \right] = \left[r_2 \right] \\ j =& 3; & [Q_3] \left[\delta_2 \right] + \left[P_3 \right] \left[\delta_3 \right] + \left[R_3 \right] \left[\delta_4 \right] = \left[r_4 \right] \\ \vdots & \vdots & \vdots \\ j =& J-1; & [Q_{J-1}] \left[\delta_{J-2} \right] + \left[P_{J-1} \right] \left[\delta_{J-1} \right] + \left[R_{J-1} \right] \left[\delta_J \right] = \left[r_{J-1} \right] \\ j =& 1; & [Q_J] \left[\delta_{J-1} \right] + \left[P_J \right] \left[\delta_J \right] = \left[r_J \right] \end{split}$$

atau dapat dinyatakan dalam bentuk

$$\mathbf{P}\delta = \mathbf{r} \tag{4.95}$$

dengan

$$\mathbf{P} = \begin{pmatrix} [P_1] & [R_1] & & & \\ [Q_2] & [P_2] & [R_2] & & \\ & [Q_3] & [P_3] & \ddots & \\ & & \ddots & \ddots & [R_{J-2}] & \\ & & [Q_{J-1}] & [P_{J-1}] & [R_{J-1}] \\ & & & [Q_J] & [P_J] \end{pmatrix}$$
$$\delta = \begin{pmatrix} [\delta_1] \\ [\delta_2] \\ \vdots \\ [\delta_{J-1}] \\ [\delta_J] \end{pmatrix}, \mathbf{r} = \begin{pmatrix} [r_1] \\ [r_2] \\ \vdots \\ [r_{J-1}] \\ [r_J] \end{pmatrix}$$

untuk menyelesaikan persamaan (4.95) diasumsikan **P** matriks nonsingular dan dapat difaktorkan kedalam

$$\mathbf{P} = \mathbf{L}\mathbf{U} \tag{4.96}$$

dimana

di mana [I] adalah matriks identitas orde 5 dan $[\alpha_j$ dan $[T_j]$ adalah matrisk 5x5 yang unsur-unsurnya ditentukan dengan persamaan berikut

$$[\alpha_j] = [P_1]$$

$$[P_1] [T_j] = [R_j]$$

$$[\alpha_j] = [P_j] - [Q_j] [T_{j-1}], j = 2, 3, 4..J$$

$$[\alpha_j] [T_j] = [R_j], j = 2, 3, 4..J - 1$$

kemudian disubstitusikan persamaan (4.96) ke persamaan (4.95) diperoleh persamaan sebagai berikut.

$$\mathbf{LU}\delta = \mathbf{r} \tag{4.97}$$

 $\mathbf{U}\delta=\mathbf{X}$, maka

 $\mathbf{L}\mathbf{X} = \mathbf{r} \tag{4.98}$

dengan

$$\mathbf{X} = \begin{pmatrix} [X_1] \\ [X_2] \\ \vdots \\ [X_{J-1}] \\ [X_J] \end{pmatrix}$$

dimana $[X_j]$ merupakan matriks berukuran 5x1 yang memiliki elemen elemen yanh diperoleh dari persamaan (4.79) yaitu:.

$$[P_1] [X_1] = [r_1]$$

$$[\alpha_j] [X_j] = [r_j] - [Q_j] [X_{j-1}]$$

setelah elemen **X** ditemukan selanjunya menentukan penyelesaian dari δ pada persamaan (4.53) dengan menggunakan persaman berikut ini

$$\left[\delta_{J}\right] = \left[X_{J}\right]$$
$$\delta_{j} = \left[X_{j}\right] - \left[T_{j}\right]\left[\delta_{j+1}\right], 1 \leq j \leq J - 1$$

Setelah semua elemen ditemukan, Persamaan(4.65)-(4.69)

dapat digunakan untuk menemukan iterasi (i+1) dalam Persamaan (4.59). Perhitungan ini diulang terus menerus dan berhenti ketika telah terpenuhi kriteria konvergensinya. Menurut Cebeci dan Bradshaw, kriteria kekonvergenan menggunakan v(0,t) dan iterasi berhenti saat $|\delta v(0,t)| < \varepsilon$ dengan $\varepsilon > 0$ yang sangat kecil. Pada penelitian ini digunakan $\varepsilon = 0.0001$ (Widodo et.al., 2019)

C. Hasil Simulasi Numerik

Hasil dari penyelesaian numerik menggunakan metode beda hingga skema *Keller Box* selanjutnya di simulasikan secara numerik dengan menggunakan bantuan *software* MATLAB. Pada tahapan ini, beberapa variasi parameter anatara lain variasi parameter magnetik dan variasi parameter porositas yang digunakan untuk mengetahui pengaruhnya terhadap kecepatan dan temperatur aliran fluida nano yang melewati bola berpori dengan pengaruh konveksi paksa.

Simulasi numerik pada penelitian ini menggunakan beberapa inputan sebagai berikut: partisi η sebanyak 60 (η =60) dengan $\Delta \eta$ =0,1 dan partisi t sebanyak 33 (t=33) dengan Δt = 0,05 (Rahma et.al., 2017).

Penelitian ini menggunakan partikel nano titanium dioksida (TiO_2) dengan fluida dasar berupa air pada kondisi suhu 30^0C dan 90^0C . Sifat termofisika dari partikel nano dan fluida terdapat pada Tabel 2.1

Hasil simulasi dari model matematika yang melewati bola berpori dengan pengaruh konveksi paksa menggunkan variasi parameter magnetik dan porositas adalah sebagai berikut:

1. Simulasi Pengaruh Parameter Magnetik (M) pada Fluida Nano TiO_2 dengan Fluida Dasar Air dengan kondisi suhu 30^oC

Fluida nano TiO_2 akan disimulasikan terhadap kecepatan dan temperatur. Simulasi dilakukan dengan menvariasikan parameter tak dimensional Magnetik (M) = 0.3, 0.4, 0.5, 0.6, 0,7. Pada simulasi ini juga mengunakan nilai parameter tak dimensional lain antara lain parameter bilangan Prandl (Pr)= 4.34, porositas (ϕ) = 1, konveksi paksa (λ)=0, dan fraksi volume (φ)=0.1. Simulasi numerik untuk kecepatan aliran fluida nano $TiO_2 - Air$ yang melewati bola berpori dengan pengaruh konveksi paksa yang dipengaruhi oleh variasi parameter magnetik ditunjukan oleh Gambar 4.2.

Gambar 4.2. Grafik Kecepatan Akibat Perbedaan Nilai Parameter Magnetik

Gambar 4.2 menunjukan adanya peningkatan kecepatan aliran fluida dari f'=0 hingga $f' \approx 1$. Pada gambar tersebut juga menunjukan perbedaan pengaruh masing-masing variasi parameter magnetik terhadap aliran fluida, dimana aliran fluida yang parameter magnetiknya tinggi kecepatan aliran fluidanya lebih lambat dibandingkan fluida yang parameter magnetiknya rendah. Adanya penurunan kecepatan akibat naiknya parameter magnetik dikarenakan adanya gaya Lorentz yang bekerja pada aliran fluida nano yang melalui bola berpori bermagnet.

Gambar 4.3. Grafik Temperatur Akibat Perbedaan Parameter Magnetik

Gambar 4.3 merupakan hasil simulasi numerik temperatur aliran fluida fluida nano $TiO_2 - Air$ menggunakan variasi parameter magnetik. Gambar tersebut menunjukkan adanya penurunan temperatur fluida nano menggunakan parameter magnetik. Temperatur fluida mengalami penurunan bersamaan dengan berkurangnya nilai parameter magnetik.

2. Simulasi Pengaruh Parameter Magnetik (M) pada Fluida Nano TiO_2 dengan Fluida Dasar Air pada Suhu 90^oC

Fluida nano TiO_2 akan disimulasikan terhadap kecepatan dan temperatur. Simulasi dilakukan dengan menvariasikan parameter tak dimensional Magnetik (M) = 0.3, 0.4, 0.5, 0.6, 0,7. Pada simulasi ini juga mengunakan nilai parameter tak dimensional lain antara lain parameter bilangan Prandl (Pr)= 4.34, porositas (ϕ) = 1, konveksi paksa (λ)=0, dan fraksi volume (φ)=0.1. Simulasi numerik untuk kecepatan aliran fluida nano $TiO_2 - Air$ yang melewati bola berpori dengan pengaruh konveksi paksa yang dipengaruhi oleh variasi parameter magnetik ditunjukan oleh Gambar 4.4.

Gambar 4.4. Grafik Kecepatan Akibat Perbedaan Parameter Magnetik

Gambar 4.4 menunjukan adanya peningkatan kecepatan aliran fluida dari f'=0 hingga $f' \approx 1$. Pada gambar tersebut juga menunjukan perbedaan pengaruh masing-masing variasi parameter magnetik terhadap aliran fluida, dimana aliran fluida yang parameter magnetiknya tinggi kecepatan aliran fluidanya lebih lambat dibandingkan fluida yang parameter magnetiknya rendah. Adanya penurunan kecepatan akibat naiknya parameter magnetik dikarenakan adanya gaya Lorentz yang bekerja pada aliran fluida nano yang melalui bola berpori bermagnet.

Gambar 4.5. Grafik Temperatur Akibat Perbedaan Nilai Parameter Magnetik

Gambar 4.5 merupakan hasil simulasi numerik temperatur aliran fluida fluida nano $TiO_2 - Air$ menggunakan variasi parameter magnetik. Gambar tersebut menunjukkan adanya penurunan temperatur fluida nano menggunakan parameter magnetik. Temperatur fluida mengalami penurunan bersamaan dengan berkurangnya nilai parameter magnetik.

3. Simulasi Pengaruh Parameter Porositas (ϕ) pada Fluida Nano TiO_2 dengan Fluida Dasar Air pada Suhu 30^oC

Fluida nano TiO_2 akan disimulasikan terhadap kecepatan dan temperatur. Simulasi dilakukan dengan menvariasikan parameter tak dimensional Porositas (ϕ) sebagai berikut =0.1, 0.2, 0.5, 0.7, 0,9. Simulasi ini juga mengunakan nilai parameter tak dimensional lain seperti bilangan Prandl (Pr)= 4.34, Magnetik (M) = 1, konveksi paksa (λ)=0, dan fraksi volume (φ)=0.1. Hasil simulasi numerik menggunakan bantuan *software* MATLAB mengenai pengaruh variasi parameter porositas terhadap profil kecepatan pada model aliran fluida nano $TiO_2 - Air$ ditunjukan oleh Gambar 4.6.

Gambar 4.6. Grafik Kecepatan Akibat Perbedaan Nilai Parameter Porositas

Gambar 4.6 menunjukan adanya peningkatan kecepatan aliran fluida dari f'=0 hingga $f' \approx 1$. Pada gambar tersebut juga menunjukan perbedaan pengaruh masing-masing variasi parameter terhadap aliran fluida. Dapat dilihat bahwa aliran fluida yang memiliki nilai parameter porositas tinggi, kecepatan aliran fluidanya lebih lambat dibandingkan fluida yang parameter porositasnya rendah.

Gambar 4.7. Grafik Temperatur Akibat Perbedaan Nilai Parameter Porositas

Gambar 4.7 merupakan hasil simulasi numerik temperatur aliran fluida fluida nano $TiO_2 - Air$ yang melewati bola berpori dengan pengaruh konveksi paksa menggunakan variasi parameter porositas. Gambar tersebut menunjukkan adanya penurunan temperatur fluida nano menggunakan parameter porositas. Temperatur fluida mengalami penurunan bersamaan dengan berkurangnya nilai parameter porositas.

4. Pengaruh Parameter Porositas (ϕ) pada Fluida Nano TiO_2 dengan Fluida Dasar Air pada Suhu $90^{\circ}C$

Fluida nano TiO_2 akan disimulasikan terhadap kecepatan dan temperatur. Simulasi dilakukan dengan menvariasikan parameter tak dimensional Porositas (ϕ) sebagai berikut =0.1, 0.2, 0.5, 0.7, 0,9. Simulasi ini juga mengunakan nilai parameter tak dimensional lain seperti bilangan Prandl (Pr)= 4.34, Magnetik (M) = 1, konveksi paksa (λ)=0, dan fraksi volume (φ)=0.1. Hasil simulasi numerik menggunakan bantuan *software* MATLAB mengenai pengaruh variasi parameter porositas terhadap profil kecepatan pada model aliran fluida nano $TiO_2 - Air$ ditunjukan oleh Gambar 4.8.

Gambar 4.8. Grafik Kecepatan Akibat Perbedaan nilai Parameter Porositas

Gambar 4.8 menunjukan adanya peningkatan kecepatan

aliran fluida dari f'=0 hingga $f' \approx 1$. Pada gambar tersebut juga menunjukan perbedaan pengaruh masing-masing variasi parameter terhadap aliran fluida. Dapat dilihat bahwa aliran fluida yang memiliki nilai parameter porositas tinggi, kecepatan aliran fluidanya lebih lambat dibandingkan fluida yang parameter porositasnya rendah.

Gambar 4.9. Grafik Temperatur Akibat Perbedaan nilai Porositas

Gambar 4.9 merupakan hasil simulasi numerik temperatur aliran fluida nano $TiO_2 - Air$ yang melewati bola berpori dengan pengaruh konveksi paksa menggunakan variasi parameter porositas. Gambar tersebut menunjukkan adanya penurunan temperatur fluida nano menggunakan parameter porositas. Temperatur fluida mengalami penurunan bersamaan dengan berkurangnya nilai parameter porositas.

5. Simulasi Perbandingan Pengaruh Parameter Magnetik pada Fluida Nano TiO_2 - Air(30°) dan Fluida Nano TiO_2 - Air(90°)

Fluida Nano TiO_2 - Air(30°) dan Fluida Nano TiO_2 - Air(90°) akan dibandingkan pengaruh parameter magnetiknya dengan menyimulasikan profil kecepatan dan temperatur. Simulasi dilakukan dengan memasukan nilai-nilai parameter tak dimensional sebagai berikut: parameter magnetik (M)= 0.3, porositas (ϕ)=1, konveksi paksa (λ)=0, dan fraksi volume (φ)=0.1. Hasil simulasi numerik perbandingan pengaruh parameter magnetik terhadap kecepatan aliran fluida nano TiO_2 - Air(30°) dan fluida nano TiO_2 - Air(90°) ditunjukan oleh gambar 4.10.

Gambar 4.10. Grafik Perbandingan Pengaruh Parameter Magnetik pada Kecepatan Aliran Fluida Nano

Pada Gambar 4.10 menunjukkan adanya perbedaan

kecepatan aliran fluida nano TiO_2 - Air(30°) dan TiO_2 - Air(90°). Dapat dilihat bahwa fluida nano TiO_2 -Air(90°) mengalami peningkatan kecepatan lebih tinggi dibandingkan dengan fluida nano TiO_2 -Air(30°). Dapat ditulis $f'_{TiO_2-Air(90^\circ)} > f'_{TiO_2-Air(30^\circ)}.$

Gambar 4.11. Grafik Perbandingan Pengaruh Parameter Magnetik pada Temperatur Aliran Fluida Nano

Gambar 4.11 merupakan hasil simulasi numerik dari perbandingan profil temperatur aliran fluida nano TiO_2 - Air (30^o) dengan fluida nano TiO_2 - Air (90^o) yang dipengaruhi oleh parameter magnetik. Dapat dilihat pada gambar bahwa terdapat perbedaan temperatur aliran fluida nano TiO_2 - Air (30^o) dan TiO_2 - Air (90^o) . Fluida nano TiO_2 -Air (30^o) lebih cepat mengalami penurunan temperatur dibandingkan dengan fluida nano TiO_2 -Air (90^o) . Dapat ditulis $s_{TiO_2-Air(90^o)} < s_{TiO_2-Air(30^o)}$.

6. Perbandingan Pengaruh Parameter Porositas pada Fluida Nano TiO_2 - Air(30°) dan Fluida Nano TiO_2 -Air(90°)

Fluida Nano TiO_2 - Air (30°) dan Fluida Nano TiO_2 - Air (90°) akan dibandingkan pengaruh parameter porositasnya dengan mensimulasikan profil kecepatan dan temperatur. Simulasi dilakukan dengan memasukan nilai-nilai parameter tak dimensional sebagai berikut: parameter magnetik(M)= 1, porositas (ϕ) =1, konveksi paksa (λ) =0, dan fraksi volume (φ) =0.1. Hasil simulasi numerik mengenai perbandingan pengaruh parameter magnetik terhadap kecepatan aliran Fluida Nano TiO_2 - Air (30°) dan Fluida Nano TiO_2 - Air (90°) ditunjukan oleh gambar 4.12

Gambar 4.12. Grafik Perbandingan Pengaruh Parameter Magnetik pada Temperatur Aliran Fluida Nano

Pada Gambar 4.12 menunjukkan adanya perbedaan

kecepatan aliran fluida nano TiO_2 - Air (30^o) dan TiO_2 - Air (90^o) . Dapat dilihat bahwa fluida nano TiO_2 -Air (90^o) mengalami peningkatan kecepatan lebih tinggi dibandingkan dengan fluida nano TiO_2 -Air (30^o) . Dapat ditulis $f'_{TiO_2-Air(90^o)} > f'_{TiO_2-Air(30^o)}$.

Gambar 4.13. Grafik Perbandingan Pengaruh Parameter Magnetik pada Temperatur Aliran Fluida Nano

Gambar 4.13 merupakan hasil simulasi numerik dari perbandingan profil temperatur aliran fluida nano TiO_2 - Air (30^o) dengan fluida nano TiO_2 - Air (90^o) yang dipengaruhi oleh parameter porositas. Dapat dilihat pada gambar bahwa terdapat perbedaan temperatur aliran fluida nano TiO_2 - Air (30^o) dan TiO_2 - Air (90^o) . Fluida nano TiO_2 -Air (30^o) lebih cepat mengalami penurunan temperatur dibandingkan dengan fluidanano TiO_2 -Air (90^o) . Dapat ditulis $s_{TiO_2-Air}(90^o) < s_{TiO_2-Air}(30^o)$.

BAB V

SIMPULAN DAN SARAN

A. Simpulan

Berdasarkan analisis dan pembahasan yang telah dilakukan, dapat disimpulkan bahwa :

1. Bentuk matematika dari model aliran fluida yang melalui bola berpori dan dipengaruhi oleh konveksi paksa dengan mentransformasikan diperoleh persamaan bentuk dimensional ke dalam pembangun tak dimensional. kemudian disederhanakan melalui pendekatan lapisan batas dan substitusi fungsi alir, untuk selanjutnya diubah kedalam persamaan similaritas agar mendapatkan bentuk akhir model matematika aliran fluida yang melewati bola berpori dengan pengaruh konveksi paksa sebagai berikut:

$$Vf''' + \frac{\eta}{2}f'' + \frac{3}{2}t(1 - (f')^2 + ff'') + t(\frac{25}{16}M + \phi)(f' - 1) = t\frac{\partial f'}{\partial t}$$
(5.1)
$$Ds'' + Pr\frac{\eta}{2}s' + \frac{3}{2}Prtfs' = Prt\frac{\partial s}{\partial t}$$
(5.2)

Model matematika yang telah terbentuk selanjutnya dapat diselesaikan menggunakan metode numerik beda hingga skema *Keller-Box*

2. Hasil simulasi numerik mengenai model matematika aliran fluida yang melewati bola berpori dengan pengaruh konveksi paksa menggunakan variasi parameter tak dimensional magnetik dan porositas terhadap profil kecepatan dan temperatur pada aliran fluida dapat ditarik kesimpulan sebagai berikut:

- i. Semakin bertambahnya parameter magnetik, maka profil kecepatan dan temperatur aliran fluida nano TiO_2 -Air (30^o) dan TiO_2 -Air (90^o) semakin menurun. $f'_{TiO_2-Air(90^o)} > f'_{TiO_2-Air(30^o)}$ dan $s_{TiO_2-Air(90^o)} < s_{TiO_2-Air(30^o)}$
- ii. Semakin bertambahnya parameter porositas, maka profil kecepatan dan temperatur aliran fluida nano TiO_2 -Air (30^o) dan TiO_2 -Air (90^o) semakin menurun. $f'_{TiO_2-Air(90^o)} > f'_{TiO_2-Air(30^o)}$ dan $s_{TiO_2-Air(90^o)} < s_{TiO_2-Air(30^o)}$

B. Saran

Berdasarkan hasil penelitian yang telah dilakukan, saran untuk penelitian berikutnya adalah:

- 1. Sebaiknya menggunakan media berpori lain selain bola, seperti silinder berpori
- 2. Sebaiknya menggunakan fluida mikrokutub
- 3. Sebaiknya menggunkan pengaruh parameter-parameter tak-dimensional lain

DAFTAR PUSTAKA

- Agus, B. 2016. *Statistika Fluida*. Yogyakarta: Gajah Mada University Press
- Abu, M. 2018. Aliran Fluida Nano Melalui Bola Berpori Dibawah Pengaruh Konveksi Campuran dan Medan Magnet. Tesis. Surabaya:Fakultas Matematika, Komputasi, dan Sains Data Institut Teknologi Sepuluh November
- Dewantoro et.al. 2018. Studi Eksperimen Perpindahan Paas Konveksi Paksa Eksternal pada Plat Datar. Yogyakarta: Prosiding (SNAST)
- Haque, E., Hossain, S., dan Muhammad, H. 2021. Laminar forced convection heat transfer of nanofluids inside non-circular ducts: A review. Powder Technology. ISSN:1873328X. Vol:378. Pages:808-830
- Haryanto, A. 2015. Perpindahan Panas. Yogyakarta: Innosain.
- Juliyanto, B. 2018. Pengaruh pembangkit panas pada aliran konveksi campuran fluida nano melalui permukaan silinder sirkular horizontal. Tesis. Surabaya:Fakultas Matematika,Komputasi, dan Sains Data Institut Teknologi Sepuluh November
- Mayagrafinda, I., dan Widodo, B. 2022. Analisis Kecepatan dan Temperatur di Sekitar Titik Stagnasi Terendah pada Magnetohidrodinamika Fluida Nano. JURNAL SAINS DAN SENI ITS. ISSN: 2301-9271. Vol:11

- Nahumury, F., 2009, Rekayasa Nanofluida Berbasis TiO2 sebagai Media Pendingin Pada Sistem Penukar Kalor, Skripsi, Depok : Fakultas Teknik Universitas Indonesia
- Neves, F., Soares. A., dan Rouboa, A. 2022. Forced convection heat transfer of nanofluids in turbulent flow in a flat tube of an automobile radiator. Energy Reports. ISSN:23524847. Vol:8. Pages:1185-1195
- Norasia, Y. 2018. Magnetohidrodinamik fluida nano tak tunak yang mengalir melewati bola bermagnet dipengaruhi oleh konveksi campurab. Tesis. Surabaya:Fakultas Matematika, Komputasi, dan Sains Data Institut Teknologi Sepuluh November
- Norasia, Y., dan Zulaikha. 2019. Pengaruh Partikel Nano Zn dan ZnO terhadap Aliran MHD Fluida Nano Pada Lapisan Batas Bola Bermagnet. Square : Journal of Mathematics and Mathematics Education. ISSN:2714-609X
- Norasia, Y., Widodo, B., dan Adzkiya, D. 2021. *Pergerakan Aliran MHD Ag-AIR Melewati Bola Pejal*. Limits: Journal of Mathematics and Its Applications. ISSN: 1829-605X
- Rahma, N. 2017 Konveksi paksa dari aliran fluida magnetohidrodinamik tak tunak yang melewati bola berpori. Tesis. Surabaya:Fakultas Matematika, Komputasi, dan Sains Data Institut Teknologi Sepuluh November
- Rahma, N.A., Widodo, B., Adzkiya, D. 2017. Forced convection of unsteady magnetohydrodynamics fluid past a porous sphere. AIP Conference Proceedings. Vol: 1913. Doi: 10.1063/1.5016641

- Safitri, O,. Widodo, B., Adzkiya, D. 2020. Unsteady magnetohydrodynamics mixed convection flow pass sliced magnetic sphere in nano fluid. AIP Conference Proceedings. Vol : 2242. Doi: 10.1063/5.0007933
- Satriani. 2020, Perpindahan Panas Dalam Perspektif Sains dan Al Qur'an. Skripsi. Makasar: Fakultas Tarbiah dan Keguruan UIN Alaudin Makasar
- Sedki, A. 2022. Effect of thermal radiation and chemical reaction on MHD mixed convective heat and mass transfer in nanofluid flow due to nonlinear stretching surface through porous medium. Results in Materials. Vol:16. Doi:10.1016/j.rinma.2022.100334
- Khilap Singh and Alok Kumar Pandey and Manoj Kumar. 2021. Numerical solution of micropolar fluid flow via stretchable surface with chemical reaction and melting heat transfer using Keller-Box method. Journal: Propulsion and Power Research. Vol: 10. Doi: 10.1016/j.jppr.2020.11.006
- Syukri, F. A., dan Suyitno, B. M. 2022. Analisis Pengaruh Nanofluida Titanium Dioksida (TiO2) Terhadap Kinerja Fluida Dasar Pada Perpindahan Panas Pada Alat Penukar Panas Pipa Ganda. KALPIKA, 19(1).
- Tafrikan, M. 2015. Pengaruh Panas Terhadap Aliran Konveksi Bebas yang Melalui Sebuah Bola Berpori.
 Tesis. Surabaya:Fakultas Matematika, Komputasi, dan Sains Data Institut Teknologi Sepuluh November
- Tafrikan, M., dan Ghani, M. 2020. Profil Kecepatan dan Temperatur Pada Aliran Konveksi Campuran Yang

Melalui Bola Berpori Dengan Pengaruh Hidrodinamika Magnet. Postulat : Jurnal Inovasi Pendidikan Matematika, ISSN:2723-0597

- Vajravelu, K. and Prasad, K. 2014. Keller-Box Method and Its Application. Berlin, Boston: De Gruyter. https://doi.org/10.1515/9783110271782
- Widodo, B., Abu, M., Imron, C. 2019, Unsteady nano fluid flow through magnetic porous sphere under the influence of mixed convection. Journal of Physics: Conference Series, Vol:1153. Doi: 10.1088/1742-6596/1153/1/012053
- Yulistiyanto, B. 2017. *Metode Numerik Aplikasi untuk Teknik Sipil*. Yogyakarta: Gajah Mada University Press

Lampiran 1. Transformasi Kondisi Batas Dimensional ke Non Dimensional

Pada penelitian ini menggunakan kondisi batas yaitu: $\bar{t} = 0: \bar{u} = \bar{v} = 0, \bar{T} = T_{\infty}$ untuk setiap \bar{x}, \bar{y} $\bar{t} > 0: \bar{u} = \bar{u}_e, \bar{u} = \bar{v} = 0, \bar{T} = T_{\infty}$ saat $\bar{y} \to \infty$ dengan menggunakan variabel non-dimensioanl

$$y = Re^{\frac{1}{2}}\frac{\bar{y}}{a}; T = \frac{\bar{T} - T_{\infty}}{T_w - T_{\infty}}; \bar{u}_e(\bar{x}) = u_e(x)U_{\infty}$$

maka diperoleh

$$T = T_{\infty}$$
$$T = \frac{\bar{T} - T_{\infty}}{T_w - T_{\infty}} = \frac{T_{\infty} - T_{\infty}}{T_w - T_{\infty}} = 0$$
$$\bar{T} = T_w$$
$$T = \frac{\bar{T} - T_{\infty}}{T_w - T_{\infty}} = \frac{T_w - T_{\infty}}{T_w - T_{\infty}} = 1$$

$$ar{u} = ar{u_e}(ar{x})$$

 $uU_\infty = u_e(x)U_\infty$
 $u = u_e$

sehingga kondisi batasnya menjadi

_

$$\begin{split} t &= 0: u = v = 0, T = 0 \text{ untuk setiap } x, y \\ t &> 0: u = u_e, \bar{u} = \bar{v} = 0, T = 0 \text{ saat } y \to \infty \end{split}$$

Lampiran 2. Tranformasi Persamaan Similaritas

Persamaan non dimensional yang telah diperoleh dirubah ke persaman similaritas dengan mentransformasikan persamaan tersebut ke dalam variabel similaritas berikut,

$$\psi = t^{\frac{1}{2}} u_e(x) f(x, \eta, t); \eta = \frac{y}{t^{\frac{1}{2}}}; T = s(x, \eta, t)$$
(L2.3)

• Persamaan Momentum

$$\frac{1}{r}\left(\frac{\partial^{2}\psi}{\partial t\partial y}\right) - \frac{1}{r^{3}}\frac{\partial r}{\partial x}\left(\frac{\partial \psi}{\partial y}\right)^{2} + \frac{1}{r^{2}}\frac{\partial \psi}{\partial y}\frac{\partial^{2}\psi}{\partial x\partial y} - \frac{1}{r^{2}}\frac{\partial \psi}{\partial x}\frac{\partial^{2}\psi}{\partial y^{2}} = u_{e}\frac{\partial u_{e}}{\partial x}$$
$$+V\frac{1}{r}\frac{\partial^{3}\psi}{\partial y^{3}} + \left(\frac{25}{16}M\right)\left(\frac{1}{r}\frac{\partial \psi}{\partial y} - u_{e}\right) + \phi\left(\frac{1}{r}\frac{\partial \psi}{\partial y} - u_{e}\right) + \lambda Tsinx \quad (L2.4)$$
dengan

(i)

$$\frac{\partial \eta}{\partial y} = \frac{\partial}{\partial y} (\frac{y}{t^{\frac{1}{2}}}) = \frac{1}{t^{\frac{1}{2}}}$$

(ii)

$$\frac{\partial \eta}{\partial t} = \frac{\partial}{\partial t} (\frac{y}{t^{\frac{1}{2}}}) = -\frac{1}{2} \frac{\eta}{t}$$

$$\begin{split} \frac{\partial \psi}{\partial y} &= \frac{\partial \psi}{\partial \eta} \frac{\partial \eta}{\partial y} \\ \frac{\partial \psi}{\partial y} &= \frac{\partial}{\partial \eta} \left(t^{\frac{1}{2}} u_e(x) r(x) f(x,\eta,t) \right) \frac{1}{t^{\frac{1}{2}}} \\ \frac{\partial \psi}{\partial y} &= \frac{t^{\frac{1}{2}} u_e(x) r(x) \partial f(x,\eta,t)}{t^{\frac{1}{2}} \partial \eta} \\ \frac{\partial \psi}{\partial y} &= u_e(x) r(x) \frac{\partial f(x,\eta,t)}{\partial \eta} \end{split}$$

(iv)

$$\begin{split} \frac{\partial \psi}{\partial x} &= \frac{\partial}{\partial x} (t^{\frac{1}{2}} u_e(x) r(x) f(x,\eta,t)) \\ \frac{\partial \psi}{\partial x} &= t^{\frac{1}{2}} \frac{\partial}{\partial x} (u_e(x) r(x) f(x,\eta,t)) \\ \frac{\partial \psi}{\partial x} &= t^{\frac{1}{2}} r(x) f(x,\eta,t) \frac{\partial u_e(x)}{\partial x} + u_e(x) t^{\frac{1}{2}} f(x,\eta,t) \frac{\partial r(x)}{\partial x} \\ &+ u_e(x) t^{\frac{1}{2}} r(x) \frac{\partial f(x,\eta,t)}{\partial x} \end{split}$$

(v)

$$\begin{split} \frac{\partial^2 \psi}{\partial y^2} &= \frac{\partial}{\partial y} \left(\frac{\partial \psi}{\partial y} \right) \\ \frac{\partial^2 \psi}{\partial y^2} &= \frac{\partial}{\partial y} \left(u_e(x) r(x) \frac{\partial f(x,\eta,t)}{\partial \eta} \right) \\ \frac{\partial^2 \psi}{\partial y^2} &= \frac{\partial}{\partial \eta} \left(u_e(x) r(x) \frac{\partial f(x,\eta,t)}{\partial \eta} \right) \frac{\partial}{\partial y} \\ \frac{\partial^2 \psi}{\partial y^2} &= u_e(x) r(x) \frac{\partial}{\partial \eta} \left(\frac{\partial f(x,\eta,t)}{\partial \eta} \right) \frac{1}{t^{\frac{1}{2}}} \\ \frac{\partial^2 \psi}{\partial y^2} &= \frac{u_e(x) r(x)}{t^{\frac{1}{2}}} \frac{\partial}{\partial \eta} \left(\frac{\partial f(x,\eta,t)}{\partial \eta} \right) \\ \frac{\partial^2 \psi}{\partial y^2} &= \frac{u_e(x) r(x)}{t^{\frac{1}{2}}} \left(\frac{\partial^2 f(x,\eta,t)}{\partial \eta^2} \right) \end{split}$$

(iii)
$$\begin{split} \frac{\partial^2 \psi}{\partial y^3} &= \frac{\partial}{\partial y} (\frac{\partial \psi}{\partial y^2}) \\ \frac{\partial^2 \psi}{\partial y^3} &= \frac{1}{\partial y} (\frac{u_e(x)r(x)}{t^{\frac{1}{2}}} (\frac{\partial^2 f(x,\eta,t)}{\partial \eta^2})) \\ \frac{\partial^2 \psi}{\partial y^3} &= \frac{\partial}{\partial \eta} (\frac{u_e(x)r(x)}{t^{\frac{1}{2}}} (\frac{\partial^2 f(x,\eta,t)}{\partial \eta^2})) \frac{\partial \eta}{\partial y} \\ \frac{\partial^2 \psi}{\partial y^3} &= \frac{u_e(x)r(x)}{t} (\frac{\partial^3 f(x,\eta,t)}{\partial \eta^3}) \end{split}$$

(vii)

$$\begin{split} \frac{\partial^2 \psi}{\partial x \partial y} &= \frac{\partial}{\partial x} \left(\frac{\partial \psi}{\partial y} \right) \\ \frac{\partial^2 \psi}{\partial x \partial y} &= \frac{\partial}{\partial x} \left(u_e(x) r(x) \frac{\partial f(x, \eta, t)}{\partial \eta} \right) \\ \frac{\partial^2 \psi}{\partial x \partial y} &= \left(\frac{\partial}{\partial x} u_e(x) \right) r(x) \frac{\partial f(x, \eta, t)}{\partial \eta} + \left(\frac{\partial}{\partial x} r(x) \right) u_e(x) \frac{\partial f(x, \eta, t)}{\partial \eta} \\ &+ u_e(x) r(x) \frac{\partial f(x, \eta, t)}{\partial x \partial \eta} \end{split}$$

(viii)

$$\begin{split} \frac{\partial^2 \psi}{\partial t \partial y} &= \frac{\partial}{\partial t} \left(\frac{\partial \psi}{\partial y} \right) \\ \frac{\partial^2 \psi}{\partial t \partial y} &= \frac{\partial}{\partial t} \left(u_e(x) r(x) \frac{\partial f(x,\eta,t)}{\partial \eta} \right) \\ \frac{\partial^2 \psi}{\partial t \partial y} &= \frac{\partial}{\partial \eta} \left(u_e(x) r(x) \frac{\partial f(x,\eta,t)}{\partial \eta} \right) \frac{\partial \eta}{\partial t} + \frac{\partial}{\partial t} \left(u_e(x) r(x) \frac{\partial f(x,\eta,t)}{\partial \eta} \right) \\ \frac{\partial^2 \psi}{\partial t \partial y} &= u_e(x) r(x) \frac{\partial^2 f(x,\eta,t)}{\partial \eta^2} \left(-\frac{1}{2} \frac{\eta}{t} \right) + u_e(x) r(x) \frac{\partial^2 f(x,\eta,t)}{\partial t \partial \eta} \\ \frac{\partial^2 \psi}{\partial t \partial y} &= -\frac{u_e(x) r(x)}{t} \frac{\eta}{2} \frac{\partial^2 f(x,\eta,t)}{\partial \eta^2} + u_e(x) r(x) \frac{\partial^2 f(x,\eta,t)}{\partial t \partial \eta} \end{split}$$

Selanjutnya dapat dituliskan $u_e(x)=u_e;r(x)=r;f(x,\eta,t)=f$, maka persamaan similaritas untuk

(vi)

momentum adalah sebagai berikut:

ruas kiri

$$\begin{split} &\frac{1}{r} (\frac{\partial^2 \psi}{\partial t \partial y}) - \frac{1}{r^3} \frac{\partial r}{\partial x} (\frac{\partial \psi}{\partial y})^2 + \frac{1}{r^2} \frac{\partial \psi}{\partial y} \frac{\partial^2 \psi}{\partial x \partial y} - \frac{1}{r^2} \frac{\partial \psi}{\partial x} \frac{\partial^2 \psi}{\partial y^2} \\ &= \frac{1}{r} (-\frac{u_e r}{t} \frac{\eta}{2} \frac{\partial^2 f}{\partial \eta^2} + u_e r \frac{\partial^2 f}{\partial t \partial \eta}) - \frac{1}{r^3} \frac{\partial r}{\partial x} (u_e r \frac{\partial f}{\partial \eta})^2 + \frac{1}{r^2} (u_e r \frac{\partial f}{\partial \eta}) \\ &\quad ((\frac{\partial}{\partial x} u_e) r \frac{\partial f}{\partial \eta} + (\frac{\partial}{\partial x} r) u_e \frac{\partial f}{\partial \eta} + u_e r \frac{\partial f}{\partial x \partial \eta}) - \frac{1}{r^2} (t^{\frac{1}{2}} r f \frac{\partial u_e}{\partial x} \\ &\quad + u_e t^{\frac{1}{2}} f \frac{\partial r}{\partial y}) (\frac{u_e r}{t^{\frac{1}{2}}}) \frac{\partial^2 f}{\partial \eta^2} \\ &= (-\frac{1}{r} (\frac{u_e r}{t} \frac{\eta}{2} \frac{\partial^2 f}{\partial \eta^2} + u_e r \frac{\partial^2 f}{\partial t \partial \eta})) - \frac{1}{r^3} u_e^2 r^2 \frac{\partial r}{\partial x} (\frac{\partial^2 f}{\partial \eta})^2 + \frac{1}{r^2} u_e r^2 \\ &\quad \frac{\partial u_e}{\partial x} (\frac{\partial f}{\partial \eta})^2 + \frac{1}{r^2} u_e^2 r \frac{\partial r}{\partial x} (\frac{\partial f}{\partial \eta})^2 + \frac{1}{r^2} u_e^2 r^2 \frac{\partial f}{\partial \eta} \frac{\partial f}{\partial x \partial \eta} - \frac{1}{r^2} t^{\frac{1}{2}} f r \frac{\partial u_e}{\partial x} \\ &\quad \frac{u_e r}{t^{\frac{1}{2}}} \frac{\partial^2 f}{\partial \eta^2} - \frac{1}{r^2} t^{\frac{1}{2}} f u_e \frac{\partial r}{\partial x} \frac{u_e r}{t^{\frac{1}{2}}} \frac{\partial^2 f}{\partial \eta} - \frac{1}{r^2} t^{\frac{1}{2}} u_e r \frac{\partial f}{\partial x^2 \partial \eta} - u_e f \frac{\partial h}{\partial x^2} \\ &= - \frac{u_e}{t} \frac{\eta}{t^2} \frac{\partial^2 f}{\partial \eta^2} + u_e \frac{\partial f}{\partial t \partial \eta} + u_e \frac{\partial u_e}{\partial x} (\frac{\partial f}{\partial \eta})^2 + u_e^2 \frac{\partial f}{\partial \eta} \frac{\partial^2 f}{\partial x \partial \eta} - u_e f \frac{\partial u_e}{\partial x} \\ &\quad \frac{\partial^2 f}{\partial \eta^2} - \frac{1}{r} f u_e^2 \frac{\partial r}{\partial x} \frac{\partial^2 f}{\partial \eta^2} - u_e^2 \frac{\partial f}{\partial x} \frac{\partial^2 f}{\partial \eta^2} \end{split}$$

ruas kanan

$$\begin{split} u_e \frac{\partial u_e}{\partial x} + V \frac{1}{r} \frac{\partial^3 \psi}{\partial y^3} + (\frac{25}{16}M)(\frac{1}{r} \frac{\partial \psi}{\partial y} - u_e) + \phi(\frac{1}{r} \frac{\partial \psi}{\partial y} - u_e) + \lambda T sinx \\ &= u_e \frac{\partial u_e}{\partial x} + V \frac{1}{r} \frac{\partial^3 \psi}{\partial y^3} + (\frac{25}{16}M + \phi)(\frac{1}{r} \frac{\partial \psi}{\partial y} - u_e) + \lambda T sinx \\ &= u_e \frac{\partial u_e}{\partial x} + V \frac{1}{r} \frac{1}{t} u_e r \frac{\partial^3 f}{\partial \eta^3} + (\frac{25}{16}M + \phi)(\frac{1}{r} u_e r \frac{\partial f}{\partial \eta} - u_e) + \lambda T sinx \\ &= u_e \frac{\partial u_e}{\partial x} + V \frac{u_e}{t} \frac{\partial^3 f}{\partial \eta^3} + u_e (\frac{25}{16}M + \phi)(\frac{\partial f}{\partial \eta} - 1) + \lambda T sinx \end{split}$$

ruas kiri=ruas kanan

$$-\frac{u_e}{t}\frac{\eta}{2}\frac{\partial^2 f}{\partial \eta^2} + u_e\frac{\partial^f}{\partial t\partial \eta} + u_e\frac{\partial u_e}{\partial x}(\frac{\partial f}{\partial \eta})^2 + u_e^2\frac{\partial f}{\partial \eta}\frac{\partial^2 f}{\partial x\partial \eta} - u_ef\frac{\partial u_e}{\partial x}$$
$$\frac{\partial^2 f}{\partial \eta^2} - \frac{1}{r}fu_e^2\frac{\partial r}{\partial x}\frac{\partial^2 f}{\partial \eta^2} - u_e^2\frac{\partial f}{\partial x}\frac{\partial^2 f}{\partial \eta^2} = u_e\frac{\partial u_e}{\partial x} + V\frac{u_e}{t}\frac{\partial^3 f}{\partial \eta^3} + u_e(\frac{25}{16}M + \phi)$$

$$(\frac{\partial f}{\partial \eta} - 1) + \lambda T sinx$$

kemudian kedua ruas dibagi dengan u_e/t diperoleh

$$\begin{split} &-\frac{\eta}{2}\frac{\partial^2 f}{\partial t\partial \eta^2} + t\frac{\partial^2 f}{\partial t\partial \eta} + t\frac{\partial u_e}{\partial x}(\frac{\partial f}{\partial \eta})^2 + tu_e\frac{\partial f}{\partial \eta}\frac{\partial^2 f}{\partial x\partial \eta} - t\frac{\partial u_e}{\partial x}f\frac{\partial^2 f}{\partial \eta^2} - tu_ef\frac{1}{r}\\ &\frac{\partial r}{\partial x}\frac{\partial f}{\partial \eta^2} - tu_e\frac{\partial f}{\partial x}\frac{\partial^2 f}{\partial \eta^2} = t\frac{\partial u_e}{\partial x} + V\frac{\partial^3 f}{\partial \eta^3} + t(\frac{25}{16}M + \phi)(\frac{\partial f}{\partial \eta} - 1) + \frac{\lambda Tt}{u_e}sinx\\ &\text{dapat juga ditulis sebagai berikut} \end{split}$$

$$\begin{split} V \frac{\partial^3 f}{\partial \eta^3} &+ \frac{\eta}{2} \frac{\partial^2 f}{\partial \eta^2} + t \frac{\partial u_e}{\partial x} (1 - (\frac{\partial f}{\partial \eta})^2 + f \frac{\partial^2 f}{\partial \eta^2}) = t \frac{\partial^2 f}{\partial t \partial \eta} \\ &+ t u_e (\frac{\partial f}{\partial \eta} \frac{\partial^2 f}{\partial x \partial \eta} - \frac{1}{r} \frac{\partial r}{\partial x} \frac{\partial^2 f}{\partial \eta^2}) - t (\frac{25}{16}M + \phi) (\frac{\partial f}{\partial \eta} - 1) - \frac{\lambda T t}{u_e} sinx \end{split}$$
(L2.5)

• Persamaan Energi

$$\frac{\partial T}{\partial t} + \frac{1}{r} \frac{\partial \psi}{\partial y} \frac{\partial T}{\partial x} - \frac{1}{r} \frac{\partial \psi}{\partial x} \frac{\partial T}{\partial y} = D \frac{1}{Pr} \frac{\partial^2 T}{\partial y^2}$$
(L2.6)

dengan

(i)

$$\begin{aligned} \frac{\partial T}{\partial t} &= \frac{\partial s(x,\eta,t)}{\partial \eta} \frac{\partial \eta}{\partial t} + \frac{\partial s(x,\eta,t)}{\partial t} \\ \frac{\partial T}{\partial t} &= \frac{\partial s(x,\eta,t)}{\partial \eta} \left(-\frac{1}{2} \frac{\eta}{t} + \frac{\partial s(x,\eta,t)}{\partial t} \\ \frac{\partial T}{\partial t} &= \left(-\frac{\eta}{2t} \right) \frac{\partial s(x,\eta,t)}{\partial \eta} + \frac{\partial s(x,\eta,t)}{\partial t} \end{aligned}$$

$$\begin{split} \frac{\partial T}{\partial y} &= \frac{\partial s(x,\eta,t)}{\partial \eta} \frac{\partial \eta}{\partial y} \\ \frac{\partial T}{\partial y} &= \frac{\partial s(x,\eta,t)}{\partial \eta} \frac{1}{t^{\frac{1}{2}}} \\ \frac{\partial T}{\partial y} &= \frac{1}{t^{\frac{1}{2}}} \frac{\partial s(x,\eta,t)}{\partial \eta} \end{split}$$

$$\frac{\partial T}{\partial x} = \frac{\partial s(x,\eta,t)}{\partial x}$$

(iv)

$$\begin{split} \frac{\partial^2 T}{\partial y^2} &= \frac{\partial}{\partial y} (\frac{\partial T}{\partial y}) \\ \frac{\partial^2 T}{\partial y^2} &= \frac{\partial}{\partial y} \frac{\partial \eta}{\partial y} \frac{1}{t^{\frac{1}{2}}} \frac{\partial s(x,\eta,t)}{\partial \eta} \\ \frac{\partial^2 T}{\partial y^2} &= \frac{\partial}{\partial \eta} \frac{\partial \eta}{\partial y} \frac{1}{t^{\frac{1}{2}}} \frac{\partial s(x,\eta,t)}{\partial \eta} \frac{\partial \eta}{\partial y} \\ \frac{\partial^2 T}{\partial y^2} &= \frac{\partial}{\partial \eta} \frac{\partial \eta}{\partial y} \frac{1}{t^{\frac{1}{2}}} \frac{\partial s(x,\eta,t)}{\partial \eta} \frac{1}{t^{\frac{1}{2}}} \\ \frac{\partial^2 T}{\partial y^2} &= \frac{1}{t} \frac{\partial s(x,\eta,t)}{\partial \eta^2} \end{split}$$

Selanjutnya dapat dituliskan $u_e(x) = u_e$; r(x) = r; $s(x, \eta, t) = s$, maka persamaan similaritas untuk persamaan energi adalah sebagai berikut:

ruas kiri

$$\begin{split} &\frac{\partial T}{\partial t} + \frac{1}{r} \frac{\partial \psi}{\partial y} \frac{\partial T}{\partial x} - \frac{1}{r} \frac{\partial \psi}{\partial x} \frac{\partial T}{\partial y} \\ &= -\frac{\eta}{2t} \frac{\partial s}{\partial \eta} + \frac{\partial s}{\partial t} + \frac{1}{r} u_e r \frac{\partial f}{\partial \eta} \frac{\partial s}{\partial x} - \frac{1}{r} (t^{\frac{1}{2}} r f \frac{\partial u_e}{\partial x} + u_e t^{\frac{1}{2}} f \frac{\partial r}{\partial x} + u_e t^{\frac{1}{2}} \\ &r \frac{\partial f}{\partial x}) \frac{1}{t^{\frac{1}{2}}} \frac{\partial s}{\partial \eta} \end{split}$$

ruas kanan

$$D\frac{1}{Pr}\frac{\partial^2 T}{\partial y^2} = \alpha \frac{1}{Pr}\frac{1}{t}\frac{\partial^2 s}{\partial \eta^2}$$

ruas kiri =ruas kanan

$$\frac{\eta}{2t}\frac{\partial s}{\partial \eta} + \frac{\partial s}{\partial t} + \frac{1}{r}u_e r\frac{\partial f}{\partial \eta}\frac{\partial s}{\partial x} - \frac{1}{r}(t^{\frac{1}{2}}rf\frac{\partial u_e}{\partial x} + u_et^{\frac{1}{2}}f\frac{\partial r}{\partial x}$$

$$+u_e t^{\frac{1}{2}} r \frac{\partial f}{\partial x} \frac{1}{t^{\frac{1}{2}}} \frac{\partial s}{\partial \eta} = D \frac{1}{Pr} \frac{1}{t} \frac{\partial^2 s}{\partial \eta^2}$$

kedua ruas dikalikan dengan Prt, sehingga diperoleh persamaan energi sebagai berikut:

$$D\frac{\partial^2 s}{\partial \eta^2} + Pr\frac{\eta}{2}\frac{\partial s}{\partial \eta} + Prt\frac{\partial u_e}{\partial x}f\frac{\partial s}{\partial \eta} = Prt(\frac{\partial s}{\partial t} + u_e(\frac{\partial f}{\partial \eta}\frac{\partial s}{\partial x} - \frac{\partial f}{\partial x}\frac{\partial s}{\partial \eta} - \frac{1}{r}\frac{\partial r}{\partial y}f\frac{\partial s}{\partial \eta}))$$
(L2.7)

Lampiran 3. Scrip Matlab

```
clear all
clc
close all
Magnetik=[0.3 0.4 0.5 0.6 0.7];
%M=1;
%Porositas=[0.1 0.2 0.5 0.7 0.9];
Po=1; %Parameter Porositas
Pr =4.34; %% bilangan Prandtl
alpha=0; %% Parameter Konveksi
np = 60;%% banyak partisi eta
nt = 33; %% banyak partisi waktu
nt1= 1.65; %% banyak partisi waktu untuk small time
deleta = 0.1; %% step size dari eta
delt = 0.05; %% step size dari waktu
eta(1) = 0.0; %eta
etac(1) = 0.0; %diskrit eta
                %input chi pada nanofluid
N=0.1;
% Parameter nanofluid
 %Base fluid (air 30 derajat)
rhof=995.349; % density of the base fluid fraction
Bf=0.00021; % thermal expansion coefficient of the base
fluid fraction
kf=0.615; thermal conductivity of the base fluid
cn=4176.642; %heat capacity of the base fluid
% Base fluida (air 90 derajat)
   % rhof=964.947;%density of the solid fraction
    %Bf=0.00021; %thermal expansion coefficient of the
    solid fraction
    %kf=0.669;%thermal conductivity of the solid
    %cn=4204.934; %heat capacity of the solid
```

```
%Nanoparticle Tio2
     rhos=4175;
     Bs=0.0000085;
     ks=8.4;
     cs=692;
%% Penghitungan eta dan eta^{j-1/2}
for j = 2:np
    eta(j) = eta(j-1) + deleta;
    etac(j) = 0.5*(eta(j) + eta(j-1));
end
%% Penghitungan waktu t dan t^{n-1/2}
for n = 1 : nt
    if n == 1
        t(1) = 0;
        t1(1) = 0;
    else
        t(n) = t(n-1) + delt;
        t1(n) = 0.5*(t(n) + t(n-1));
    end
end
for i=1:5
    M=Magnetik(i);
    %Po=Porositas(i);
for n = 1:nt
    k=1;
    stop = 1;
while stop > 0.00001
V = (rhof/((1-N) * rhof + N * rhos)) * (1/((1-N)^2.5));
D=(1/Pr)*((ks+2*kf+2*N*(ks-kf))/((ks+2*kf-N*(ks-kf))*
((1-N)+N*((rhos*cs)/(rhof*cn))));
%% Initial Condition
for j = 1:np
    if n == 1
    f(j, 1, n) = eta(j) * erf(0.5 * exp((1/2) * log(1/V)) * eta
    (j))+(2/(exp((1/2)*log(pi/V))))*(exp(-0.25*(1/V)*
```

```
((eta(j))^2))-1);
     u(j, 1, n) = erf(0.5 + eta(j) + (exp((1/2) + log(1/V))));
     v(j, 1, n) = \exp((1/2) \cdot \log(1/V \cdot pi)) \cdot \exp(-0.25 \cdot 1/V \cdot (1/2))
     (eta(j))^2));
     s(j,1,n) = 1 - erf(0.5 * (exp((1/2) * log((Pr*(1/D))))))
     *eta(j));
     q(j,1,n) = -\exp((1/2) \cdot \log((1/D) \cdot \Pr/pi)) \cdot \exp(-0.25)
     *(1/D)*Pr*(eta(j)^2));
     else
          f(j, 1, n) = ff(j, n-1);
          u(j,1,n) = uu(j,n-1);
          v(j, 1, n) = vv(j, n-1);
          s(j, 1, n) = ss(j, n-1);
         q(j,1,n) = qq(j,n-1);
     end
end
for j = 2:np
     if n == 1
     cfb(j,n) = 0; cub(j,n) = 0;
     cvb(j,n) = 0; cdervb(j,n) = 0;
     cfvfvb(j,n) = cfb(j,n) * cvb(j,n);
     csb(j,n) = 0; cqb(j,n) = 0;
     cderqb(j,n) = 0; cfqfqb(j,n) = 0;
     \operatorname{cunb}(j,n) = \operatorname{cub}(j,n)^2;
     else
          cfb(j,n) = ffb(j,n-1);
          \operatorname{cub}(j,n) = \operatorname{utb}(j,n-1);
          cvb(j,n) = vvb(j,n-1);
          csb(j,n) = ssb(j,n-1);
          cqb(j,n) = qqb(j,n-1);
          \operatorname{cunb}(j,n) = \operatorname{cub}(j,n)^2;
          cfvfvb(j,n) = cfb(j,n) * cvb(j,n);
          cdervb(j,n) = ddervb(j,n-1);
          cderqb(j,n) = dderqb(j,n-1);
          cfqfqb(j,n) = cfb(j,n) * cqb(j,n);
```

```
end
fb(j,k,n) = 0.5*(f(j,k,n)+f(j-1,k,n));
ub(j,k,n) = 0.5 * (u(j,k,n) + u(j-1,k,n));
vb(j,k,n) = 0.5*(v(j,k,n)+v(j-1,k,n));
sb(j,k,n) = 0.5*(s(j,k,n)+s(j-1,k,n));
qb(j,k,n) = 0.5*(q(j,k,n)+q(j-1,k,n));
dervb(j,k,n) = (v(j,k,n)-v(j-1,k,n))/deleta;
fvfvb(j,k,n) = fb(j,k,n) * vb(j,k,n);
unb(j,k,n) = ub(j,k,n)^2;
derqb(j,k,n) = (q(j,k,n)-q(j-1,k,n))/deleta;
fqfqb(j,k,n) = fb(j,k,n) * qb(j,k,n);
if n < nt1+1
    a1(j,k) = (3/4) * t1(n) * vb(j,k,n);
    a2(j,k) = (3/4) * t1(n) * vb(j-1,k,n);
    a3(j,k) = (-3/2) *t1(n) *ub(j,k,n) + 0.5*((25/))
    16) * M + Po) * t1(n) - t1(n) / delt;
    a4(j,k) = (-3/2) * t1(n) * ub(j-1,k,n) + 0.5 * ((25))
    /16) *M+Po) *t1(n) - t1(n) /delt;
    a5(j,k) = (V/deleta) + 0.25 * etac(j) + (3/4) *
    t1(n)*fb(j,k,n);
    a6(j,k) = (-V/deleta) + 0.25 * etac(j) + (3/4)
    *t1(n) *fb(j-1,k,n);
    a7(j,k) = alpha*(2/3)*t1(n)*0.5;
    a8(j,k) = a7(j,k);
    b1(j,k) = D/deleta + 0.25*Pr*etac(j) + (3/4)
    *Pr*t1(n)*fb(j,k,n);
    b2(j,k) = -D/deleta + 0.25*Pr*etac(j) + (3/4)
    *Pr*t1(n) *fb(j-1,k,n);
    b3(j,k) = (3/4) * Pr * t1(n) * qb(j,k,n);
    b4(j,k) = b3(j,k);
    b5(j,k) =-(Pr*t1(n))/delt;
    b6(j,k) = b5(j,k);
    r1(j,k) = f(j-1,k,n)-f(j,k,n)+deleta*ub(j,k,n);
```

```
r2(j,k) = u(j-1,k,n)-u(j,k,n)+deleta*vb(j,k,n);
r3(j,k) = s(j-1,k,n)-s(j,k,n)+deleta*qb(j,k,n);
r4(j,k) = -V*cdervb(j,n) - 0.5*etac(j)*cvb(j,n) -
(3/2)*t1(n)*(1-cunb(j,n) + cfvfvb(j,n)) -
((25/16) * M+Po) * t1(n) * (cub(j,n)-1) - ...
2*t1(n)*cub(j,n)/delt - alpha*(2/3)*t1(n)*csb
(j,n) - V*dervb(j,k,n) - 0.5*etac(j)*vb(j,k,n)-
(3/2) * t1(n) * (1-unb(j,k,n) + fvfvb(j,k,n)) - ...
((25/16) * M+Po) * t1(n) * (ub(j,k,n)-1)2*t1(n)
*ub(j,k,n)/delt - alpha*(2/3)*t1(n)*sb(j,k,n);
r5(j,k) = -D*cdergb(j,n) - 0.5*Pr*etac(j)*cgb
(j,n) -(3/2) *Pr*t1(n) *cfqfqb(j,n) - ...
2*Pr*t1(n)*csb(j,n)/delt -D*derqb(j,k,n) - 0.5
*Pr*etac(j)*gb(j,k,n) - ...(3/2)*Pr*t1(n)*fqfqb
(j,k,n) + 2*Pr*t1(n)*sb(j,k,n)/delt;
else
a1(j,k) = (3/4) * vb(j,k,n);
a2(j,k) = (3/4) * vb(j-1,k,n);
a3(j,k) = -(3/2) * ub(j,k,n) + 0.5 * ((25/16) * M+Po)
- 1/delt;
a4(j,k) = -(3/2) * ub(j-1,k,n) + 0.5*((25/16) * M+
Po) - 1/delt;
a5(j,k) = V*(1/deleta) + (3/4)*fb(j,k,n);
a6(j,k) = V*(-1/deleta) + (3/4)*fb(j-1,k,n);
a7(j,k) = alpha*(2/3)*0.5;
a8(j,k) = a7(j,k);
b1(j,k) = D*(1/deleta) + (3/4)*Pr*fb(j,k,n);
b2(j,k) = D*(-1/deleta) + (3/4)*Pr*fb(j-1,k,n);
b3(j,k) = (3/4) * Pr * qb(j,k,n);
b4(j,k) = (3/4) * Pr*qb(j-1,k,n);
b5(j,k) = -(Pr*t1(n))/delt;
b6(j,k) = b5(j,k);
r1(j,k) = f(j-1,k,n)-f(j,k,n)+deleta*ub(j,k,n);
```

```
r2(j,k) = u(j-1,k,n)-u(j,k,n)+deleta*vb(j,k,n);
         r3(j,k) = s(j-1,k,n)-s(j,k,n)+deleta*qb(j,k,n);
         r4(j,k) = -V*cdervb(j,n) - (3/2)*(1-cunb(j,n) +
         cfvfvb(j,n) - vb(j,k,n) - ((25/16) * M+Po) * (cub(j,n))
                       2* \operatorname{cub}(j,n)/\operatorname{delt} - \operatorname{alpha}(2/3)* \operatorname{csb}(j,n)
         -1)- ...
         n) - V*dervb(j,k,n) - (3/2)*(1-unb(j,k,n)+fvfvb)
         (j,k,n))-cvb(j,n)- ...((25/16)*M+Po)*(ub(j,k,n))
         -1)+2*ub(j,k,n)/delt - alpha*(2/3)*sb(j,k,n);
         r5(j,k) = -D*cderqb(j,n) - (3/2)*Pr*cfqfqb(j,n)
         + ... 2*Pr*csb(j,n)/delt - D*derqb(j,k,n) -
         (3/2) *Pr*fqfqb(j,k,n) - 2*Pr*sb(j,k,n)/delt;
    end
end
% Matrices
    a\{2,k\} = [0 \ 0 \ 1 \ 0 \ 0; -0.5 \times deleta \ 0 \ 0 \ -0.5 \times deleta \ 0;
    0 -0.5*deleta 0 0 -0.5*deleta;a6(2,k) 0 a1(2,k) a5
    (2,k)0; 0 b2(2,k) b3(2,k) 0 b1(2,k)];
    for j = 3:np
         a{j,k} = [-0.5*deleta 0 1 0 0;-1 0 0 -0.5*deleta
         0; 0 - 1 \ 0 \ 0 - 0.5 \star deleta; a4(j,k) a8(j,k) a1(j,k)
         a5(j,k)0; 0 b6(j,k) b3(j,k) 0 b1(j,k)];
         b\{j,k\} = [0 \ 0 \ -1 \ 0 \ 0; \ 0 \ 0 \ 0 \ -0.5 \times deleta \ 0; 0 \ 0 \ 0
         0 - 0.5 + \text{deleta}; 0 0 a2(j,k) a6(j,k) 0; 0 0 b4(j,k)
         0 b2(j,k)];
    end;
    for j = 2:np
         c\{j,k\} = [-0.5 + deleta \ 0 \ 0 \ 0; 1 \ 0 \ 0 \ 0; 0 \ 1 \ 0 \ 0
         0;a3(j,k) a7(j,k) 0 0 0; 0 b5(j,k) 0 0 0];
    end;
    alfa{2,k} = a{2,k};
    gamma\{2,k\} = inv(alfa\{2,k\}) * c\{2,k\};
    for j = 3:np
         alfa{j,k} =a{j,k}-(b{j,k}*gamma{j-1,k});
         gamma\{j,k\} = inv(alfa\{j,k\}) * c\{j,k\};
    end;
    for j = 2:np
```

```
rr\{j,k\} = [r1(j,k); r2(j,k); r3(j,k); r4(j,k); r5
                  (j,k)];
end;
ww{2,k} =inv(alfa{2,k})*rr{2,k};
for j = 3:np
            ww\{j,k\} = inv(alfa\{j,k\}) * (rr\{j,k\}-(b\{j,k\}*ww\{j-1,k\})) * (rr\{j,k\}-(b\{j,k\}*ww\{j-1,k\})) * (rr\{j,k\}-(b\{j,k\})) * (rr\{j,k\})) * (rr\{j,k\}-(b\{j,k\})) * (rr\{j,k\})) * (rr\{j,k\}-(b\{j,k\})) * (rr\{j,k\})) * (rr\{j,k\}) * (rr\{j,k\})) * (rr\{j,k\}) * (rr\{j,k\})) * (rr\{j,k\}) * (rr\{j,k\}) * (rr\{j,k\})) * (rr\{j,k\})) * (rr\{j,k\}) * (rr\{j,k\})) * (rr\{j,k\})) * (rr\{j,k\})) * (rr\{j,k\}) * (rr\{
             k}));
end;
%% backward sweep
delu(1, k) = 0;
dels(1,k) = 0;
delf(1, k) = 0;
delu(np,k) = 0;
dels(np,k) = 0;
dell\{np,k\} = ww\{np,k\};
for j = np-1:-1:2
                 dell\{j,k\} = ww\{j,k\} - (gamma\{j,k\} * dell\{j+1,k\});
end;
delv(1,k) = dell\{2,k\}(1,1);
delq(1,k) = dell\{2,k\}(2,1);
delf(2,k) = dell\{2,k\}(3,1);
delv(2,k) = dell\{2,k\}(4,1);
delq(2,k) = dell\{2,k\}(5,1);
for j = np:-1:3
                  delu(j-1,k) = dell\{j,k\}(1,1);
                  dels(j-1,k) = dell\{j,k\}(2,1);
                  delf(j,k) = dell\{j,k\}(3,1);
                  delv(j,k) = dell\{j,k\}(4,1);
                  delq(j,k) = dell\{j,k\}(5,1);
end;
%% Newton's Method
for j = 1:np
                  f(j,k+1,n) = f(j,k,n) + delf(j,k);
```

```
u(j,k+1,n) = u(j,k,n) + delu(j,k);
        v(j,k+1,n) = v(j,k,n) + delv(j,k);
        s(j,k+1,n) = s(j,k,n) + dels(j,k);
        q(j,k+1,n) = q(j,k,n) + delq(j,k);
    end;
    stop = abs(delv(1,k));
    kmax = k;
    k = k + 1;
end
    for j = 1:np
        ff(j,n) = f(j,k,n);
        uu(j,n) = u(j,k,n);
        vv(j,n) = v(j,k,n);
        ss(j,n) = s(j,k,n);
        qq(j,n) = q(j,k,n);
    end
    for j=1:np
        ffb(j,n) = fb(j,kmax,n);
        utb(j,n) = ub(j,kmax,n);
        vvb(j,n) = vb(j,kmax,n);
        ssb(j,n) = sb(j,kmax,n);
        qqb(j,n) = qb(j,kmax,n);
        ddervb(j,n) = dervb(j,kmax,n);
        dderqb(j,n) = derqb(j,kmax,n);
    end
end
if(i==1)
    all=u(:, kmax, nt);
    b11=s(:, kmax, nt);
figure(1)
plot(eta,u(:,kmax,nt),'b', 'linewidth', 2)
hold on;
figure(2)
```

```
plot(eta,s(:,kmax,nt),'b', 'linewidth', 2)
hold on;
```

```
elseif(i==2)
    a12=u(:, kmax, nt);
    b12=s(:,kmax,nt);
figure(1)
plot(eta,u(:,kmax,nt),':', 'linewidth', 2)
hold on;
figure(2)
plot(eta,s(:,kmax,nt),':', 'linewidth', 2)
hold on;
elseif(i==3)
    a13=u(:,kmax,nt);
    b13=s(:,kmax,nt);
figure(1)
plot(eta,u(:,kmax,nt),'r', 'linewidth', 2)
hold on;
figure(2)
plot(eta,s(:,kmax,nt),'r', 'linewidth', 2)
hold on;
elseif(i==4)
    a14=u(:, kmax, nt);
    b14=s(:, kmax, nt);
figure(1)
plot(eta,u(:,kmax,nt),'y', 'linewidth', 2)
hold on;
figure(2)
plot(eta,s(:,kmax,nt),'y', 'linewidth', 2)
hold on;
elseif(i==5)
    a15=u(:, kmax, nt);
    b15=s(:,kmax,nt);
figure(1)
plot(eta,u(:,kmax,nt),'g', 'linewidth', 2)
hold on;
title('Kurva Kecepatan dengan Variasi Parameter Magne
tik')
%title('Kurva Kecepatan dengan Variasi Parameter Poro
```

```
sitas')
legend('M=0.3','M=0.4','M=0.5','M=0.6','M=0.7')
%legend('Po=0.1','Po=0.2','Po=0.5','Po=0.7','Po=0.9')
xlabel('\eta')
ylabel(' \partial f/\partial \eta')
grid on;
figure(2)
plot(eta,s(:,kmax,nt),'g', 'linewidth', 2)
hold on;
title('Kurva Temperatur dengan Variasi Parameter Magne
tik')
%title('Kurva Temperatur dengan Variasi Parameter Poro
sitas')
legend('M=0.3','M=0.4','M=0.5','M=0.6','M=0.7')
%legend('Po=0.1', 'Po=0.2', 'Po=0.5', 'Po=0.7', 'Po=0.9')
xlabel('\eta')
ylabel('s')
grid on;
kk0=[eta];
kk1=[a11'];
kk2=[a12'];
kk3=[a13'];
kk4=[a14'];
kk5=[a15'];
```

sk1=[b11']; sk2=[b12']; sk3=[b13']; sk4=[b14']; sk5=[b15']; fprintf('____ fprintf('Ketebalan |Kecepatan |Kecepatan |Kecepatan |Kecepatan |Kecepatan \n')

end end

fprintf('

\n')

104

|M=0.3 | M=0.4 |M=0.5

|M=0.6 |M=0.7 \n') %fprintf(' | Po=0.1 |Po=0.2 |Po=0.5 |Po=0.7 |Po=0.9 \n') fprintf('_____ \n') for z=1:np fprintf('%5.4e | %5.4e | %5.4e | %5.4e | %5.4e n', kk0(z), kk1(z), kk2(z), kk3(z), kk4(z), kk5(z)end fprintf('_____\n') fprintf('Ketebalan | Temperatur |Temperatur |Temperatur |Temperatur |Temperatur \n') fprintf(' |M=0.3 | M=0.4 | M=0.5 |M=0.6 |M=0.7 \n') %fprintf(′ | Po=0.1 | Po=0.2 | Po=0.5 |Po=0.7 |Po=0.9 \n') fprintf('______\n') for z=1:np fprintf('%5.4e | %5.4e | %5.4e | %5.4e | %5.4e \n', kk0(z), sk1(z), sk2(z), sk3(z), sk4(z), sk5(z)) end

106

Iterasi	M=0,3	M=0,4	M=0,5	M=0,6	M=0,7
1	0	0	0	0	0
2	0.158481	0.152928	0.147012	0.140656	0.133755
3	0.299233	0.290049	0.280194	0.269528	0.257856
4	0.422848	0.411497	0.399239	0.385878	0.371151
5	0.529623	0.517334	0.50397	0.489301	0.473005
6	0.620867	0.608499	0.594962	0.579996	0.563246
7	0.697744	0.685928	0.672908	0.658413	0.642067
8	0.761707	0.75085	0.738807	0.725305	0.709963
9	0.814249	0.804583	0.79379	0.781604	0.767654
10	0.856856	0.848479	0.839064	0.828358	0.816012
11	0.890966	0.883876	0.875855	0.866672	0.856003
12	0.91792	0.912049	0.905362	0.897653	0.88863
13	0.938945	0.934179	0.928715	0.922372	0.914893
14	0.955131	0.951334	0.946953	0.941832	0.935749
15	0.967427	0.964456	0.961006	0.956946	0.952087
16	0.976645	0.97436	0.97169	0.968526	0.964712
17	0.983462	0.981735	0.979703	0.977278	0.974335
18	0.988437	0.987152	0.985631	0.983803	0.981569
19	0.992017	0.991077	0.989956	0.988601	0.986932
20	0.994559	0.993881	0.993069	0.99208	0.990853
21	0.996338	0.995858	0.995278	0.994567	0.993679
22	0.997567	0.997231	0.996824	0.996321	0.995688
23	0.998403	0.998172	0.99789	0.99754	0.997096
24	0.998965	0.998808	0.998616	0.998375	0.998069
25	0.999336	0.999231	0.999102	0.998939	0.998731
26	0.999578	0.999509	0.999423	0.999315	0.999175
27	0.999734	0.999689	0.999633	0.999561	0.999469
28	0.999832	0.999803	0.999767	0.999721	0.99966
29	0.999893	0.999875	0.999852	0.999822	0.999783

Iterasi	M=0,3	M=0,4	M=0,5	M=0,6	M=0,7
30	0.999931	0.999919	0.999904	0.999885	0.99986
31	0.999954	0.999946	0.999937	0.999925	0.999909
32	0.999967	0.999962	0.999956	0.999948	0.999938
33	0.999975	0.999971	0.999968	0.999963	0.999956
34	0.999979	0.999977	0.999974	0.999971	0.999967
35	0.999981	0.99998	0.999978	0.999975	0.999973
36	0.999982	0.999981	0.99998	0.999978	0.999976
37	0.999983	0.999982	0.99998	0.999979	0.999978
38	0.999983	0.999982	0.999981	0.99998	0.999978
39	0.999982	0.999982	0.999981	0.99998	0.999979
40	0.999982	0.999981	0.999981	0.99998	0.999979
41	0.999982	0.999981	0.99998	0.99998	0.999979
42	0.999981	0.999981	0.99998	0.999979	0.999978
43	0.999981	0.99998	0.99998	0.999979	0.999978
44	0.999981	0.99998	0.999979	0.999979	0.999978
45	0.99998	0.999979	0.999979	0.999978	0.999978
46	0.99998	0.999979	0.999979	0.999978	0.999977
47	0.999979	0.999979	0.999978	0.999978	0.999977
48	0.999979	0.999978	0.999978	0.999977	0.999977
49	0.999978	0.999978	0.999977	0.999977	0.999976
50	0.999978	0.999977	0.999977	0.999977	0.999976
51	0.999977	0.999977	0.999977	0.999976	0.999976
52	0.999977	0.999977	0.999976	0.999976	0.999976
53	0.999977	0.999976	0.999976	0.999976	0.999975
54	0.999976	0.999976	0.999976	0.999975	0.999975
55	0.999976	0.999975	0.999975	0.999975	0.999975
56	0.999975	0.999975	0.999975	0.999975	0.999974
57	0.999975	0.999975	0.999975	0.999974	0.999974
58	0.999974	0.999974	0.999974	0.999974	0.999974
59	0.999974	0.999974	0.999974	0.999974	0.999974
60	0.999973	0.999973	0.999973	0.999973	0.999973

atan	Fluida	Nano
ik		

Iterasi	M=0,3	M=0,4	M=0,5	M=0,6	M=0,7
1	0	0	0	0	0
2	0.159582	0.154018	0.14809	0.141723	0.134813
3	0.301148	0.291958	0.282098	0.271429	0.259757
4	0.425315	0.413975	0.40173	0.388386	0.373681
5	0.532413	0.520156	0.50683	0.492203	0.475959
6	0.623791	0.611478	0.598002	0.583106	0.566437
7	0.700649	0.688908	0.675972	0.661572	0.645336
8	0.764478	0.753712	0.741771	0.728385	0.713178
9	0.816807	0.807243	0.796565	0.784509	0.770711
10	0.859153	0.850883	0.841589	0.831022	0.818837
11	0.892976	0.885995	0.878097	0.869054	0.858549
12	0.919641	0.913874	0.907307	0.899735	0.890873
13	0.940388	0.935719	0.930367	0.924154	0.916828
14	0.956316	0.952607	0.948328	0.943326	0.937384
15	0.968382	0.965489	0.96213	0.958175	0.953443
16	0.977401	0.975183	0.972591	0.969519	0.965816
17	0.98405	0.982379	0.980413	0.978066	0.975218
18	0.988886	0.987648	0.986181	0.984418	0.982263
19	0.992355	0.991452	0.990375	0.989073	0.987468
20	0.994809	0.99416	0.993383	0.992436	0.991261
21	0.99652	0.996062	0.995509	0.994831	0.993984
22	0.997697	0.997379	0.996992	0.996514	0.995913
23	0.998495	0.998277	0.99801	0.997679	0.997259
24	0.999029	0.998881	0.9987	0.998474	0.998185
25	0.99938	0.999282	0.999161	0.999008	0.998812
26	0.999608	0.999544	0.999464	0.999362	0.999232
27	0.999754	0.999712	0.99966	0.999594	0.999508
28	0.999845	0.999819	0.999785	0.999742	0.999687
29	0.999902	0.999885	0.999864	0.999837	0.999801

Lampiran 5. Tabel Iterasi Nilai Kecepatan Fluida Nano Ti02-Air(90) dengan Parameter Magnetik

Iterasi	M=0,3	M=0,4	M=0,5	M=0,6	M=0,7
30	0.999937	0.999926	0.999913	0.999895	0.999873
31	0.999958	0.999951	0.999943	0.999932	0.999917
32	0.99997	0.999966	0.99996	0.999953	0.999944
33	0.999977	0.999974	0.999971	0.999966	0.99996
34	0.999981	0.999979	0.999977	0.999974	0.99997
35	0.999983	0.999981	0.99998	0.999978	0.999975
36	0.999984	0.999983	0.999981	0.99998	0.999978
37	0.999984	0.999983	0.999982	0.999981	0.99998
38	0.999984	0.999983	0.999983	0.999982	0.99998
39	0.999984	0.999983	0.999983	0.999982	0.999981
40	0.999984	0.999983	0.999982	0.999982	0.999981
41	0.999983	0.999983	0.999982	0.999981	0.999981
42	0.999983	0.999982	0.999982	0.999981	0.99998
43	0.999983	0.999982	0.999981	0.999981	0.99998
44	0.999982	0.999982	0.999981	0.999981	0.99998
45	0.999982	0.999981	0.999981	0.99998	0.99998
46	0.999981	0.999981	0.99998	0.99998	0.999979
47	0.999981	0.999981	0.99998	0.99998	0.999979
48	0.999981	0.99998	0.99998	0.999979	0.999979
49	0.99998	0.99998	0.999979	0.999979	0.999979
50	0.99998	0.999979	0.999979	0.999979	0.999978
51	0.999979	0.999979	0.999979	0.999978	0.999978
52	0.999979	0.999979	0.999978	0.999978	0.999978
53	0.999979	0.999978	0.999978	0.999978	0.999978
54	0.999978	0.999978	0.999978	0.999978	0.999977
55	0.999978	0.999978	0.999977	0.999977	0.999977
56	0.999977	0.999977	0.999977	0.999977	0.999977
57	0.999977	0.999977	0.999977	0.999977	0.999977
58	0.999977	0.999976	0.999976	0.999976	0.999976
59	0.999976	0.999976	0.999976	0.999976	0.999976
60	0.999976	0.999976	0.999976	0.999976	0.999976

Iterasi	M=0,3	M=0,4	M=0,5	M=0,6	M=0,7
1	1	1	1	1	1
2	5.55E+38	1.11E+39	1.71E+39	2.18E+39	2.80E+39
3	9.96E+38	1.99E+39	3.09E+39	3.93E+39	5.08E+39
4	1.23E+39	2.47E+39	3.84E+39	4.91E+39	6.37E+39
5	1.22E+39	2.47E+39	3.86E+39	4.97E+39	6.50E+39
6	1.01E+39	2.07E+39	3.26E+39	4.23E+39	5.60E+39
7	7.10E+38	1.46E+39	2.33E+39	3.06E+39	4.11E+39
8	4.17E+38	8.71E+38	1.41E+39	1.88E+39	2.56E+39
9	2.02E+38	4.31E+38	7.07E+38	9.61E+38	1.34E+39
10	7.99E+37	1.74E+38	2.91E+38	4.05E+38	5.78E+38
11	2.49E+37	5.57E+37	9.58E+37	1.37E+38	2.02E+38
12	5.92E+36	1.37E+37	2.42E+37	3.59E+37	5.50E+37
13	1.00E+36	2.42E+36	4.47E+36	6.93E+36	1.12E+37
14	1.07E+35	2.77E+35	5.42E+35	8.98E+35	1.55E+36
15	5.44E+33	1.59E+34	3.47E+34	6.44E+34	1.25E+35
16	-1.30E+30	9.05E+31	4.03E+32	1.21E+33	3.40E+33
17	1.67E+29	-3.64E+30	-1.45E+31	-3.57E+31	-7.43E+31
18	-2.91E+28	3.01E+29	1.14E+30	2.60E+30	4.85E+30
19	5.64E+27	-3.92E+28	-1.38E+29	-2.99E+29	-5.27E+29
20	-1.27E+27	7.01E+27	2.18E+28	4.58E+28	7.76E+28
21	3.29E+26	-1.58E+27	-4.08E+27	-8.48E+27	-1.41E+28
22	-8.86E+25	4.23E+26	8.38E+26	1.78E+27	2.93E+27
23	1.94E+25	-1.27E+26	-1.74E+26	-3.99E+26	-6.64E+26
24	5.27E+22	4.02E+25	3.13E+25	8.88E+25	1.54E+26
25	-4.08E+24	-1.23E+25	-1.53E+24	-1.67E+25	-3.27E+25
26	3.74E+24	3.06E+24	-3.14E+24	7.94E+23	4.57E+24
27	-2.59E+24	-1.37E+23	2.73E+24	1.77E+24	1.03E+24
28	1.60E+24	-6.10E+23	-1.72E+24	-1.53E+24	-1.47E+24
29	-9.32E+23	6.52E+23	9.70E+23	9.59E+23	1.01E+24

Lampiran 6. Tabel Iterasi Nilai Temperatur Fluida Nano Ti02-Air(30) dengan Parameter Magnetik

Iterasi	M=0,3	M=0,4	M=0,5	M=0,6	M=0,7
30	5.25E+23	-5.10E+23	-5.16E+23	-5.32E+23	-5.76E+23
31	-2.89E+23	3.55E+23	2.65E+23	2.77E+23	3.01E+23
32	1.57E+23	-2.33E+23	-1.32E+23	-1.38E+23	-1.48E+23
33	-8.49E+22	1.49E+23	6.35E+22	6.58E+22	6.92E+22
34	4.55E+22	-9.31E+22	-2.95E+22	-2.98E+22	-3.01E+22
35	-2.43E+22	5.76E+22	1.30E+22	1.25E+22	1.17E+22
36	1.29E+22	-3.55E+22	-5.19E+21	-4.51E+21	-3.53E+21
37	-6.86E+21	2.18E+22	1.68E+21	1.06E+21	1.76E+20
38	3.63E+21	-1.34E+22	-2.04E+20	2.95E+20	9.83E+20
39	-1.91E+21	8.28E+21	-3.36E+20	-7.08E+20	-1.21E+21
40	9.95E+20	-5.13E+21	4.68E+20	7.33E+20	1.09E+21
41	-5.13E+20	3.19E+21	-4.39E+20	-6.24E+20	-8.68E+20
42	2.60E+20	-1.99E+21	3.60E+20	4.87E+20	6.52E+20
43	-1.28E+20	1.25E+21	-2.76E+20	-3.62E+20	-4.73E+20
44	6.03E+19	-7.92E+20	2.04E+20	2.62E+20	3.36E+20
45	-2.61E+19	5.04E+20	-1.47E+20	-1.86E+20	-2.36E+20
46	9.30E+18	-3.23E+20	1.05E+20	1.31E+20	1.64E+20
47	-1.51E+18	2.08E+20	-7.40E+19	-9.16E+19	-1.14E+20
48	-1.70E+18	-1.35E+20	5.18E+19	6.36E+19	7.82E+19
49	2.85E+18	8.84E+19	-3.63E+19	-4.43E+19	-5.42E+19
50	-2.81E+18	-5.82E+19	2.52E+19	3.06E+19	3.72E+19
51	2.66E+18	3.85E+19	-1.77E+19	-2.14E+19	-2.59E+19
52	-1.97E+18	-2.57E+19	1.23E+19	1.48E+19	1.78E+19
53	1.84E+18	1.72E+19	-8.70E+18	-1.04E+19	-1.25E+19
54	-1.10E+18	-1.16E+19	6.01E+18	7.16E+18	8.54E+18
55	1.18E+18	7.86E+18	-4.34E+18	-5.17E+18	-6.17E+18
56	-5.64E+17	-5.45E+18	2.93E+18	3.47E+18	4.12E+18
57	6.45E+17	3.59E+18	-2.15E+18	-2.55E+18	-3.03E+18
58	-4.75E+17	-2.63E+18	1.64E+18	1.91E+18	2.23E+18
59	1.38E+17	2.07E+18	-9.44E+17	-1.15E+18	-1.39E+18
60	0	0	0	0	0

Iterasi	M=0,3	M=0,4	M=0,5	M=0,6	M=0,7
1	1	1	1	1	1
2	5.46E+38	1.09E+39	1.69E+39	2.14E+39	2.75E+39
3	9.78E+38	1.96E+39	3.03E+39	3.85E+39	4.98E+39
4	1.21E+39	2.42E+39	3.77E+39	4.81E+39	6.24E+39
5	1.19E+39	2.41E+39	3.78E+39	4.86E+39	6.35E+39
6	9.89E+38	2.01E+39	3.18E+39	4.12E+39	5.45E+39
7	6.88E+38	1.42E+39	2.26E+39	2.97E+39	3.98E+39
8	4.01E+38	8.39E+38	1.36E+39	1.81E+39	2.46E+39
9	1.93E+38	4.11E+38	6.75E+38	9.18E+38	1.28E+39
10	7.55E+37	1.64E+38	2.75E+38	3.83E+38	5.46E+38
11	2.32E+37	5.19E+37	8.92E+37	1.28E+38	1.88E+38
12	5.41E+36	1.25E+37	2.22E+37	3.29E+37	5.04E+37
13	8.91E+35	2.16E+36	3.99E+36	6.20E+36	1.00E+37
14	9.15E+34	2.38E+35	4.66E+35	7.75E+35	1.34E+36
15	4.26E+33	1.27E+34	2.78E+34	5.21E+34	1.02E+35
16	-1.84E+31	1.86E+31	2.04E+32	7.53E+32	2.32E+33
17	1.02E+30	-7.41E+29	-8.11E+30	-2.54E+31	-6.08E+31
18	-1.08E+29	5.74E+28	6.65E+29	1.94E+30	4.22E+30
19	1.62E+28	-8.72E+27	-8.32E+28	-2.31E+29	-4.75E+29
20	-3.09E+27	2.11E+27	1.35E+28	3.62E+28	7.17E+28
21	7.10E+26	-6.42E+26	-2.54E+27	-6.83E+27	-1.32E+28
22	-1.83E+26	2.18E+26	5.04E+26	1.45E+27	2.81E+27
23	4.61E+25	-7.77E+25	-9.15E+25	-3.21E+26	-6.45E+26
24	-8.33E+24	2.77E+25	8.05E+24	6.79E+25	1.50E+26
25	-1.27E+24	-9.04E+24	5.83E+24	-1.03E+25	-3.18E+25
26	2.79E+24	2.22E+24	-5.76E+24	-1.48E+24	4.12E+24
27	-2.28E+24	6.94E+22	3.77E+24	2.70E+24	1.34E+24
28	1.51E+24	-6.58E+23	-2.18E+24	-1.96E+24	-1.69E+24
29	-9.17E+23	6.65E+23	1.19E+24	1.17E+24	1.15E+24

Lampiran 7. Tabel Iterasi Nilai Temperatur Fluida Nano Ti02-Air(90) dengan Parameter Magnetik

Iterasi	M=0,3	M=0,4	M=0,5	M=0,6	M=0,7
30	5.31E+23	-5.17E+23	-6.24E+23	-6.42E+23	-6.62E+23
31	-2.99E+23	3.62E+23	3.21E+23	3.36E+23	3.53E+23
32	1.66E+23	-2.39E+23	-1.62E+23	-1.70E+23	-1.78E+23
33	-9.08E+22	1.54E+23	7.98E+22	8.35E+22	8.64E+22
34	4.95E+22	-9.68E+22	-3.85E+22	-3.96E+22	-3.99E+22
35	-2.68E+22	6.04E+22	1.79E+22	1.79E+22	1.72E+22
36	1.45E+22	-3.74E+22	-7.95E+21	-7.54E+21	-6.62E+21
37	-7.84E+21	2.32E+22	3.22E+21	2.74E+21	1.89E+21
38	4.23E+21	-1.43E+22	-1.07E+21	-6.42E+20	3.02E+19
39	-2.27E+21	8.90E+21	1.47E+20	-1.87E+20	-6.85E+20
40	1.22E+21	-5.54E+21	1.97E+20	4.44E+20	7.99E+20
41	-6.47E+20	3.46E+21	-2.88E+20	-4.64E+20	-7.11E+20
42	3.41E+20	-2.18E+21	2.75E+20	3.99E+20	5.67E+20
43	-1.78E+20	1.37E+21	-2.29E+20	-3.14E+20	-4.29E+20
44	9.04E+19	-8.73E+20	1.78E+20	2.36E+20	3.13E+20
45	-4.45E+19	5.58E+20	-1.33E+20	-1.73E+20	-2.24E+20
46	2.06E+19	-3.59E+20	9.71E+19	1.24E+20	1.58E+20
47	-8.46E+18	2.33E+20	-6.99E+19	-8.81E+19	-1.11E+20
48	2.61E+18	-1.52E+20	4.97E+19	6.20E+19	7.76E+19
49	2.05E+17	9.95E+19	-3.53E+19	-4.37E+19	-5.43E+19
50	-1.13E+18	-6.57E+19	2.48E+19	3.05E+19	3.76E+19
51	1.65E+18	4.36E+19	-1.76E+19	-2.15E+19	-2.64E+19
52	-1.30E+18	-2.92E+19	1.23E+19	1.49E+19	1.82E+19
53	1.46E+18	1.96E+19	-8.78E+18	-1.06E+19	-1.29E+19
54	-8.21E+17	-1.33E+19	6.11E+18	7.35E+18	8.87E+18
55	1.05E+18	9.04E+18	-4.43E+18	-5.34E+18	-6.44E+18
56	-4.37E+17	-6.27E+18	3.02E+18	3.60E+18	4.31E+18
57	6.03E+17	4.16E+18	-2.21E+18	-2.66E+18	-3.19E+18
58	-4.39E+17	-3.06E+18	1.73E+18	2.02E+18	2.38E+18
59	7.63E+16	2.38E+18	-9.30E+17	-1.15E+18	-1.42E+18
60	0	0	0	0	0

Iterasi	Po=0,1	Po=0,2	Po=0,5	Po=0,7	Po=0,9
1	1	1	1	1	1
2	1.17E+53	1.67E+53	2.66E+52	4.30E+54	6.31E+54
3	2.10E+53	3.00E+52	4.82E+53	7.80E+54	1.15E+55
4	2.60E+53	3.74E+53	6.04E+53	9.85E+54	1.47E+55
5	2.61E+52	3.75E+53	6.15E+52	1.01E+55	1.53E+55
6	2.19E+53	3.17E+52	5.28E+53	8.84E+54	1.36E+55
7	1.55E+52	2.26E+53	3.87E+53	6.60E+54	1.04E+55
8	9.27E+52	1.36E+52	2.40E+53	4.19E+54	6.79E+54
9	4.60E+52	6.83E+52	1.25E+53	2.25E+54	3.78E+54
10	1.87E+52	2.80E+52	5.37E+52	1.00E+54	1.76E+54
11	6.02E+51	9.19E+51	1.86E+52	3.64E+53	6.75E+53
12	1.49E+51	2.32E+51	5.04E+51	1.04E+52	2.06E+53
13	2.66E+50	4.25E+49	1.01E+51	2.25E+52	4.84E+52
14	3.09E+49	5.12E+47	1.39E+50	3.40E+50	8.20E+51
15	1.83E+47	3.23E+47	1.09E+49	3.13E+50	8.96E+50
16	1.30E+46	3.49E+44	2.77E+47	1.19E+49	4.83E+49
17	-5.12E+44	-1.28E+45	-6.51E+45	-1.41E+47	1.47E+47
18	4.20E+42	1.01E+44	4.35E+44	7.73E+45	-8.12E+44
19	-5.36E+42	-1.24E+43	-4.79E+43	-7.83E+44	5.98E+44
20	9.32E+41	1.96E+42	7.11E+42	1.10E+44	-6.76E+43
21	-2.04E+41	-3.67E+41	-1.29E+42	-1.94E+43	1.02E+43
22	5.29E+40	7.47E+40	2.71E+41	3.94E+42	-1.99E+42
23	-1.55E+40	-1.52E+40	-6.14E+40	-8.69E+41	5.39E+41
24	4.81E+39	2.56E+39	1.42E+39	1.91E+41	-1.96E+41
25	-1.47E+39	-3.09E+36	-2.99E+38	-3.60E+40	8.47E+40
26	3.75E+36	-3.53E+38	4.00E+38	2.38E+39	-3.90E+40
27	-3.19E+37	2.82E+38	1.10E+38	3.06E+39	1.83E+40
28	-5.78E+37	-1.74E+37	-1.45E+37	-2.69E+39	-8.58E+39
29	6.60E+37	9.71E+37	9.86E+37	1.64E+39	3.99E+39

Lampiran 8. Tabel Iterasi Nilai Temperatur Fluida Nano Ti02-Air(30) dengan Parameter Porositas

Iterasi	Po=0,1	Po=0,2	Po=0,5	Po=0,7	Po=0,9
30	-5.24E+37	-5.14E+37	-5.62E+37	-8.84E+38	-1.83E+39
31	3.67E+37	2.63E+37	2.94E+36	4.43E+38	8.28E+38
32	-2.42E+37	-1.31E+37	-1.45E+37	-2.10E+38	-3.66E+38
33	1.54E+37	6.31E+36	6.82E+36	9.39E+37	1.56E+38
34	-9.64E+36	-2.94E+36	-3.00E+36	-3.88E+37	-6.19E+37
35	5.97E+36	1.30E+36	1.19E+36	1.38E+37	2.15E+36
36	-3.67E+36	-5.24E+35	-3.74E+35	-3.16E+36	-4.96E+36
37	2.26E+36	1.73E+35	3.65E+34	-8.85E+35	-1.11E+35
38	-1.39E+36	-2.51E+34	8.33E+34	2.07E+36	2.82E+36
39	8.55E+35	-3.00E+34	-1.10E+35	-2.10E+36	-2.86E+36
40	-5.29E+33	4.42E+33	1.01E+35	1.76E+36	2.37E+36
41	3.28E+35	-4.21E+34	-8.15E+34	-1.35E+36	-1.80E+36
42	-2.05E+35	3.47E+34	6.16E+34	9.89E+34	1.31E+36
43	1.29E+35	-2.68E+34	-4.49E+34	-7.05E+34	-9.22E+35
44	-8.15E+34	1.98E+34	3.20E+34	4.93E+35	6.40E+35
45	5.18E+34	-1.43E+34	-2.25E+34	-3.42E+35	-4.40E+35
46	-3.32E+34	1.02E+34	1.57E+33	2.36E+35	3.00E+35
47	2.14E+34	-7.22E+33	-1.09E+34	-1.62E+35	-2.05E+35
48	-1.39E+34	5.05E+33	7.51E+33	1.11E+35	1.39E+35
49	9.06E+33	-3.55E+33	-5.21E+33	-7.61E+34	-9.51E+34
50	-5.97E+33	2.47E+33	3.58E+32	5.21E+34	6.48E+34
51	3.94E+33	-1.74E+33	-2.49E+33	-3.60E+34	-4.45E+34
52	-2.63E+33	1.20E+33	1.71E+33	2.46E+34	3.03E+34
53	1.76E+33	-8.52E+34	-1.21E+33	-1.72E+32	-2.11E+34
54	-1.19E+33	5.88E+34	8.25E+34	1.17E+34	1.43E+34
55	8.04E+34	-4.25E+31	-5.96E+34	-8.43E+33	-1.02E+34
56	-5.58E+34	2.88E+32	3.98E+34	5.62E+33	6.84E+33
57	3.67E+34	-2.10E+34	-2.93E+32	-4.11E+33	-4.90E+33
58	-2.69E+32	1.61E+34	2.16E+35	3.00E+33	3.61E+32
59	2.11E+35	-9.22E+33	-1.34E+35	-1.94E+33	-2.36E+33
60	0.0	0.0	0.0	0.0	0.0

Iterasi	Po=0,1	Po=0,2	Po=0,5	Po=0,7	Po=0,9
1	1	1	1	1	1
2	1.15E+53	1.64E+53	2.61E+53	4.22E+53	6.19E+54
3	2.06E+53	2.95E+53	4.73E+53	7.65E+54	1.13E+55
4	2.55E+53	3.66E+53	5.92E+53	9.65E+54	1.44E+55
5	2.55E+53	3.67E+53	6.01E+53	9.90E+54	1.49E+55
6	2.13E+53	3.08E+53	5.15E+53	8.61E+51	1.32E+55
7	1.51E+52	2.19E+53	3.75E+53	6.39E+54	1.00E+55
8	8.93E+52	1.31E+53	2.31E+53	4.04E+54	6.53E+54
9	4.40E+52	6.52E+52	1.19E+53	2.15E+54	3.61E+54
10	1.76E+52	2.65E+52	5.07E+52	9.49E+53	1.66E+54
11	5.61E+51	8.56E+51	1.74E+52	3.40E+53	6.29E+53
12	1.36E+51	2.12E+51	4.62E+51	9.55E+52	1.89E+52
13	2.38E+50	3.79E+50	9.06E+50	2.01E+52	4.35E+52
14	2.65E+49	4.40E+49	1.20E+50	2.95E+51	7.14E+50
15	1.45E+48	2.58E+48	8.90E+48	2.58E+50	7.45E+50
16	4.22E+45	1.69E+46	1.86E+47	8.58E+48	3.66E+49
17	-1.76E+44	-6.83E+44	-5.18E+45	-1.41E+47	-6.31E+46
18	1.45E+43	5.63E+42	3.68E+44	8.38E+45	1.53E+45
19	-1.99E+41	-7.10E+42	-4.19E+43	-8.78E+44	-2.10E+44
20	3.97E+41	1.16E+41	6.37E+42	1.26E+44	3.40E+43
21	-1.02E+40	-2.17E+41	-1.18E+42	-2.26E+43	-6.48E+42
22	3.08E+39	4.21E+40	2.51E+41	4.71E+42	1.32E+42
23	-1.02E+40	-7.09E+39	-5.76E+40	-1.07E+42	-2.27E+40
24	3.48E+39	2.66E+38	1.33E+40	2.48E+41	2.25E+38
25	-1.12E+39	7.27E+38	-2.74E+39	-5.31E+40	2.89E+40
26	2.88E+38	-6.13E+38	3.01E+38	7.57E+39	-2.25E+40
27	-1.06E+37	3.86E+38	1.59E+38	1.53E+38	1.33E+40
28	-6.28E+37	-2.19E+38	-1.73E+38	-2.29E+39	-7.05E+39
29	6.74E+37	1.18E+38	1.15E+38	1.58E+39	3.55E+39

Lampiran 9. Tabel Iterasi Nilai Temperatur Fluida Nano Ti02-Air(90) dengan Parameter Porositas

Iterasi	Po=0,1	Po=0,2	Po=0,5	Po=0,7	Po=0,9
30	-5.32E+37	-6.21E+37	-6.55E+37	-9.01E+38	-1.72E+39
31	3.74E+37	3.19E+37	3.48E+37	4.72E+38	8.15E+38
32	-2.48E+37	-1.60E+37	-1.76E+37	-2.33E+38	-3.75E+38
33	1.59E+37	7.92E+36	8.57E+36	1.09E+38	1.66E+38
34	-1.00E+36	-3.82E+36	-3.98E+36	-4.84E+37	-6.97E+37
35	6.25E+36	1.79E+36	1.74E+36	1.94E+36	2.64E+36
36	-3.88E+36	-7.96E+35	-6.83E+35	-6.38E+36	-7.88E+36
37	2.40E+36	3.25E+35	2.09E+35	9.25E+33	5.37E+35
38	-1.48E+36	-1.10E+35	-1.23E+34	1.07E+36	1.93E+36
39	9.19E+35	1.76E+34	-5.72E+34	-1.56E+36	-2.39E+36
40	-5.72E+35	1.74E+34	7.19E+34	1.47E+36	2.14E+36
41	3.57E+35	-2.71E+34	-6.56E+34	-1.20E+36	-1.69E+36
42	-2.24E+34	2.63E+34	5.30E+33	9.11E+35	1.26E+36
43	1.42E+35	-2.21E+34	-4.03E+34	-6.67E+35	-9.04E+35
44	-8.99E+34	1.72E+32	2.96E+34	4.76E+35	6.36E+35
45	5.74E+34	-1.29E+34	-2.13E+34	-3.35E+35	-4.43E+34
46	-3.69E+34	9.44E+33	1.51E+34	2.34E+35	3.06E+35
47	2.39E+33	-6.81E+33	-1.06E+34	-1.62E+35	-2.10E+35
48	-1.56E+34	4.85E+32	7.42E+33	1.12E+35	1.44E+35
49	1.02E+34	-3.45E+31	-5.20E+33	-7.78E+33	-9.91E+34
50	-6.74E+33	2.42E+33	3.61E+33	5.35E+34	6.79E+33
51	4.47E+32	-1.72E+33	-2.53E+33	-3.73E+34	-4.69E+34
52	-3.00E+33	1.20E+33	1.75E+31	2.56E+34	3.21E+34
53	2.01E+33	-8.59E+34	-1.24E+33	-1.81E+34	-2.25E+34
54	-1.37E+33	5.98E+34	8.54E+34	1.23E+34	1.53E+34
55	9.26E+30	-4.34E+34	-6.20E+34	-8.94E+33	-1.10E+34
56	-6.42E+34	2.96E+34	4.15E+34	5.95E+33	7.35E+32
57	4.25E+32	-2.17E+35	-3.08E+32	-4.40E+33	-5.33E+32
58	-3.13E+34	1.70E+35	2.30E+34	3.23E+33	3.93E+33
59	2.44E+32	-9.07E+33	-1.37E+35	-2.02E+33	-2.52E+33
60	0	0	0	0	0

Iterasi	Po=0,1	Po=0,2	Po=0,5	Po=0,7	Po=0,9
1	0	0	0	0	0
2	0.152631	0.148823	0.136245	0.126572	0.115381
3	0.289657	0.283321	0.262183	0.245712	0.22643
4	0.411126	0.403253	0.376747	0.355837	0.331084
5	0.517063	0.508492	0.479357	0.456076	0.428201
6	0.608358	0.599688	0.569934	0.545862	0.516716
7	0.685921	0.677595	0.648752	0.625125	0.596195
8	0.750963	0.743274	0.716388	0.694087	0.666479
9	0.804791	0.797913	0.773632	0.753244	0.727723
10	0.848754	0.842766	0.821425	0.803284	0.780325
11	0.884191	0.8791	0.860786	0.845028	0.824865
12	0.912378	0.908143	0.892766	0.879373	0.862049
13	0.934502	0.931051	0.918397	0.907242	0.892657
14	0.951637	0.948876	0.938661	0.929546	0.9175
15	0.96473	0.962561	0.954463	0.947149	0.937381
16	0.974599	0.972925	0.966616	0.960851	0.953069
17	0.981937	0.980667	0.975835	0.971368	0.965273
18	0.987318	0.986371	0.982731	0.979327	0.974633
19	0.991211	0.990515	0.987818	0.985266	0.98171
20	0.993987	0.993484	0.991518	0.989635	0.986985
21	0.995939	0.995582	0.99417	0.992803	0.99086
22	0.997293	0.997042	0.996045	0.995068	0.993665
23	0.998218	0.998045	0.997351	0.996664	0.995667
24	0.998841	0.998724	0.998248	0.997772	0.997075
25	0.999255	0.999177	0.998856	0.998531	0.998051
26	0.999526	0.999474	0.999261	0.999042	0.998716
27	0.999701	0.999667	0.999527	0.999382	0.999164
28	0.999811	0.99979	0.999699	0.999604	0.999461
29	0.999881	0.999867	0.999809	0.999748	0.999655

Lampiran 10. Tabel Iterasi Nilai Kecepatan Fluida Nano Ti02-Air(90) dengan Parameter Porositas

Iterasi	Po=0,1	Po=0,2	Po=0,5	Po=0,7	Po=0,9
30	0.999923	0.999915	0.999878	0.999839	0.999779
31	0.999949	0.999944	0.99992	0.999896	0.999858
32	0.999965	0.999961	0.999946	0.999931	0.999907
33	0.999973	0.999971	0.999962	0.999952	0.999937
34	0.999978	0.999977	0.999971	0.999964	0.999955
35	0.999981	0.99998	0.999976	0.999972	0.999965
36	0.999982	0.999982	0.999979	0.999976	0.999972
37	0.999983	0.999982	0.99998	0.999978	0.999975
38	0.999983	0.999983	0.999981	0.999979	0.999977
39	0.999983	0.999983	0.999981	0.99998	0.999978
40	0.999983	0.999982	0.999981	0.99998	0.999978
41	0.999983	0.999982	0.999981	0.99998	0.999979
42	0.999982	0.999982	0.999981	0.99998	0.999979
43	0.999982	0.999982	0.99998	0.999979	0.999978
44	0.999982	0.999981	0.99998	0.999979	0.999978
45	0.999981	0.999981	0.99998	0.999979	0.999978
46	0.999981	0.99998	0.999979	0.999979	0.999978
47	0.99998	0.99998	0.999979	0.999979	0.999978
48	0.99998	0.99998	0.999979	0.999978	0.999978
49	0.99998	0.999979	0.999979	0.999978	0.999977
50	0.999979	0.999979	0.999978	0.999978	0.999977
51	0.999979	0.999979	0.999978	0.999978	0.999977
52	0.999979	0.999978	0.999978	0.999977	0.999977
53	0.999978	0.999978	0.999978	0.999977	0.999977
54	0.999978	0.999978	0.999977	0.999977	0.999977
55	0.999978	0.999977	0.999977	0.999977	0.999977
56	0.999977	0.999977	0.999977	0.999977	0.999976
57	0.999977	0.999977	0.999977	0.999976	0.999976
58	0.999976	0.999976	0.999976	0.999976	0.999976
59	0.999976	0.999976	0.999976	0.999976	0.999976
60	0.999976	0.999976	0.999976	0.999976	0.999976

Iterasi	Po=0,1	Po=0,2	Po=0,5	Po=0,7	Po=0,9
1	0	0	0	0	0
2	0.151544	0.147744	0.135185	0.125522	0.114335
3	0.28775	0.281417	0.260283	0.243806	0.224505
4	0.408645	0.400764	0.374222	0.353273	0.32846
5	0.514232	0.505638	0.476414	0.453053	0.425065
6	0.605366	0.596656	0.56676	0.542563	0.51325
7	0.682923	0.674542	0.645507	0.621712	0.592564
8	0.748077	0.740323	0.713202	0.6907	0.662829
9	0.802104	0.795152	0.770608	0.749992	0.724175
10	0.846322	0.840256	0.818634	0.800249	0.776974
11	0.882044	0.876874	0.858275	0.842267	0.821779
12	0.910525	0.906214	0.890558	0.876918	0.859272
13	0.932937	0.929413	0.916496	0.905106	0.89021
14	0.950341	0.947514	0.937056	0.927724	0.915387
15	0.963676	0.96145	0.953134	0.945624	0.935591
16	0.973758	0.972034	0.965536	0.959598	0.95158
17	0.981278	0.979966	0.974973	0.970356	0.964057
18	0.98681	0.985828	0.982054	0.978525	0.973657
19	0.990826	0.990102	0.987296	0.98464	0.98094
20	0.9937	0.993175	0.991121	0.989155	0.986388
21	0.995729	0.995354	0.993874	0.992441	0.990404
22	0.997141	0.996877	0.995827	0.994799	0.993323
23	0.99811	0.997927	0.997194	0.996468	0.995414
24	0.998765	0.998641	0.998136	0.997631	0.996891
25	0.999203	0.999119	0.998777	0.998431	0.997919
26	0.99949	0.999435	0.999206	0.998972	0.998623
27	0.999676	0.99964	0.999489	0.999334	0.999099
28	0.999795	0.999772	0.999674	0.999571	0.999416
29	0.99987	0.999855	0.999792	0.999725	0.999624

Lampiran 11. Tabel Iterasi Nilai Kecepatan Fluida Nano Ti02-Air(30) dengan Parameter Porositas

Iterasi	Po=0,1	Po=0,2	Po=0,5	Po=0,7	Po=0,9
30	0.999916	0.999906	0.999866	0.999824	0.999758
31	0.999944	0.999938	0.999912	0.999885	0.999843
32	0.999961	0.999957	0.999941	0.999923	0.999897
33	0.999971	0.999968	0.999958	0.999947	0.99993
34	0.999976	0.999974	0.999967	0.99996	0.99995
35	0.999979	0.999978	0.999973	0.999968	0.999962
36	0.999981	0.99998	0.999976	0.999973	0.999969
37	0.999981	0.999981	0.999978	0.999976	0.999972
38	0.999982	0.999981	0.999979	0.999977	0.999975
39	0.999981	0.999981	0.999979	0.999978	0.999976
40	0.999981	0.999981	0.999979	0.999978	0.999976
41	0.999981	0.99998	0.999979	0.999978	0.999976
42	0.999981	0.99998	0.999979	0.999978	0.999976
43	0.99998	0.99998	0.999978	0.999977	0.999976
44	0.99998	0.999979	0.999978	0.999977	0.999976
45	0.999979	0.999979	0.999978	0.999977	0.999976
46	0.999979	0.999979	0.999977	0.999977	0.999976
47	0.999979	0.999978	0.999977	0.999976	0.999976
48	0.999978	0.999978	0.999977	0.999976	0.999975
49	0.999978	0.999977	0.999977	0.999976	0.999975
50	0.999977	0.999977	0.999976	0.999976	0.999975
51	0.999977	0.999977	0.999976	0.999975	0.999975
52	0.999977	0.999976	0.999976	0.999975	0.999975
53	0.999976	0.999976	0.999975	0.999975	0.999975
54	0.999976	0.999976	0.999975	0.999975	0.999974
55	0.999975	0.999975	0.999975	0.999975	0.999974
56	0.999975	0.999975	0.999975	0.999974	0.999974
57	0.999975	0.999975	0.999974	0.999974	0.999974
58	0.999974	0.999974	0.999974	0.999974	0.999974
59	0.999974	0.999974	0.999974	0.999974	0.999974
60	0.999973	0.999973	0.999973	0.999973	0.999973

DAFTAR RIWAYAT HIDUP

A. Identitas Diri

1. Nama Lengkap	:	Hanifah Migunani
2. Tempat & Tgl. Lahir	:	Banjarnegara, 21 Maret 2001
3. Alamat Rumah	:	Setana, Rt 04 Rw 04, Ds .Cendana
		Kec. Banjarnegara Kab. Banjarnegara
4. HP	:	088233421482
5. E-mail	:	migunanihanifah@gmail.com

B. Riwayat Pendidikan

- 1. Pendidikan Formal:
 - a. SD Negeri 3 Cendana (2007-2013)
 - b. SMP Negeri 2 Banjarnegara (2013-2016)
 - c. MAS Al Fatah Banjarnegara (2016-2019)
- 2. Pendidikan Non-Formal:
 - a. Ponpes Al Fatah Komplek Nurul Qur'an Banjarnegara
 - b. PPPTQ Al Hikmah Tugurejo Semarang

Semarang, 5 Juni 2023

Hanifah Migunani

NIM: 1908046019