CHAPTER IV

RESEARCH FINDINGS AND ANALYSIS

A. Description of the Result of Research

The research was conducted in MA Sunan Kalijaga Bawang. This research is found that there were different result between experimental class which was taught using think pair share technique and control class which was taught without using think pair share technique in teaching speaking. Test to experimental class and control class were given to obtain the data. It was given before and after teaching and learning process.

The subjects of this research were experimental class X. 1 and control class X. 2 of MA Sunan Kalijaga Bawang. There were test for pre-test that was given to experimental class and control class before teaching and learning process, whereas post-test was given after teaching and learning process. The researcher prepared the materials, technique and lesson plan before conducted teaching and learning process.

The researcher analyzed the data after it was collected. The first analysis of the data analysis was conducted analysis of pre-test score both experimental class and control class. It was applied to know the normality, homogeneity and similarity of pre-test of experimental class and control class. It is used to know what two groups were
normal and had same variant. The second analysis of data analysis was taken from post-test score. It was applied to know the normality, homogeneity and similarity of post-test of experimental class and control class. It used to know what two groups were normal and had same variant. Both test used to prove the truth of hypothesis that has been planned.
B. The Data Analysis and Test of Hypothesis

1. The Data Analysis of Pre-test Score of The Experimental Class and Control Class
a. The Normality Experimental and Control Class of Pre-test

Table 4.1
The List of Experimental and Control Class Pretest Score

EXPERIMENT			CONTROL		
NO	CODE	SCORE	NO	CODE	SCORE
1	E-1	65	1	C-1	60
2	E-2	60	2	C-2	60
3	E-3	55	3	C-3	55
4	E-4	50	4	C-4	70
5	E-5	60	5	C-5	65
6	E-6	70	6	C-6	60
7	E-7	60	7	C-7	75
8	E-8	65	8	C-8	55

9	E-9	70	9	C-9	60
10	E-10	55	10	C-10	80
11	E-11	60	11	C-11	60
12	E-12	65	12	C-12	55
13	E-13	65	13	C-13	65
14	E-14	55	14	C-14	50
15	E-15	80	15	C-15	65
16	E-16	60	16	C-16	70
17	E-17	65	17	C-17	55
18	E-18	70	18	C-18	60
19	E-19	55	19	C-19	70
20	E-20	65	20	C-20	65
21	E-21	70	21	C-21	55
22	E-22	50	22	C-22	75
23	E-23	70	23	C-23	60
24	E-24	60	24	C-24	60
25	E-25	65	25	C-25	70
26	E-26	55	26	C-26	80
27	E-27	80	27	C-27	65
28	E-28	60	28	C-28	60
29	E-29	65	29	C-29	70
30	E-30	75	30	C-30	60
$\begin{aligned} & \text { Sum } \\ & \mathrm{n} \end{aligned}$		1900			1910
		30			30

\bar{x} average	63,3333			63,66667
Variant $\left(\mathrm{s}^{2}\right)$	59,1954			58,50575
Standard of Deviation				
(S)	7,69385			7,648905

1) The normality of the experimental class of the pre-test

The normality test was used to know whether the data that obtained was normally distributed or not. Based on the table above, the normality test was:

Hypothesis:
Ha: The distribution list was normal
Ho: The Distribution list was not normal

Test of Hypothesis:

The formula was used:

$$
\chi^{2}=\sum_{i=1}^{k} \frac{\left(O_{i}=E_{i}\right)^{2}}{E_{i}}
$$

The computation of normality test:

Maximum score	$=80$
Minimum score	$=50$
K/ Number of class	$=5$
S	$=74,32$
n	$=30$
Range	$=30$

Length of class	$=5$
\bar{X}	$=62,90$

Table 4.2
The Frequency Distribution of Experimental Class Pretest

Class			f_{i}	X_{i}	$X_{\mathrm{i}}{ }^{2}$	$f_{i} \cdot X_{\mathrm{i}}$	$f_{i} \cdot X_{\mathrm{i}}{ }^{2}$
50	-	55	7	52,5	2756,3	367.5	19294
56	-	61	7	58,5	3422,3	409,5	23956
62	-	67	8	64,5	4160,3	516	33282
68	-	73	5	70,5	4970,3	352,5	24851
74	-	79	1	86,5	5859,3	76,5	5852,3
80	-	85	2	82,5	6806,3	165	13613
Sum			30			1887	120848

Table 4.3
The Frequency Observation of Experimental Class Pretest

Class	Bk	Z_{i}	$\mathrm{P}\left(\mathrm{Z}_{\mathrm{i}}\right)$	Wide Area	Ei	Oi	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
		49,5	$-1,55$	$-0,4400$			
$50-55$		0,60		0,1353	4,1	7	2,1314
$56-61$		0,66		0,2402	7,2	7	0,0058
	67,5	$-0,86$	$-0,3047$				

$62-67$		0,73		0,2677	8,0	8	0,0001	
		73,5	0,53	0,2032				
$68-73$		0,79		0,1874	5,6	5	0,0687	
74	-79		0,86		0,0823	2,5	1	0,8752
		85,5	1,93	0,4729				
$80-85$		0,93		0,0227	0,7	2	2,5543	

Figure 4.1
Normality test of Experimental Class of Pre-test

With $\alpha=5 \%$ and $\mathrm{dk}=6-3=3$, from the chisquare distribution table, it was obtained $\chi_{\text {table }}^{2}=7,81$.

Because $\quad \chi_{\text {count }}^{2}=5,64$ was lower than $\chi_{\text {table }}^{2}=7,81$ $(5,64<7,81)$. So the distribution list was normal.

2) The Normality of the Control Class of Pre-test Hypothesis:

Ho: The distribution list was normal.
Ha: The distribution list was not normal.
Test of hypothesis:
The formula was used:

$$
\chi^{2}=\sum_{i=1}^{k} \frac{\left(O_{i}=E_{i}\right)^{2}}{E_{i}}
$$

The computation of normality test:
Maximum score $=80$

Minimum score $=50$
$\mathrm{K} /$ Number of class $\quad=6$
S
$=8,87$
$\mathrm{n}=30$
Range $=35$
Length of class $=6$
$\bar{X} \quad=63,10$

Table 4.4
Table Frequency Distribution of the Control Class Pre-test

Class		f_{i}	X_{i}	$X_{\mathrm{i}}{ }^{2}$	$f_{i \cdot} \cdot X_{\mathrm{i}}$	$f_{i} \cdot X_{\mathrm{i}}{ }^{2}$
50	-	55	6	52,5	2756,25	315
56	-61	10	58,5	3422,25	585	34222,5
62	-	67	5	64,5	4160,25	322,5
68	-73	5	70,5	4970,25	352,5	24851,25
74	-79	2	76,5	5852,25	153	11704,5
80	-85	2	82,5	6806,25	165	13612,5
Sum		30			1893	1217230

Table 4.5
Table Frequency Observation of the Control Class Pre-test

| Class | Bk | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$74-79$		0,86		0,0883	2,6	2	0,1584
	79,5	1,85	0,4678				
$80-85$		0,93		0,0264	0,8	2	1,8350
	85,5	2,53	0,4942		$\begin{gathered} 0,29 \\ 90 \end{gathered}$		
\#REF							
!					χ^{2}	=	5,42

Figure 4.2
Normality test of Control Class of Pre-test

$$
5,42 \quad 7,81
$$

With $\alpha=5 \%$ and $\mathrm{dk}=6-3=3$, from the chisquare distribution table, it was obtained $\chi_{\text {table }}^{2}=7,81$. Because $\quad \chi_{\text {count }}^{2}=5,42$ was lower than $\chi_{\text {table }}^{2}=7,81$ $(5,42<7,81)$. So the distribution list was normal.
b. Homogeneity Experimental and Control Class of

Pre-test

Hypothesis

$$
\mathrm{H}_{\mathrm{o}}: \sigma_{1}^{2}=\sigma_{2}^{2}
$$

$$
\mathrm{H}_{\mathrm{a}}: \sigma_{1}^{2} \neq \sigma_{2}^{2}
$$

The Calculation Formula:

$$
\mathrm{F}=\frac{\text { The biggest Variants }}{\text { The smallest Variants }}
$$

Ho is accepted if $\mathrm{F} \leq \mathrm{F}_{(1-\mathrm{a})}(\mathrm{nb}-1)$: (nk-1)

Table 4.6
Homogeneity test of Experimental and Control Class Pre-test

Variation Source	Experiment	Control
Sum	1900	1910
N	30	30
\bar{X}	63,333	63,667
Variant $\left(\mathrm{s}^{2}\right)$	59,195	58,506
Standard of deviation (s)	7,694	7,649

$$
\mathrm{F}=\frac{59,195}{58,506}=1,012
$$

For $\mathrm{a}=5 \%$ with:

Figure 4.3

Homogeneity Experimental and Control Class of Pre-test

$$
1,012 \quad 1,861
$$

Because $\mathrm{F}_{\text {count }}<\mathrm{F}_{\text {table, }}$ the experimental and control group had the same variance with $\alpha=5 \%$ and $\mathrm{dk}=(30-1=29):(30-1=29)$, it obtained $\mathrm{F}_{\text {table }}=1,861$. Because $\mathrm{F}_{\text {count }}$ was lower than $\mathrm{F}_{\text {table }}(1,012<1,861)$. So, Ho was accepted and two groups had same variant/ homogenous.

c. The Hypothesis Test of Pre-test

In this research, because $\mathrm{H}_{0}: \sigma_{1}^{2}=\sigma_{2}{ }^{2}$ (has same variant), the t-test formula was as follows:
$\mathrm{t}=\frac{\overline{\mathrm{x}}_{1}-\overline{\mathrm{x}}_{2}}{\mathrm{~s} \sqrt{\frac{1}{\mathrm{n}_{1}}+\frac{1}{\mathrm{n}_{2}}}}$

$$
\mathrm{s}=\sqrt{\frac{\left(\mathrm{n}_{1}-1\right) s_{1}^{2}+\left(\mathrm{n}_{2}-1\right) s_{2}^{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}-2}}
$$

The Average Similarity Test of Experimental and Control Class Pre-test

Variation Source	Experiment	Control
Sum	1900	1910
$\overline{\mathrm{n}}^{\mathrm{X}}$	30	30
Variants $\left(\mathrm{s}^{2}\right)$	63,333	63,667
Standard of deviation (s)	59,195	58,506
7,694	7,649	

$$
\begin{gathered}
s=\sqrt{\frac{(30-1) 59,195+(30-1) 58,506}{30+30-2}}=7,6714 \\
t=\frac{63,33-63,67}{7,88 \sqrt{\frac{1}{30}+\frac{1}{30}}}=-0,168
\end{gathered}
$$

With $\mathrm{a}=5 \%$ with $\mathrm{dk}=30+30-2=58$, it obtained t ${ }_{(0,05)(58)}=2,00$

Figure 4.4
The Average Similarity Test of Pre-test

Because $t_{\text {count }}$ was lower than $t_{\text {table }}(-0,168<$ $2,00)$. So, Ho was accepted and there was no difference of pre-test average score from both of experimental and control groups.
2. The Data Analysis of Post-test Score of the Experimental Class and Control Class
a. The Normality experimental and control class of post-test

Table 4.8
The list of experimental and control class post-test
score

EXPERIMENTAL			CONTROL		
NO	CODE	SCORE	N0	CODE	SCORE
1	E-1	85	1	C-1	75
2	E-2	90	2	C-2	65

3	E-3	70	3	C-3	65
4	E-4	80	4	C-4	65
5	E-5	85	5	C-5	65
6	E-6	80	6	C-6	75
7	E-7	70	7	C-7	60
8	E-8	55	8	C-8	60
9	E-9	85	9	C-9	75
10	E-10	75	10	C-10	80
11	E-11	60	11	C-11	70
12	E-12	75	12	C-12	55
13	E-13	75	13	C-13	75
14	E-14	80	14	C-14	60
15	E-15	70	15	C-15	70
16	E-16	65	16	C-16	80
17	E-17	70	17	C-17	50
18	E-18	65	18	C-18	60
19	E-19	70	19	C-19	50
20	E-20	60	20	C-20	75
21	E-21	75	21	C-21	55
22	E-22	80	22	C-22	70
23	E-23	80	23	C-23	65
24	E-24	70	24	C-24	70
25	E-25	65	25	C-25	70

26	E-26	75	26	C-26	85
27	E-27	65	27	C-27	75
28	E-28	70	28	C-28	70
29	E-29	60	29	C-29	80
30	E-30	70	30	C-30	60
Sum n	2175			2030	
\bar{x} average Variants (s	30			30	
Standard of deviation (S)	8,585272			9,07187	

1) The normality of the of Experimental Class Post-test

The normality test was used to know whether the data that obtained was normally distributed or not. Based on the table above, the normality test was:

Hypothesis:
Ha: The distribution list was normal
Ho: The distribution list was not normal

Test of Hypothesis:

The formula was used:

$$
\chi^{2}=\sum_{i=1}^{k} \frac{\left(O_{i}=E_{i}\right)^{2}}{E_{i}}
$$

The computation of normality test:

Maximum score	$=90$
Minimum score	$=55$
K/ Number of class	$=6$
s	$=11,14$
n	$=30$
Range	$=35$
Length of class	$=6$
\bar{x}	$=75,50$

Table 4.9
The Frequency Distribution of the Experimental Class Post Test

Class		f_{i}	X_{i}	$X_{\mathrm{i}}{ }^{2}$	$f_{i} \cdot X_{\mathrm{i}}$	$f_{i} \cdot X_{\mathrm{i}}{ }^{2}$	
55	-	61	4	58	3364	232	13456
62	-	68	4	65	4225	260	16900
69	-	75	8	72	5184	576	41472
76	-	82	5	79	6241	395	31205
83	-	89	5	86	7396	430	36980
90	-	96	4	93	8649	372	34596
Sum			30			2265	174609

Table 4.10
Table Frequency Observation of the Experimental Class Post-Test

Class	Bk	Z_{i}	$\mathrm{P}\left(\mathrm{Z}_{\mathrm{i}}\right)$	Wide Area	Ei	Oi	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
	54,5	-1,88	-0,4702				
$55-61$		0,60		0,0748	2,2	4	1,3772
	61,5	-1,26	-0,3955				
$62-68$		0,66		0,1604	4,8	4	0,1375
	68,5	-0,63	-0,2350				
$69-75$		0,73		0,2350	7,1	8	0,1276
	75,5	0,00	0,0000				
$76-82$		0,79		0,2350	7,1	5	0,5967
	82,5	0,63	0,2350				
$83-89$		0,86		0,1604	4,8	5	0,0072
	89,5	1,26	0,3955				
$90-96$		0,93		0,0748	2,2	4	1,3772
	96,5	96,5	0,4702		$\begin{gathered} 0,29 \\ 90 \end{gathered}$		
	\#REF						
	!				χ^{2}	$=$	3,62

Figure 4.5

The normality Test of experimental class of post-test

$$
3,62 \quad 7,81
$$

With $\alpha=5 \%$ and $\mathrm{dk}=6-3=3$, from the chi-square distribution table, it was obtained χ^{2} table $=7,81$. Because $\chi_{\text {count }}^{2}=3,62$ was lower than χ^{2} count $=7,81(3,62<7,81)$. So the distribution list was normal.
2) The Normality of the Control Class of Post-test Hypothesis:

Ho: The distribution list was normal.
Ha : The distribution list was not normal.

Test of hypothesis:

The formula was used:

$$
\chi^{2}=\sum_{i=1}^{k} \frac{\left(O_{i}=E_{i}\right)^{2}}{E_{i}}
$$

The computation of normality test:

Maximum score	$=85$
Minimum score	$=50$
K/ Number of class	$=6$
S	$=8,99$
n	$=30$
Range	$=35$
Length of class	$=6$
\bar{X}	$=67,47$

Table 4.11
The Frequency Distribution of Control Class Post-test

Class			f_{i}	X_{i}	X_{i}^{2}	$f_{i} \cdot X_{\mathrm{i}}$	$f_{i} \cdot X_{\mathrm{i}}^{2}$
50	-	56	4	53	2809	212	11236
57	-	63	5	60	3600	300	18000
64	-	70	11	67	4489	737	49379
71	-	77	6	74	5476	444	32856
78	-	84	3	81	6561	243	19683
85	-	91	1	88	7744	88	7744
	30			2024	138898		

Table 4.12
The Frequency Observation of Control Class Post-test

Class		Bk	Z_{i}	$\mathrm{P}\left(\mathrm{Z}_{\mathrm{i}}\right)$	Wide Area	Ei	Oi	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
		49,5	-2,00	-0,4771				
	- 56		0,77		0,0885	2,7	4	0,6825
		56,5	-1,22	-0,3887				
57	- 63		0,86		0,2182	6,5	5	0,3656
		63,5	-0,44	-0,1704				
	- 70		0,96		0,3025	9,1	11	0,4087
		70,5	0,34	0,1321				
	- 77		1,05		0,2357	7,1	6	0,1619
		77,5	1,12	0,3677				
	- 84		1,14		0,1032	3,1	3	0,0029
		84,5	1,89	0,4709				
	- 91		1,23		0,0253	0,8	1	0,0755
		91,5	2,67	0,4962		$\begin{gathered} \hline 0,221 \\ 9 \end{gathered}$		
		\#REF						
						χ^{2}	$=$	1,70

$\chi_{\text {count }}^{2}=1,70$ for $\mathrm{a}=5 \%, \mathrm{dk}=6-3=3$ was gotten $\chi_{\text {table }}^{2}=7,81$

Figure 4.6
The Normality of the Control Class of Post-test

$$
1,70 \quad 7,81
$$

With $\alpha=5 \%$ and $\mathrm{dk}=6-3=3$, from the chi-square distribution table, it was obtained χ^{2} count $=$ 7,81 . Because χ^{2} count $=1,70$ was lower than $\chi^{2}{ }_{\text {table }}=$ $7,81(1,70<7,81)$. So the distribution list was normal.
b. Homogeneity Experimental and control class of Post-test

Hypothesis

$H_{O}: \sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$
$H_{a}: \sigma_{1}{ }^{2} \neq \sigma_{2}{ }^{2}$

The Calculation

Formula:

$$
\mathrm{F}=\frac{\text { The biggest Variants }}{\text { The smallest Variants }}
$$

Ho is accepted if $\mathrm{F} \leq \mathrm{F}_{(1-\mathrm{a})(\mathrm{nb}-1) \text { : }(\mathrm{nk}-1)}$

Table 4.13
Homogeneity test of Experimental and Control Class of Post-test

Variation Source	Experiment	Control
Sum	2175	2030
N	30	30
\bar{X}	72,500	67,667
Variant (s2)	73,707	82,299
Standard of deviation (s)	8,585	9,072

$$
\mathrm{F}=\frac{82,2989}{73,7069}=1,117
$$

For $\mathrm{a}=5 \%$ with:

$\mathrm{df} 1=\mathrm{nb}-1$	$=30-1=29$
$\mathrm{df} 2=\mathrm{nk}-1$	$=30-1=29$
$\mathrm{~F}_{(0.05)(29: 29)}$	$=1,861$

Figure 4.7

Homogeneity Experimental and Control Class of Post-test

Because $\mathrm{F}_{\text {count }}<\mathrm{F}_{\text {table, }}$ the experimental and control group had the same variance with $\alpha=5 \%$ and $\mathrm{dk}=(30-1=29):(30-1=29)$, it obtained $\mathrm{F}_{\text {table }}=1,861$. Because $\mathrm{F}_{\text {count }}$ was lower than $\mathrm{F}_{\text {table }}(1,117<1,861)$. So, Ho was accepted and two groups had same variant/ homogenous.
c. The Hypothesis Test of Post-test

In this research, because $\mathrm{H}_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ (has same variant), the t-test formula was as follows:

$$
\mathrm{t}=\frac{\overline{\mathrm{x}}_{1}-\overline{\mathrm{x}}_{2}}{\mathrm{~s} \sqrt{\frac{1}{\mathrm{n}_{1}}+\frac{1}{\mathrm{n}_{2}}}}
$$

$$
\mathrm{s}=\sqrt{\frac{\left(\mathrm{n}_{1}-1\right) s_{1}^{2}+\left(\mathrm{n}_{2}-1\right) s_{2}^{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}-2}}
$$

Ha is accepted if $\mathrm{t}_{\text {count }}>\mathrm{t}_{(1-\mathrm{a})(\mathrm{n} 1+\mathrm{n} 2-2)}$

Table 4.14
The Average Similarity Test of Experimental and Control Class of Post-test

Variation Source	Experiment	Control
Sum	2175	2030
n	30	30
\bar{X}	72,500	67,667
Variant $\left(\mathrm{s}^{2}\right)$	73,707	82,299
Standard of deviation (s)	8,5850	9,072

$$
s=\sqrt{\frac{(30-1) 73,7069+(30-1) 82,2989}{30+30-2}}=8,8319
$$

$$
\mathrm{t}=\frac{72,50-67,67}{8,8319 \sqrt{\frac{1}{30}+\frac{1}{30}}}=2,120
$$

With a $=5 \%$ with $\mathrm{dk}=30+30-2=58$, it obtained $\mathrm{t}_{(0,05)(58)}=1,672$

Figure 4.8
The Average Similarity Test of Post-test

Since $t{ }_{\text {count }}>t$ table meant that there was a significant difference between experimental and control class on the post test. The experimental class was higher than the control class.

Based on the computation above, by $\alpha=5 \%$ of significance and $\mathrm{dk}=30+30-2=58$. It was obtained $t_{\text {table }}=1,672$ while $t_{\text {count }}=2,120$. So, it can be concluded that Ho was rejected, Ha was accepted because $t_{\text {count }}$ was higher than the critical score on the $t_{\text {table }}(2,120>1,672)$.

Based on the result, the hypothesis in this research could be concluded that there was a significance difference in the result score of
descriptive text between experimental class and control class which was taught speaking descriptive text by using think pair share technique in experimental class and control class taught without using think pair share technique.

C. Discussion of the Research Finding

1. The score of initial ability (pre-test)

Based on the calculations of normality and homogeneity test from class X. 1 as the experimental class and X. 2 as the control class was normal distribution and homogeneous.
2. The score of final ability (Post-test)

The result of this research is obtained the average score of experimental class was 72,500 which were higher than the result of control class was 67,667 .

The average score of experimental class was 72,500 and (S) Standard of deviation was 8, 585. Teaching speaking of descriptive text in experimental class by using think pair share technique can encourage the students to be more active and interactive. They were also easy to understand the material when teaching and learning process conducted by using think pair share technique. It can be seen on the result of average score of experimental class which better than control class.

The average score of control class was 67,667 and (S) Standard of deviation was 9, 072. The teaching speaking of descriptive text in control class by using lecturing method made students felt bored with the text that was presented because the teaching-learning process was monotonous. So, the students couldn't understand the teaching-learning process optimally.

Based on the result of calculation t-test was obtained $t_{\text {count }}=2,120$ and $t_{\text {table }}=1,672$. This showed that $t_{\text {count }}>t$ table $\left(t_{\text {count }}\right.$ higher than $\left.t_{\text {table }}\right)$. Thus, it meant that there was a significant difference between descriptive result score of students who taught speaking descriptive text by using think pair share technique and without think pair share technique in the teaching speaking of descriptive text.

D. Limitations of the Research

The researcher realized that this research had not been conducted optimally. There were constraints and obstacles faced during the research process. Some limitations of this research were:

1. The researcher was still lack of experience and knowledge of teaching-learning. It made the implementation process of this research was less smooth. But the researcher tried as maximal as possible to do this research.
2. The researcher was limited at MA Sunan Kalijaga Bawang in the academic year 2015/2016. When the same research is conducted in others school, it was still possible that will be gained different score.

Considering all those limitations, there was a need to do more researches about teaching speaking of descriptive text using think pair share technique or different technique. Hopefully, there will be better and has an optimal result.

